2015 broken hill resources investment symposium - carpentaria exploration - mark tschaban

21
1

Upload: symposium

Post on 24-Jul-2015

64 views

Category:

Education


4 download

TRANSCRIPT

1

2

Neoarchean – Paleoproterozoic ~2800 Ma – ~2000 Ma

Eg Hamersley Iron Province WA

Neoproterozoic ~750 Ma – ~600 Ma

Eg Braemar Iron Province SA & NSW

Hamersley BIF Magnetite - Hematite - Jasper

Braemar IF Magnetite - Hematite - Siltstone After Robb, 2005, p. 269, Fig. 5.16

Paleoarchean - Mesoarchean ~3500 Ma – ~3000 Ma

Eg Pilbara & Yilgarn Cratons WA

3

Rodinia breakup (rifting)

Sturtian Glaciation

Marinoan Glaciation

Rapitan type IF

4

Iron (Fe2+) Dissolution Conditions •  Reduced (anoxic) •  Low pH (acidic) •  Source – hydrothermal, continental crust,

continental waters

Source: L.J., Robb, 2005, p. 271, Fig. 5.18

5

Iron (Fe3+) Precipitation Conditions •  Oxidised (oxic) •  Neutral to high pH (basic) •  Product – iron hydroxides, carbonates and

sulphides

Hematite Fe3+

2O3 Fe2+

Magnetite Fe3+

2Fe2+O4

Siderite Fe2+CO3

Pyrite Fe2+S2

Initial Precipitate Iron Hydroxides Iron Oxides

Diagenesis Metamorphism Dehydrate Recrystallise Iron Oxides

Weathering

Rehydrate Oxidise

Iron Oxides Iron Hydroxides

Hematite Magnetite

Magnetite Hematite Martite

Goethite Limonite

After Robb L.J., 2005, p. 270, Fig. 5.17

6

Source: Holland, 2006, p. 912, Fig. 10

1 2 4 3 5

7 After Klein & Beukes, 1993, p. 543, Fig. 2

Global Glaciation - Iron Dissolution

•  Sturtian Glaciation ~750 - 700 Ma (most severe)

•  Marinoan Glaciation ~650 - 600 Ma

•  Decoupling of water column from the atmosphere

•  Replicated Archean conditions - reduced, anoxic and acidic

•  Dissolution of iron

•  Iron source – Continental crust/sediment and or hydrothermal

Glacial Melting - Iron Precipitation

•  Glacial regression recoupling of the water column to the atmosphere

•  Partial seasonal melting (oxygenated melt water introduction)

•  Iron hydroxide precipitation

•  Deposited in rift basins, shallow oceans and lakes during the break up of Rodinia 8

After Cox et al., 2013, p. 9, Fig. 4

•  Occur in rift basins at low paleo-latitudes

•  Seasonal glacial melting

•  Sediment staking and mixing

•  Williams & Schmidt 2015, confirms equatorial paleo-latitude for South Australian Umberatena Group in the late Cryogenian

9

10

Global Rapitan Iron Formation Locations

Data Sources: G.M Cox et al., 2013 Klein and Buekes, 1993 Bekker et al., 2010 R.J. Stern et al., 2013 Beukes and Gutzmer, 2008 S.L. Ellefmo, 2005

t

Canada Rapitan Group

Holowilena Iron Stone Oraparinna Iron Stone

Braemar Iron Facies

Teamster Creek Subgroup Unnamed Iron Stone Occurrence

•  Adelaide Rift Complex/Fold Belt/Geosyncline

•  Holowilena / Oraparinna Iron Stones

•  Braemar Iron Facies

•  Teamster Creek Unnamed Iron Stone occurrence

Source: Brewster et al., 2009, (presentation) 11

Aeromagnetic Image Showing:

•  Adelaide Fold Belt outline

•  Bramar Iron deposits as magnetic highs

•  Over 300 km strike extent

•  Metamorphic grade increasing to the east

•  20 to 40 billion tonnes of regional exploration targets

•  Over 6 billion tonnes in JORC resources

12

Quartzite

Siltstone Hematite (martite)

Ferricrete

Iron Stone Alluvial Cover

Source: Brewster et al., 2009, p. 4, Fig. 2

13

Bedded Magnetic Siltstone (Unit 2 & 3)

Bedded Magnetic Sandstone (Interbed & Unit 3)

Diamictic Magnetic Siltstone (Unit 2)

Massive Iron Stone/Siltstone (Unit 2 & 3)

14

Massive Ironstone

Siltstone

Sandstone

Diamictite

Youn

ging

Youn

ging

Hawsons Stratigraphy 400 m true thickness

Graded siltstone (Tet)

Parallel lamination in sandstone (Tb)

Immature pebbly sandstone (Ta)

Pebbly mudstone with intrabasinal rip up clasts or viscous mass flow (Ta)

Flute and load structures After Neudert. M., 2013, p. 5, Fig. 6

Tet

Tb Ta

15

Stage 1 Sediments

Stage 2 Sediments

Stage 1 – Ferruginous sediment stacking

Stage 2 – Redeposition via high energy gravity flows

After Neudert. M., 2013, p. 13, Fig. 13 16

Massive Ironstone

Siltstone

Sandstone

Diamictite

Carbonate Cap

MFS?

Tran

sgre

ssio

n?

Tran

sgre

ssio

n?

Reg

ress

ion?

Hawsons Stratigraphy 400 m true thickness

1 3 2

After Tear, S., 2014, p. 6, Fig. 7

•  Very homogeneous magnetite mineralisation

•  Correlatable magnetic susceptibility patterns

•  Further evidence for a two stage depositional model

17

1

3 2

Magnetite (white)

Quartz (grey)

Biotite Chlorite Muscovite Dolomite

(black)

High grade iron concentrate High grade iron pellet After Teale, G.S., 2010, Plate 43.

After Roll-A-pipe undated, p. 14, Fig. 28

18

Magnetic Separator

19

20

is gratefully acknowledged for his help with the interpretation and development of the mineralisation and depositional models for the Hawsons Iron Deposit.

Basta, F.F.,Maurice, A.E., Fontbote, L., Favarger, P.-Y., 2011. Petrology and geochemistry of the banded iron formation (BIF) ofWadi Karim and Um Anab, Eastern Desert, Egypt: implications for the origin of Neoproterozoic BIF. Precambrian Res. 187 (3–4), 277–292.

Bekker. A., Slack. J.F., Planavsky. N., Krapez, B., Hofman. A., Konhuaser, K.O and Rouxel, O.J. 2010. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle,Tectonic, Oceanic, and Biospheric Processes. Society of Economic Geology, v. 105, p. 467-508.

Beukes, N.J. and Gutzmer, J,. 2008. Origin and Paleoenvironmental Significance of Major Iron Formations at the Archean-Paleoproterozoic Boundary

Beukes, N.J. and Gutzmer, J. Iron and manganese ore deposits: Mineralogy, Geochemistry and Economic Geology. Geology, Vol. IV. Brewster, D.C., Hill, Q.S., Donohue, J.G., 2009. The Forgotten Hawsons Iron Prospect: Is there Significant Magnetite Iron-Ore

Mineralisation in the Neoproterozoic at Broken Hill? Broken Hill Exploration Initiative 2009. Cox, G.M., Halverson, G.P., Minarik, W.G., Le Heron, D.P., Macdonald, F.A., Bellefroid, E.J., Struss, J.V., 2013. Neoproterozoic iron

gormation: An evaluation of its temporal, environmental and tectonic significance, Chemical Geology 2013. Ellefno, S.L. 2005. A probabilistic approach to the value chain of underground iron ore mining. Unpublished thesis. Department of

Geology and Mineral Resources Engineering Norwegian University of Science and Technology. Fabris, A., Constable, S., Conor, c., Woodhouse, A., Hore, S., Fanning, M., 2005. Age, origin, emplacement and mineral potential of the

Oodla Wirra Volcanics, Nackara Arc, central Fliders Rangers. MESA Journal 37. pp. 44-52. Flis, M., England, G., Thomas. T., 2011. Razorback Iron Ore Project – A New Iron District to Meet the Growing Demand of an Iron

Hungary World, Iron ore conference, Perth 2011. Foden J., Elburg M.A., Smith P.B., Dougherty-Page J. and Burtt A. 2006. The timing and duration of the Delamerian orogeny: correlation

with the Ross Orogen and implications for Gondwana assembly. The Journal of Geology, 114, 189-210. doi:10.1086/499570 Government of Yukon, 2008. IRON. Departments of Economic Development & Energy, Mines and Resources • www.geology.gov.yk.ca Holland, H.D., 2006. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B (2006) 361, 903–915 doi:10.1098/rstb.

2006.1838. Klein, C., Beukes, N.J., 1993. Sedimentology and geochemistry of the glaciogenic late Proterozoic Klein, C., Ladeira, E.A., 2004. Geochemistry and mineralogy of Neoproterozoic banded iron-formations and some selected, siliceous

manganese formations from the Urucum District, Mato Grosso Do Sul, Brazil. Econ. Geol. 99 (6),1233–1244. Koening, R.L and Broekman, K.T. 2011. Development of the Hawsons Low-Grade Magnetite. Iron Ore Conference, Perth, July 2011. Le Heron, D.P, Busfield, M.E, Le Ber, E., Kamona, A.F, 2012. Ironstone stromatolites and diamictites 1 in the Chuos Formation of

Namibia: implications for Cryogenian glaciation. Palaeo 3 manuscript 2012. Lottermoser, B.G., Ashley, P.M., 2000. Geochemistry, petrology and origin of Neoproterozoic ironstones in the eastern part of the

Adelaide Geosyncline, South Australia. Precambrian Research. 101 (1), 49–67. Merdith, A.S., Langrebe, T.C.W., Muller, R.D., 2015. Prospectivity of Western Australian iron ore from geophysical data using a reject

option classifier,Ore Geol. Rev. (2015), http://dx.doi.org/10.1016/j.oregeorev.2015.03.014 Pelleter, E., Cheilletz, A., Gasuet, D., Mouttaqi, A., annich, M. and Hankour, A.E. 2006. Discovery of Neoproterozoic Banded iron

formation (BIF) in Morroco. Geophysical Research Abstracts, Vol. 8, 04635, 2006 Pelleter, E., Cheilletz, A., Gasuet, D., Mouttaqi, A., annich, M. and Hankour, A.E., Feraud, G., 2008. The Variscan Tamlalt–Menhouhou

gold deposit, Eastern High-Atlas, Morocco. Journal of African Earth Sciences 50 (2008) 204–214. Preiss, W.V., (comp.), 1987. The Adelaide Geosyncline: Later Proterozoic Stratigraphy, sedimentation, Palaeontology and Tectonics.

Bulletin 53, Depatment of Mines and Energy Geological Survey of South Australia. Preiss, W.V., 2006, Old Boolcoomata Conglomerate Member of the Benda Siltstone – Neoproterozoic glacial sedimentation in terrestrial

and marine environments in an active rift basin. MESA Journal 41. pp. 15-33. Preiss, W.V., Forbes, B.G., 1981. Stratigraphy, correlation and sedimentary history of Adelaidean (late Proterozoic) basins in Australia.

Precambrian Res. 15 (3–4), 255–304. R.J. Stern ,, D. Avigad , N.R. Miller , M. Beyth., 2006. Evidence for the Snowball Earth hypothesis in the Arabian-Nubian Shield and the

East African Orogen. Journal of African Earth Sciences 44 (2006) 1–20. Rainbird, R.H., Jefferson, C.W., Hildebrand, R.S., and Worth, J.K., 1994: The Shaler Supergroup and revision of Neoproterozoic

stratigraphy in Amundsen Basin, Northwest Territories; & Current Research 1994-C; Geological Survey of Canada, p. 61-70. Rapitan iron-formation in Canada. Econ. Geol. 88 (3), 542–565. Robb, L.J., 2005. Introduction to ORE-FORMING PROCESSES, Blackwell Publishing 2005. Roll-a-Pipe, undated. RAP Carpentaria Material Anlysis. Unpublished report. Rose, C.V., Maloof, A.C., Schoene, B., Ewing, R.C., Linnemann, U., Hofmann, M and Cottle, J.M., 2013. The End- Cryogenian

Glaciation of South Australia. Geoscience Canada, v. 40, http://dx.doi.org/10.12789/geocanj.2013.40.019. Sterna, R.J., Mukherjeea, S.K., R. Millerb, N.R., Alic, K., Johnsonda, P.R., 2013. Department ∼750 Ma banded iron formation from the

Arabian-NubianShield—Implications for understanding Neoproterozoic tectonics,volcanism, and climate changeRobert – Precambrian Research 239 (2013) 79-94

Teale, G.S., 2009a. A Petrological and Mineragraphic Investigation of Seven Drill Chip Samples from the Hawsons Iron Project Broken Hill Region NSW. Unpublished report, TA09-11.

Teale, G.S., 2009b. A Petrological and Mineragraphic Investigation of a Suite of Samples from Diamond Drill Hole DD93WD2, Hawsons Iron Project Area Broken Hill Region NSW. Unpublished report, TA09-15

Teale, G.S., 2010. A Petrological and Mineragraphic Investigation of a Suite of Drill-Core Samples from the Hawsons Iron Project Broken Hill Region NSW. Unpublished report, TA10-16

Teale, G.S., 2011a. A Petrological and Mineragraphic Investigation of a Suite of Drill-Core Samples (BRP039) from the Hawsons Iron Project Broken Hill Region NSW. Unpublished report, TA11-03

Teale, G.S., 2011b. A Scanning Electron Microscope Investigation of Drill-core Samples from the Hawsons Iron Project Broken Hill Region, NSW. Unpublished report, TA11-05.

Teale, G.S., 2011c. A Petrological and Mineragraphic Investigation of a Suite of Drill-Core Samples (DD10BRP023) from the Hawsons Iron Project Broken Hill Region NSW. Unpublished report, TA11-14.

Teale, G.S., 2012 . A Mineragraphic and Petrological Investigation of a Suite of Iron-rich Meta-sediments from the Braemar Iron Project, South Australia. Unpublished report, TA12-08.

Teale, G.S., 2013. A Mineragraphic, Petrological and Scanning Electron Microscope Investigation of a Suite of Magnetite Bearing Meta Calc-Pelite Samples from the Hawsons Project Area, Western New South Wales. Unpublished report TA13-19.

Tear, S., 2014. Hawsons Magnetite Project – Updated Resource Estimate. Unpublished H&S Consultants report. Torsvik, T.H., 2003. The Rodinia Jigsaw puzzle. Science 300 (5624), 1379-1381. Trendall, A.F., 1973. Precambrian Iron-Formations of Australia. Economic Geology, Vol. 68, pp. 1023-1034. Williams , G.E and Schmidt, P.W., 2015. Low paleolatitude for the late Cryogenian interglacial succession, South Australia:

paleomagnetism of the Angepena Formation, Adelaide Geosyncline. Australian Journal of Earth Sciences 62, 241–250. Young, G.M., 1992. Neoproterozoic glaciation in the Broken Hill area, New South Wales, Australia. Geological Society of America

Bulletin, v. 104, p. 840 – 850, July 1992. 21