2-2-b-solar cell(91)-120312

Upload: paulscholes1822

Post on 03-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    1/91

    1http://bp.snu.ac.kr

    Dye-Sensitized Solar Cell

    (DSSC)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    2/91

    2http://bp.snu.ac.kr

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    3/91

    3http://bp.snu.ac.kr

    M. Grtzel, Nature (2001)

    Solar Cell Changwoo

    Photoelectrochemical Cells (Solar Cell and Water Cleavage)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    4/91

    4http://bp.snu.ac.kr

    Electrode Potential (E0) vs. Vacuum Potential (eV)

    Solar Cell/Semiconductor Chunjoong

    M. Grtzel, Nature (2001)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    5/91

    5http://bp.snu.ac.kr

    Dye-Sensitized Solar Cells (DSSCs)

    Prof. Kyo Han Ahns group (POSTECH)

    http://www.postech.ac.kr/chem/mras

    Solar Cell Chunjoong

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    6/91

    6http://bp.snu.ac.kr

    Dye-Sensitized Solar Cell

    1. Dye electrons are excited by solar energy absorption.

    2. They are injected into the conduction band of TiO2.

    3. Get to counter-electrode (cathode) through the external circuit.

    4. : Redox regeneration at the counter-electrode (reduction).

    5. : Dye regeneration reaction (oxidation).

    6. Potential used for external work:

    --

    3 I32I e

    e2II3 -3

    -

    redoxFext VEV

    Michael Grtzel (Ecole Polytechnique)Inorg. Chem. 44, 6841 (2005)

    Solar Cell Hongsik

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    7/91

    7http://bp.snu.ac.krSolar Cell Hongsik

    Exciton Binding Energy

    P3HT: Poly(3-hexylthiophene)

    Dye-Sensitized Solar Cells

    Organic Solar Cell

    Jinsang Kims group (University of Michigan)

    Adv. Funct. Mater. (2012)

    Carsten Deibels group (Julius-Maximilians-University of

    Wrzburg)Phys. Rev. B 81 085202 (2010)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    8/91

    8http://bp.snu.ac.kr

    Dye-Sensitized Solar Cell

    < Introduction >

    Dye-sensitized solar cells (DSSC) were invented by Michael Grtzel and Brian O'Regan

    [Nature, 353, 737 (1991)] .

    The DSSC is formed by a combination of organic and inorganic components that could be

    produced at a low cost.

    The DSSC offers the prospect of a cheap and versatile technology for large scale production of

    solar cells.

    The basic element of a DSSC is a nanostructured material, an assembly ofTiO2 nanoparticles

    about 20 nm diameter, well connected to their neighbors.

    TiO2 is the preferred material since its surface induces highly effective electron transfer.

    However, TiO2 only absorbs a small fraction of the solar photons (those in the UV).

    Molecular sensitizers (dye molecules) attached to the semiconductor surface, are used to harvest agreat portion of the solar light.

    The main dye molecules consist on one Ru metal atom and a large organic structure that provides

    the required properties (wide absorption range, fast electron injection, and stability).

    Solar Cell Hongsik

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    9/91

    9http://bp.snu.ac.kr

    Dye-Sensitized Solar Cell

    Homepage in Grtzels group

    Solar Cell Jongmin

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    10/91

    10http://bp.snu.ac.kr

    Silicon Solar Cell Dye Sensitized Solar Cell

    - Costly fabrication process

    - Expensive raw materials

    - Toxic gases

    - Easy to be fabricated

    - Low cost

    - Friendly to the environment

    Solar Cell Hongsik

    The Benefits of DSSC

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    11/91

    11http://bp.snu.ac.kr

    M. Grtzels group, Nature (1991)

    Solar Cell Changwoo

    Dye-Sensitized Solar Cell (DSSC)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    12/91

    12http://bp.snu.ac.kr

    M. Grtzels group,

    J. Am. Ceram. Soc.

    (1997)

    hydrothermal method

    ~20 nm size, anatase phase

    ~10 m thickness for efficientphoton absorption

    Solar Cell Changwoo

    TiO2 Nanoparticles for DSSC

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    13/91

    13http://bp.snu.ac.krSolar Cell Changwoo

    TiO2 Phase Dependency for DSSC

    Rutile phase DSSC , anatase phase . .

    N.-G. Park et al.,J. Phys. Chem. B(2000)

    Rutile phase nanoparticle 20 nm 80 nm rod , spherical anatase nanoparticle20 nm .

    rutile nanoparticle anatase nanoparticle dye , photocurrent .

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    14/91

    14http://bp.snu.ac.kr

    proton detachment chemical bonding with TiO2

    M. Grtzel, Inorganic Chemistry (2005)

    Solar Cell Changwoo

    Dyes for DSSC

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    15/91

    15http://bp.snu.ac.kr

    Chemical Structure of N719

    dye

    Solar Cell Changwoo

    Dyes for DSSC (N719)

    M. Grtzel, Inorganic Chemistry (2005)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    16/91

    16http://bp.snu.ac.kr

    Chemical Structure of N719 dye

    Ti

    bonding . dye adsorption to TiO2

    cf) Chemical Structure of N3 dye

    Bu4N: tetrabutylammonium

    Solar Cell Changwoo

    Dyes for DSSC (N719)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    17/91

    17http://bp.snu.ac.kr

    Optimizing Dyes for DSSC

    Organometallic dye: charge separation

    HOMOLUMO

    N3

    Anchoring

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    18/91

    18http://bp.snu.ac.kr

    anatase (001) anatase (101) the most stable plane

    H. G. Yang et al.Nature 453, 638 (2008)

    A. SelloniNat. Mater. 7, 613 (2008)

    Anatase TiO2 chemical adsorption , Ti bonding .

    Solar Cell Changwoo

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    19/91

    19http://bp.snu.ac.kr

    dye

    anatase (101)

    M. Graetzels groupJPCB (2003)

    , dye-coated TiO2 film FT-IR , TiO2 Ti dye chemical bonding .

    Ti Ti

    N719 dye

    Solar Cell Changwoo

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    20/91

    20http://bp.snu.ac.kr

    3-D Structure of Ru complex

    Solar Cell Changwoo

    Dyes for DSSC (N719)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    21/91

    21http://bp.snu.ac.kr

    good photon absorption,good charge separation

    IPCE(%)

    IPCE: Incident Photon to Current Conversion Efficiency

    M. Grtzel, Inorganic Chemistry (2005)

    Solar Cell Changwoo

    Operation of DSSC

    _______

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    22/91

    22http://bp.snu.ac.krSolar Cell Changwoo

    Dye-Sensitized Photovoltaic Cells

    M. Grtzel, Inorganic Chemistry (2005)

    __________________________________________________

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    23/91

    23http://bp.snu.ac.kr

    10 electrons per TiO2particle under AM1.5. More than 90% of electrons in TiO2 are trapped and

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    24/91

    24http://bp.snu.ac.kr

    Open-Circuit Potential

    The two main determinants ofVoc are the recombination rate constant and the TiO2 conduction band

    edge offset relative to the I-/I3- redox potential.

    Short-Circuit Current

    This efficiency depends upon the diffusion constant (mobility) and recombination rate of the electrons

    in TiO2

    .

    Brian C. ORegan,s group,Account of Chemical Research (2009).

    Solar Cell Chohui

    Kinetic and Energetic Paradigms

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    25/91

    25http://bp.snu.ac.kr

    Brian C. ORegan,s group,

    Account of Chemical Research (2009).

    Solar Cell Chohui

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    26/91

    26http://bp.snu.ac.kr

    Ti deposition by sputtering (500 nm)

    Anodizing Ti film at constantpotential, 12 V. (HF condition)

    Pore diameter: 46 nmWall thickness: 17 nmLength: 360 nm

    C. A. Grimess group,

    Nano Letters (2006)

    Solar Cell Changwoo

    TiO2 Nanotubes for DSSC

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    27/91

    27http://bp.snu.ac.kr

    = 2.9%

    360 nm

    Solar Cell Changwoo

    TiO2 Nanotubes for DSSC

    C. A. Grimess group,

    Nano Letters (2006)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    28/91

    28http://bp.snu.ac.kr

    Solutions

    Core-shell Structure

    wide bandgap materials

    Surface Treatment

    Ar or O2 plasma, TiCl4 treatment

    Nanoscale Coating on the TCO

    Solar Cell Changwoo

    TiO2-Electrode / Electrolyte Interface Problem

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    29/91

    29http://bp.snu.ac.kr

    CaCO3: basic than TiO2 carboxyl group of

    dye can adsorb more easily

    CaCO3 is insulator (band gap: 6 eV)

    thick shell of CaCO3 block electrontransfer from dye to TiO2

    K. Hongs group,

    Sol. Energy Mater. Sol. Cells (2006)

    CaCO3-coated TiO2 nanoparticle (core-shell)

    Solar Cell Changwoo

    CaCO3-Coated TiO2 Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    30/91

    30http://bp.snu.ac.krSolar Cell Changwoo

    CaCO3-Coated TiO2 Nanoparticles

    M O C d TiO N i l

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    31/91

    31http://bp.snu.ac.kr

    MgO-coated TiO2 nanoparticle (nanoporous structure)

    K. Hongs group,

    Langmuir (2005)

    Jsc enhancement: increase of the dyeadsorption

    Voc enhancement: suppression of thecharge recombination

    Solar Cell Changwoo

    MgO-Coated TiO2 Nanoparticles

    M O C t d TiO N ti l

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    32/91

    32http://bp.snu.ac.kr

    K. Hongs group,

    Langmuir (2005)

    Solar Cell Changwoo

    MgO-Coated TiO2 Nanoparticles

    M t l O id C ti TiO N ti l

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    33/91

    33http://bp.snu.ac.kr

    Effect of TiO2 Coating Layer

    1. The insulating layers with wide band gap and high conduction band edge can retard the

    back transfer of electrons from TiO2 to the electrolytes or dye molecules (decrease trap state).

    2. The enhanced dye adsorption by the oxide layers can improve the cell performance

    The coated surface favors the dye adsorption through the carboxylic acid group of the dye.

    Coating Layer

    Sujuan Wu et al. (Wuhan University)

    Nanotechnology 19, 215704 (2008)

    Solar Cell Hongsik

    Metal-Oxide Coating on TiO2 Nanoparticles

    MgO Coated TiO Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    34/91

    34http://bp.snu.ac.krDye adsorption increase with sputtering time

    Resistance at the TiO2/dye/electrolyte increase with

    sputtering time

    Excessively thick MgO layer beyond the tunneling distance plays a negative role in the photoelectron conversion process.

    Sujuan Wu et al. (Wuhan University)

    Nanotechnology 19, 215704 (2008)

    Solar Cell Hongsik

    MgO-Coated TiO2 Nanoparticles

    MgO Coated TiO Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    35/91

    35http://bp.snu.ac.krSolar Cell Hongsik

    MgO-Coated TiO2 Nanoparticles

    FTO / Blocking La er / Poro s TiO

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    36/91

    36http://bp.snu.ac.kr

    Porous interfaces between FTO substrate and TiO2 layers can be electron recombination site,

    i.e., electron leakage sites exist especially when solid or highly viscous redox species such as

    ionic liquid iodides once infiltrate into the interfaces.

    Blocking layer can suppress back electron transfer

    from FTO to electrolytes.

    Introduction

    Shozo Yanagida Group (Osaka University)

    J. Phys. Chem. C 111, 8092 (2007)

    Solar Cell Hongsik

    FTO / Blocking Layer / Porous TiO2

    FTO / Nb O / Porous TiO

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    37/91

    37http://bp.snu.ac.kr

    Shozo Yanagida Group (Osaka University)

    J. Phys. Chem. C 111, 8092 (2007)

    Sputtering method has the merits of good

    reproducibility, of homogeneous coverage and

    suitability for the large scale production.

    Excessively thick blocking layers beyond

    tunneling distance would play a negative role in the

    photoelectron conversion process.

    Solar Cell Hongsik

    FTO / Nb2O5 / Porous TiO2

    FTO / Nb2O5 / Porous TiO2

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    38/91

    38http://bp.snu.ac.krSolar Cell Hongsik

    FTO / Nb2O5 / Porous TiO2

    FTO / TiO2 Thin-Film Layer / TiO2 Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    39/91

    39http://bp.snu.ac.kr

    FTO/TiO2 compact layer/TiO2 Efficiency (1 Sun)With compact layer : 1.6%Without compact layer : 1.0 %

    Michael Grtzel et al. (Ecole Polytechnique)

    Nano Lett. Vol. 8, No. 4, (2008)

    Efficiency (1/10 Sun)

    With compact layer : 1.6%Without compact layer : 0.6 %

    Recombination rate decrease between FTO / Electrolyte

    JSC , VOC increase

    Solar Cell Hongsik

    FTO / TiO2 Thin Film Layer / TiO2 Nanoparticles

    FTO / TiO2 Thin-Film Layer / TiO2 Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    40/91

    40http://bp.snu.ac.krSolar Cell Hongsik

    FTO / TiO2 Thin Film Layer / TiO2 Nanoparticles

    New Methods for TiO2 Nanostructures

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    41/91

    41http://bp.snu.ac.krSolar Cell Changwoo

    New Methods for TiO2 Nanostructures

    Inverse-Opal Ti Anodization

    500 nm

    100 nm

    ~ 3.5%

    ~ 4.2%

    Hyunjung Lees Group

    (KIST)

    Adv. Funct. Mater(2009)

    P. Schmukis Group

    (Univ. Erlangen-Nuremberg, Germany)

    Angew. Chem. Int. Ed. (2009)

    New Methods for the TiO2 Nanostructures

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    42/91

    42http://bp.snu.ac.krSolar Cell Changwoo

    2

    Hyunjung Lees Group

    (KIST)

    Adv. Funct. Mater(2009)

    P. Schmukis Group

    (Univ. Erlangen-Nuremberg, Germany)

    Angew. Chem. Int. Ed. (2009)

    Aggregates/Nanocrystallites Mixed TiO2 DSSCs

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    43/91

    43http://bp.snu.ac.kr

    Guozhong Caos group,Electrochimica Acta, (2011).

    Aggregates/Nanocrystallites Mixed TiO2 DSSCs

    Solar Cell Chohui

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    44/91

    44http://bp.snu.ac.kr

    Guozhong Caos group,Electrochimica Acta (2011).

    Solar Cell Chohui

    I- Free Electrolyte

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    45/91

    45http://bp.snu.ac.krSolar Cell Changwoo

    I Free Electrolyte

    M. Graetzels Group

    Nat. Chem. (2010)

    Licheng Suns Group

    (Dalian Univ. of Tech.)

    Angew. Chem. Int. Ed. (2010)

    conventional I-/I3-

    electrolyte

    new electrolyte

    I- Free Electrolyte

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    46/91

    46http://bp.snu.ac.krSolar Cell Changwoo

    M. Grtzels Group

    Science (2011)

    Licheng Suns Group

    (Dalian Univ. of Tech.)

    Angew. Chem. Int. Ed.

    (2010)

    _____________________________

    ______

    _________________________

    - 2012-03-07

    DSSC Exceeding 12% in Efficiency

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    47/91

    47http://bp.snu.ac.krSolar Cell Changwoo

    YD2-o-C8 dye

    M. Grtzels GroupScience (2011)

    DSSC Exceeding 12% in Efficiency

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    48/91

    48http://bp.snu.ac.krSolar Cell Changwoo

    M. Grtzels Group

    Science (2011)

    Characteristics of ZnO-Based DSSCs

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    49/91

    49http://bp.snu.ac.kr

    Advantages

    Single-crystal ZnO has carrier mobility of 115 - 155 cm2/Vs, which is 2 orders of magnitude

    higher than that of TiO2 (2 - 4 cm2/Vs).

    Easy to fabricate various nanostructures.

    C. M. L. Wus group,

    J. Phys. Chem. C(2010).K.-C. Hos group,

    Energy Environ. Sci. (2011).

    S. Fujiharas group,

    J. Electrochem. Soc. (2011).

    Nanoflower Nanodisk Nanosheet

    NanowireNanotube

    J. S. Bendalls group,Energy Environ. Sci. (2011). W.-G. Diaus group,Energy Environ. Sci. (2011).

    Solar Cell Chohui

    Characteristics of ZnO-Based DSSCs

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    50/91

    50http://bp.snu.ac.kr

    High acidity of the ruthenium-based dye can lead to dissolution of ZnO.

    Precipitation of dissolved Zn2+ ions and dye molecules is attached on the surface.

    G. Caos group,J. Phys. Chem. C(2007).

    G. Caos group,Adv. Mater. (2009).

    Formation of Zn2+

    /Dye Aggregates

    Without Dye With Dye for 12 h

    200 nm 200 nm

    Disadvantages

    G. Caos group,J. Phys. Chem. C(2007).

    Solar Cell Chohui

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    51/91

    51http://bp.snu.ac.kr

    G. Caos group,J. Phys. Chem. C(2007).

    Solar Cell Chohui

    ____________

    ZnO Aggregates DSSCs

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    52/91

    52http://bp.snu.ac.kr

    Guozhong Caos group,Angew. Chem. Int. Ed. (2008).

    Desired specific surface area for dye loading + light scattering

    = High conversion efficiency in dye-sensitized solar cells

    Solar Cell Chohui

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    53/91

    53http://bp.snu.ac.kr

    Guozhong Caos group,Angew. Chem. Int. Ed. (2008).

    Solar Cell Chohui

    Effect of an Ultrathin TiO2 Layer

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    54/91

    54http://bp.snu.ac.kr

    -

    -

    Guozhong Caos group,Adv. Mater. (2010).

    Solar Cell Chohui

    _______

    _

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    55/91

    55http://bp.snu.ac.kr

    Guozhong Caos group,Adv. Mater. (2010).

    Solar Cell Chohui

    MgO- or ZrO2- Coated ZnO Nanowire DSSCs

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    56/91

    56http://bp.snu.ac.kr

    N. O. V. Plank,J. Phys. Chem. C(2009).

    Solar Cell Chohui

    _

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    57/91

    57http://bp.snu.ac.kr

    N. O. V. Plank,J. Phys. Chem. C(2009).

    Solar Cell Chohui

    Lithium Ions on ZnO DSSCs

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    58/91

    58http://bp.snu.ac.kr

    Guozhong Caos group, Chem. Mater. (2010).

    Solar Cell Chohui

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    59/91

    59http://bp.snu.ac.kr

    Guozhong Caos group, Chem. Mater. (2010).

    Solar Cell Chohui

    ____________________

    Surface-Plasmon Resonance in Metal Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    60/91

    60http://bp.snu.ac.krSolar Cell Changwoo

    Oscillation of Free Electrons in

    Metal Nanoparticles

    [L. M. Liz-Marzan,Langmuir(2006)]

    Unique Optical Properties of Au

    Surface-Plasmon Resonance in Metal Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    61/91

    61http://bp.snu.ac.krSolar Cell Changwoo

    L. M. Liz-Marzn

    (Univ. de Vigo, Spain)

    Langmuir(2006)

    Field Enhancement vs. Scattering

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    62/91

    62http://bp.snu.ac.krSolar Cell Changwoo

    I: Light Intensity

    E: Amplitude ofE-Field

    Both field-enhancement and scattering effects can contribute to the

    improvement of photovoltaic properties.

    [H. A. Atwateret al.,Nat. Mater. (2010)]

    Field Enhancement Scattering

    Metal Contact

    Active

    Material

    h

    h

    Field Enhancement vs. Scattering

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    63/91

    63http://bp.snu.ac.krSolar Cell Changwoo

    H. Atwateret al.

    (Caltech)

    Nat. Mater. (2010)

    Electric-Field Enhancement by Surface-Plasmon Resonance

    H

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    64/91

    64http://bp.snu.ac.kr

    -4 -3 -2 -1 0 1 2 3 4-4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    Au

    Relative Position (r/a)

    R

    elativePosition(

    r/a)

    0.10

    0.20

    0.50

    1.0

    1.5

    2.0

    3.0

    5.0

    10

    20

    50

    Au

    E0

    H0

    h

    at hv = 550 nm

    Field Enhancement Light Absorption Photocurrent

    |E|2

    Solar Cell Changwoo

    E-Field Enhancement by One Metal Nanoparticle

    K T b (U i f T k )

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    65/91

    65http://bp.snu.ac.krSolar Cell Changwoo

    inside the sphere outside the sphere

    K. Tanabe (Univ. of Tokyo)

    JPCC(2008)

    Ag NP in air

    (at = 0)

    (at any r and )

    (Boundary Condition)

    in water, at r=a

    E-Field Enhancement by Metal Nanoparticle

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    66/91

    66http://bp.snu.ac.krSolar Cell Changwoo

    K. Tanabe (Univ. of Tokyo)

    JPCC(2008)

    Metal Induced Dye-Sensitized Solar Cells (DSSCs)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    67/91

    67http://bp.snu.ac.kr

    e-e-

    Metal-Oxide Nanoparticles

    TCO TCO

    Pt

    Electrolyte

    Dye

    Au-SiO2 Core-Shell Nanoparticle for DSSC

    SiO2-Ag Core-Shell Nanoparticle for DSSC

    [H. J. Snaiths group,Nano Letters (2011)]

    [Jung-Kun Lees group,Adv. Energy Mater. (2011)]

    SiO2

    Au

    Solar Cell Changwoo

    Metal Induced Dye-Sensitized Solar Cells (DSSCs)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    68/91

    68http://bp.snu.ac.krSolar Cell Changwoo

    Henry J. Snaiths group,

    (Univ. of Oxford)

    Nano Letters (2011)

    Metal Induced Dye-Sensitized Solar Cells (DSSCs)

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    69/91

    69http://bp.snu.ac.krSolar Cell Changwoo

    Jung-Kun Lees group

    (Univ. of Pittsburgh)

    Adv. Energy Mater. (2011)

    ___

    ____________

    DSSC + Surface Plasmon Resonance

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    70/91

    70http://bp.snu.ac.krSolar Cell Changwoo

    Ag NP deposition TiO2 ALD Dye adsorption

    Absorption Difference Spectra (Ag + TiO2 + dye) (Ag + TiO2)

    J. T. Hupps group,

    (Northwestern Univ.)

    JACS(2009)

    dyes on theglass substrate

    Ag evaporation onglass substrate dye solution drop

    TiO2 thickness increasedye amount

    increase

    M. Iharas group, (Univ. of Tokyo)

    JPCB (1997)

    Ag enhance the absorption rate of dye.

    DSSC + Surface Plasmon Resonance

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    71/91

    71http://bp.snu.ac.krSolar Cell Changwoo

    J. T. Hupps group,

    (Northwestern Univ.)

    JACS(2009)

    DSSC + Surface Plasmon Resonance

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    72/91

    72http://bp.snu.ac.krSolar Cell Changwoo

    M. Iharas group, (Univ. of Tokyo)JPCB (1997)

    Metal Nanosize Effect

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    73/91

    73http://bp.snu.ac.kr

    The size of metal nanoparticles used in theprevious researches on DSSCs was limited to 10 - 30 nm.

    [Y. A. Akimovs group,Plasmonics (2009)]

    Theory (with One Nanoparticle)

    [G. Chumanovs group,J. Phys. Chem. B (2004)]

    Experiments

    (nm) (nm)

    Total

    Absorption

    Scattering

    Inte

    nsity

    Total

    Scattering

    Absorption

    Absorption

    Absorption

    2r= 2r=

    rAg = 50 nm

    rAg = 30 nm

    rAg = 10 nm

    Scattering

    Scattering

    Absorption

    Backward

    Scattering

    Solar Cell Changwoo

    Metal Nanosize Effect

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    74/91

    74http://bp.snu.ac.krSolar Cell Changwoo

    Y. A. Akimovs group,

    (Institute of High Performance Computing, Singapore)

    Plasmonics (2009)

    Metal Nanosize Effect

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    75/91

    75http://bp.snu.ac.krSolar Cell Changwoo

    G. Chumanovs group,

    (Clemson Univ., U.S.A.)

    JPCB (2004)

    Absorptance + Reflectance + Transmittance = 1

    Extinction = -log T

    Scattering vs. Absorption by One Metal Nanoparticle

    90 Absorption (or Scattering) Efficiency

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    76/91

    76http://bp.snu.ac.kr

    500 600 700 8000

    10

    20

    30

    4050

    60

    70

    80

    90

    Ag (20 nm)

    Ag (100 nm)

    Au (20 nm)

    Sc

    atteringEfficiency(%)

    Wavelength (nm)

    Au (100 nm)

    Absorption (or Scattering) Efficiency

    Cabs + Csca

    Cabs (or Csca)=

    m: dielectric function of metal

    d: dielectric function of dielectric material

    V: volume of metal nanoparticle

    Higher imaginary part of dielectric function of Au

    Dominant absorption-nature of Au Nanoparticle

    d = 2 + 0i (assumption)

    Solar Cell Changwoo

    Quenching by Surface Plasmon vs. DSSC Kinetics

    Exciton Quenching by Metal Kinetic Parameters in DSSC

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    77/91

    77http://bp.snu.ac.kr

    Exciton

    metal: over 100 picosecond e-h separation: sub-picosecond

    metal >> e-h separation Quenching reaction by Au is negligible in DSSC.

    M. Grtzels group,Inorg. Chem. (2005)

    TiO2 Dye

    A. O. Govorov et al.Nano Lett. (2007)

    AuAu Diameter

    :12 nmQuinone

    MoleculeQuinone

    Molecule

    Solar Cell Changwoo

    Exciton Quenching by Metal Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    78/91

    78http://bp.snu.ac.krSolar Cell Changwoo

    dielectric function of metaldipole moment of semiconductor

    A. O. Govorovs group (Ohio Univ.)Nano Lett. (2006)

    Exciton Quenching by Metal Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    79/91

    79http://bp.snu.ac.krSolar Cell Changwoo

    A. O. Govorovs group (Ohio Univ.)

    Nano Lett. (2006)

    Molecules near the Metal Nanoparticles

    Field Enhancement Quantum Efficiency

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    80/91

    80http://bp.snu.ac.krSolar Cell Changwoo

    Y =

    Quantum Yield forCharge Generation

    time constant forrecombination

    +

    A. O. Govorovs group (Ohio Univ.)

    Nano Lett. (2007)

    Molecules near the Metal Nanoparticles

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    81/91

    81http://bp.snu.ac.krSolar Cell Changwoo

    A. O. Govorovs group (Ohio Univ.)

    Nano Lett. (2007)

    Schematic Figure

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    82/91

    82http://bp.snu.ac.kr

    Localized surface plasmons induce the electromagnetic-field amplifications.

    Solar Cell Changwoo

    B. Parks group (SNU)

    APL (2011)

    Au Nanoparticle-Embedded DSSC

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    83/91

    83http://bp.snu.ac.krSolar Cell Changwoo

    B. Parks group (SNU)

    APL (2011)

    p-type Sensitized Solar Cell

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    84/91

    84http://bp.snu.ac.krSolar Cell Hongsik

    Advantage

    p-njunction solar cellCombine an n-type TiO2-based photoanode with ap-typeNiO-based photocathode

    Improving open circuit voltage (Voc)

    Schematic energy diagram forp-type sensitized solar cell

    Errol Blarts Group (Universit de Nantes)Acc. Chem. Res. 48 1063 (2010)

    (1) Electron transfer from the excited sensitizer to

    the oxidized species in the electrolyte.

    (2) Electron transfer from valence band ofp-type

    NiO to the HOMO level of the sensitizer.

    (1)

    (2)

    TiO2 (0.8 m ) NiO (3.3 m)

    p-n Junction Solar Cell

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    85/91

    85http://bp.snu.ac.kr

    U. Bachs group (Monash University)

    Nat. Mater. 9 31 (2009)

    Scheme for the electron-transfer processesoccurring in the dye-sensitized tandem solar cell

    Voc =EF(n-TiO2) EF(p-NiO)

    In the case of TiO2 DSSCs, the maximum

    Voc is limited to about 1 V.

    Larger Voc (> 1 V) can be achieved

    byp-njunction solar cell

    Solar Cell Hongsik

    p-n Junction Solar Cell

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    86/91

    86http://bp.snu.ac.krSolar Cell Hongsik

    1 L i i l ( 0 1 V)

    Limitation forp-type Sensitized Solar Cell

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    87/91

    87http://bp.snu.ac.kr

    1. Low open-circuit voltage (~0.1 V)

    Small difference in potential between the Femi level in the NiO photocathode

    and the redox potential of electrolyte (iodide system)

    Solution: 1. New electrolyte system (sulfur system)

    2. Modify NiO electrode (tuningp-type characteristic)

    2. Low hole diffusivity in NiO

    Rapid recombination of photogenerated hole

    Hole diffusion coefficient of NiO film (~10-8 - ~10-7 cm2/s)

    Electron diffusion coefficient of TiO2 (~10-5 - ~10-4 cm2/s)

    Solution: 1. Metal oxide (Al2O3) coating on NiO electrode (suppress recombination)

    2. Graphene / NiO composite (Improve conductivity)

    Solar Cell Hongsik

    Modification ofp-type DSSC: Al2O3 coating

    Suppression of the carrier recombination by

    Al2

    O3

    coating layer

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    88/91

    88http://bp.snu.ac.kr

    Yiying Wus Group (Ohio State University)

    Langmuir28 950 (2012)

    Charge transfer resistance at the

    NiO/dye/electrolyte increase by Al2O3coating layer

    Carrier collection efficiency increased by

    Al2O3 coating

    2 3

    Solar Cell Hongsik

    Modification ofp-type DSSC: Al2O3 coating

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    89/91

    89http://bp.snu.ac.krSolar Cell Hongsik

    _________________

    Modification ofp-type DSSC: Graphene / NiO Composites

    Solid arrows: charge transport (desired)

    Dashed arrow: recombination (undesired)

    Synthesis Procedure for NiO/Graphene Composite Films

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    90/91

    90http://bp.snu.ac.kr

    Chang Ming Lis Group (Nanyang Technological

    University) JPCC115 12209 (2011)

    Solar Cell Hongsik

    Dashed arrow: recombination (undesired)

    Charge recombination is significantly suppressed

    due to the enhanced hole transportby thepresence of graphene.

    NiO/Graphene Composite

    Higher conductivity than the bare NiO film

    Jsc, Voc

    Modification ofp-type DSSC: Graphene/ NiO composite

  • 7/29/2019 2-2-b-Solar Cell(91)-120312

    91/91

    91http://bp.snu.ac.krSolar Cell Hongsik- 2012-03-12