21/03/2003 ulis 2003 - udine (italy) - c. gallon 1 analysis of mechanical stress effects in short...

19
21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 1 Analysis of Mechanical Stress Effects in Short Channel MOSFETs C. Gallon 1 , G. Reimbold 1 , G. Ghibaudo 2 , R.A. Bianchi 3 and R. Gwoziecki 1,3 . 1 CEA-Leti, 38054 Grenoble Cedex 9, France. Tel. : +33 (0)4 38 78 49 93. E-mail: [email protected] 2 IMEP, BP257, 38016 Grenoble Cedex 9, France. 3 STMicroelectronics, Central R&D, 38921 Crolles, France.

Post on 19-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 1

Analysis of Mechanical Stress Effects in Short Channel MOSFETs

C. Gallon1, G. Reimbold1, G. Ghibaudo2, R.A. Bianchi3 and R. Gwoziecki1,3.

1CEA-Leti, 38054 Grenoble Cedex 9, France. Tel. : +33 (0)4 38 78 49 93. E-mail: [email protected]

2IMEP, BP257, 38016 Grenoble Cedex 9, France. 3STMicroelectronics, Central R&D, 38921 Crolles, France.

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 2

OUTLINE

• Introduction

• Experimental Method– Four point bending technique

– Tested devices

• Experimental Results:– Stress Influence on Long Channel Devices

– Stress Influence on Short Channel Devices

• Conclusion and Perspectives

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 3

INTRODUCTION (1)• Context:

– Generation of mechanical stress at various process steps.

– These effects are more important in scaled CMOS devices

– A key role of mechanical stress in MOSFETs devices:

Performance improvements (SiGe, SiGe:C… )

or Performance reductions (STI,…)

• Needs:– Improve extraction methodologies versus mechanical stress.

– Better understanding and evaluation of stress effects onMOSFETs devices.

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 4

INTRODUCTION (2)

• Purpose of this work:

– Analysis of external mechanical stress effects on

MOSFETs from advanced 0.13µm CMOS technology:

Relative variations of mobility with external stress,

Extraction of Piezoresistive Response (PR),

Simple approach proposed to extract PR on short devices accounting for Rsd influence.

– Objectives: Try to provide data for device simulators and a better analysis of stress effects.

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 5

• Principle of a four-point bending technique:

• Interest: Application of an uniform uniaxial stress between

the two central fulcrums.

a 2a a

F F

EXPERIMENTAL METHOD: 4-POINT BENDING

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 6

2324

12

La

tEydis

ydis

• Evaluation of stress :

• Estimated error:

- Uncertainty on L, a , y measurements and mainly on E value.

- Global accuracy: 7%

a 2a a

F F

EXPERIMENTAL METHOD: 4-POINT BENDING

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 7

Micrometer screw

EXPERIMENTAL METHOD: 4-POINT BENDING

a a2a

L

2aa a

L

compressive

tensile

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 8

• Specific characteristics:

– Rectangular strip are cut from a saw technique.

– With an appropriate preparation of the strips, mechanical stress:

longitudinal direction (// to current flow)

or transversal direction ( to current flow).

– Most strips fail for 150-200MPa

Keep the applied mechanical stress below 100MPa.

EXPERIMENTAL METHOD: 4-POINT BENDING

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 9

• Bulk and SOI similar technologies- nMOS and pMOS fabricated on (100) substrates

- Tox=2nm; W=10µm; Long (L=10µm) or short (L=0.13µm) channel length;

- Important point on our short devices: a long distance between STI and gate

limit parasitic internal stress.

- Mechanical stress ranging from 0 to 100MPa was applied.

DEVICES TESTED ON 4-POINT BENDING

Substrate

Gate

DrainSource

Bulk Technology

Buried oxide

Substrate

Gate

DrainSource

SOI technology

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 10

EXPERIMENTAL RESULTS: Long Channel Devices

• Effects of mechanical stress on transfer characteristics

- Linear region characteristics of nMOS BULK:

- Use of standard expressions to extract VT and µ.

- Note the invariance of VT and mobility variations.

0

1

2

3

4

5

-0,5 0 0,5 1 1,5Vg (V)

Gm

(10-5

S)

Id@100MPa

Id@0MPa

0

1

2

3

4

5

-0,5 0 0,5 1 1,5Vg (V)

Gm

(10-5

S)

Id@100MPa

Id@0MPaId@0MPa

Id@100MPa

DVµCW

Slope oxL

2

D

T

VV

0

1

2

3

4

-0,5 0 0,5 1 1,5Vg (V)

Id (

10-5

A)

Id@0MPa

Id@100MPa

DVµCW

Slope oxL

2

D

T

VV

0

1

2

3

4

-0,5 0 0,5 1 1,5Vg (V)

Id (

10-5

A)

0

1

2

3

4

-0,5 0 0,5 1 1,5Vg (V)

Id (

10-5

A)

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 11

• Normalized mobility variations versus applied stress:

- Excellent linear dependence for both n and p MOS devices.

0

1

2

3

4

5

6

7

8

0 25 50 75 100Transversal

Longitudinal

SOI

BULK

nMOS

L=10µm W=10µm

0

1

2

3

4

5

6

7

8

0 25 50 75 100

SOI

BULK

0

1

2

3

4

5

6

7

8

0 25 50 75 1000

1

2

3

4

5

6

7

8

0 25 50 75 100Tensile Stress (MPa)

µ/µ

(%

)

-8

-202468

0 25 50 75 100

Longitudinal

SOI

02468

0 25 50 75 100

-6

02468

0 25 50 75 100

-4

02468

0 25 50 75 100

Transversal

pMOS

L=10µm W=10µm BULK

BULK

SOI

µ/µ

(%

)Tensile Stress (MPa)

EXPERIMENTAL RESULTS: Long Channel Devices

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 12

• Mobility variations and piezoresistance response:

L longitudinal coefficient

T transverse coefficient

Majors coefficients of cubic structure for silicon

2

44S

L0

µ

µ

2

44S

T90

µ

µ

//J

J

44,

12,

11

1211

S

EXPERIMENTAL RESULTS: Long Channel Devices

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 13

• Piezoresistance coefficients (.10-12Pa-1):

BULK SOI Errors

LnMOS

TnMOS

SnMOS

44nMOS

622

272

894

349

734

393

1127

341

40

40

60

60

LpMOS

TpMOS

SpMOS

44pMOS

-770

491

-280

-1261

-967

531

-435

-1499

40

40

60

60

Bulk&SOI results0.13µm techno.

EXPERIMENTAL RESULTS: Long Channel Devices

Bradley&al. IEEE20010.3µm techno. Ref. Si

-415

385

-30

-800

320

250

570

70

Texas Instr.

-600

400

-200

-1000

-500

450

-50

-950

LpMOS

TpMOS

SpMOS

44pMOS

500

350

850

150

450

350

800

100

LnMOS

TnMOS

SnMOS

44nMOS

Lucent Techno

IBM

-415

385

-30

-800

320

250

570

70

Texas Instr.

-600

400

-200

-1000

-500

450

-50

-950

LpMOS

TpMOS

SpMOS

44pMOS

500

350

850

150

450

350

800

100

LnMOS

TnMOS

SnMOS

44nMOS

Lucent Techno

IBM

-718

663

-55

-1380

311

175

486

136

Lightly doped Si

-718

663

-55

-1380

311

175

486

136

Lightly doped Si

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 14

EXPERIMENTAL RESULTS: Long&Short Channel Devices

0

2

4

6

8

0 25 50 75 100

Tensile Stress (MPa)

µ/µ

(%

)

L=0.13µm

L=10µm

nMOS

Longitudinal StressD’

S’

D

S

R

R

G

D’

S’

D

S

R

R

G

• Comparison between Long and Short devices:

Bradley&al.: “Reduction is only due to the influence of Rsd". (IEEE 2001)

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 15

• Bradley approach:

• Problems of this approach:

- Extraction of Ron is Vg dependent

- Choice in Vg extraction results in significant variation on Ron

Significant uncertainty on piezoresistive coefficients.

• A novel approach is proposed.

onsd

onsdeff RR

RR

21

21

EXPERIMENTAL RESULTS: Short Channel Devices

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 16

• New approach proposed:

1. Correction from Rsd influence on Id0:

2. Calculation of equivalent Vg shift to get the same Id with and without stress:

3. Vg is related to Vt and mobility change by:

Vd/IdR1

1IdId

0sd0

Gm/)stressed

Idunstressed

Id(Gm/IdVg

0µ/0µGm

IdVtVg [Roux-dit-Buisson,

IEEProceedings-G, 1993]

EXPERIMENTAL RESULTS: Short Channel Devices

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 17

1. Experimental variations after various stress levels for a 0.13µm pMOS/SOI.

Note excellent linearity.

0 0,1 0,2 0,3 0,4 0,5 0,6

100MPa

75MPa

50MPa

25MPa

0

1

2

3

4

5

0 0,1 0,2 0,3 0,4 0,5 0,6

Vg=

Id

/Gm

(10

-2V

)

Id/Gm (V)

µµSlope /

0 TV

3. Piezoresistive coefficients extraction.

EXPERIMENTAL RESULTS: Short Channel Devices

Longitudinal

Transversal02468

0 25 50 75 100

02468

0 25 50 75 100

No Rsd CorrectionRsd correction

- 2- 4- 6

- 8

Tensile Stress (MPa)µ

/µ (

%)

2. Normalized mobility change versus applied uniaxial stress.

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 18

• Example of calculations including Rsd corrections:

- Agreement between coefficients for both short and long L.

- Local or 2D stress do not affect significantly short devices,however a slight longitudinal effect may exist.

SOI pMOSFET

parameters

Measured values

Measured values

Corrected values

Errors

Channel length 10µm 0.13µm 0.13µm 0.13µm

Parasitic Rsd 35 35 35 35

Vd -0.1V -0.1 V -0.1V -0.1 V

L

T

S

44

-967

531

-435

-1499

-545

473

71

-1018

-708

567

-141

-1275

100

100

150

150

EXPERIMENTAL RESULTS: Short Channel Devices

21/03/2003 ULIS 2003 - Udine (Italy) - C. Gallon 19

CONCLUSIONS & PERSPECTIVES

• Study of mechanical stress effects on long and short channels.

• Proposition of a simple approach to determine directly Vt and µ

– Vt is independent of stress,

– Mobility variations dominate the piezoresistive response,

– Bulk & SOI: similar piezoresistive response both n and p MOS, slightly higher for SOI.

• After Rsd corrections, comparable results on short and long devices:

2D or local effects are small for a 0.13µm technology.

• A first step to provide piezoresistive data for device simulators and a better analysis of mechanical stress effects.