2, gerardo gallego¹, wilson vasquez 3ciat-library.ciat.cgiar.org/articulos_ciat... · jorge mario...

1
Geographic Differentiation of Colombian Neoleucinodes elegantalis (Lepidoptera: Crambidae) haplotypes: evidence for Solanaceae host plant association and Holdridge life zones for genetic differentiation Jorge Mario Londoño¹, Ana Elizabeth Díaz 2 , Gerardo Gallego¹, Wilson Vasquez 3 , Harold Suárez¹ and Joe Tohme¹ Figure 1. Haplotype frequencies obtained for the evaluation of 272 samples, the most frequent haplotypes are H5 (light blue) and H1 (dark blue). Figure 3. Genetic distances inferred using Neighbor-Joining (NJ). Classification follows the faunistic zones proposed by Kattan et al (2004): yellow (Inter-Andean Slopes), blue (Cauca Valley watershed), violet (Magdalena Valley watershed), red (Ecuador), deep blue (Honduras). The composition and heterogeneity analysis of COI sequences allowed the establishment of variability at the inter and intra specific levels. This variation could identify significative divergence between individuals of N. elegantalis. Figure 3. Heterogeneity (He) of the COI in N. elegantalis. Figure 2. a) Geographical distribution of most common N. elegantalis haplotypes in Colombia, b) Clasification of the 5 sub-regions proposed by Kattan et al., (2004), also refered to by the author as faunistic zones. Cauca Valley, Central Cordillera and Magdalena Valley are the three sub-regions where all Colombian individuals come from. DIAZ A E., SOLIS M A 2007. A New species and species distribution records of Neoleucinodes (Lepidoptera: Crambidae:Spilomelinae) from Colombia feeding on Solanum sp. Proceedings of the Entomological Society of Washington. 109 (4):897908. HOLDRIDGE L R 1947. Determination of World Plant Formations from Simple Climatic Data. Science Vol, 105 No. 2727: 367-368. HEBERT P D N., CYWINSKA A., BALL S L., DE WAARD J R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B. 270, 313-321. KATTAN G H., FRANCO P., ROJAS V., & MORALES G. Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia DNA Barcoding was an accurate tool for the identification of haplotypes as well as discrimination of species (N. silvane) reported previously by Díaz & Solís (2007) using geometric morphology. The number of haplotypes obtained revealed a possible role of biogeographic isolation between valleys and of possible human pressure through the use of pesticides inducing divergent selection in N. elegantalis. The NJ analysis shows a wide distribution of the species along the Magdalena valley watershed, this sub-region is located between the Central and Eastern Cordilleras. The distribution of N. elegantalis in this region could explain the wide range of altitudinal adaptation of the species that could facilitate dispersal. With regard to the Cauca Valley, diversity centers on the southwestern slope of the Central Cordillera and on the East of Western Cordillera. The classification of regions proposed by Kattan et al (2004), are highly correlated to the grouping of haplotypes recovered in the species. The DNA Barcoding tool shows high sensitivity in N. elegantalis haplotype identification, and to correlation with the sub-regions of colombia which suggest at least 3 different geographic groups, related to both biogeographic separation, and human intervention through the use of pesticides. This is the first genetic analysis of N. elegantalis and the first attempt to obtain a molecular characterization of the species. Genetic differentiation could mean that there is partial reproductive isolation in N. elegantalis; further research could center on resolving this issue. Through this methodology we confirm the existance of a new species of Neoleucinodes genera (N. silvanie) previously proposed by Díaz & Solís (2007) with the use of morphological characters. INTRODUCTION ¹Agrobiodiversity and Biotechnology Proyect, Centro Internacional de Agricultura Tropical (CIAT), Palmira, Valle del Cauca - Colombia ²Corporación Colombiana de Investigación Agropecuario (CORPOICA), Centro de Investigación La Selva, Rionegro, Antioquía - Colombia 3 Instituto Nacional Autonomo de Investigaciones Agropecuarias (INIAP, Ecuador) [email protected] METHODOLOGY RESULTS DISCUSSION Nucleotide composition and haplotype frequencies of N. elegantalis Amplification of the mitochondrial gene COI produced a 658 bp fragment from a total of 272 individuals with average base (nucleotide) frequencies of A=34.06%, T=34.06%, C=15.94%, G=15.94%. The number of haplotypes obtained was 9 in which the most frequent haplotype, with 87 sequences, was H5 representing 32.2% including 90% of the Ecuadorian individuals. H5 was followed by H1 with 82 individuals and corresponds to 50% of Colombian sequences. Moreover, H1 was found in the Magdalena valley watershed while H3 correspond to Inter-Andean slopes and H2 to Cauca valley watershed. The number of substitutions at the nucleotide level varied between 9 and 24 in all haplotypes observed. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES Special thanks to Fondo Regional de Tecnología Agropecuaria FONTAGRO for financial support. Neoleucinodes elegantalis, known as tomato fruit borer, is an insect of Neotropical origin, widely distributed in Central America and South America. This species is considered one of the most important pests for fruit production in the Solanaceae. N. elegantalis is adapted to a wide altitudinal range (0 – 2600 m.a.s.l), a considerable diversity of natural enemies, and exhibits variability in terms of oviposition and pupation habit, besides a wide spectrum of host wild Solanaceae, and a differential behavior to sexual pheromone Neoelegantol. Using the DNA Barcode tool, 272 samples were processed and analyzed through Cytocrhome oxidase I (COI) gene, which represents a standard segment of the mitochondrial genome ( 650 base pairs). The geographical differentiation and population structure in relation to host-plant association and to Holdridge life zones were examined. The mains goals of this study are to evaluate the utility of DNA barcoding in the identification of haplotypes in the populations of N. elegantalis from Colombia and Ecuador, and to establish a DNA barcode database for this species. DNA extraction from 163 individuals collected in 14 departments of Colombia and 95 individuals from Ecuador was performed using the GF – 1 Nucleic Acid Extraction Kit (GF1-100-Vivantis). Amplification was carried out using universal primers that flank the COI region, with COI-Forward (5’GGTCAACAAATCATAAAGATATTGG3’) and COI-Reverse (5’ TAAACTTCAGGGTGACCAAAAAATCA 3’). Purification of the PCR product was performed using the PCR Clean up system (Promega). The sequences were obtained using an automatic sequencer ABI 3730 (Perkin Elmer/Applied Biosystem) and the assembled with Sequencher 4.6 (Gene codes corporation Ann Arbor; MI). Different bioinformatic tools were used for alignment and verification of sequence quality, nucleotide composition for each sample, genetic distances and heterogeneity among sequences. Additionally, the geographic distribution for each sample was determined, using the software ArcGIS – ArcMap (ERSI 1999 – 2008). Ecuador NAY11 M E c u a d o r NA Y 1 1 H 1 E c ua d o r N C H 1 01 0 E c u a d o r 4 1 0 E cu ado r 18 0 Ecuado r 2 0 Ecu ador 4 3 Ec uador NCH 11 V E cuador NG 512 M 0 0 0 0 E c u ador 09 Ecua dor 27 Ecuador 60 Ecuado r 17 Ec uador NG511 M 0 0 0 0 0 Ecuador TACH 101 Ecuador NAY12 H 1 Ecuador 48 0 Ecuador 21 0 Ecuador 06 0 Ecuador 10 Ecuador 28 Ecuador 61 Ecuador 25 Ecuador NCO11 H 0 0 0 0 0 0 Ecuador 05 Ecuador NCH11 V b 0 Ecuador 59 0 Ecuador 26 0 Ecuador 08 0 Ecuador 16 Ecuador TACH 103 1 Ecuador 42 0 Ecuador 19 0 Ecuador 11 Ecuador 40 Ecuador TACH 102 Ecuador NCH11 V Ecuador NCO12 M 1 0 0 0 0 0 0 Ecuador 07 0 Ecuador 22 0 Ecuador 58 0 Ecuador NCH 101 b 0 Ecuador NAY12 M 2 Ecuador NAY13 M 57 Ecuador 49 Ecuador 50 Ecuador NG512 H Ecuador NCO11 M 58 52 Ecuador 14 Ecuador 68 60 Ecuador 01 Ecuador 02 Ecuador 03 Ecuador 12 Ecuador 13 Ecuador 15 Ecuador 23 Ecuador 24 Ecuador 29 Ecuador 30 Ecuador 31 Ecuador 32 Ecuador 33 Ecuador 34 Ecuador 36 Ecuador 37 Ecuador 38 Ecuador 39 Ecuador 45 Ecuador 46 Ecuador 47 Ecuador 52 Ecuador 53 Ecuador 55 Ecuador 62 Ecuador 63 Ecuador 64 Ecuador 65 Ecuador 66 Ecuador 67 Ecuador 69 Ecuador 70 Ecuador 71 Ecuador 75 Ecuador NRV31 H Ecuador NRV31 M Ecuador NRV11 H Ecuador NRV11 M Ecuador NRV12 H Ecuador NRV21 M Ecuador NRV21 H Ecuador 44 Ecuador 51 62 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 28 69 Col Mlena 48 Col Mlena 49 Col NteStder 45 Col NteStder 41 Col NteStder 39 Col Stder 37 Col NteStder 35 Col NteStder 34 Col NteStder 31 Col Stder 29 Col Nd 28 Col Nd 27 Col Nar 18 9 Col Stder 26 Col Mlena 50 63 8 Col Stder 25 Col Stder 79 Col Stder 80 Col Stder 73 32 Col Ant 94 Col Cauca 121 Col Stder 76 Col Cun 22 Col Boy 05 39 Col Cun 170 Col APLGTm 1058-Ant 2 Col APSITa897-Ant 0 Col Cauca 130 0 Col Cauca 120 0 Col Tol 107 0 Col Tol 96 0 Col Huila 92 0 Col Ant 91 0 Col Huila 90 0 Col Huila 89 0 Col Cun 47 0 Col Cun 24 0 Col Cun 23 0 Col Cun 20 0 Col Cun 17 1 Col Boy 03 29 Col Boy 01 Col Boy 02 Col Boy 04 Col Boy 06 Col Bo y 0 7 Col Boy 08 Co l Hui l a 8 8 Col H uil a 93 C ol Hu ila 9 5 C ol H u i l a 97 C o l T o l 9 9 C o l To l 1 0 0 C o l T o l 1 0 5 C o l C a u c a 1 1 9 Co l C au c a 12 2 CO I C ol C a u c a 1 23 Co l Cauc a 124 Co l C a u c a 1 25 Co l Cauca 126 Col Cauca 12 7 Col Cauc a 12 8 Col Cau ca 1 29 Col C MERTm 313-Cal Col Tol 104 Col APLGTm1989 -Ant Col Stder 74 Col Cu n 168 Col Tol 110 Col Tol 173 67 18 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 61 49 50 38 11 31 95 Col Vcau 51 Col Vcau 52 Col Vcau 53 Col Risa 55 Col Qdio 57 Col Cal 58 Col Cal 59 Col Cal 60 Col Cal 61 Col Cal 64 Col Cal 67 Col Cal 68 Col Risa 70 Col Risa 71 Col Stder 72 Col Risa 75 Col Vcau 83 100 72 Col ASDRTa1046-Ant 2 5 Col NteStder 36 8 Col Tol 106 Col NteStder 32 Col NteStder 40 31 27 28 Col CMLETa296-Cal Honduras 03 Honduras 14 9 Honduras 12 2 Honduras 09 1 Honduras 07 0 Honduras 06 1 Honduras 05 2 Honduras 01 9 Honduras 04 86 Honduras 08 Honduras 11 Honduras 02 Honduras 13 73 41 95 47 Honduras 10 73 Col ASDRTa113-Ant Col ASDRTa858-Ant Col ASDRTa903-Ant 100 45 Col Qdio 54 Col DosQ 69 Col APSITa853-Ant Col RSLALu346-Risa Col CMLETa304-Cal Col Vcau 82 23 Col RSLLTm297-Risa Col RSLLTm316-Risa Col CMERTm337-Cal 63 Col AJCLu527-Ant Col AJILu847-Ant Col AJTTa1932-Atq 45 52 Col AJILu931-Ant 29 Col Nar 117 Col Nar 118 Col Nar 116 64 Col Vcau 115 6 Col AJCLu601-Ant 0 Col RSLALu289-Risa 0 Col RSLLTm340-Risa 0 Col RSLLTm272-Risa 0 Col CMERTm350-Cal 0 Col CMERTm320-Cal 0 Col Vcau 81 0 Col Cal 63 2 Col Risa 56 48 Col RSLALu92-StaRosa Col RSLALu318-Risa 46 55 Col CMERTm300-Cal Col AJCLu1875-Ant Col Cal 290 64 Col AJCLu1400-Ant 21 Col AJCLu1654-Ant 20 Col APLGTm1763-Ant 3 Col AJTTa1666-Ant 1 Col AJILu737-Ant 0 Col AJCLu1726-Ant 0 Col AJCLu1026-Ant 0 Col AJCLu400-Ant 0 Col RSLGLu331-Risa 4 Col Cal 65 46 Col CMERTm273-Cal Col AJCLu1492-Ant Col AJTTa1467-Ant Col-CMLETa59-Cal 64 Col Ant 85 Col Ant 86 Col Ant 87 Col AJCLu453-Ant Col AJCLu911-Ant Col AJCLu1307-Ant Col AJCLu1585-Ant Col AJCLu1797-Ant Col AJCLu1917-Ant Col AJCLu1931-Ant Col APLGTm1475-Ant Col AJTTa1829-Ant Col Cal 62 Col Ant 109 Col AJCLu256-Atq Col AJCLu703-Ant Col AJCLu870-Ant Col AJCLu971-Ant Col AJCLu998-Ant Col AJCLu1166-Ant Col AJLLLu708-Ant 65 25 1 0 0 0 0 0 0 0 0 0 1 21 24 42 44 34 6 19 19 56 35 48 Col RSLALu106-StaRosa 41 Col Cal 66 99 Col cun 43 Ecuador S2RV11 H Ecuador S2RV12 M Ecuador S2RV11 M 100 73 Col Nd 209 0.01 ECUADOR HONDURAS COLOMBIA Inter-Andean Slopes COLOMBIA Magdalena Valley watershed COLOMBIA Cauca Valley watershed The genetic distances between sequences were calculated using Neighbor-Joining/UPGMA algorithm implemented in MEGA 5. These distances yield 5 groups, of which 2 belong to Ecuador and Honduras. Additionally, 14 individuals from Honduras, which were used as the outgroup, formed a separate group; and 3 Colombian groups can be distinguished. The faunistic classification proposed by Kattan et al (2004) in order to group the origins of the samples. 30.4 6.7 25.2 1.5 32.2 1.5 0.4 0.4 1.9 H1 H2 H3 H4 H5 H6 H7

Upload: others

Post on 12-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2, Gerardo Gallego¹, Wilson Vasquez 3ciat-library.ciat.cgiar.org/Articulos_Ciat... · Jorge Mario Londoño¹, Ana Elizabeth Díaz2, Gerardo Gallego¹, Wilson Vasquez 3, Harold Suárez¹

Geographic Differentiation of Colombian Neoleucinodes elegantalis (Lepidoptera:

Crambidae) haplotypes: evidence for Solanaceae host plant association and Holdridge life

zones for genetic differentiation

Jorge Mario Londoño¹, Ana Elizabeth Díaz2, Gerardo Gallego¹, Wilson Vasquez3, Harold Suárez¹ and Joe Tohme¹

Figure 1. Haplotype frequencies obtained for the evaluation of 272 samples, the most frequent haplotypes are H5

(light blue) and H1 (dark blue).

Figure 3. Genetic distances inferred using Neighbor-Joining (NJ). Classification follows the faunistic zones proposed by

Kattan et al (2004): yellow (Inter-Andean Slopes), blue (Cauca Valley watershed), violet (Magdalena Valley watershed),

red (Ecuador), deep blue (Honduras).

The composition and heterogeneity analysis of COI sequences allowed the establishment of variability at the inter and intra

specific levels. This variation could identify significative divergence between individuals of N. elegantalis.

Figure 3. Heterogeneity

(He) of the COI in N.

elegantalis.

Figure 2. a) Geographical distribution of most common N. elegantalis haplotypes in Colombia, b) Clasification of

the 5 sub-regions proposed by Kattan et al., (2004), also refered to by the author as faunistic zones. Cauca Valley,

Central Cordillera and Magdalena Valley are the three sub-regions where all Colombian individuals come from.

DIAZ A E., SOLIS M A 2007. A New species and species distribution records of Neoleucinodes (Lepidoptera:

Crambidae:Spilomelinae) from Colombia feeding on Solanum sp. Proceedings of the Entomological Society of Washington.

109 (4):897–908.

HOLDRIDGE L R 1947. Determination of World Plant Formations from Simple Climatic Data. Science Vol, 105 No. 2727:

367-368.

HEBERT P D N., CYWINSKA A., BALL S L., DE WAARD J R. 2003. Biological identifications through DNA barcodes. Proc.

R. Soc. B. 270, 313-321.

KATTAN G H., FRANCO P., ROJAS V., & MORALES G. Biological diversification in a complex region: a spatial analysis of

faunistic diversity and biogeography of the Andes of Colombia

DNA Barcoding was an accurate tool for the identification of haplotypes as well as discrimination of species (N. silvane) reported previously by Díaz & Solís (2007) using geometric morphology. The number of haplotypes obtained revealed a possible role

of biogeographic isolation between valleys and of possible human pressure through the use of pesticides inducing divergent selection in N. elegantalis. The NJ analysis shows a wide distribution of the species along the Magdalena valley watershed, this

sub-region is located between the Central and Eastern Cordilleras. The distribution of N. elegantalis in this region could explain the wide range of altitudinal adaptation of the species that could facilitate dispersal. With regard to the Cauca Valley, diversity

centers on the southwestern slope of the Central Cordillera and on the East of Western Cordillera. The classification of regions proposed by Kattan et al (2004), are highly correlated to the grouping of haplotypes recovered in the species.

The DNA Barcoding tool shows high sensitivity in N. elegantalis haplotype identification, and to correlation with the sub-regions of colombia which

suggest at least 3 different geographic groups, related to both biogeographic separation, and human intervention through the use of pesticides.

This is the first genetic analysis of N. elegantalis and the first attempt to obtain a molecular characterization of the species.

Genetic differentiation could mean that there is partial reproductive isolation in N. elegantalis; further research could center on resolving this issue.

Through this methodology we confirm the existance of a new species of Neoleucinodes genera (N. silvanie) previously proposed by Díaz & Solís (2007)

with the use of morphological characters.

INTRODUCTION

¹Agrobiodiversity and Biotechnology Proyect, Centro Internacional de Agricultura Tropical (CIAT), Palmira, Valle del Cauca - Colombia

²Corporación Colombiana de Investigación Agropecuario (CORPOICA), Centro de Investigación La Selva, Rionegro, Antioquía - Colombia 3Instituto Nacional Autonomo de Investigaciones Agropecuarias (INIAP, Ecuador)

[email protected]

METHODOLOGY

RESULTS

DISCUSSION

Nucleotide composition and haplotype frequencies of N. elegantalis

Amplification of the mitochondrial gene COI produced a 658 bp fragment from a total of 272 individuals with

average base (nucleotide) frequencies of A=34.06%, T=34.06%, C=15.94%, G=15.94%. The number of haplotypes

obtained was 9 in which the most frequent haplotype, with 87 sequences, was H5 representing 32.2% including 90%

of the Ecuadorian individuals. H5 was followed by H1 with 82 individuals and corresponds to 50% of Colombian

sequences. Moreover, H1 was found in the Magdalena valley watershed while H3 correspond to Inter-Andean slopes

and H2 to Cauca valley watershed. The number of substitutions at the nucleotide level varied between 9 and 24 in all

haplotypes observed.

CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

Special thanks to Fondo Regional de Tecnología Agropecuaria FONTAGRO for financial support.

Neoleucinodes elegantalis, known as tomato fruit borer, is an insect of Neotropical origin, widely distributed in Central America and South America. This species is considered one of the most important pests for fruit production in the

Solanaceae. N. elegantalis is adapted to a wide altitudinal range (0 – 2600 m.a.s.l), a considerable diversity of natural enemies, and exhibits variability in terms of oviposition and pupation habit, besides a wide spectrum of host wild

Solanaceae, and a differential behavior to sexual pheromone Neoelegantol. Using the DNA Barcode tool, 272 samples were processed and analyzed through Cytocrhome oxidase I (COI) gene, which represents a standard segment of

the mitochondrial genome ( 650 base pairs). The geographical differentiation and population structure in relation to host-plant association and to Holdridge life zones were examined. The mains goals of this study are to evaluate the

utility of DNA barcoding in the identification of haplotypes in the populations of N. elegantalis from Colombia and Ecuador, and to establish a DNA barcode database for this species.

DNA extraction from 163 individuals collected in 14 departments of Colombia and 95 individuals from

Ecuador was performed using the GF – 1 Nucleic Acid Extraction Kit (GF1-100-Vivantis). Amplification was

carried out using universal primers that flank the COI region, with COI-Forward

(5’GGTCAACAAATCATAAAGATATTGG3’) and COI-Reverse (5’

TAAACTTCAGGGTGACCAAAAAATCA 3’).

Purification of the PCR product was performed using the PCR Clean up system (Promega). The sequences

were obtained using an automatic sequencer ABI 3730 (Perkin Elmer/Applied Biosystem) and the assembled

with Sequencher 4.6 (Gene codes corporation Ann Arbor; MI).

Different bioinformatic tools were used for alignment and verification of sequence quality, nucleotide

composition for each sample, genetic distances and heterogeneity among sequences. Additionally, the

geographic distribution for each sample was determined, using the software ArcGIS – ArcMap (ERSI 1999 –

2008).

Ecu

ad

or

NA

Y11

M

Ecuad

or

NA

Y1

1 H

1

Ecu

ado

r N

CH

101

0

Ecu

ado

r 41

0

Ecuado

r 18

0

Ecuador

20

Ecua

dor

43

Ecu

ador

NC

H 1

1 V

Ecuad

or

NG

512 M

000

0

Ecuador

09

Ecuador

27

Ecuador

60

Ecuador

17

Ecuador

NG

511 M

0000

0 Ecuador

TA

CH

101

Ecuador

NA

Y12 H

1

Ecuador

48

0

Ecuador

21

0

Ecuador

06

0

Ecu

ador

10

Ecu

ador

28

Ecu

ador

61

Ecu

ador 25

Ecu

ador N

CO

11 H

00

0

0

0

0

Ecu

ador 05

Ecu

ador N

CH

11 V

b

0

Ecu

ador 59

0

Ecu

ador

26

0 Ecu

ador 08

0

Ecu

ador

16

Ecu

ador

TAC

H 1

03

1 Ecu

ador

42

0 Ecu

ador

19

0 Ecu

ador

11

Ecu

ador

40

Ecu

ador

TACH 1

02

Ecu

ador

NCH11

V

Ecu

ador

NCO12

M

1

00

0

0

0

0

Ecuad

or 0

7

0

Ecuad

or 2

20

Ecuador 5

8

0

Ecuador N

CH 101 b

0

Ecuador N

AY12 M

2

Ecuador N

AY13 M

57

Ecuador 4

9

Ecuador 5

0

Ecuador NG512 H

Ecuador NCO11 M

58

52

Ecuador 14

Ecuador 68

60

Ecuador 01

Ecuador 02

Ecuador 03

Ecuador 12

Ecuador 13

Ecuador 15

Ecuador 23

Ecuador 24

Ecuador 29

Ecuador 30

Ecuador 31

Ecuador 32

Ecuador 33

Ecuador 34

Ecuador 36

Ecuador 37

Ecuador 38

Ecuador 39

Ecuador 45

Ecuador 46

Ecuador 47

Ecuador 52

Ecuador 53

Ecuador 55

Ecuador 62

Ecuador 63Ecuador 64Ecuador 65Ecuador 66Ecuador 67Ecuador 69Ecuador 70Ecuador 71

Ecuador 75Ecuador NRV31 HEcuador NRV31 MEcuador NRV11 H

Ecuador NRV11 MEcuador NRV12 H

Ecuador NRV21 MEcuador NRV21 H

Ecuador 44Ecuador 51

62

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

58

28

69

Col Mlena 48Col Mlena 49

Col NteStder 45

Col NteStder 41

Col NteStder 39

Col Stder 37

Col NteStder 35

Col NteStder 34

Col NteStder 31

Col Stder 29

Col Nd 28

Col Nd 27

Col Nar 18

9

Col Stder 26

Col M

lena 50

63

8

Col Stder 25

Col S

tder 79

Col S

tder 80

Col S

tder 73

32Col A

nt 94

Col C

auca 121

Col S

tder 76

Col C

un 22

Col B

oy 05

39

Col C

un 170

Col A

PLG

Tm

1058

-Ant

2C

ol A

PS

ITa897-A

nt

0

Col C

auca

130

0

Col C

auca

120

0

Col T

ol 1

07

0

Col T

ol 9

6

0

Col H

uila

92

0

Col A

nt 9

10

Col H

uila

90

0

Col H

uila

89

0

Col C

un 4

70

Col C

un 2

40

Col C

un 2

30

Col C

un 2

00

Col C

un 1

71

Col B

oy 0

329

Col B

oy 0

1

Col B

oy 0

2

Col B

oy 0

4

Col B

oy 0

6

Col B

oy 0

7

Co

l Boy 0

8

Col H

uila

88

Col H

uila

93

Col H

uila

95

Col H

uila

97

Co

l To

l 99

Co

l Tol 1

00

Col T

ol 1

05

Co

l Cau

ca 1

19

Col C

au

ca 1

22

CO

I ColC

au

ca 1

23

Col C

auca 1

24

Co

l Cauca 1

25

Col C

auca 1

26

Col C

auca 1

27

Col C

auca

128

Col C

auca 1

29

Col C

ME

RT

m313-C

al

Col T

ol 1

04

Col A

PLG

Tm

1989-A

nt

Col S

tder 7

4C

ol C

un 1

68

Col T

ol 1

10

Col T

ol 1

73

67 1

8

10

0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2

61

49

50

38

11

31

95

Col V

cau 5

1

Col V

cau 5

2

Col V

cau 5

3

Col R

isa 5

5

Col Q

dio

57

Col C

al 5

8

Col C

al 5

9

Col C

al 6

0

Col C

al 6

1

Col C

al 6

4

Col C

al 6

7

Col C

al 6

8

Col

Ris

a 70

Col

Ris

a 71

Col

Std

er 7

2

Col

Ris

a 75

Col

Vca

u 83

100

72

Col

ASDRTa

1046

-Ant

25

Col

Nte

Std

er 3

6

8

Col T

ol 1

06

Col

Nte

Stder

32

Col

Nte

Stder

40

31 27

28

Col C

MLE

Ta296

-Cal

Hondura

s 03

Honduras

149

Honduras

12 2

Honduras 0

9 1

Honduras 0

7 0

Honduras 0

6 1

Honduras 05 2

Honduras 01 9

Honduras 04 86

Honduras 08

Honduras 11

Honduras 02Honduras 13

7341

95

47

Honduras 10

73

Col ASDRTa113-Ant

Col ASDRTa858-Ant

Col ASDRTa903-Ant 100

45

Col Qdio 54Col DosQ 69

Col APSITa853-Ant

Col RSLALu346-RisaCol CMLETa304-CalCol Vcau 82

23

Col RSLLTm297-RisaCol RSLLTm316-RisaCol CMERTm337-Cal

63

Col AJCLu527-AntCol AJILu847-AntCol AJTTa1932-Atq 45

52

Col AJILu931-Ant

29

Col Nar 117Col Nar 118

Col Nar 116

64

Col Vcau 115

6

Col AJCLu601-Ant

0

Col RSLALu289-Risa

0

Col RSLLTm340-Risa

0

Col RSLLTm272-Risa

0

Col CMERTm350-Cal

0

Col CMERTm320-Cal

0

Col Vcau 81

0

Col Cal 63

2

Col Risa 56

48

Col RSLALu92-StaRosa

Col RSLALu318-Risa46

55

Col CMERTm300-Cal

Col AJCLu1875-Ant

Col Cal 290

64

Col AJCLu1400-Ant

21

Col AJCLu1654-Ant

20

Col APLGTm1763-Ant

3

Col AJTTa1666-Ant

1

Col AJILu737-Ant

0

Col AJCLu1726-Ant

0

Col AJCLu1026-Ant

0

Col AJCLu400-Ant

0

Col RSLGLu331-Risa

4

Col Cal 65

46

Col CMERTm273-Cal

Col AJCLu1492-Ant

Col AJTTa1467-Ant

Col-CMLETa59-Cal

64

Col Ant 85

Col Ant 86

Col Ant 87

Col AJC

Lu453-Ant

Col AJC

Lu911-Ant

Col AJC

Lu1307-Ant

Col A

JCLu1585-A

nt

Col A

JCLu1797-A

nt

Col A

JCLu1917-A

nt

Col A

JCLu1931-A

nt

Col A

PLG

Tm

1475-Ant

Col A

JTTa1829-A

nt

Col C

al 62

Col A

nt 109

Col A

JCLu256-A

tq

Col A

JCLu703-A

nt

Col A

JCLu

870-A

nt

Col A

JCLu971-A

nt

Col A

JCLu998-A

nt

Col A

JCLu1166-A

nt

Col A

JLLLu708-A

nt

65

25

1

0

00

0

00

00

01

21

24

42

44

34

6

19

19

56

35

48

Col R

SLA

Lu106-S

taR

osa

41

Col C

al 6

6

99

Col cu

n 4

3

Ecu

ador S

2R

V11 H

Ecu

ador S

2R

V12 M

Ecuador S

2R

V11 M

100

73

Col N

d 2

09

0.01

ECUADOR

HONDURAS

COLOMBIA –

Inter-Andean

Slopes

COLOMBIA –

Magdalena

Valley

watershed

COLOMBIA –

Cauca Valley

watershed

The genetic distances between sequences were calculated using Neighbor-Joining/UPGMA algorithm implemented in MEGA

5. These distances yield 5 groups, of which 2 belong to Ecuador and Honduras. Additionally, 14 individuals from Honduras,

which were used as the outgroup, formed a separate group; and 3 Colombian groups can be distinguished. The faunistic

classification proposed by Kattan et al (2004) in order to group the origins of the samples.

30.4

6.7

25.2

1.5

32.2

1.5

0.4 0.4 1.9

H1H2H3H4H5H6H7