2010 physical science session - fan

Upload: boy-sandy

Post on 02-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 2010 Physical Science Session - Fan

    1/22

    Flexible Dye-Sensitized Solar Cells on Al Foils

    Jon Linville, Tyler Spurlock, Matthew Seitz and Xiaojuan (Judy) Fan

    Department of Physics, Marshall University, Huntington, WV 25755

    STAR Symposium, 2010, WV

    http://www.siliconsolar.com/

    *Email address: [email protected]

  • 7/27/2019 2010 Physical Science Session - Fan

    2/22

    Si crystals: need to be produced in a vacuum.

    Thin film solar cells: Si, CdTe; GaAs, GaN, InN,

    Cu(In,Ga)Se2 flexible solar cell modules (commercialized)

    Dye-sensitized solar cells (DSSC)

    Brief Review: Photovoltaic Solar Cells

    ORegan and Grtzel, 1991

    Cell Components:Porous nanocrystalline TiO2Organic dye molecules Iodine/Iodide electrolyte

    11% efficiency has been demonstrated in lab Ready to the market

    Question: Can we make flexible DSSCs?

    Yes

  • 7/27/2019 2010 Physical Science Session - Fan

    3/22

    The 3rd generation Solar Cells: DSSCs

    Dye-sensitized solar cells (DSSCs): electrochemistry

    Key components: Metal oxide nanostructures Organic light sensitizer: dye molecules Electrolyte with

    3/II

    Advantage:Low cost, solution process, and environmental friendly

    Disadvantage:Low efficiency (

  • 7/27/2019 2010 Physical Science Session - Fan

    4/22

    hvI- I3

    -+ e

    Dye

    TiO2

    I- I3-+ ee

    e

    e

    e

    Load

    e

    1. Light absorbed by dye

    2. Excited electrons injected into

    nanoparticles

    3. Electrons percolate to external

    load to reach the counter

    electrode

    4. Electrons are transferred totri-iodide to yield iodide

    5. The iodide reduces dye to

    its original state.

    How DSSC Works

    e

    ee

  • 7/27/2019 2010 Physical Science Session - Fan

    5/22

    Printed Flexible Dye-Sensitized Solar Cells (DSSC)

    Very recently, news from Japan'sToin University of Yokohama

    DSSC in a flexible A4 sheet.

    Solar conversion efficiency: 6%(Solar cells on market: 15%)

    AdvantagesCheaper to makeFlexibility

    Simply be printed in airOnly 0.4mm-thick, used for a laptop PC or rolled and foldedfor storage.

  • 7/27/2019 2010 Physical Science Session - Fan

    6/22

    Solar Cell Fabrication Technology

    High vacuum deposition: p-njunctions Sputtering deposition Thermal evaporation

    E-beam evaporation Pulsed laser deposition Molecular beam epitaxial

    Ribbon and roll-to-roll coating on flexible substrates

    Dye-sensitized solar cells (DSSCs): no vacuum needed Nanoparticle paste

    Sol-gel-dip-coating

    Screen printing

    Spray pyrolysis

    Compression

    Polymer assisted

    The new organic

    solar cells are light

    and flexible.

    Credit:

    Nicole Cappello,

    Georgia Institute of

    Technology

    Silicon Solar Inc.

  • 7/27/2019 2010 Physical Science Session - Fan

    7/22

    Mesoporous TiO2

    Nanoparticle paste and hydrothermal at 230CGratzel, M. J. Photochem. And Photobio. A 164

    (2004) 3-14

    TiO2: must bePorous: large surface area toattach more dye moleculesTiO

    2nanoparticles

    Porosity > 50%Other metal oxides can beused, ZnO, SnO2,

    TiO2, easy synthesis,abundant, inexpensive

    50 nm

    K. M. Gopal, et al,Adv. Funct. Mater,15, 2005, 1291-1296

    Thermal evaporation 500C rf sputtering Ti anodized in HF

  • 7/27/2019 2010 Physical Science Session - Fan

    8/22

    TiO2: A large band gap semiconductor

    A large bandgap semiconductor (~3.2 eV)

    Absorption edge is in ultraviolet (UV), Not responsible for sun light absorption in solar cells

    Rutile

    Anatase

    Brookite

    National Renewable Energy

    Laboratory, Golden, Colorado

    Materials Characterization

    Laboratory, Penn State

  • 7/27/2019 2010 Physical Science Session - Fan

    9/22

    Unique route to generateporous TiO

    2thin films

    Our Approach:

    Polymer assisted Ti alkoxides Solvents Stable precursors Spin coating (stable in air)

    Thermal sintering Polymer removed Mesoporous TiO2

    solvent Ti alkoxides

    PMMA: (MW 350,000)poly(methyl methacrylate)

    (C5O2H8)n

    Ti n-butoxide

    Ti[O(CH2)3CH3]4

  • 7/27/2019 2010 Physical Science Session - Fan

    10/22

    6 % (w/v) PMMA +

    6% (w/v)

    Ti(OnBu)4

    2 % (w/v) PMMA +

    6% (w/v) Ti(OnBu)4

    SEM images: double-layer structure

    (a) (b)

    (c) (d)

    4 % (w/v) PMMA +

    6% (w/v)

    Ti(OnBu)4

    8 % (w/v) PMMA+ 6% (w/v)

    Ti(OnBu)4

    1 m

  • 7/27/2019 2010 Physical Science Session - Fan

    11/22

    Porous TiO2 Thin Films: Structure and Morphology

    25 nm

    100 20 nm

    (b)(a)

    X-ray diffraction: anatase phase

    Particle size: 25nm

    AFM image

    Anatase structure is often preferred to rutile in the

    application of TiO2 in DSSC in terms of lattice packing.[Park, et al.J. Phys. Chem. B 2000, 104, 8989-8994]

  • 7/27/2019 2010 Physical Science Session - Fan

    12/22

    Thin Film X-Ray Reflectivity Analysis

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Reflect

    ivity

    86420

    2/ (degree)

    Decay of reflectivity

    Surface roughness

    Decay of amplitude

    Interface roughness

    Period of oscillation

    Thickness d

    Amplitude of oscillation

    Contrast of density

    Critical angle c

    Density density 1density 2

    density 3

    thickness d1thickness d2

    roughness 1roughness 2roughness 3

    Oscillatory behavior known as Kiessig fringes.

    thickness, density, and roughness

  • 7/27/2019 2010 Physical Science Session - Fan

    13/22

    TiO2 thin film thickness, roughness, and density

    Layer No.Layer

    Name

    Density

    (g/cm3

    )

    Thickness

    (nm)

    Roughness

    (nm)

    1

    2

    Si

    TiO2

    2.3300

    2.6727

    N/A

    18.506

    0.489

    0.579

    Table 1. Density, thickness and roughness of sample 4 from XRR data.

    For nonporous anatase TiO2

    0

    /1 =rP

    Relative porosity: Pr = 33%

    0 ~ 3.9 g/cm3,

    X-ray Reflectivity

  • 7/27/2019 2010 Physical Science Session - Fan

    14/22

    Dye Molecule we used

    Meso-tetra(4-carboxyphenyl)porphyrin (TCPP), T790

    Color: Red brown

    Absorption: 400 450 nm region, 500 700 nm region

    Adsorbs strongly onto nanoparticulate TiO2 and serves as an

    efficient photosensitizer. [J. Phys. Chem, 104, 3624 (2000)]

    450 500 550 600 650 7000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Absorban

    ce

    Wavelength, nm

    Dye: TCPP in EtOH solution

  • 7/27/2019 2010 Physical Science Session - Fan

    15/22

    Gel Electrolyte: Polymer Matrix

    Polymer electrolyte we used

    Poly(ethylene glycol) (PEG), (MW 20,000)

    100 mM KI, 50 mM I2 Solvents including:

    ethylene carbonate (80% v/v)

    o Transparent crystal-like solid, at T= 25 C

    o Colorless liquid at T = 34 - 37 C

    propylene carbonate (20% v/v)

    o Colorless liquid

    C2n

    H4n+2

    On+1

    PEG

    Advantages:Avoid liquid leakageAny shape membrane

    Hydro gel

    electrolyte

  • 7/27/2019 2010 Physical Science Session - Fan

    16/22

    0.0 0.2 0.4 0.6 0.8 1.00

    5

    10

    15

    20

    Isc

    Voc

    Curren

    tDensity(m

    A/cm

    2)

    Bias Voltage (V)

    ImV

    m

    Maximum Power Point

    To Characterize Solar Cells

    Photo electricity conversion efficiency:

    mmmVIP

    =

    Cell Maximum Power:

    Incident Light Power: Ps

    Short Circuit Current:Isc

    Open Circuit Voltage: Voc

    ocsc

    mm

    VI

    VIFF=Fill Factor FF:

    s

    ocsc

    P

    FFVI=

  • 7/27/2019 2010 Physical Science Session - Fan

    17/22

    Photo-Electricity Conversion Efficiency

    I-VCurves under one Sun (AM1.5 global, 100 mW/cm2) and Dark.

    Isc = 3.03 mA/cm2, Voc = 1.18 V, = 2.05%

    OCSC

    mpmp

    VI

    VIFF=

    light

    OCSC

    P

    FFVI

    =

    Conversion efficiency:

    Fill Factor:

  • 7/27/2019 2010 Physical Science Session - Fan

    18/22

    Several factors: Nanoparticle imbedded electrolyte Different Dye molecules (N3 instead of T790)

    Porous TiO2 with high ratio polymer template

    Efficiency improvement > 200%

    0.0 0.2 0.4 0.6 0.8

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Currentdensity(mA/c

    m2)

    Voltage(V)

  • 7/27/2019 2010 Physical Science Session - Fan

    19/22

    Electrolyte: Imidazolium+I2 + PEO,solid texture phase

    Flexible Dye-Sensitized Solar Cells

    Cheap Dye: Basic Red 1,Rhodamine 6GDN

    Formula: C28H31CIN2O3,red to brown in color.

    Anode electrode:porous TiO2 on Al foil

  • 7/27/2019 2010 Physical Science Session - Fan

    20/22

    Photo-Electricity Conversion Efficiency

    Flexible solar cell on Al Foil

    Al foil

    Porous TiO2

    Solid Electrolyte

    Conductive PET sheet

    Back Illumination

  • 7/27/2019 2010 Physical Science Session - Fan

    21/22

  • 7/27/2019 2010 Physical Science Session - Fan

    22/22

    Funding Support:NSF-MU ADVANCE GrantNASA WV EPSCoR Seed Grant

    NASA Undergraduate Research GrantMarshall University Research Corporate

    Undergraduate Researchers:Matthew Seitz, SophomoreTyler Spurlock, Sophomore

    Jon Linville, Senior

    Thank you for your attention!

    Acknowledgements: