2015 7500 verification manual

795
VERIFICATION MANUAL 1

Upload: antonios

Post on 15-Nov-2015

46 views

Category:

Documents


3 download

DESCRIPTION

Compress

TRANSCRIPT

  • Verification Manual

    1

  • Table of Contents

    1. Introduction .......................................................................................................................................... 6

    1.1 Purpose of Document ................................................................................................................................ 6 1.2 Scope of Software ..................................................................................................................................... 6 1.3 Published Examples .................................................................................................................................. 6 1.4 Intellectual Property Statement ................................................................................................................. 6

    2. Verification of Published Examples ..................................................................................................... 7

    2.1 PTB-4-2013: ASME Section VIII - Division 1 Example Problems ......................................................... 8 E3.1 - Use of MDMT Exemptions Curves ................................................................................................. 9 E3.2 - Use of MDMT Exemptions Curves with Stress Reduction ............................................................ 13 E3.3 - Determine the MDMT for a Nozzle-to-Shell Welded Assembly................................................... 18 E4.1.2 - Determine Required Wall Thickness of Hemispherical Head ................................................... 26 E4.2.1 - Nondestructive Examination Requirement for Vessel Design ..................................................... 32 E4.2.2 - Nozzle Detail and Weld Sizing ................................................................................................... 44 E4.2.3 - Nozzle Detail with Reinforcement Pad and Weld Sizing ........................................................... 53 E4.3.1 - Cylindrical Shell .......................................................................................................................... 64 E4.3.2 - Conical Shell ............................................................................................................................... 70 E4.3.3 - Spherical Shell ............................................................................................................................ 76 E4.3.4 - Torispherical Head ...................................................................................................................... 84 E4.3.5 - Ellipsoidal Head .......................................................................................................................... 89 E4.3.6 - Combined Loadings and Allowable Stresses Cylindrical Shell ................................................... 98 E4.3.7 - Conical Transitions Without a Knuckle .....................................................................................105E4.3.8 - Conical Transitions With a Knuckle ......................................................................................... 144 E4.4.1 - Cylindrical Shell ....................................................................................................................... 149 E4.4.2 - Conical Shell ............................................................................................................................. 156 E4.4.3 - Spherical Shell and Hemispherical Head .................................................................................. 164 E4.4.4 - Torispherical Head .................................................................................................................... 171 E4.4.5 - Ellipsoidal Head ........................................................................................................................ 176 E4.4.6 - Combined Loadings and Allowable Stresses Cylindrical Shell ................................................ 181 E4.4.7 - Conical Transitions Without a Knuckle .................................................................................... 192 E4.4.8 - Conical Transitions With a Knuckle ......................................................................................... 228 E4.5.1 - Radial Nozzle in Cylindrical Shell ........................................................................................... 237E4.5.2 - Hillside Nozzle in Cylindrical Shell ......................................................................................... 249 E4.5.3 - Radial Nozzle in Ellipsoidal Head ............................................................................................ 265 E4.5.4 - Radial Nozzle in Cylindrical Shell ........................................................................................... 277 E4.5.5 - Pad Reinforced Radial Nozzle in Cylindrical Shell .................................................................. 285 E4.5.6 - Radial Nozzle in an Ellipsoidal Head with Inside Projection ................................................... 296 E4.6.1 - Flat Unstayed Circular Heads Attached by Bolts ..................................................................... 303

    E4.7.1 - Thickness Calculation for a Type D Head ................................................................................ 315 E4.15.1 - Horizontal Vessel with Zick's Analysis .................................................................................. 325 E4.15.2 - Vertical Vessel, Skirt Design .................................................................................................. 336 E4.16.1 - Integral Type ........................................................................................................................... 341 E4.16.2 - Loose Type ............................................................................................................................. 361 E4.18.1 - U-Tube Tubesheet Integral with Shell and Channel ................................................................ 378 E4.18.2 - U-Tube Tubesheet Gasketed with Shell and Channel .............................................................. 390 E4.18.3 - U-Tube Tubesheet Gasketed with Shell and Channel .............................................................. 401 E4.18.4 - U-Tube Tubesheet Gasketed with Shell and Channel, Extended as Flange ............................. 410 E4.18.5 - Fixed Tubesheet Exchanger, Configuration b, Tubesheet Integral with Shell, Extended as a Flange and Gasketed on the Channel side .............................................................................................. 424 E4.18.6 - Fixed Tubesheet Exchanger, Configuration b, Tubesheet Integral with Shell, Extended as a Flange and Gasketed on the Channel Side ............................................................................................. 444 E4.18.7 - Fixed Tubesheet Exchanger, Configuration a ......................................................................... 471

    E4.6.3 - Integral Flat Head with a Centrally Located Opening .............................................................. 309

    3

  • E4.18.8 - Stationary Tubesheet Gasketed with Shell and Channel; Floating Tubesheet Gasketed, Not Extended as a Flange .............................................................................................................................. 491 E4.18.9 - Stationary Tubesheet Gasketed with Shell and Channel; Floating Tubesheet Integral .............508 E4.18.10 - Stationary Tubesheet Gasketed with Shell and Channel; Floating Tubesheet Internally Sealed ................................................................................................................................................................ 528 E4.19.1 - U-Shaped Un-reinforced Bellows Expansion Joint and Fatigue Evaluation .......................... 545 E4.19.2 - Toroidal Bellows Expansion Joint and Fatigue Evaluation .................................................... 551 E4.20.1 - Tube-To-Tubesheet Welds - Full Strength Welds .................................................................. 556 E4.20.2 - Tube-To-Tubesheet Welds - Partial Strength Welds .............................................................. 569 E6.1 - Postweld Heat Treatment of a Pressure Vessel ............................................................................ 585 E6.2 - Out-of-Roundness of a Cylindrical Forged Vessel ..................................................................... 592 E7.1 - NDE: Establish Joint Efficiencies, RT-1 ..................................................................................... 595 E7.2 - NDE: Establish Joint Efficiencies, RT-2 ..................................................................................... 597 E7.3 - NDE: Establish Joint Efficiencies, RT-3 ..................................................................................... 599 E7.4 - NDE: Establish Joint Efficiencies, RT-4 ..................................................................................... 601 E8.1 - Determination of a Hydrostatic Test Pressure ............................................................................. 603 E8.2 - Determination of a Pneumatic Test Pressure ............................................................................... 605

    2.2 PTB-3-2013: ASME Section VIII - Division 2 Example Problems ..................................................... 607 E3.1 - Use of MDMT Exemptions Curves ............................................................................................. 608 E3.2 - Use of MDMT Exemptions Curves with Stress Reduction ......................................................... 613 E4.1.2 - Determine Required Wall Thickness of Hemispherical Head ................................................. 617 E4.1.3 - Determine Required Wall Thickness of Hemispherical Head - Higher Strength Material ...... 620 E4.2.1 - Nondestructive Examination Requirement for Vessel Design .................................................. 623 E4.2.2 - Nozzle Detail and Weld Sizing ................................................................................................. 628 E4.2.3 - Nozzle Detail with Reinforcement Pad and Weld Sizing ......................................................... 629 E4.3.1 - Cylindrical Shell ....................................................................................................................... 630 E4.3.2 - Conical Shell ............................................................................................................................. 633 E4.3.3 - Spherical Shell .......................................................................................................................... 636 E4.3.4 - Torispherical Head .................................................................................................................... 639 E4.3.5 - Ellipsoidal Head ........................................................................................................................ 643 E4.3.6 - Combined Loadings and Allowable Stresses ........................................................................... 648 E4.3.7 - Conical Transitions Without a Knuckle .................................................................................... 655 E4.3.8 - Conical Transitions With a Knuckle ......................................................................................... 671 E4.4.1 - Cylindrical Shell ....................................................................................................................... 672 E4.4.2 - Conical Shell ............................................................................................................................. 673 E4.4.3 - Spherical Shell and Hemispherical Head .................................................................................. 674 E4.4.4 - Torispherical Head .................................................................................................................... 675 E4.4.5 - Ellipsoidal Head ........................................................................................................................ 676 E4.4.6 - Combined Loadings and Allowable Stresses Cylindrical Shell ................................................ 677 E4.4.7 - Conical Transitions Without a Knuckle .................................................................................... 678 E4.5.1 - Radial Nozzle in Cylindrical Shell ........................................................................................... 702 E4.5.2 - Hillside Nozzle in Cylindrical Shell ......................................................................................... 710 E4.5.3 - Radial Nozzle in Ellipsoidal Head ............................................................................................ 718 E4.6.1 - Flat Unstayed Circular Heads Attached by Bolts ..................................................................... 726 E4.15.1 - Horizontal Vessel with Zick's Analysis .................................................................................. 729 E4.15.2 - Vertical Vessel, Skirt Design .................................................................................................. 738 E4.16.1 - Integral Type ........................................................................................................................... 743 E4.16.2 - Loose Type ............................................................................................................................. 754 E6.1 - Postweld Heat Treatment of a Pressure Vessel ............................................................................ 765 E6.2 - Out-of-Roundness of a Cylindrical Forged Vessel ..................................................................... 772 E8.1 - Determination of a Hydrostatic Test Pressure ............................................................................. 775 E8.2 - Determination of a Pneumatic Test Pressure ............................................................................... 777

    2.3 Taylor Forge Examples ......................................................................................................................... 779 Example 1 - Welding Neck Flange Design ............................................................................................ .780

    4

  • Example 2 - Slip on Flange Design - Flat Faced .................................................................................... 788 3. References ........................................................................................................................................ 794

    Appendix A........................................................................................................................................... 795

    5

  • 1. Introduction

    1.1 Purpose of Document

    This document is a validation of calculations performed by COMPRESS against published example problems (see 1.3 below). It shall be used to assess that the software has sufficient coding quality and accurate mathematical calculations. Any discrepancies between COMPRESS and published example calculations are explained at the end of each problem. All COMPRESS files referenced are included in the project file labeled 'SampleProject' and can be accessed in the Window menu by activating the Project Toolbar option.

    1.2 Scope of Software

    COMPRESS is a software application that is used to model, calculate, and create detailed reports for pressure vessels and heat exchangers using the latest Edition of the ASME Boiler and Pressure Vessel Code. The purpose of this software program is to provide users with a powerful, accurate, and user-friendly tool that will enhance engineering productivity and simplify vessel design.

    1.3 Published Examples

    Examples from several published manuals are included in this document. These include: ASME Section VIII - Division 1 Example Problem Manual (ASME PTB-4-2013), ASME Section VIII - Division 2 Example Problem Manual (ASME PTB-3-2013), and Taylor Forge Bulletin 502 Edition VII.

    1.4 Intellectual Property Statement

    This document and its contents are considered to be proprietary. This material shall not be copied or distributed to other parties without the express written consent of Codeware, Inc.

    6

  • 2. Verification of Published Examples

    7

  • 2.1 ASME Section VIII - Division 1 Example Problems (PTB-4-2013)

    8

  • E3.1 - Use of MDMT Exemptions Curves

    a. Division 1

    Determine if impact testing is required for the proposed shell section.

    i. Comparison of results

    Fig E3.1 Division 1 MDMT Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceGoverning thickness, tg (in) 1.8125 1.8125 0.00%

    MDMT (F) -7 -7 0.00%Impact testing required per

    UCS-66(a)?Yes Yes -

    9

  • Deficiencies Summary

    Deficiencies for Cylinder #1The Rated MDMT of -7 F is warmer than the Design MDMT of -20 F.

    Warnings Summary

    Warnings for VesselThe vessel does not have a right closure (head or cover). (warning)The vessel does not have a left closure (head or cover). (warning)

    10

  • Pressure Summary

    Component Summary

    IdentifierP

    Design(psi)

    TDesign

    (F)MDMT

    (F)MDMT

    ExemptionImpactTested

    Cylinder #1 100 650 -7 Note 1 No

    Chamber Summary

    Design MDMT -20 F

    Rated MDMT -7 F @ 100 psi

    MAWP hot & corroded 100 psi

    (1) This pressure chamber is not designedfor external pressure.

    Notes for Maximum Pressure Rating

    Note # Details

    1. Option to calculate MAP was not selected. See the Calculation->General tab of the Set Mode dialog.

    2. Option to calculate MAWP was not selected. See the Calculation->General tab of the Set Mode dialog.

    Notes for MDMT Rating

    Note # Exemption Details

    1. Material impact test exemption temperature from Fig UCS-66 Curve D = -7 F UCS-66 governing thickness =1.8125 in

    11

  • Cylinder #1

    ASME Section VIII Division 1, 2013 Edition

    Component Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    No Yes No Yes No

    DesignPressure (psi)

    DesignTemperature (F)

    DesignMDMT (F)

    Internal 100 650 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 0.87 24 1

    Dimensions

    Inner Diameter 24"

    Length 96"

    Nominal Thickness 1.8125"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 3,993.15 188.01

    Corroded 3,735.76 191.94

    Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results Summary

    Governing condition Internal pressure

    Minimum thickness per UG-16 0.0625" + 0.125" = 0.1875"

    Design thickness due to internal pressure (t) 0.1898"Rated MDMT -7 F

    12

  • UCS-66 Material Toughness Requirements

    Governing thickness, tg = 1.8125"

    Exemption temperature from Fig UCS-66 Curve D = -7F

    No UCS-66.1 MDMT Reduction option is active, TR = 0F

    MDMT = max[ MDMT - TR, -55] = max[ -7 - 0 , -55] = -7FRated MDMT of -7F > Design MDMT of -20F.

    Design thickness, (at 650 F) UG-27(c)(1)

    t = P*R / (S*E - 0.60*P) + Corrosion= 100*12.125 / (18,800*1.00 - 0.60*100) + 0.125= 0.1898"

    % Extreme fiber elongation - UCS-79(d)

    EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*1.8125 / 12.9063)*(1 - 12.9063 / )= 7.0218%

    13

  • E3.2 - Use of MDMT Exemptions Curves with Stress Reduction

    a. Division 1

    Determine if impact testing is required for the proposed shell section.

    i. Comparison of results

    Fig E3.2 Division 1 MDMT Reduction Comparison

    * In COMPRESS, the value of is interpolated from Fig. UCS-66.1, whereas in theexample manual the value of is approximated from Fig. UCS-66.1.

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceGoverning thickness, tg (in) 1.8125 1.8125 0.00%

    Coincident Ratio, Rts 0.801 0.801 0.00%

    TR * (F) 19.9 20 0.50%

    MDMT (F) -26.9 -27 0.37%

    Impact testing required? No No -

    14

  • Pressure Summary

    Component Summary

    IdentifierP

    Design(psi)

    TDesign

    (F)MDMT

    (F)MDMT

    ExemptionImpactTested

    Cylinder #1 356 300 -26.9 Note 1 No

    Chamber Summary

    Design MDMT -20 F

    Rated MDMT -26.9 F @ 356 psi

    MAWP hot & corroded 356 psi

    (1) This pressure chamber is not designed forexternal pressure.

    Notes for Maximum Pressure Rating

    Note # Details

    1. Option to calculate MAP was not selected. See the Calculation->General tab of the Set Mode dialog.

    2. Option to calculate MAWP was not selected. See the Calculation->General tab of the Set Mode dialog.

    Notes for MDMT Rating

    Note # Exemption Details

    1. Material impact test exemption temperature from Fig UCS-66 Curve D = -7 FFig UCS-66.1 MDMT reduction = 19.9 F, (coincident ratio = 0.801)UCS-66 governing thickness =1.8125 in

    15

  • Cylinder #1

    ASME Section VIII Division 1, 2013 Edition

    Component Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    No Yes No Yes Yes

    DesignPressure (psi)

    DesignTemperature (F)

    DesignMDMT (F)

    Internal 356 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 5.41 150 1

    Dimensions

    Inner Diameter 150"

    Length 96"

    Nominal Thickness 1.8125"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 23,485.14 7,343.98

    Corroded 21,883.48 7,368.48

    Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results Summary

    Governing condition Internal pressure

    Minimum thickness per UG-16 0.0625" + 0.125" = 0.1875"

    Design thickness due to internal pressure (t) 1.4767"Rated MDMT -26.9 F

    16

  • UCS-66 Material Toughness Requirements

    Governing thickness, tg = 1.8125"

    Exemption temperature from Fig UCS-66 Curve D = -7F

    tr = 356*75.125 / (20,000*1 - 0.6*356) = 1.3517"Stress ratio = tr*E* / (tn - c) = 1.3517*1 / (1.8125 - 0.125) = 0.801Reduction in MDMT, TR from Fig UCS-66.1 = 19.9F

    MDMT = max[ MDMT - TR, -55] = max[ -7 - 19.9 , -55] = -26.9FMaterial is exempt from impact testing at the Design MDMT of -20F.

    Design thickness, (at 300 F) UG-27(c)(1)

    t = P*R / (S*E - 0.60*P) + Corrosion= 356*75.125 / (20,000*1.00 - 0.60*356) + 0.125= 1.4767"

    % Extreme fiber elongation - UCS-79(d)

    EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*1.8125 / 75.9063)*(1 - 75.9063 / )= 1.1939%

    The extreme fiber elongation does not exceed 5%.

    17

  • E3.3 - Determine the MDMT for a Nozzle-to-Shell Welded Assembly

    a. Division 1

    Determine if impact testing is required for the proposed nozzle assembly comprised of a shell and integrally reinforced nozzle.

    i. Comparison of results

    Fig E3.3 Division 1 MDMT Assembly Comparison

    * In COMPRESS, the value of is interpolated from Fig. UCS-66.1, whereas in theexample manual the value of is approximated from Fig. UCS-66.1

    ** In COMPRESS, the MDMT reduction is applied to both the shell and the nozzle assembly. As the final adjusted MDMT of the shell is -26.9 F < -20 F, only the nozzle assembly requires impact testing. The example manual considers the shell and the nozzle assembly as a single welded assembly.

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceGoverning thickness, tg (in) 1.8125 1.8125 0.00%

    Coincident Ratio, Rts 0.801 0.801 0.00%

    TR * (F) 19.9 20 0.50%

    MDMTShell **(F) -26.9 N/A N/A

    MDMTNozzleAssembly (F) 39.1 39 0.26%

    Impact testing required? Yes Yes -

    18

  • Deficiencies Summary

    Deficiencies for Nozzle #1 (N1)Nozzle assembly MDMT is only 39.1F: -20F is required

    Warnings Summary

    Warnings for VesselThe vessel does not have a right closure (head or cover). (warning)The vessel does not have a left closure (head or cover). (warning)

    19

  • Pressure Summary

    Component Summary

    IdentifierP

    Design(psi)

    TDesign

    (F)MDMT

    (F)MDMT

    ExemptionImpactTested

    Cylinder #1 356 300 -26.9 Note 1 No

    Nozzle #1 (N1) 356 300 39.1 Note 2 No

    Chamber Summary

    Design MDMT -20 F

    Rated MDMT 39.1 F @ 356 psi

    MAWP hot & corroded 356 psi

    (1) This pressure chamber is not designed forexternal pressure.

    Notes for Maximum Pressure Rating

    Note # Details

    1. Option to calculate MAP was not selected. See the Calculation->General tab of the Set Mode dialog.

    2. Option to calculate MAWP was not selected. See the Calculation->General tab of the Set Mode dialog.

    Notes for MDMT Rating

    Note # Exemption Details

    1. Material impact test exemption temperature from Fig UCS-66 Curve D = -7 FFig UCS-66.1 MDMT reduction = 19.9 F, (coincident ratio = 0.801) UCS-66 governing thickness = 1.8125 in

    2. Nozzle impact test exemption temperature from Fig UCS-66 Curve B = 59 FFig UCS-66.1 MDMT reduction = 19.9 F, (coincident ratio = 0.801) UCS-66 governing thickness = 1.8125 in.

    20

  • Cylinder #1

    ASME Section VIII Division 1, 2013 Edition

    Component Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    No Yes No Yes No

    DesignPressure (psi)

    DesignTemperature (F)

    DesignMDMT (F)

    Internal 356 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 5.99 166 1

    Dimensions

    Inner Diameter 150"

    Length 636"

    Nominal Thickness 1.8125"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 155,327.07 48,653.89

    Corroded 144,734.13 48,816.2

    Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results Summary

    Governing condition Internal pressure

    Minimum thickness per UG-16 0.0625" + 0.125" = 0.1875"

    Design thickness due to internal pressure (t) 1.4767"Rated MDMT -26.9 F

    21

  • UCS-66 Material Toughness Requirements

    Governing thickness, tg = 1.8125"

    Exemption temperature from Fig UCS-66 Curve D = -7F

    tr = 356*75.125 / (20,000*1 - 0.6*356) = 1.3517"Stress ratio = tr*E* / (tn - c) = 1.3517*1 / (1.8125 - 0.125) = 0.801Reduction in MDMT, TR from Fig UCS-66.1 = 19.9F

    MDMT = max[ MDMT - TR, -55] = max[ -7 - 19.9 , -55] = -26.9FMaterial is exempt from impact testing at the Design MDMT of -20F.

    Design thickness, (at 300 F) UG-27(c)(1)

    t = P*R / (S*E - 0.60*P) + Corrosion= 356*75.125 / (20,000*1.00 - 0.60*356) + 0.125= 1.4767"

    % Extreme fiber elongation - UCS-79(d)

    EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*1.8125 / 75.9063)*(1 - 75.9063 / )= 1.1939%

    The extreme fiber elongation does not exceed 5%.

    22

  • Nozzle #1 (N1)

    ASME Section VIII Division 1, 2013 Edition

    Note: Per UW-16(b) minimum inside corner radius r1 = min [1 / 4*t , 0.125 in] = 0.125 inLocation and Orientation

    Located on Cylinder #1

    Orientation 0

    Nozzle center line offset to datum line 564"

    End of nozzle to shell center 91"

    Passes through a Category A joint NoNozzle

    Access opening No

    Material specification SA-105 (II-D p. 18, ln. 32)Inside diameter, new 16"

    Wall thickness, tn 4.75"

    Minimum wall thickness 1.5"

    Corrosion allowance 0.125"

    Projection available outside vessel, Lpr 14.1875"Heavy barrel length, Lhb 7.1875"

    Local vessel minimum thickness 1.8125"

    Liquid static head included 0 psi

    Longitudinal joint efficiency 1Welds

    Inner Fillet, Leg41 0.375"

    Nozzle to vessel groove weld 1.8125"

    23

  • UCS-66 Material Toughness Requirements Nozzle

    Governing thickness, tg = 1.8125"

    Exemption temperature from Fig UCS-66 Curve B = 59F

    tr = 356*75.125 / (20,000*1 - 0.6*356) = 1.3517"Stress ratio = tr*E* / (tn - c) = 1.3517*1 / (1.8125 - 0.125) = 0.801Reduction in MDMT, TR from Fig UCS-66.1 = 19.9F

    MDMT = max[ MDMT - TR, -55] = max[ 59 - 19.9 , -55] = 39.1FRated MDMT of 39.1F > Design MDMT of -20F.

    24

  • Reinforcement Calculations for Internal Pressure

    UG-37 Area Calculation Summary (in2)UG-45

    Summary(in)

    For P = 356 psi @ 300 FThe opening is adequately reinforced

    The nozzlepasses UG-45

    Arequired

    Aavailable A1 A2 A3 A5

    Awelds treq tmin

    21.9645 43.3879 5.4574 37.7899 -- -- 0.1406 0.4531 1.5

    UG-41 Weld Failure Path Analysis Summary

    The nozzle is exempt from weld strength calculations per UW-15(b)(1)

    UW-16 Weld Sizing Summary

    Weld description Required weldthroat size (in)Actual weld

    throat size (in) Status

    Nozzle to shell fillet (Leg41) 0.25 0.2625 weld size is adequate

    Calculations for internal pressure 356 psi @ 300 F

    Parallel Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

    LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(16.25, 8.125 + (1.5 - 0.125) + (1.8125 - 0.125))= 16.25 in

    Outer Normal Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

    LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(1.8125 - 0.125), 2.5*(1.5 - 0.125) + 5.6292)= 4.2188 in

    te = MIN( 7.1875 + 3.25*tan(30) , 3.25*tan(60) )= 5.6292 in

    Nozzle required thickness per UG-27(c)(1)

    trn = P*Rn / (Sn*E - 0.6*P)= 356*8.125 / (20,000*1 - 0.6*356)= 0.1462 in

    25

  • E4.1.2 - Determine Required Wall Thickness of Hemispherical Head

    a. Division 1

    Determine the required thickness for a hemispherical head at the bottom of a vertical vessel.

    i. Comparison of results

    Fig E4.1.2a Division 1 Hemispherical Head tr Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferencePadjusted (psig) 1673.13 1673.14 0.00%

    t (in) 2.155 2.155 0.00%

    26

  • Hemi Head #1

    ASME Section VIII Division 1, 2013 Edition

    Component Hemispherical Head

    Material SA-516 70 (II-D p. 22, ln. 6)Attached To Cylinder #1

    ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 1,650 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGOperating 23.13 720 0.89

    Test horizontal 3.47 96 1

    Dimensions

    Inner Diameter 96"

    Minimum Thickness 2.1814"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 9,349.14 1,002.7

    Corroded 8,835.7 1,010.55

    Radiography

    Category A joints - LongSeam Seamless No RT

    Category A joints - CircSeam Full UW-11(a) Type 1

    Results Summary

    Governing condition Internal pressure

    Minimum thickness per UG-16 0.0625" + 0.125" = 0.1875"

    Design thickness due to internal pressure (t) 2.155"Rated MDMT -51.3 F

    27

  • UCS-66 Material Toughness Requirements

    Material impact test temperature per UG-84 = -50F

    tr = 1,673.13*48.125 / (2*20,000*1 - 0.2*1,673.13) = 2.03"Stress ratio = tr*E* / (tn - c) = 2.03*1 / (2.1814 - 0.125) = 0.9871UCS-66(i) reduction in MDMT, TR from Fig UCS-66.1 = 1.3FMDMT = max[Timpact - TR, -155] = max[ -50 - 1.3 , -155] = -51.3F

    Design MDMT of -20F is acceptable.Design thickness, (at 300 F) UG-32(f)

    t = P*R / (2*S*E - 0.20*P) + Corrosion= 1,673.13*48.125 / (2*20,000*1.00 - 0.20*1,673.13) + 0.125= 2.155"

    % Extreme fiber elongation - UCS-79(d)

    EFE = (75*t / Rf)*(1 - Rf / Ro)= (75*2.1814 / 49.0907)*(1 - 49.0907 / )= 3.3327%

    The extreme fiber elongation does not exceed 5%.

    28

  • b. Code Case 2695

    Determine the required thickness for a hemispherical head at the bottom of a vertical vessel.

    i. Comparison of results

    Fig E4.1.2b CC 2695 Hemispherical Head tr Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferencePadjusted (psig) 1673.13 1673.14 0.00%

    t (in) 2.1807 2.1807 0.00%

    29

  • Hemi Head #1

    ASME Section VIII Division 1, 2013 Edition (Code Case 2695)Component Hemispherical Head

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 1,650 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SG

    Operating Top 21.58 671.875 0.89Bottom 23.13 720

    Test horizontal Bottom 3.47 96 1

    Dimensions

    Inner Diameter 96"

    Minimum Thickness 2.1814"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 9,349.14 1,002.7

    Corroded 8,835.7 1,010.55

    Radiography

    Category A joints - LongSeam Seamless No RT

    Category A joints - CircSeam Full UW-11(a) Type 1

    Results Summary

    Governing condition Operating Hot & Corroded

    Design thickness due to internal pressure (t) 2.1807"Minimum thickness per 4.1.2 0.1875"

    Rated MDMT -50F

    30

  • Material Toughness Requirements

    Material impact test temperature per 3.11.7 = -50F

    Stress ratio, Rts = 2.0557*1 / (2.1814 - 0.125 - 0) = 0.9996Reduction in MDMT from Figure UCS-66.1 = 0F

    MDMT = max[Timpact - TR, -155] = max[ -50 - 0 , -155] = -50FDesign MDMT of -20F is acceptable.

    Division 2 4.3.5.1 Design Thickness for Internal Pressure

    td = D / 2 * (exp[0.5*P / (S*E)] - 1) + Corrosion (4.3.4)Operating Hot & Corroded

    td = 96.25 / 2 * (exp[0.5*(1,650 + 23.13) / (20,000*1)] - 1) + 0.125 = 2.1807"Operating Cold & Corroded

    tr = 96.25 / 2 * (exp[0.5*(1,650 + 23.13) / (20,000*1)] - 1) = 2.0557"

    Division 2 6.1.2.3 % Extreme Fiber Elongation

    f = 100*ln[Db / (Do - 2*t)] (Table 6.1)Forming strain not calculated.

    31

  • E4.2.1 - Nondestructive Examination Requirement for Vessel Design

    a. Division 1

    Compare NDE requirements for a cylindrical shell.

    i. Comparison of results

    Fig E4.2.1a Division 1 NDE Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencet Full RT (in) 1.2414 1.2413 0.01%

    t Spot RT (in) 1.4435 1.4435 0.00%

    32

  • Cylinder #1

    ASME Section VIII Division 1, 2013 Edition

    Component Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No No NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 725 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 2.17 60 1

    Dimensions

    Inner Diameter 60"

    Length 96"

    Nominal Thickness 1.25"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 6,534.67 1,175.04

    Corroded 5,893.21 1,184.85

    Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results Summary

    Governing condition Internal pressure

    Minimum thickness per UG-16 0.0625" + 0.125" = 0.1875"

    Design thickness due to internal pressure (t) 1.2414"Rated MDMT -50.8 F

    33

  • UCS-66 Material Toughness Requirements

    Material impact test temperature per UG-84 = -50F

    tr = 725*30.125 / (20,000*1 - 0.6*725) = 1.1163"Stress ratio = tr*E* / (tn - c) = 1.1163*1 / (1.25 - 0.125) = 0.9923UCS-66(i) reduction in MDMT, TR from Fig UCS-66.1 = 0.8FMDMT = max[Timpact - TR, -155] = max[ -50 - 0.8 , -155] = -50.8F

    Design MDMT of -20F is acceptable.Design thickness, (at 300 F) UG-27(c)(1)

    t = P*R / (S*E - 0.60*P) + Corrosion= 725*30.125 / (20,000*1.00 - 0.60*725) + 0.125= 1.2414"

    % Extreme fiber elongation - UCS-79(d)

    EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*1.25 / 30.625)*(1 - 30.625 / )= 2.0408%

    The extreme fiber elongation does not exceed 5%.

    34

  • Deficiencies Summary

    Deficiencies for Cylinder #1UCS-57: Full radiography required on Cylinder longitudinal seam.

    Warnings Summary

    Warnings for VesselThe vessel does not have a right closure (head or cover). (warning)The vessel does not have a left closure (head or cover). (warning)

    35

  • Cylinder #1

    ASME Section VIII Division 1, 2013 Edition

    Component Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 725 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 2.17 60 1

    Dimensions

    Inner Diameter 60"

    Length 96"

    Nominal Thickness 1.5"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 7,873.61 1,175.04

    Corroded 7,232.15 1,184.85

    Radiography

    Longitudinal seam Spot UW-11(b) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results Summary

    Governing condition Internal pressure

    Minimum thickness per UG-16 0.0625" + 0.125" = 0.1875"

    Design thickness due to internal pressure (t) 1.4435"Rated MDMT -68.5 F

    36

  • UCS-66 Material Toughness Requirements

    Material impact test temperature per UG-84 = -50F

    tr = 725*30.125 / (20,000*0.85 - 0.6*725) = 1.3185"Stress ratio = tr*E* / (tn - c) = 1.3185*0.85 / (1.5 - 0.125) = 0.8151UCS-66(i) reduction in MDMT, TR from Fig UCS-66.1 = 18.5FMDMT = max[Timpact - TR, -155] = max[ -50 - 18.5 , -155] = -68.5F

    Design MDMT of -20F is acceptable.Design thickness, (at 300 F) UG-27(c)(1)

    t = P*R / (S*E - 0.60*P) + Corrosion= 725*30.125 / (20,000*0.85 - 0.60*725) + 0.125= 1.4435"

    % Extreme fiber elongation - UCS-79(d)

    EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*1.5 / 30.75)*(1 - 30.75 / )= 2.439%

    The extreme fiber elongation does not exceed 5%.

    37

  • b. Code Case 2695

    Compare NDE requirements for a cylindrical shell.

    i. Comparison of results

    Fig E4.2.1b CC 2695 NDE Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencet Full RT (in) 1.2371 1.2371 0.00%

    t Spot RT (in) 1.4375 1.4375 0.00%

    38

  • Cylinder #1

    ASME Section VIII Division 1, 2013 Edition (Code Case 2695)Component Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No No NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 725 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 2.17 60 1

    Dimensions

    Inner Diameter 60"

    Length 96"

    Nominal Thickness 1.25"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 6,534.67 1,175.04

    Corroded 5,893.21 1,184.85

    Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results Summary

    Governing condition Operating Hot & Corroded

    Design thickness due to internal pressure (t) 1.2371"Minimum thickness per 4.1.2 0.1875"

    Rated MDMT -51.1F

    39

  • Material Toughness Requirements

    Material impact test temperature per 3.11.7 = -50F

    Stress ratio, Rts = 1.1121*1 / (1.25 - 0.125 - 0) = 0.9885Reduction in MDMT from Figure UCS-66.1 = 1.1F

    MDMT = max[Timpact - TR, -155] = max[ -50 - 1.1 , -155] = -51.1FDesign MDMT of -20F is acceptable.

    Division 2 4.3.3.1 Design Thickness for Internal Pressure

    td = D / 2 * (exp[P / (S*E)] - 1) + Corrosion (4.3.1)Operating Hot & Corroded

    td = 60.25 / 2 * (exp[(725 + 0) / (20,000*1)] - 1) + 0.125 = 1.2371"Operating Cold & Corroded

    tr = 60.25 / 2 * (exp[(725 + 0) / (20,000*1)] - 1) = 1.1121"

    Division 2 6.1.2.3 % Extreme Fiber Elongation

    f = 50*t / Rf*(1 - Rf / Ro) (Table 6.1)f = 50*1.25 / 30.625*(1 - 30.625 / ) = 2.0408%

    The extreme fiber elongation does not exceed 5%.

    40

  • Deficiencies Summary

    Deficiencies for Cylinder #1UCS-57: Full radiography required on Cylinder longitudinal seam.

    Warnings Summary

    Warnings for VesselThe vessel does not have a right closure (head or cover). (warning)The vessel does not have a left closure (head or cover). (warning)

    41

  • Cylinder #1

    ASME Section VIII Division 1, 2013 Edition (Code Case 2695)Component Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 725 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 2.17 60 1

    Dimensions

    Inner Diameter 60"

    Length 96"

    Nominal Thickness 1.5"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 7,873.61 1,175.04

    Corroded 7,232.15 1,184.85

    Radiography

    Longitudinal seam Spot UW-11(b) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results Summary

    Governing condition Operating Hot & Corroded

    Design thickness due to internal pressure (t) 1.4375"Minimum thickness per 4.1.2 0.1875"

    Rated MDMT -68.9F

    42

  • Material Toughness Requirements

    Material impact test temperature per 3.11.7 = -50F

    Stress ratio, Rts = 1.3125*0.85 / (1.5 - 0.125 - 0) = 0.8114Reduction in MDMT from Figure UCS-66.1 = 18.9F

    MDMT = max[Timpact - TR, -155] = max[ -50 - 18.9 , -155] = -68.9FDesign MDMT of -20F is acceptable.

    Division 2 4.3.3.1 Design Thickness for Internal Pressure

    td = D / 2 * (exp[P / (S*E)] - 1) + Corrosion (4.3.1)Operating Hot & Corroded

    td = 60.25 / 2 * (exp[(725 + 0) / (20,000*0.85)] - 1) + 0.125 = 1.4375"Operating Cold & Corroded

    tr = 60.25 / 2 * (exp[(725 + 0) / (20,000*0.85)] - 1) = 1.3125"

    Division 2 6.1.2.3 % Extreme Fiber Elongation

    f = 50*t / Rf*(1 - Rf / Ro) (Table 6.1)f = 50*1.5 / 30.75*(1 - 30.75 / ) = 2.439%The extreme fiber elongation does not exceed 5%.

    43

  • E4.2.2 - Nozzle Detail and Weld Sizing

    a. Division 1

    Determine the required fillet weld size of a set-in type nozzle as shown in Figure UW-16.1(d).

    i. Comparison of results

    Fig E4.2.2a Division 1 Nozzle Weld Sizing Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencet c (in) 0.25 0.25 0.00%

    44

  • Nozzle #1 (N1)

    ASME Section VIII Division 1, 2013 Edition

    Note: round inside edges per UG-76(c)Location and Orientation

    Located on Cylinder #1

    Orientation 0

    Nozzle center line offset to datum line 42"

    End of nozzle to shell center 18.625"

    Passes through a Category A joint NoNozzle

    Description NPS 10 Sch 60 (XS)Access opening No

    Material specification SA-106 B Smls pipe (II-D p. 14, ln. 19)Inside diameter, new 9.75"

    Nominal wall thickness 0.5"

    Corrosion allowance 0.125"

    Projection available outside vessel, Lpr 6"Local vessel minimum thickness 0.625"

    Liquid static head included 0 psi

    Longitudinal joint efficiency 1Welds

    Inner Fillet, Leg41 0.375"

    Nozzle to vessel groove weld 0.625"

    45

  • UCS-66 Material Toughness Requirements Nozzle

    tr = 100*5 / (17,100*1 - 0.6*100) = 0.0293"Stress ratio = tr*E* / (tn - c) = 0.0293*1 / (0.4375 - 0.125) = 0.0939Stress ratio 0.35, MDMT per UCS-66(b)(3) = -155F

    Material is exempt from impact testing at the Design MDMT of -20F.

    46

  • Reinforcement Calculations for Internal Pressure

    UG-37 Area Calculation Summary (in2) UG-45Summary (in)For P = 100 psi @ 650 F

    The opening is adequately reinforcedThe nozzle passes

    UG-45

    Arequired

    Aavailable A1 A2 A3 A5

    Awelds treq tmin

    0.6514 5.041 4.3235 0.5896 -- -- 0.1279 0.1897 0.4375

    UG-41 Weld Failure Path Analysis Summary

    The nozzle is exempt from weld strength calculations per UW-15(b)(1)

    UW-16 Weld Sizing Summary

    Weld description Required weldthroat size (in)Actual weld

    throat size (in) Status

    Nozzle to shell fillet (Leg41) 0.25 0.2625 weld size is adequate

    Calculations for internal pressure 100 psi @ 650 F

    Parallel Limit of reinforcement per UG-40

    LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(10, 5 + (0.5 - 0.125) + (0.625 - 0.125))= 10 in

    Outer Normal Limit of reinforcement per UG-40

    LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.625 - 0.125), 2.5*(0.5 - 0.125) + 0)= 0.9375 in

    Nozzle required thickness per UG-27(c)(1)

    trn = P*Rn / (Sn*E - 0.6*P)= 100*5 / (17,100*1 - 0.6*100)= 0.0293 in

    Required thickness tr from UG-37(a)

    tr = P*R / (S*E - 0.6*P)= 100*12.125 / (18,800*1 - 0.6*100)= 0.0647 in

    Area required per UG-37(c)

    Allowable stresses: Sn = 17,100, Sv = 18,800 psi

    47

  • fr1 = lesser of 1 or Sn / Sv = 0.9096

    fr2 = lesser of 1 or Sn / Sv = 0.9096

    A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 10*0.0647*1 + 2*0.375*0.0647*1*(1 - 0.9096)= 0.6514 in2

    Area available from FIG. UG-37.1

    A1 = larger of the following= 4.3235 in2

    = d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 10*(1*0.5 - 1*0.0647) - 2*0.375*(1*0.5 - 1*0.0647)*(1 - 0.9096)= 4.3235 in2

    = 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.5 + 0.375)*(1*0.5 - 1*0.0647) - 2*0.375*(1*0.5 - 1*0.0647)*(1 - 0.9096)= 0.7323 in2

    A2 = smaller of the following= 0.5896 in2

    = 5*(tn - trn)*fr2*t= 5*(0.375 - 0.0293)*0.9096*0.5= 0.7861 in2

    = 5*(tn - trn)*fr2*tn= 5*(0.375 - 0.0293)*0.9096*0.375= 0.5896 in2

    A41 = Leg2*fr2= 0.3752*0.9096= 0.1279 in2

    Area = A1 + A2 + A41= 4.3235 + 0.5896 + 0.1279= 5.041 in2

    As Area >= A the reinforcement is adequate.

    UW-16(c) Weld Check

    Fillet weld: tmin = lesser of 0.75 or tn or t = 0.375 intc(min) = lesser of 0.25 or 0.7*tmin = 0.25 intc(actual) = 0.7*Leg = 0.7*0.375 = 0.2625 in

    The fillet weld size is satisfactory.

    48

  • Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

    UG-45 Nozzle Neck Thickness Check

    ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 100*5 / (17,100*1 - 0.6*100) + 0.125= 0.1543 in

    ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.1543 , 0 ]= 0.1543 in

    tb1 = P*R / (S*E - 0.6*P) + Corrosion= 100*12.125 / (18,800*1 - 0.6*100) + 0.125= 0.1897 in

    tb1 = max[ tb1 , tb UG16 ]= max[ 0.1897 , 0.1875 ]= 0.1897 in

    tb = min[ tb3 , tb1 ]= min[ 0.4444 , 0.1897 ]= 0.1897 in

    tUG-45 = max[ ta , tb ]= max[ 0.1543 , 0.1897 ]= 0.1897 in

    Available nozzle wall thickness new, tn = 0.875*0.5 = 0.4375 in

    The nozzle neck thickness is adequate.

    49

  • b. Division 2

    (Repeated in Division 2 Manual: ASME PTB-3-2013 Division 2 Solution)

    Determine the required fillet weld size and inside corner radius of a set-in type nozzle as shown in Table 4.2.10, Detail 4.

    i. Comparison of results

    Fig E4.2.2b Division 2 Nozzle Weld Sizing Comparison

    * In COMPRESS, the calculation for the minimum inside corner radius, 1, is notperformed.

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencet c (in) 0.3571 0.357 0.03%

    50

  • Nozzle #1 (N1)

    ASME Section VIII Division 2, 2013 Edition

    Component Nozzle

    Nozzle Material SA-106 B Smls pipe (II-D p. 394, ln. 24)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Nozzle No No No No No

    DesignPressure (psi)

    DesignTemperature (F)

    DesignMDMT (F)

    Internal 100 650 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 0.22 6 1

    Location and Orientation

    Attached to Cylinder #1

    Orientation radial

    Offset, L 25"

    Angle, 0

    Distance, r 18.625"

    Through aCategory A Joint No

    Dimensions

    Description NPS 10Sch 60 (XS)Inside Diameter 9.75"

    Nominal WallThickness 0.5"

    Local VesselMinimumThickness

    0.625"

    Leg41 0.375"

    ExternalProjection

    Available, Lpr16"

    Corrosion Inner 0.125"

    Outer 0"

    51

  • Summary Tables

    4.5.5 Maximum local primary membrane stress

    Condition P(psi)PL(psi)

    Sallow(psi)Over

    stressed

    Design P 100 8,485 28,200 No

    4.5.4.1 Nozzle Neck Minimum Thickness

    Condition P(psi)td1(in)

    td,STD(in)t

    (in)td(in)

    tn(in) Status

    Design P 100 0.176 0.49 0.625 0.49 0.5 OKPipe tolerance applied to td1

    4.5.14 Strength of Nozzle Attachment Welds Summary

    Condition P(psi) kyL(in)

    L41T(in)fwelds(lbf)

    (psi)

    S(psi)

    Overstressed

    Design P 100 1.075 8.443 0.2652 2,269.06 625 18,800 No

    Table 4.2.10 Minimum Fillet Weld Sizes

    Fillet Leg RequiredLeg Size (in)Actual

    Leg Size (in) Status

    Leg41 0.3571 0.375 weld size is adequate

    3.11.2 Material Toughness Requirements Nozzle

    Governing thickness, tg = 0.4375"

    Exemption temperature from Table 3.14 Curve B = 32.71F

    Stress ratio, Rts = 0.0215*1 / (0.875*0.5 - 0.125) = 0.0688Rts 0.24, MDMT = -155F

    Material is exempt from impact testing at the Design MDMT of -20F.

    52

  • E4.2.3 - Nozzle Detail with Reinforcement Pad and Weld Sizing

    a. Division 1

    Determine the required fillet weld sizes of a set-in type nozzle with added reinforcement pad as shown in Figure UW-16.1(q).

    i. Comparison of results

    Fig E4.2.3a Division 1 Nozzle with Pad Weld Sizing Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceInner fillet t c (in) 0.25 0.25 0.00%

    Outer fillet t w (in) 0.25 0.25 0.00%

    Upper groove tw (in) 0.2625 0.2625 0.00%

    Lower groove tw (in) 0.2625 0.2625 0.00%

    53

  • Nozzle #1 (N1)

    ASME Section VIII Division 1, 2013 Edition

    Note: round inside edges per UG-76(c)Location and Orientation

    Located on Cylinder #1

    Orientation 0

    Nozzle center line offset to datum line 74"

    End of nozzle to shell center 25"

    Passes through a Category A joint NoNozzle

    Access opening No

    Material specification SA-105 (II-D p. 18, ln. 32)Inside diameter, new 9.75"

    Nominal wall thickness 0.5"

    Corrosion allowance 0.125"

    Projection available outside vessel, Lpr 12.375"Local vessel minimum thickness 0.625"

    Liquid static head included 0 psi

    Longitudinal joint efficiency 1Reinforcing Pad

    Material specification SA-516 70 (II-D p. 22, ln. 6)Diameter, Dp 14.75"

    Thickness, te 0.625"

    Is split No

    Welds

    54

  • Inner Fillet, Leg41 0.375"

    Outer Fillet, Leg42 0.375"

    Nozzle to vessel groove weld 0.3875"

    Pad groove weld 0.2625"

    UCS-66 Material Toughness Requirements Nozzle

    tr = 100*5 / (20,000*1 - 0.6*100) = 0.0251"Stress ratio = tr*E* / (tn - c) = 0.0251*1 / (0.5 - 0.125) = 0.0669Stress ratio 0.35, MDMT per UCS-66(b)(3) = -155F

    Material is exempt from impact testing at the Design MDMT of -20F.

    UCS-66 Material Toughness Requirements Pad

    tr = 100*12.125 / (20,000*1 - 0.6*100) = 0.0608"Stress ratio = tr*E* / (tn - c) = 0.0608*1 / (0.625 - 0.125) = 0.1216Stress ratio 0.35, MDMT per UCS-66(b)(3) = -155F

    Material is exempt from impact testing at the Design MDMT of -20F.

    55

  • Reinforcement Calculations for Internal Pressure

    UG-37 Area Calculation Summary (in2)UG-45

    Summary(in)

    For P = 100 psi @ 650 FThe opening is adequately reinforced

    The nozzlepasses UG-45

    Arequired

    Aavailable A1 A2 A3 A5

    Awelds treq tmin

    0.6496 7.9302 4.3356 0.8209 -- 2.5 0.2737 0.1897 0.5

    UG-41 Weld Failure Path Analysis Summary (lbf)All failure paths are stronger than the applicable weld loads

    Weld loadW

    Weld loadW1-1

    Path 1-1strength

    Weld loadW2-2

    Path 2-2strength

    Weld loadW3-3

    Path 3-3strength

    -63,485.94 67,578.48 156,185.95 24,610.14 178,562.49 74,253.42 141,704.36

    UW-16 Weld Sizing Summary

    Weld description Required weldsize (in)

    Actual weldsize (in) Status

    Nozzle to pad fillet (Leg41) 0.25 0.2625 weld size is adequate

    Pad to shell fillet (Leg42) 0.25 0.2625 weld size is adequate

    Nozzle to pad groove (Upper) 0.2625 0.2625 weld size is adequate

    Nozzle to shell groove (Lower) 0.2625 0.2625 weld size is adequate

    Calculations for internal pressure 100 psi @ 650 F

    Parallel Limit of reinforcement per UG-40

    LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(10, 5 + (0.5 - 0.125) + (0.625 - 0.125))= 10 in

    Outer Normal Limit of reinforcement per UG-40

    LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.625 - 0.125), 2.5*(0.5 - 0.125) + 0.625)= 1.25 in

    Nozzle required thickness per UG-27(c)(1)

    trn = P*Rn / (Sn*E - 0.6*P)= 100*5 / (17,800*1 - 0.6*100)= 0.0282 in

    56

  • Required thickness tr from UG-37(a)

    tr = P*R / (S*E - 0.6*P)= 100*12.125 / (18,800*1 - 0.6*100)= 0.0647 in

    Area required per UG-37(c)

    Allowable stresses: Sn = 17,800, Sv = 18,800, Sp = 18,800 psi

    fr1 = lesser of 1 or Sn / Sv = 0.9468

    fr2 = lesser of 1 or Sn / Sv = 0.9468

    fr3 = lesser of fr2 or Sp / Sv = 0.9468

    fr4 = lesser of 1 or Sp / Sv = 1

    A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 10*0.0647*1 + 2*0.375*0.0647*1*(1 - 0.9468)= 0.6496 in2

    Area available from FIG. UG-37.1

    A1 = larger of the following= 4.3356 in2

    = d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 10*(1*0.5 - 1*0.0647) - 2*0.375*(1*0.5 - 1*0.0647)*(1 - 0.9468)= 4.3356 in2

    = 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)= 2*(0.5 + 0.375)*(1*0.5 - 1*0.0647) - 2*0.375*(1*0.5 - 1*0.0647)*(1 - 0.9468)= 0.7444 in2

    A2 = smaller of the following= 0.8209 in2

    = 5*(tn - trn)*fr2*t= 5*(0.375 - 0.0282)*0.9468*0.5= 0.8209 in2

    = 2*(tn - trn)*(2.5*tn + te)*fr2= 2*(0.375 - 0.0282)*(2.5*0.375 + 0.625)*0.9468= 1.0261 in2

    A41 = Leg2*fr3= 0.3752*0.9468= 0.1331 in2

    57

  • A42 = Leg2*fr4= 0.3752*1= 0.1406 in2

    A5 = (Dp - d - 2*tn)*te*fr4= (14.75 - 10 - 2*0.375)*0.625*1= 2.5 in2

    Area = A1 + A2 + A41 + A42 + A5= 4.3356 + 0.8209 + 0.1331 + 0.1406 + 2.5= 7.9302 in2

    As Area >= A the reinforcement is adequate.

    UW-16(d) Weld Check

    Inner fillet: tmin = lesser of 0.75 or tn or te = 0.375 intc(min) = lesser of 0.25 or 0.7*tmin = 0.25 intc(actual) = 0.7*Leg = 0.7*0.375 = 0.2625 in

    Outer fillet: tmin = lesser of 0.75 or te or t = 0.5 intw(min) = 0.5*tmin = 0.25 intw(actual) = 0.7*Leg = 0.7*0.375 = 0.2625 in

    Upper groove: tmin = lesser of 0.75 or tn or te = 0.375 intw(min) = 0.7*tmin = 0.2625 intw(actual) = 0.2625 in

    Lower groove: tmin = lesser of 0.75 or tn or t = 0.375 intw(min) = 0.7*tmin = 0.2625 intw(actual) = 0.2625 in

    UG-45 Nozzle Neck Thickness Check

    ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 100*5 / (17,800*1 - 0.6*100) + 0.125= 0.1532 in

    ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.1532 , 0 ]= 0.1532 in

    tb1 = P*R / (S*E - 0.6*P) + Corrosion= 100*12.125 / (18,800*1 - 0.6*100) + 0.125= 0.1897 in

    58

  • b. Division 2

    (Repeated in Division 2 Manual: ASME PTB-3-2013 E4.2.3 Division 2 Solution)

    Determine the required fillet weld sizes and inside corner radius of a set-in type nozzle with added reinforcement pad as shown in Table 4.2.11, Detail 2.

    i. Comparison of results

    Fig E4.2.3b Division 2 Nozzle with Pad Weld Sizing Comparison

    * In COMPRESS, a deficiency is issued for the 'New' condition as the weld leg size of0.4375 in shown in the problem statement is not sufficient.

    * In COMPRESS, the calculation for the minimum inside corner radius, 1, is notperformed.

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differenceinner fillet t c (in) 0.3571 0.357 0.03%

    outer fillet t f1 (in) 0.4286 0.429 0.09%

    59

  • Deficiencies Summary

    Warnings Summary

    Warnings for Nozzle #1 (N1)Leg42 = 0.4375 in is less than minimum required leg size of 0.5357 in. (new condition) (warning)

    Warnings for VesselThe vessel does not have a right closure (head or cover). (warning)The vessel does not have a left closure (head or cover). (warning)

    60

  • Nozzle #1 (N1)

    ASME Section VIII Division 2, 2013 Edition

    Component Nozzle

    Nozzle Material SA-105 (II-D p. 394, ln. 42)Pad Material SA-516 70 (II-D p. 398, ln. 10)

    ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Nozzle No No No No No

    Pad No No No No No

    DesignPressure (psi)

    DesignTemperature (F)

    DesignMDMT (F)

    Internal 100 650 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 0.45 12.375 1

    Location and Orientation

    Attached to Cylinder #1

    Orientation radial

    Offset, L 74"

    Angle, 0

    Distance, r 25"

    Through a Category A Joint No

    61

  • Dimensions

    Inside Diameter 9.75"

    Nominal WallThickness 0.5"

    Local VesselMinimumThickness

    0.625"

    Nozzle to PadGroove Weld, tw2

    0.625"

    Leg41 0.375"

    Leg42 0.4375"

    Pad Width, W 2"

    Pad Thickness, te 0.625"

    ExternalProjection

    Available, Lpr112.375"

    Corrosion Inner 0.125"

    Outer 0"

    62

  • Summary Tables

    4.5.5 Maximum local primary membrane stress

    Condition P(psi)PL(psi)

    Sallow(psi)Over

    stressed

    Design P 100 4,587 28,200 No

    4.5.4.1 Nozzle Neck Minimum Thickness

    Condition P(psi)td1(in)

    td,STD(in)t

    (in)td(in)

    tn(in) Status

    Design P 100 0.1532 0.4444 0.625 0.4444 0.5 OK

    4.5.14 Strength of Nozzle Attachment Welds Summary

    Condition P(psi) kyL(in)

    Lp(in)fwelds(lbf)

    1(psi)2(psi)

    3(psi)

    (psi)S

    (psi)Over

    stressed

    Design P 100 1.075 8.443 11.5846 2,269.06 398 296 718 718 18,800 No

    Table 4.2.11 Minimum Fillet Weld Sizes

    Fillet Leg RequiredLeg Size (in)Actual

    Leg Size (in) Status

    Leg41 0.3571 0.375 weld size is adequate

    Leg42 0.4286 0.4375 weld size is adequate

    3.11.2 Material Toughness Requirements Nozzle

    Governing thickness, tg = 0.5"

    Exemption temperature from Table 3.14 Curve B = 35.3F

    Stress ratio, Rts = 0.0209*1 / (0.5 - 0.125 - 0) = 0.0557Rts 0.24, MDMT = -155F

    Material is exempt from impact testing at the Design MDMT of -20F.

    3.11.2 Material Toughness Requirements Pad

    Governing thickness, tg = 0.625"

    Exemption temperature from Table 3.14 Curve B = 41.3F

    Stress ratio, Rts = 0.048*1 / (0.625 - 0.125 - 0) = 0.096Rts 0.24, MDMT = -155F

    Material is exempt from impact testing at the Design MDMT of -20F.

    63

  • E4.3.1 - Cylindrical Shell

    a. Division 1

    Determine the required thickness for a cylindrical shell.

    i. Comparison of results

    Fig E4.3.1a Division 1 Cylindrical Shell tr Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencet (in) 0.9369 0.9369 0.00%

    64

  • Cylinder #1

    ASME Section VIII Division 1, 2013 EditionComponent Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    No Yes No No No

    DesignPressure (psi)

    DesignTemperature (F)

    DesignMDMT (F)

    Internal 356 300 -20

    Static Liquid HeadCondition Ps (psi) Hs (in) SG

    Test horizontal 3.25 90 1

    Dimensions

    Inner Diameter 90"

    Length 144"Nominal Thickness 1"

    Corrosion Inner 0.125"Outer 0"

    Weight and CapacityWeight (lb) Capacity (US gal)

    New 11,650.38 3,965.75

    Corroded 10,208.09 3,987.81Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results SummaryGoverning condition Internal pressureMinimum thickness per UG-16 0.0625" + 0.125" = 0.1875"Design thickness due to internal pressure (t) 0.9369"Maximum allowable working pressure (MAWP) 383.35 psiMaximum allowable pressure (MAP) 438.6 psiRated MDMT -30 F

    65

  • UCS-66 Material Toughness RequirementsGoverning thickness, tg = 1"Exemption temperature from Fig UCS-66 Curve D = -30Ftr = 383.35*45.125 / (20,000*1 - 0.6*383.35) = 0.875"Stress ratio = tr*E* / (tn - c) = 0.875*1 / (1 - 0.125) = 1Reduction in MDMT, TR from Fig UCS-66.1 = 0FMDMT = max[ MDMT - TR, -55] = max[ -30 - 0 , -55] = -30F

    Material is exempt from impact testing at the Design MDMT of -20F.Design thickness, (at 300 F) UG-27(c)(1)

    t = P*R / (S*E - 0.60*P) + Corrosion= 356*45.125 / (20,000*1.00 - 0.60*356) + 0.125= 0.9369"

    Maximum allowable working pressure, (at 300 F) UG-27(c)(1)

    P = S*E*t / (R + 0.60*t) - Ps= 20,000*1.00*0.875 / (45.125 + 0.60*0.875) - 0= 383.35 psi

    Maximum allowable pressure, (at 70 F) UG-27(c)(1)

    P = S*E*t / (R + 0.60*t)= 20,000*1.00*1 / (45 + 0.60*1)= 438.6 psi

    % Extreme fiber elongation - UCS-79(d)

    EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*1 / 45.5)*(1 - 45.5 / )= 1.0989%

    The extreme fiber elongation does not exceed 5%.

    66

  • b. Code Case 2695

    Determine the required thickness for a cylindrical shell.

    i. Comparison of results

    Fig E4.3.1b CC 2695 Cylindrical Shell tr Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencet (in) 0.9354 0.9354 0.00%

    67

  • Cylinder #1

    ASME Section VIII Division 1, 2013 Edition (Code Case 2695)Component Cylinder

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    No Yes No No No

    DesignPressure (psi)

    DesignTemperature (F)

    DesignMDMT (F)

    Internal 356 300 -20

    Static Liquid HeadCondition Ps (psi) Hs (in) SG

    Test horizontal 3.25 90 1

    Dimensions

    Inner Diameter 90"

    Length 144"Nominal Thickness 1"

    Corrosion Inner 0.125"Outer 0"

    Weight and CapacityWeight (lb) Capacity (US gal)

    New 11,650.38 3,965.75

    Corroded 10,208.09 3,987.81Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential

    seamFull UW-11(a) Type 1

    Right Circumferentialseam

    Full UW-11(a) Type 1

    Results SummaryGoverning condition Operating Hot & CorrodedDesign thickness due to internal pressure (t) 0.9354"Minimum thickness per 4.1.2 0.1875"Rated MDMT -37.4F

    68

  • Material Toughness RequirementsGoverning thickness, tg = 1"Exemption temperature from Figure UCS-66 Curve D = -30FStress ratio, Rts = 0.8104*1 / (1 - 0.125 - 0) = 0.9262Reduction in MDMT from Figure UCS-66.1 = 7.4FMDMT = max[ MDMT - TR, -55] = max[ -30 - 7.4 , -55] = -37.4F

    Material is exempt from impact testing at the Design MDMT of -20F.

    Division 2 4.3.3.1 Design Thickness for Internal Pressuretd = D / 2 * (exp[P / (S*E)] - 1) + Corrosion (4.3.1)

    Operating Hot & Corrodedtd = 90.25 / 2 * (exp[(356 + 0) / (20,000*1)] - 1) + 0.125 = 0.9354"

    Operating Cold & Corrodedtr = 90.25 / 2 * (exp[(356 + 0) / (20,000*1)] - 1) = 0.8104"

    Division 2 6.1.2.3 % Extreme Fiber Elongationf = 50*t / Rf*(1 - Rf / Ro) (Table 6.1)f = 50*1 / 45.5*(1 - 45.5 / ) = 1.0989%The extreme fiber elongation does not exceed 5%.

    69

  • E4.3.2 - Conical Shell

    a. Division 1

    Determine the required thickness for a conical shell.

    i. Comparison of results

    Fig E4.3.2a Division 1 Conical Shell tr Comparison

    * The equation for the required cone thickness at the large end, , uses the large enddiameter, . COMPRESS calculates for a transition using the following equation:

    = + 2 () = 150 + 2 0.125(21.0375) = 150.2679 The example manual calculates using:

    = + 2( ) = 150 + 2(0.125) = 150.25 COMPRESS takes into account the half apex angle when considering corrosion.

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceDL * (in) 150.2679 150.25 0.01%

    t (in) 1.5734 1.5732 0.01%

    70

  • Transition #1

    ASME Section VIII Division 1, 2013 Edition

    Component Cone

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) Yes No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 356 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SG

    Test horizontal Large 5.41 150 1Small 4.33 120

    Dimensions

    Inner Diameter Large 150"

    Small 90"

    Length 78"

    Nominal Thickness 2.25"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 20,463.99 3,898.43

    Corroded 19,348.24 3,915.5

    Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential seam Full UW-11(a) Type 1

    Right Circumferential seam Full UW-11(a) Type 1

    Results Summary

    Governing condition Internal pressure

    Minimum thickness per UG-16 0.0625" + 0.125" = 0.1875"

    Design thickness due to internal pressure (t) 1.5734"Rated MDMT -81.8 F

    71

  • UCS-66 Material Toughness Requirements

    Material impact test temperature per UG-84 = -50F

    tr = 356*150.2679 / (2*0.9333*(20,000*1 - 0.6*356)) = 1.4484"Stress ratio = tr*E* / (tn - c) = 1.4484*1 / (2.25 - 0.125) = 0.6816UCS-66(i) reduction in MDMT, TR from Fig UCS-66.1 = 31.8FMDMT = max[Timpact - TR, -155] = max[ -50 - 31.8 , -155] = -81.8F

    Design MDMT of -20F is acceptable.Design thickness, (at 300 F) UG-32(g) (Large End)

    t = P*D / (2*cos()*(S*E - 0.60*P)) + Corrosion= 356*150.2679 / (2*cos(21.0375)*(20,000*1.00 - 0.60*356)) + 0.125= 1.5734"

    Small End design thickness (t = 0.995") does not govern.

    % Extreme fiber elongation - UCS-79(d)

    EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*2.4107 / 46.2053)*(1 - 46.2053 / )= 2.6087%

    The extreme fiber elongation does not exceed 5%.

    72

  • b. Code Case 2695

    Determine the required thickness for a conical shell.

    i. Comparison of results

    Fig E4.3.2b CC 2695 Conical Shell tr Comparison

    * The equation for the required cone thickness at the large end, , uses the large enddiameter, . COMPRESS calculates for a transition using the following equation:

    = + 2 () = 150 + 2 0.125(21.0375) = 150.2679 The example manual calculates using:

    = + 2( ) = 150 + 2(0.125) = 150.25 COMPRESS takes into account the half apex angle when considering corrosion.

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceDL * (in) 150.2679 150.25 0.01%

    (degrees) 21.0375 21.0375 0.00%

    t (in) 1.5707 1.5705 0.01%

    73

  • Transition #1

    ASME Section VIII Division 1, 2013 Edition (Code Case 2695)Component Cone

    Material SA-516 70 (II-D p. 22, ln. 6)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) Yes No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 356 300 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SG

    Test horizontal Left 5.41 150 1Right 4.33 120

    Dimensions

    Inner Diameter Large 150"

    Small 90"

    Length 78"

    Nominal Thickness 2.25"

    Corrosion Inner 0.125"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 20,463.99 3,898.43

    Corroded 19,348.24 3,915.5

    Radiography

    Longitudinal seam Full UW-11(a) Type 1Left Circumferential seam Full UW-11(a) Type 1

    Right Circumferential seam Full UW-11(a) Type 1

    Results Summary

    Governing condition Operating Hot & Corroded

    Design thickness due to internal pressure (t) 1.5707"Minimum thickness per 4.1.2 0.1875"

    Rated MDMT -82F

    74

  • Material Toughness Requirements

    Material impact test temperature per 3.11.7 = -50F

    Stress ratio, Rts = 1.4457*1 / (2.25 - 0.125 - 0) = 0.6803Reduction in MDMT from Figure UCS-66.1 = 32F

    MDMT = max[Timpact - TR, -155] = max[ -50 - 32 , -155] = -82FDesign MDMT of -20F is acceptable.

    Division 2 4.4.6.1.e Cone Half Apex Angle

    = arctan[{(RL - rk) - (RS + rf)} / Lce] (4.4.49) = arcsin[(rf + rk)*cos[] / Lce] (4.4.52) = + (4.4.48)

    Results

    = arctan[{(75 - 0) - (45 + 0)} / 78] = 21.0375 = arcsin[(0 + 0)*cos[21.0375] / 78] = 0 = 21.0375 + 0 = 21.0375

    Division 2 4.3.4.1 Design Thickness for Internal Pressure

    td = D / (2*cos[]) * (exp[P / (S*E)] - 1) + Corrosion (4.3.2)Operating Hot & Corroded

    Left td = 150.2679 / (2*cos[21.0375]) * (exp[(356 + 0) / (20,000*1)] - 1) + 0.125 = 1.5707"Right td = 90.2679 / (2*cos[21.0375]) * (exp[(356 + 0) / (20,000*1)] - 1) + 0.125 = 0.9935"

    Operating Cold & Corroded

    Left tr = 150.2679 / (2*cos[21.0375]) * (exp[(356 + 0) / (20,000*1)] - 1) = 1.4457"Right tr = 90.2679 / (2*cos[21.0375]) * (exp[(356 + 0) / (20,000*1)] - 1) = 0.8685"

    Division 2 6.1.2.3 % Extreme Fiber Elongation

    f = 50*t / Rf*(1 - Rf / Ro) (Table 6.1)f = 50*2.4107 / 46.2053*(1 - 46.2053 / ) = 2.6087%

    The extreme fiber elongation does not exceed 5%.

    75

  • E4.3.3 - Spherical Shell

    a. Division 1

    Determine the required thickness for a spherical shell.

    i. Comparison of results

    Fig E4.3.3a Division 1 Spherical Shell tr Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencet (in) 3.7265 3.7264 0.00%

    76

  • Hemi Head #1

    ASME Section VIII Division 1, 2013 Edition

    Component Hemispherical Head

    Material SA-542 D 4a (II-D p. 42, ln. 28)Attached To Bottom of vessel

    ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 2,080 850 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 5.38 149 1

    Dimensions

    Inner Diameter 149"

    Minimum Thickness 3.7265"

    Corrosion Inner 0"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 38,647.59 3,749

    Corroded 38,647.59 3,749

    Radiography

    Category A joints - LongSeam Seamless No RT

    Category A joints - CircSeam Full UW-11(a) Type 1

    Results Summary

    Governing condition Internal pressure

    Minimum thickness per UG-16 0.0625" + 0" = 0.0625"

    Design thickness due to internal pressure (t) 3.7265"Rated MDMT -63.7 F

    77

  • UCS-66 Material Toughness Requirements

    Material impact test temperature per UG-84 = -50F

    tr = 2,080*74.5 / (2*24,300*1 - 0.2*2,080) = 3.216"Stress ratio = tr*E* / (tn - c) = 3.216*1 / (3.7265 - 0) = 0.863UCS-66(i) reduction in MDMT, TR from Fig UCS-66.1 = 13.7FMDMT = max[Timpact - TR, -155] = max[ -50 - 13.7 , -155] = -63.7F

    Design MDMT of -20F is acceptable.Design thickness, (at 850 F) UG-32(f)

    t = P*R / (2*S*E - 0.20*P) + Corrosion= 2,080*74.5 / (2*21,000*1.00 - 0.20*2,080) + 0= 3.7265"

    % Extreme fiber elongation - UCS-79(d)

    EFE = (75*t / Rf)*(1 - Rf / Ro)= (75*3.7265 / 76.3633)*(1 - 76.3633 / )= 3.66%

    The extreme fiber elongation does not exceed 5%.

    78

  • b. Code Case 2695

    Determine the required thickness for a spherical shell.

    i. Comparison of results

    Fig E4.3.3b CC 2695 Spherical Shell tr Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencet (in) 3.7824 3.7824 0.00%

    79

  • Hemi Head #1

    ASME Section VIII Division 1, 2013 Edition (Code Case 2695)Component Hemispherical Head

    Material SA-542 D 4a (II-D p. 42, ln. 28)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 2,080 850 -20

    Static Liquid Head

    Condition Ps (psi) Hs (in) SGTest horizontal 5.38 149 1

    Dimensions

    Inner Diameter 149"

    Minimum Thickness 3.7824"

    Corrosion Inner 0"

    Outer 0"

    Weight and Capacity

    Weight (lb) Capacity (US gal)New 39,256.39 3,749

    Corroded 39,256.39 3,749

    Radiography

    Category A joints - LongSeam Seamless No RT

    Category A joints - CircSeam Full UW-11(a) Type 1

    Results Summary

    Governing condition Operating Hot & Corroded

    Design thickness due to internal pressure (t) 3.7824"Minimum thickness per 4.1.2 0.0625"

    Rated MDMT -63.9F

    80

  • Material Toughness Requirements

    Material impact test temperature per 3.11.7 = -50F

    Stress ratio, Rts = 3.2577*1 / (3.7824 - 0 - 0) = 0.8613Reduction in MDMT from Figure UCS-66.1 = 13.9F

    MDMT = max[Timpact - TR, -155] = max[ -50 - 13.9 , -155] = -63.9FDesign MDMT of -20F is acceptable.

    Division 2 4.3.5.1 Design Thickness for Internal Pressure

    td = D / 2 * (exp[0.5*P / (S*E)] - 1) + Corrosion (4.3.4)Operating Hot & Corroded

    td = 149 / 2 * (exp[0.5*(2,080 + 0) / (21,000*1)] - 1) + 0 = 3.7824"Operating Cold & Corroded

    tr = 149 / 2 * (exp[0.5*(2,080 + 0) / (24,300*1)] - 1) = 3.2577"

    Division 2 6.1.2.3 % Extreme Fiber Elongation

    f = 100*ln[Db / (Do - 2*t)] (Table 6.1)Forming strain not calculated.

    81

  • E4.3.4 - Torispherical Head

    a. Division 1

    Determine the maximum allowable working pressure (MAWP) for the proposed seamless torispherical head.

    i. Comparison of results

    Fig E4.3.4a Division 1 Torispherical Head MAWP Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceM 1.750868 1.7509 0.00%

    MAWP (psi) 135.3 135.3023 0.00%

    82

  • F&D Head #1

    ASME Section VIII Division 1, 2013 EditionComponent F&D Head

    Material SA-387 11 1 (II-D p. 38, ln. 27)Attached To Bottom of vessel

    ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 100 650

    -20External 15 650

    Static Liquid HeadCondition Ps (psi) Hs (in) SG

    Test horizontal 2.6 72 1Dimensions

    Inner Diameter 72"Crown Radius L 72"

    Knuckle Radius r 4.375"Minimum Thickness 0.625"

    Corrosion Inner 0.125"Outer 0"

    Length Lsf 2"Nominal Thickness tsf 0.4375"

    Weight and CapacityWeight (lb)1 Capacity (US gal)1

    New 931.2 166.69Corroded 743.49 169.56

    RadiographyCategory A joints Seamless No RT

    Head to shell seam Full UW-11(a) Type 11includes straight flange

    Results SummaryGoverning condition internal pressureMinimum thickness per UG-16 0.0625" + 0.125" = 0.1875"Design thickness due to internal pressure (t) 0.4945"Design thickness due to external pressure (te) 0.3517"Maximum allowable working pressure (MAWP) 135.3 psiMaximum allowable external pressure (MAEP) 55.75 psiStraight Flange governs MDMT -58.1F

    Factor MM = 1/4*[3 + (L / r)1/2]Corroded M = 1/4*[3 + (72.125 / 4.5)1/2] 1.7509New M = 1/4*[3 + (72 / 4.375)1/2] 1.7642Design thickness for internal pressure, (Corroded at 650 F) Appendix 1-4(d)t = P*L*M / (2*S*E - 0.2*P) + Corrosion

    =

    83

  • 100*72.125*1.7509 / (2*17,100*1 - 0.2*100) +0.125

    = 0.4945"

    Maximum allowable working pressure, (Corroded at 650 F) Appendix 1-4(d)P = 2*S*E*t / (L*M + 0.2*t) - Ps

    = 2*17,100*1*0.5 / (72.125*1.7509 + 0.2*0.5) - 0= 135.3 psi

    Design thickness for external pressure, (Corroded at 650 F) UG-33(e)Equivalent outside spherical radius (Ro)

    = Outside crown radius= 72.625 in

    A = 0.125 / (Ro / t)= 0.125 / (72.625 / 0.226661)= 0.00039

    From TableCS-2: B = 4,806.1921 psi

    Pa = B / (Ro / t)= 4,806.1921 / (72.625 / 0.2267)= 15 psi

    t = 0.2267" + Corrosion = 0.2267" + 0.125" = 0.3517"Check the external pressure per UG-33(a)(1) Appendix 1-4(d)t = 1.67*Pe*L*M / (2*S*E - 0.2*1.67*Pe) + Corrosion

    =1.67*15*72.125*1.7509 / (2*17,100*1 -0.2*1.67*15) + 0.125

    = 0.2175"

    The head external pressure design thickness (te) is 0.3517".Maximum Allowable External Pressure, (Corroded at 650 F) UG-33(e)Equivalent outside spherical radius (Ro)

    = Outside crown radius= 72.625 in

    A = 0.125 / (Ro / t)= 0.125 / (72.625 / 0.5)= 0.000861

    From TableCS-2: B = 8,098.2799 psi

    Pa = B / (Ro / t)= 8,098.2799 / (72.625 / 0.5)= 55.7541 psi

    Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(d)P = 2*S*E*t / ((L*M + 0.2*t)*1.67) - Ps2

    =2*17,100*1*0.5 / ((72.125*1.7509 +0.2*0.5)*1.67) - 0

    = 81.02 psi

    The maximum allowable external pressure (MAEP) is 55.75 psi.% Extreme fiber elongation - UCS-79(d)EFE = (75*t / Rf)*(1 - Rf / Ro)

    = (75*0.4375 / 4.5938)*(1 - 4.5938 / )= 7.1429%

    84

  • b. Code Case 2695

    Determine the maximum allowable working pressure (MAWP) for the proposed seamless torispherical head.

    i. Comparison of results

    Fig E4.3.4b CC 2695 Torispherical Head MAWP Comparison

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceD (in) 72.25 72.25 0.00%

    L (in) 72.125 72.125 0.00%

    r (in) 4.5 4.5 0.00%

    t (in) 0.5 0.5 0.00%

    th (rad) 1.0842 1.0842 0.00%

    th (rad) 1.3345 1.3345 0.00%

    Rth (in) 36.125 36.125 0.00%

    C1 0.4939 0.494 0.02%

    C2 1.25 1.25 0.00%

    C3 26,900 26,900 0.00%

    Peth (psi) 5352.44 5353.9445 0.03%

    Py (psi) 98.83 98.8274 0.00%

    G 54.1595 54.1747 0.03%

    Pck (psi) 199.57 199.5671 0.00%

    Pak (psi) 133.04 133.0447 0.00%

    Pac (psi) 236.27 236.2694 0.00%

    Pa (psi) 133.04 133.0447 0.00%

    85

  • F&D Head #1

    ASME Section VIII Division 1, 2013 Edition (Code Case 2695)Component F&D Head

    Material SA-387 11 1 (II-D p. 38, ln. 27)ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    Yes (-50F) No No Yes NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 100 650 -20

    Static Liquid HeadCondition Ps (psi) Hs (in) SG

    Test horizontal 2.6 72 1Dimensions

    Inner Diameter 72"Crown Radius L 72"

    Knuckle Radius r 4.375"Minimum Thickness 0.625"

    Corrosion Inner 0.125"Outer 0"

    Length Lsf 2"Nominal Thickness tsf 0.4375"

    Weight and CapacityWeight (lb)1 Capacity (US gal)1

    New 931.2 166.69Corroded 743.49 169.56

    RadiographyCategory A joints Seamless No RT

    Head to shell seam Full UW-11(a) Type 11includes straight flange

    Results SummaryGoverning condition Operating Hot & CorrodedDesign thickness due to internal pressure (t) 0.5022"Minimum thickness per 4.1.2 0.1875"Maximum allowable working pressure (MAWP) 133.04 psiRated MDMT -96.7F

    86

  • Material Toughness RequirementsMaterial impact test temperature per 3.11.7 = -50FStress ratio, Rts = 0.2811*1 / (0.625 - 0.125 - 0) = 0.5623Reduction in MDMT from Figure UCS-66.1 = 46.7FMDMT = max[Timpact - TR, -155] = max[ -50 - 46.7 , -155] = -96.7F

    Design MDMT of -20F is acceptable.

    Division 2 4.3.6.1 Design Thickness for Internal Pressure0.7 L / D 1 (4.3.5)r / D 0.06 (4.3.6)20 L / t 2,000 (4.3.7)th = arccos[(0.5*D - r) / (L - r)] (4.3.8)th = (L * t)1/2 / r (4.3.9)Rth = (0.5*D - r) / cos[th - th] + r for th < th (4.3.10)Rth = 0.5*D for th th (4.3.11)C1 = 9.31*r / D - 0.086 for r / D 0.08 (4.3.12)C1 = 0.692*r / D + 0.605 for r / D > 0.08 (4.3.13)C2 = 1.25 for r / D 0.08 (4.3.14)C2 = 1.46 - 2.6*r / D for r / D > 0.08 (4.3.15)Peth = C1*ET*t2 / (C2*Rth*(Rth / 2 - r)) (4.3.16)C3 = Sy (time-independent properties)C3 = 1.1*S (time-dependent properties 90% yield criterion)C3 = 1.5*S (time-dependent properties 67% yield criterion)Py = C3*t / {C2*Rth*(Rth / (2*r) - 1)} (4.3.17)G = Peth / Py (4.3.20)Pck = 0.6*Peth for G 1 (4.3.18)Pck = {(0.77508*G - 0.20354*G2 + 0.019274*G3) / (1 + 0.19014*G - 0.089534*G2 +0.0093965*G3)} * Py for G > 1 (4.3.19)Pak = Pck / 1.5 (4.3.21)Pac = 2*S*E / (L / t + 0.5) (4.3.22)Pa = min[Pak , Pac] (4.3.23)

    Operating Hot & Corroded

    0.7 L / D = 72.125 / 72.25 = 0.9983 1 OKr / D = 4.5 / 72.25 = 0.0623 0.06 OK20 L / t = 72.125 / 0.5 = 144.25 2,000 OKth = arccos[(0.5*72.25 - 4.5) / (72.125 - 4.5)] = 1.0842th = (72.125 * 0.3772)1/2 / 4.5 = 1.159Rth = 0.5*72.25 = 36.125"C1 = 9.31*4.5 / 72.25 - 0.086 = 0.4939C2 = 1.25 = 1.25

    87

  • Peth = 0.4939*26.55E+06*0.37722 / (1.25*36.125*(36.125 / 2 - 4.5)) = 3,045.47 psiMaterial is not governed by time dependent properties which start at 900F (Design T = 650F)C3 = Sy = 26,900 psiPy = 26,900*0.3772 / {1.25*36.125*(36.125 / (2*4.5) - 1)} = 74.55 psiG = 3,045.47 / 74.55 = 40.8532Pck = {(0.77508*40.8532 - 0.20354*40.85322 + 0.019274*40.85323) / (1 + 0.19014*40.8532 -0.089534*40.85322 + 0.0093965*40.85323)} * 74.55 = 150 psiPak = 150 / 1.5 = 100 psiPac = 2*17,100*1 / (72.125 / 0.3772 + 0.5) = 178.37 psiPa = min[100 , 178.37] - 0 = 100 psi

    td = 0.3772 + 0.125 = 0.5022"Operating Cold & Corroded

    tr = (133.04 + 0)*72.125 / (2*17,100*1 - 0.5*(133.04 + 0)) = 0.2811"

    Division 2 4.3.6.1 Maximum Pressure Circumferential StressMAWP

    0.7 L / D = 72.125 / 72.25 = 0.9983 1 OKr / D = 4.5 / 72.25 = 0.0623 0.06 OK20 L / t = 72.125 / 0.5 = 144.25 2,000 OKth = arccos[(0.5*72.25 - 4.5) / (72.125 - 4.5)] = 1.0842th = (72.125 * 0.5)1/2 / 4.5 = 1.3345Rth = 0.5*72.25 = 36.125"C1 = 9.31*4.5 / 72.25 - 0.086 = 0.4939C2 = 1.25 = 1.25Peth = 0.4939*26.55E+06*0.52 / (1.25*36.125*(36.125 / 2 - 4.5)) = 5,352.44 psiMaterial is not governed by time dependent properties which start at 900F (Design T = 650F)C3 = Sy = 26,900 psiPy = 26,900*0.5 / {1.25*36.125*(36.125 / (2*4.5) - 1)} = 98.83 psiG = 5,352.44 / 98.83 = 54.1595Pck = {(0.77508*54.1595 - 0.20354*54.15952 + 0.019274*54.15953) / (1 + 0.19014*54.1595 -0.089534*54.15952 + 0.0093965*54.15953)} * 98.83 = 199.57 psiPak = 199.57 / 1.5 = 133.04 psiPac = 2*17,100*1 / (72.125 / 0.5 + 0.5) = 236.27 psiPa = min[133.04 , 236.27] - 0 = 133.04 psi

    Division 2 6.1.2.3 % Extreme Fiber Elongationf = 100*ln[Db / (Do - 2*t)] (Table 6.1)Forming strain not calculated.

    88

  • E4.3.5 - Ellipsoidal Head

    a. Division 1

    Determine the maximum allowable working pressure (MAWP) for the proposed seamless 2:1 Ellipsoidal head.

    i. Comparison of results

    Fig E4.3.5a Division 1 Ellipsoidal Head MAWP Comparison

    * COMPRESS solves for K using corroded dimensions:

    = 162 + 22 = 162 + 90.252 22.6252 = 0.99632 The example uses uncorroded dimensions D = 90 in and h = 22.5 in, where K = 1.0. This K value is used along with corroded dimensions to solve for MAWP. In COMPRESS, the corroded K value is used with corroded dimensions to solve for MAWP.

    ii. COMPRESS Report

    Parameter COMPRESS ASME DifferenceK * (corroded) 0.996322 N/A N/A

    K (uncorroded) 1 1 0.00%

    MAWP * (psi) 443.86 442 0.42%

    89

  • Ellipsoidal Head #1

    ASME Section VIII Division 1, 2013 EditionComponent Ellipsoidal Head

    Material SA-516 70 (II-D p. 22, ln. 6)Attached To Bottom of vessel

    ImpactTested Normalized

    Fine GrainPractice PWHT

    Optimize MDMT/Find MAWP

    No Yes No No NoDesign

    Pressure (psi)Design

    Temperature (F)Design

    MDMT (F)Internal 100 300

    -20External 15 300

    Static Liquid HeadCondition Ps (psi) Hs (in) SG

    Test horizontal 3.25 90 1Dimensions

    Inner Diameter 90"Head Ratio 2

    Minimum Thickness 1.125"

    Corrosion Inner 0.125"Outer 0"

    Length Lsf 2"Nominal Thickness tsf 0.375"

    Weight and CapacityWeight (lb)1 Capacity (US gal)1

    New 3,124.63 468.18Corroded 2,773.38 473.09

    RadiographyCategory A joints Seamless No RT

    Head to shell seam Full UW-11(a) Type 11includes straight flange

    Results SummaryGoverning condition external pressureMinimum thickness per UG-16 0.0625" + 0.125" = 0.1875"Design thickness due to internal pressure (t) 0.35"Design thickness due to external pressure (te) 0.3591"Maximum allowable working pressure (MAWP) 443.86 psiMaximum allowable external pressure (MAEP) 171.8 psiStraight Flange governs MDMT -55F

    90

  • Factor KK = (1/6)*[2 + (D / (2*h))2]Corroded K = (1/6)*[2 + (90.25 / (2*22.625))2] 0.9963New K = (1/6)*[2 + (90 / (2*22.5))2] 1

    Design thickness for internal pressure, (Corroded at 300 F) Appendix 1-4(c)t = P*D*K / (2*S*E - 0.2*P) + Corrosion

    = 100*90.25*0.996322 / (2*20,000*1 - 0.2*100) + 0.125= 0.3499"

    Maximum allowable working pressure, (Corroded at 300 F) Appendix 1-4(c)P = 2*S*E*t / (K*D + 0.2*t) - Ps

    = 2*20,000*1*1 / (0.996322*90.25 +0.2*1) - 0= 443.86 psi

    Design thickness for external pressure, (Corroded at 300 F) UG-33(d)Equivalent outside spherical radius (Ro)Ro = Ko*Do

    = 0.8786*92.25= 81.0482 in

    A = 0.125 / (Ro / t)= 0.125 / (81.0482 / 0.234088)= 0.000361

    From TableCS-2: B =

    5,193.4553psi

    Pa = B / (Ro / t)= 5,193.4553 / (81.0482 / 0.2341)= 15 psi

    t = 0.2341" + Corrosion = 0.2341" + 0.125" = 0.3591"Check the external pressure per UG-33(a)(1) Appendix 1-4(c)t = 1.67*Pe*D*K / (2*S*E - 0.2*1.67*Pe) + Corrosion

    = 1.67*15*90.25*0.996322 / (2*20,000*1 - 0.2*1.67*15) + 0.125= 0.1813"

    The head external pressure design thickness (te) is 0.3591".Maximum Allowable External Pressure, (Corroded at 300 F) UG-33(d)Equivalent outside spherical radius (Ro)Ro = Ko*Do

    = 0.8786*92.25= 81.0482 in

    A = 0.125 / (Ro / t)= 0.125 / (81.0482 / 1)= 0.001542

    From TableCS-2: B =

    13,924.45psi

    Pa = B / (Ro / t)= 13,924.45 / (81.0482 / 1)= 171.8045 psi

    91

  • Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c)P = 2*S*E*t / ((K*D + 0.2*t)*1.67) - Ps2

    = 2*20,000*1*1 / ((0.996322*90.25 +0.2*1)*1.67) - 0= 265.79 psi

    The maximum allowable external pressure (MAEP) is 171.8 psi.% Extreme fiber elongation - UCS-79(d)EFE = (75*t / Rf)*(1 - Rf / Ro)

    = (75*0.375 / 15.4875)*(1 - 15.4875 / )= 1.816%

    The extreme fiber elongation does not exceed 5%.

    92

  • b. Code Case 2695

    Determine the maximum allowable working pressure (MAWP) for the proposed seamless 2:1 Ellipsoidal head.

    i. Comparison of results

    Fig E4.3.5b CC 2695 Ellipsoidal Head MAWP Comparison

    * The example solves for k, L, and r using uncorroded dimensions. COMPRESS solvesfor k, L, and r using corroded dimensions:

    = 2 = 90.252 22.625 = 1.9945 = 0.5

    0.08 = 90.25 0.51.9945 0.08 = 15.405

    = (0.44 + 0.02) = 90.25(0.44 1.9945 + 0.02) = 81.0056 These calculations account for differences shown above.

    ii. COMPRESS Report

    Parameter COMPRESS ASME Differencek * 1.9945 2 0.28%

    D (in) 90.25 90.25 0.00%

    L * (in) 81.0056 81.125 0.15%

    r * (in) 15.405 15.425 0.13%

    t (in) 1 1 0.00%

    th (rad) 1.1006 1.1017 0.10%

    th (rad) 0.5842 0.5839 0.05%

    Rth (in) 49.581 49.6057 0.05%

    C1 0.7231 0.7233 0.03%

    C2 1.0162 1.0157 0.05%

    Peth (psi) 43,275.72 43,321.6096 0.11%

    Py (psi) 1094.58 1096.8927 0.21%

    G 39.5362 39.4948 0.10%

    Pck (psi) 2201.55 2206.1634 0.21%

    Pak (psi) 1467.7 1470.8 0.21%

    Pac (psi)