1992-h. tanaka a, n. yamamura a, m. tatsumi b

12
Journal of W ind Engineering and Industrial Aerodynamics, 41-44 (1992) 1279-1290 ! 27 9 Elsevier Coupled Mode Flutter Analysis Using Flutter Derivatives H. Tanaka a, N. Yamamura a, M. Tatsumi b abridge Design Dept., Hitachi Zosen Corporation, 1-3-40, Sakurajima, Konohana-Ku, Osaka 554, JAPAN bTarumi Construction Office, Honshu-Shikoku Bridge Authority, 1-1-66 Hiraiso,Tarumi-Ku, Kobe 655, JAPAN Abstract The "classical" coupled bending-torsion flutter of long-span bridges, possessing 3-dimensional vibration modes, is investigated both analytically and experimentally. In the analysis, self-excited forces are defined by using the so-called flutter derivatives. The vertical wind profile as well as the spanwise non-homogeneity of wind velocity are also incorporated. The analysis permits (i) straight forward prediction of the coupled flutter velocity by using the flutter derivatives and (ii) reasonable interpretation of 2-dimensional model tests to predict the coupled flutter behavior of bridges with 3-dimensional freedom of motion. I. INTRODUCTION The prediction of coupled mode (i.e, bending-torsion) flutter is one of the most important aspects for the design of long-span bridges. An analytical approach has been advanced by Bleich [1], Scanlan [9.] and recently by M iyata & Yamada [3] incorporating self-excited forces in equation of motion. Bleich and Scanlan applied the self-excited forces only to the girder, neglecting the damping effects due to the motion of cables and towers. Miyata & Yamada included the motion of cables and towers but their analysis is simply based on the Theodorsen's aerodynamic forces on flat plates. The present paper first provides the complex eigenvalue and vector solutions for coupled mode flutter which, using flutter derivatives [2], [4], incorporate the self-excited forces on all structural members. An effort is also made to include the vertical wind profile as well as the spanwise non-homogeneity of the wind velocity. The analysis enables straight-forward prediction of coupled mode flutter behavior including flutter frequency, velocity, inter-coupling amplitudes and the phase-shift of each mode, if the flutter derivatives are measured. In numerical example, the present method and the Scanlan's solution are compared for a simple-beam model. Then, the analysis is extended to amend the V-6 curve obtained through a section model test by providing a formula for the additional damping effects due to the motions of cables and towers. The formula, expressed as a weighted average of additional damping terms for the simple bending or 0167-6105/92/$05.00 © 1992 Elsevier Science Publishers B.V . All rights reserved.

Upload: shuai-meng

Post on 07-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 1/12

Journal o f W ind Engineering and Industrial Aerodynamics,41-44 (1992) 1279-1290 ! 27 9Elsevier

C o u p l ed M o d e F l u t t e r A n a l y s i s U s i n g F l u t t e r D e r i v a t iv e sH . T a n a k a a, N . Y a m a m u r a a, M . T a t s u m i b

a b r i d g e D e s i g n D e p t . , H i t a c h i Z o s e n C o r p o r a t i o n , 1 -3 -4 0 , S a k u r a j i m a ,K o n o h a n a - K u , O s a k a 5 5 4 , J A P A N

b T a r u m i C o n s t r u c t i o n O f f i c e , H o n s h u - S h i k o k u B r i d g e A u t h o r i t y , 1 - 1 - 6 6H i r a i s o ,T a r u m i - K u , K o b e 6 5 5, J A P A N

A b s t r a c t

T h e " c l a ss i ca l " c o u p l e d b e n d i n g - t o r s i o n f l u t t e r o f l o n g - s p a n b r i d g e s ,p o s s e s s i n g 3 - d i m e n s i o n a l v i b r a t i o n m o d e s , i s i n v e s t i g a t e d b o t h a n a l y t i c a l l ya n d e x p e r i m e n t a l l y . I n t h e a n a l y s i s , s e l f- e x c it e d f o r ce s a r e d e f i n e d b y u s i n gt h e s o - c a l l e d f l u t t e r d e r i v a t i v e s . T h e v e r t i c a l w i n d p r o f i l e a s w e l l a s t h es p a n w i s e n o n - h o m o g e n e i t y o f w i n d v e l o c it y a r e a l s o i n c o r p o r a t e d . T h ea n a l y s i s p e r m i t s ( i) s t r a i g h t f o r w a r d p r e d i c t i o n o f t h e c o u p l e d f l u t t e r v e l o c it yb y u s i n g t h e f l u t t e r d e r i v a t iv e s a n d ( ii ) r e a s o n a b l e i n t e r p r e t a t i o n o f2 - d i m e n s i o n a l m o d e l t e s t s t o p r e d i c t t h e c o u p le d f l u t t e r b e h a v i o r o f b r i d g e sw i t h 3 - d i m e n s i o n a l f r e e d o m o f m o t i o n .

I . IN T R O D U C T I O N

T h e p r e d i c ti o n o f c o u p le d m o d e ( i . e , b e n d i n g - t o r s io n ) f l u t t e r i s o n e o f t h em o s t i m p o r t a n t a s p e c t s f o r t h e d e s i g n o f l o n g - s p a n b r id g e s . A n a n a l y t i c a la p p r o a c h h a s b e e n a d v a n c e d b y B l e ic h [1 ], S c a n l a n [9 .] a n d r e c e n t l y b yM i y a t a & Y a m a d a [3 ] i n c o r p o r a t i n g s e lf - ex c it ed f o r ce s i n e q u a t i o n o f m o t i o n .B l e i c h a n d S c a n l a n a p p l i e d t h e s e l f - e x c i t e d f o r c e s o n l y t o t h e g i r d e r ,n e g l e c t i n g t h e d a m p i n g e f fe c ts d u e t o t h e m o t i o n o f c a b l e s a n d t o w e r s. M i y a t a& Y a m a d a i n c l u d e d t h e m o t i on o f c a b le s a n d t o w e r s b u t t h e i r a n a l y s i s i ss i m p l y b a s e d o n t h e T h e o d o r s e n ' s a e r o d y n a m i c f o r c e s o n f l a t p l a t e s .

T h e p r e s e n t p a p e r f i r s t p r o v i d e s t h e c o m p l e x e i g e n v a l u e a n d v e c t o rso lu t ions fo r c oup le d mode f l u t t e r w h ic h , u s ing f l u t t e r de r iva t ive s [2 ] , [4 ] ,i nc orpora t e t he se l f -e xc i t e d fo rc e s on a l l s t ruc tu ra l me mbe rs . A n e f fo r t i sa l s o m a d e t o i n c l u d e t h e v e r t i c a l w i n d p r o f i l e a s w e l l a s t h e s p a n w i s en o n - h o m o g e n e i t y o f t h e w i n d v e lo c it y . T h e a n a l y s i s e n a b l e s s t r a i g h t - f o r w a r dp r e d i c t i o n o f c o u p l e d m o d e f l u t t e r b e h a v i o r in c l u d i n g f l u t t e r f r e q u e n c y ,v e l oc i ty , i n t e r - c o u p l i n g a m p l i t u d e s a n d t h e p h a s e - s h i f t o f e a c h m o d e , i f t h ef l u t t e r d e r i v a t iv e s a r e m e a s u r e d . I n n u m e r i c al e x a m p l e, t h e p r e s e n t m e t h o da n d t h e S c a n l a n ' s s o l u t i o n a r e c o m p a r e d f o r a s i m p l e - b e a m m o d e l.

T h e n , t h e a n a l y s i s i s e x t e n d e d t o a m e n d t h e V - 6 c u r v e o b t a i n e d t h r o u g ha s e c t i o n m o d e l t e s t b y p r o v i d i n g a f o r m u l a f o r t h e a d d i t i o n a l d a m p i n ge f f ec t s d u e to t h e m o t i o n s o f c a b l e s a n d t o w e r s. T h e f o r m u l a , e x p r e s s e d a sa w e i g h te d a v e r a g e o f a d d i ti o n a l d a m p i n g t e r m s f o r t h e s i m p l e b e n d i n g o r

0167-6105/92/$05.00 © 1992 Elsevier Science Publishers B.V . All rights reserved.

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 2/12

1280

t o r s i o n a l f l u t t e r [5 ], i s e x p e c t e d t o e l i m i n a t e t h e i n c o n s i s t e n c y b e t w e e n3 - d i m e n s i o n a l a n d s e c t i o n m o d e l t e s t s .

T h e a n a l y s i s i s a p p l i e d to a s u s p e n s i o n b r i d g e w i t h a c e n t e r - s p a n o f 7 7 0 mw h i c h h a s d i f f e r e n t a e r o d y n a m i c c h a r a c t e r i s t i c s a t th e l e f t - a n d r i g h t - h a n d

g i r d e r s e c t io n s u n d e r e r e c t io n . T h e V -~ c u r v e f r o m t h e 3 - d i m e n s i o n a l t e s ta n d t h a t f r o m t h e a n a l y s i s a n d t h e a m e n d e d V -~ c u r v e o f s e c t i o n m o d e l t e s ta r e s h o w n t o be r e m a r k a b l y c o n s i s t e n t .

2 . D Y N A M I C E Q U A T I O N S

B y e x t e n d i n g S c a n l a n ' s f o r m u l a t i o n [ 2] , [ 4 ] , d y n a m i c e q u a t i o n s c a n b e

d e r i v e d i n m a t r i x f o r m b y t h e d i s p l a c e m e n t m e t h o d [ 5 ]. F i r s t , t h e e q u a t i o n

o f m o t i o n i s e x p r e s s e d a s ( S e e F i g . 1 f o r n o t a t i o n ) ,

®

(~O( t )

.O ~ ( t ) " ' ~

®

Li(t)o '.

/ Rt ~ \

Pi(t) Li Ai

v //

F i g . 1 M e m b e r ~ i n g l o b a l c o o r d i n a t e

[M ]. O~ (t) + [C ]. I)~(t) + [K ]. U ~(t) ffi {F~(O~, U~, t)}= {F~(t)} ( 1 )

w h e r e [ M ] i s t h e m a s s m a t r i x , [ C ] i s t h e s t r u c t u r a l d a m p i n g m a t r i x a n d [ K ]

i s t h e s t i f f n es s m a t r i x i n c l u d i n g g e o m e t r i c a l s t i ff n es s . F i (t ) s t h e s e l f - ex c i t e d

f or ce s. T h e d i s p l a c e m e n t U i ( t ) c a n b e e x p r e s s e d a s

M

U i( t) = ~ ¢ i m ' m ( t ) ( i = 1 ,2 , . . , : M i s t h e a d o p t e d n u m b e r o f m o d e s ) ]

~ , 1= ~ , ( 2 )

{~im = (~}km+ ( ~ l m ) / 2 ( M o d e s h a p e a t t h e c e n t e r o f i - t h m e m b e r )

P r e - m u l t i p l y i n g E q . ( 1 ) b y { ¢ i m }T , i t b e c o m e s

X m ( t ) + 2 h m m • O } m ' X m ( t ) ÷ 0 }m2 " X m ( t ) f fi { ~ im } " {Fi( t )}/Mm 1

T [ M ] I ( 3 )

w h e r e hmma n d O)m a r e , r e s p e c t i v e l y , t h e s t r u c t u r a l d a m p i n g r a t i o i n s t i l la i r a n d c i r c u l a r f r eq u e n c y [ r ad / s] o f t h e m - t h m o d e . U n d e r t h e a s s u m p t i o nt h a t t h e g i rd e r c a n b e r e g a r d e d a s h o r iz o n t a l , t h e c o m p o n e n t s o f t h e w i n dl o a d v e c t o r { F i ( t ) } i n E q , ( 3 ) c a n b e e x p r e s s e d a s

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 3/12

1 2 8 1

Fi(t) = {0, L~(t),Pi(t) ,M~(t), 0, 0}

P i ( t ) = ( p . V i 2 / 2 ) • A i . K i . [~ i (Ki ) , H i (K i ) , V3i (Ki ) ]

• { ~ .~ ( t) /v i, B i - ~ i ( t ) N i . K i . a ~ (t )} • L ~

L i ( t ) = ( p V i 2 / 2 ) B i . K i [ , . l i (Ki), H~.i(Ki), I-I~i(Ki)]

• { : ~ i( t) /V i , B i . & ~ ( t) /V l , ~ . a i ( t ) } . L i

M i ( t) = ( p . V 2 / 2 ) • B i . K i . [ A li (K i ), A 2 i ( K i ) , A ~ i ( K i ) ]

• { y i ( t ) / V i , B i " ~ i ( t ) / V i , K i . ( x i(t)} • L i

(4 )

( 5 )

K i - B i " o ) /V i : t h e r e d u c e d f l u t t e r f r e q u e n c y

P ~ i = - 2 C D i / K i , P 2 i - 0 [ 2 ] , P 3 i = ( d C D i / d ( x ) / K i ~ = C D i ' / K 2 t( 6 )

w h e r e P i (t ), L i( t) , M i ( t) a r e r e s p e c t i v e l y , t h e d r a g f o rc e , li f t f o rc e a n d m o m e n t .

P ~i(K i) • H ~ i(K i) • A ~ ( K i) ( jf fi l, 2 ,3 ) a r e d i m e n s i o n l e s s f l u t t e r d e r i v a t i v e s o f i - t hm e m b e r ( cf . T a b l e I N .B . ). B y e x p r e s s i n g t h e c o m p o n e n t s o f e i g e n - m o d e

f u n c t i o n {(~im} a s {(~Xm,~)Ym, ~Zm (~i~m,~ )~ m, (~ m } a n d a f t e r s o m e m o d i f i c a ti o n s o f E q .( 3) , o n e o b t a i n s t h e f o l lo w i n g c o u pl e~ l m o d e f l u t t e r e q u a t i o n s .

X m (t) + 2h m m • (COrn/CO)" CO. X m (t) + corn " Xm (t) = Z E,m " CO" ~[n(t) + ZF m n" CO " X n(t)n n

Em n --(p /2M m ) ' YBi" {(~Ym,~ m , ~ ) i m } ' [ H I " {~Y~,~ .~ , ~ , } . L ii

I Hli(K i) ' Bi 0 H~.i(Ki) . B~

[ H I = 0 P ] i ( K i ) . A i P ~ .i (K i )' A i ' B i

A1i (Ki ). B 2 0 A~ i (Ki) . B i

F m = ( p/ 2M m ) ' ~ -B i2 " { ¢ ~ , ¢ ~m , ¢ ~ }Ti

• {H;i(Ki) • B i , P; i (K i) • Ai , A~i(Ki) • Bi2} • * ~ . Li

( 7 )

(8 )

3 . C O M P L E X E I G E N V A L U E E Q U A T I O N S

T h e c o m p l e x g e n e r a l i z e d c o o r d i n a t e s X m ( t), a s s o c i a t e d w i t h t h e c o m p l e xf l u t t e r f r e q u e n c y co, a r e i n t r o d u c e d a s f o ll o w s :

X m ( t ) = X m o ' e i° ~ , X m o = x R o + i . XImo

co = COR+ i . ¢ ~ = ( I + i . h ) . ¢ ~ t (9)

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 4/12

1282

I Xm o I = [(XRmo) + (X~mo)2]~ : t h e a m p l i t u d e o f t h e m - t h m o d e 1

O m = ta n- l(X I m o / XRmo) : t h e p h a s e - s h i f t o f t h e m - t h m o d e ( t a d )(10)

w h e r e COR i s t h e f l u t t e r c i r c u l a r f r e q u e n c y [ r a d / s ] a n d h =c oi/co R ( ~G / 2 ~ ) i s t h es u m o f s t r u c t u r a l a n d a e r o d y n a m i c d a m p i n g . T h e c o m p l e x e i g e n v a l u ee q u a t i o n s , d e r i v e d f r o m i n s e r t i n g X m (t) o f E q . ( 9 ) i n t o E q . ( 7 ) , a r e a s f o ll o w s :.nJ[]

. . G .

(rG=1-E l) • { X . o } = . . . . - o

Gm l Gin2 Gmn - Xmo

( 1 1 )

Gram = [From + 1 + i . {Em m- 2hm m • (~/c o)} l/COrn

Gmn = (Finn + i . Em n) / (0m2 ( m ~ n )

[~,] = D i a g [1 /{ o ] ( D i a g o n a l m a t r i x o f e i g e n v a l u e ~ ) t ( 1 2 )

T h e n , f o r a s e t o f e i g e n v e c t o r s {X mo} t o e x i s t f o r a s s u m e d K oj,

d e t ( [ G m n ] - [ ~, ]) d e t ( [ G m n ] - D i a g [ 1 /o ) 2 ] ) = 0 ( 1 3 )

T o s o ! r e E q . ( 1 3) , a r b i t r a r y i n i t i a l v a l u e s ( e .g . , co rn /co =l) m a y b e g i v e n a n dw s t h l t e r a t i v e c a l c u l a t i o n o f E q s . ( 1 2 ), ( 1 3 ), co a n d {Xm o} c a n b e d e t e r m i n e db y th e f o l l o w i n g c o n v e r g e n c e c r i t e r i o n w i t h s u g g e s t e d e - v a l u e o f 10 -8 ~ 10-4 :

l e l < - c o l ,- 1 I I I e k l < e (14)

W h e n t h e r a n k o f t h e m a t r i x i n E q . ( 1 3 ) i s M , a n M - s e t o f f l u t t e r f r e q u e n c i e scon a n d a m a t r i x o f e i g e n v e c t o r s [ X ~ m ] ( n = 1 , 2 , . ., ,M ) w i l l b e o b t a i n e d . I ts h o u l d b e n o t e d , h o w e v e r , t h a t t h e c a l c u l a t io n o f E q s . ( 12 ) a n d ( 1 3) s h o u l dn o t n e c e s s a r i l y b e c a r r ie d o u t f o r a ll m o d e s . O n e c a n e a s i l y f in d t h e f l u t t e rf r e q u e n c y e0n a n d a m p l i t u d e I X °m I max i n w h i c h t h e m - t h ( e .g . , t o r s i o n a l )m o d e i s d o m i n a n t w i t h t h e f o l l o w i n g E q . ( 1 5 ) :

t x ~ o t ~ a , = ~ A X [ t x ° ~ s t , I x % I , . . . , t x ~ t ] ( 1 5 )

4 . E Q U I V A L E N C Y F O R P R O T O T Y P E B R I D G E A N D S E C T I O N M O D E L

T h e r e q u i r e m e n t s f o r a se c t io n m o d e l te s t to d u p l i c a t e p r o p e r l y t h e f l u t t e rb e h a v i o r o f a 3 - d i m e n s i o n a l p r o t o t y p e b r i d g e c a n b e s u m m a r i z e d a s (i)r e d u c e d f r e q u e n c y c o'. b / v ( m o d e l ) ffi c o. B / V ( p r o t o t y p e ) , ( ii ) m a s s a n d m o m e n to f i n e r t i a e q u i v a l e n cy [ 5 ] a n d ( i i i ) s t r u c t u r a l a n d a e r o d y n a m i c d a m p i n ge q u a l i t y . T h e s e c o n d c r i t e r i o n c a n b e w r i t t e n a s f o ll ow s :

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 5/12

1 2 8 3

m ~lq = ( b / B ) 2 - M ~ ) = ( b / B ) 2 . M ~ / [ Z (~,Yn) . I~ ]

m(2)q = (b / B ) 4" M ~ ) ff i (b / B ) 4" M n / [ T '. (~ )~ )2 . L i ](16)

w he r e m (k) a nd M (k) ( k = l , 2 ) de no te the e qu iva le n t m a ss [ t /m ] f o r k = l a n dq eqt h e e q u i v a l e n t m o m e n t o f i n e r t i a It- m 2 /m ] f o r k = 2 . C a p i t a l a n d s m a l l l e t t e r sr e p r e s e n t 3 - d i m e n s i o n a l p r o t o t y p e b r i d g e a n d s e c t i o n m o d e l , r e s p e c t i v e l y .

T h e t h i r d c r i t e r io n i s a l so d e v e l o p e d [5 ] f o r s i n g l e - d e g r e e f l u t t e r c a s e s t os u p p l e m e n t ( w i th a d d i t i o n a l d a m p i n g A hm ) t h e V - 5 c u r v e o f t h e s e c t io n a lm o d e l t e s t , w h i c h c a n n o t s i m u l a t e t h e d a m p i n g e f fe c ts a d d e d b y th e m o t i o no f c a b l e s, t o w e r s a n d t h e l a t e r a l m o v e m e n t o f t h e g i r d e r . H e r e , t h ec o r r e s p o n d i n g c r i t e r io n i s d i sc u s s e d a n d s u p p l e m e n t a r y d a m p i n g A hj i sf o r m u l a t e d f o r t h e m o r e c o m p l e x c a s e o f m u l t i - m o d e ( e .g . , b e n d i n g - t o r s i o n a l )c o u p l e d f l u t t e r .

F i r s t , t h e su pp le m e n ta r y d a m pin g Ahj f o r the c o up le d - f lu t t e r m ode {~bFj}a t K f K o j i s e x p r e s s e d b y t h e f o l l o w i n g E q . (1 7 ), th e d e d u c t i o n o f w h i c h i sm a d e i n t h e s a m e w a y a s f o r s i n g l e - d e g r e e f l u t t e r [ 5] .

Ahj =-(p/4M ~) • YBi. {(~, ~ ) ~ i , ~)~i}T" [HF]" {~)~i, } ~ i , ~)~i}" Lii

M ~ = {+ ~ ,t . E r a 1 . { , ~ , }( 1 7 )

w h e r e t h e c o u p l e d - f l u t t e r m o d e { ~ ) F i } i s g ive n a s f o l lows :

{~)Fi} -- -Z ~ ) i m " X m o ( re = l, 2 ,. .. , t he nu m be r o f c oup l ing m ode s ) ( 18 )m

S u b s t i t u t i n g E q . ( 1 8 ) i n t o E q . ( 17 ) , u s i n g o r t h o g o n a l i t y o f m o d e s , M ~ i s w r i t t e na s

M ~ = z X m o 2 . , ~ } " . [ M ] . { ,,m } z X ~ o 2 • ~m m

( 1 9 )

U n d e r t h e a s s u m p t i o n t h a t t h e g i r d e r i s s t r a i g h t i n p l a n a n d h a s s y m m e t r i c

s e c t i o n s , t h e m a t r i c e s [ H F ] a r e s i m p l y w r i t t e n a s :

[H F C ] I H ~ i (K i) .B 0 0 10 P ~ i ( K i ) " i 0

0 0 0

( 2 0 a )

o o o

[ H F ] = [ H ~ ] = P ~ i ( K i ) ' A i 0

0 0 0

(20b)

w h e r e [ H C ], [H F ] a n d [ H ~ ] d e n o t e [H F ] f o r c a b l e s , g i r d e r s a n d t o w e r s ,

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 6/12

1284

r e s p e c t i v e l y .T h e c o m p o t e n t s o f { ~ F i } i n E q . ( 1 8 ) a r e e x p r e s s e d a s f o l l o w s :

{ ~ i = ~ ' { ~ Y " X m o , { ~ } i= X ~)iZ m X m o , ¢ ~ i = X ( ~ z in . X m o ( 2 1 )m m m

W i t h t h e a s s u m p t i o n o f o r t h o g o n a l i t y f o r t h e e i g e n - m o d e f u n c t i o n s { ~ F i }

f o r t h e m a t r i x o f a e r o d y n a m i c c o e f f i c i e n t s [ H F ] , t h e R . H . S . o f E q . ( 1 7 ) b e c o m e s

{ (~ } i, ~ } i , ~ i } T " [ H F ] " { ~ i , ~ } i , ~ } i }

T- " ~ X r n o 2 " { { ~ Y m ,O i Z m ,~ } i m } " [ H F ] " { ~)Y m l, ~ iZ m , }'~ m } ( 2 2 )

in

T h e s u p p l e m e n t a r y d a m p i n g A h j c a n b e o b t a i n e d b y i n s e r t i n g E q s . ( 1 9 ) a n d

( 2 2 ) i n t o E q . ( 1 7 ) .

a TAhj = - t o / ( 4 £ Xmo . M ~) ]. Z Xmo2Z Bi" {¢Ym,¢ ~ , ~ i m } ' [HF]I n I n i

• { ¢ Y m , ~ )iZ m ,~)~m}"Li = X (X=o M m )" A hi n/ X (Xino - Mm) (23)m I l l

Ahm = -( p / 4M m)" ~ B i" {¢Ym,~bzin,~biam} ' [H F ]" {¢Ym,~b~, ¢~m}" Li (2 4)i

w h e r e A hin i s t h e a d d i t i o n a l d a m p i n g f o r s i m p l e - f l u t t e r o f m - t h m o d e [5 ].W h e n t h e e i g e n - m o d e s a r e n o r m a l i z e d a s

(25)

E q . ( 2 3 ) i s s i m p l i f i e d t o b e c o m e

A h j = Z X m o 2 . A h m / Z X m o 2 ( 26 )m m

A s t h e c o u p l e d f l u t t e r a m p l i t u d e o f t h e m - t h : m od e X ino i s a c o m p l e x n u m b e ri n E q s . ( 1 7 ) - ( 2 6 ) , A h j g i v e n b y E q . ( 2 3 ) o r ( 2 6 ) i s r i g o r o u s l y a c o m p l e x n u m b e r .H o w e v e r , t h e p h a s e - s h i f t 0m ( m ff il ,2 . .. M ) i s u s u a l l y f o u n d t o b e 6m ~ 0 , o re , , ~ ± ~ , w h e n f l u t t e r i s e v o k e d , t h e r e f o r e ,

X = = I X m o I . e i" G m - [(XRmo)2+ ( X I m o ) 2 ] ~ (cosein + i . s i n era)

'ffi. S ig n( co s e ra). I Xmol (27)

w h e r e t h e o p e r a t o r S i g n d e n o t e s t h e s i g n o f c ose in i n p a r e n t h e s i s .S u b s t i t u t i n g E q . ( 2 7 ) i n t o E q . ( 2 3 ) , o n e o b t a i n s

A h j = X ( t X i no 2 . M ~ ) . A h i n / X ( I X m o I~ . M ~ )I n I n

w h e r e A h j i s e x p r e s s e d a s a w e i g h t e d a v e r a g e o f Ahm b y m o d a l e n e r g y .C o r r e s p o n d i n g t o E q . ( 2 5 ) , E q . ( 2 8 ) b e c o m e s

(28)

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 7/12

1285

~ t h j - ~ '. [ X m o [ 2 . ~ l m / • I X m o [ 2 (29)m m

5. NUMERICAL AND EXPERIMENTAL EXAMPLES

The present method and th e Scanlan' s solution are compared in a numeri calexample at first. Next, the present anal ysis is applied to a suspension bridgewith a center-span of 770 m which has different aerodynamic characteristicsat the left- and right-hand girder sections under erection.

5 .1 C o m p a r i s o n w i t h S e a n la n ' s m e t h o dScanl an showed the numeri cal example of coupled mode flutter of a bridge

with f lat box girder and gave critical fl ut te r velocity Vc in Ref. [6] (pp. 39-47).The m echa nical dampi ng 8ram is take n as 0.0628; the flut ter deriva tives arelisted in Table 1. The deck width Bf30.5m, while the span L=1220 m (Fig.2). The pol ar mome nt of ine rti a is tak en as M=3822 (tf. m2/m), while the

mass of the deck is m=34.11 (tf/m). It is a ssu med tha t tea = 20~h and t ha t0~h= 2~. (0.1 H,.). For an as sum ed simple-beam model (Fig. 2) to sa tis fy thesefrequencies, the sectional moment of ine rtia I and torsional resistance J areas sumed to be I=1488 (m 4) and J=11.56 (m4), respect ively.

V .. /

. /A A A A ..

L~

t0xt22 000=1 220 000

I V..___~ Bffi30-500• " 1

Fig.2 Simple -beam model for coupled flutt er analysi s

V/fB

Table 1 Flu tt er der iva tives H~ • A~(i = 1,2,3)

H] H~. H~ A~ A~

2 . 0 - 1 . 3 4 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

4 . 0 - 3 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 - 0 . 0 6 0 . 0 0

6.0 -4,10 -1.40 2,50 -1,50 -0.10 1.00

8.0 -6.50 -4.50 6.70 -1.40 -0.20 2.00

10.0 -8.50 -8.50 8.00 -1.36 -0.28 2.9212.0 -11.00 -17.80 10.00 -1.40 -0.32 3.38

N.B.) All derivatives are double of those given by Scanlan [6] andH~i. H~i. A~i have reversed sign due to upward y-axis here.

The following three cases are solved by the present method.Case-(1): Coupled vertical bending and torsion flutterCase-(2): Vertical bending (single DOF) instability (Galloping)Case-(3): Torsional (single DOF) flutter

As the solutions of-these cases, the change of flu tter fr equency t~ (= ¢ ~ R j / 2 K )

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 8/12

1286

a n d t h a t o f l o g a r i t h m i c d e c r e m e n t ( V - 5 c u r v e ) o f t h e b r i d g e c o r r e s p o n d i n g

t o w i n d v e l o c i t y a r e r e s p e c t i v e l y s h o w n i n F i g s . 3 ( a ) a n d ( b) . A c c o r d i n g t ot h e s o l u t i o n o f C a s e - ( 1 ) :

(i) C r i t i c a l f l u t t e r f r e q u e n c y f c i s 0 . 1 6 2 ( H z ) a n d a g r e e s w i t h f c = 0 . 1 6 2

( H z ) g i v e n b y S c a n l a n [ 6 ] .( i i ) C r i t i c a l f l u t t e r v e l o c i t y V c f r o m V - 5 c u r v e ( F i g . 3 ( b ) ) i s 5 8 . 4 ( m / s ) a n da g r e e s w e l l w i t h V c = 5 8 . 0 ( m / s ) g i v e n b y S c a n l a n w i t h t h e d i f f e r e n c eo f 0 . 7 % .

( i i i ) A m p l i t u d e r a t i o a n d p h a s e s h i f t b e t w e e n v e r t i c a l b e n d i n g ( M o d e - l )a n d t o r s i o n ( M o d e - 2 ) a r e s h o w n i n F i g s . 3 ( c ) a n d ( d ) .

) . 0.2S

~ 0 1 S

" ~ O l O

- - C A S E d ! ) - - - C A S E d 2 ) . . . . .. C A l l| .( 3 ) ,

,~ + , + , " ,~ . ' k ~ , -o , . ,

W I N D V E L O C I T Y ( m / e ) . ,+ - o 1 o

(a )

O3O - - C A I I E - ( I ) - - - - C A I I E . ( ; I ) . . . . . C A I E . (: I)0; 5

i0 15 / iIo,oO W ,

0 .10 ~0 Xl 40 W ~ ' ,~ ~

W I N D v E L O C I T Y ( m l s )

( b )

- - U O O l i . ( 2 ) - -- M O O E , I ) . ~ ZOO - - M O O I - i : I ) - - - - - - I d O O E . l t )

°. i I

o i o ;¢ Io +o !o Io ~ - ~ "~ oo+ L / WIND VELO CITY (m /s ) " ' ' " -

W I N D V E L O C I TY ( m / e ) ~ : ~(c) (d)

/

Fig. 3 Flutter characteristics of simple-beam model

6 . 2 C o m p a r i s o n w i t h w i n d t u n n e l t e s tThe secoud model is a suspension bridge with a center span of 770 m

(Fig.4). Consideration is given to wind aerodynamic stability just before theclosing of the girder, on which bogie-girders are located upstream anddownstream at the left- and right-hand sections, respectively (Fig.4).

With the aerodynamic characteristics of the left- and right-hand girdersections being completely different, sectional model test have been carried

out usiug both sections [8], then the lower flutter velocity has beenconservatively taken. In addition, a full model test has been made [7].Drag, lift and moment coefficients of the girder measured on the sectionalmodel [8] are shown in Fig.5. For other members, the drag coefficients aretaken as CD=0.7 for main cables and hangers, and CD=I.8 for towers.

The flutter derivatives H~, A~ (i=1,2,3) for girder have been measured bythe forced vibration method (Fig.6).

The following three cases of analyses are compared with the experimentalresults:

Case-(1): the coupled flutter (l st sym. bending mode and 1st sym. torsionalmode)

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 9/12

1287

! 2 5 0 0 0 0 ( 2 5 0 0 )

BoSm.Rirdet. . 5 5

y [ 7 "- - + ~ I T - / ~ - ' / I J ~ T ~ NOIeDinlenllionlenotep ototvpe

~ A - A ~

B o B ie .g i rd e r - - I 46 9

V B

,~05 6

B - B it

7 7 0 0 0 0 ( 7 7 0 0 ) _ , 2 5 0 0 0 0 ( 2 5 0 0 )

Fig. 4 F ra me mod el of a suspension bridge

C o e L C .l + o o . o . + I 0 0 . 0 " - / 1 1

$01) • + 3 1 G 0 + P

3 t | { l , 0 5 1 O 0 | l

I , H - 0 . 1 1 0 0 + I

-----co - ~ .,'-P+"~¢ , ' - .,, +p~-++.]

• {II + @ 0 |

• I 141 -I .I .I ,~ I~ . ] I I i 4 I I I | I I 14 II

• i ' . ; s ' . h ' ' ~ "r ' 4": : ~ 1 ; ' ; ' ; ' ; ' ; " ; , ' ' j ' ' + "~ 1~ ~ * o . -o ,,, .o, o+ A IIA C K- A~ O LE (O E G)

I

+ . j +-+°+l , 1 0 . . l L t l . O 0 0 t

.19 "O il *Od)+

- I l l O ' 1 1" "+I0 , O O l $I

• , lO { -1~14 . l l t i l l

• ,I0 I .011 .0.011

O , I O - O , l l ,A011

.Sil0 "l~ll "+01P

• 4 , t lO .ef t0 .0+030

¢+ C t C.

(A ) Q P t i lR [A P I O O 9 1 [ ' O IR O E R

F i g . 5

C o

4.0o.

3 4 0 .

i . i o

1,4o

- - " - - - C n ,= o

$4 0

" l * . ' l + , ' F . ' P . . . . . . . .

C L C nI ~ l O OJD~I0

e+31 A 021'

e ~ l Q O I 4

0,II I~011

fall l~.{l,

0,II

~ J , + , , ;I 0 . 0 0 $

I 4 I I I0 I | 14 II

' - ; , " . ; J ' . h ' / ~ ' : , ' . ' t ' . ' a " : , ' / ~ ' ; ' ; " ; ' ; ' ? ~ ' ,' s ' , ' ~ '

f . M o . p . a . + - ~ o : : M t A C K - A N C L E ( D E O )

4 / . M ~ . - a O l - o, o ,,• I, -0,11 "Q,OO

~ -0, | I "0,011

' H I " 0 , 1 5 " 50 1I

. l, lO - Itil,l "0.Ol

• , I I + i l " S i l l

• . 2 1 1 . : i :+41.00 , Q 4 0 1 " 0 , 0 | |

¢ o C C .

IO) OOWNSTREAHB O O I I t -o IA O £ R

D r a g , l i f t a n d m o m e n t c o e f f i ci e n ts o f s t i f f e n i n g t r u s s

C a s e -( 2 ): t h e s i n g l e - d e g r e e t o r s i o n a l f l u t t e r ( l s t s y m . t o r si o n a l m o d e )C a s e -( 3 ): t h e 4 - m o d e s o f c o u p l e d f l u t t e r ( l s t a n t i - s y m , a n d s y m . b e n d i n g

m o d e s , p l u s 1 s t a n t i - s y m , a n d s y m . t o r s i o n a l m o d e s )T h e s u p p l e m e n t a r y d a m p i n g & Sin ( = 2 ~ . A h m ) b y E q . ( 2 4 ) a n d A S j b y E q . ( 2 8 )

f o r t h e s e c t i o n a l m o d e l a r e l i s t e d i n T a b l e 2 . T h e s e c t i o n m o d e l t e s t s a r el i m i t e d t o t h e 1 s t s y m m e t r i c m o d e s , t h e r e fo r e , A 8m a n d A 8j g i v e n i n T a b l e2 a r e t h e a d d i t i o n a l d a m p i n g f o r t h e m . T h e V - 8 c u r v e f or t h e s e c t i o n m o d e l ,

t h e n , i s o b t a i n e d b y t h e f o l l o w i n g f o r m u l a :

8 = ( 8 1 + + = Ahj ( 3 0 )

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 10/12

1 2 8 8

0 , ° ° I H ;

4 . 0 0 _.O O

3 . 0 0

1 ,O O 5 .O f I 0 . 0 1 5 . 0 2 0 . 0 2 5 . 0u I I I 1 I I ' , ; , ~ -

0 l ~ ~S 1 " . $ 1 2 . $ 2 . ~ I i r . s ; I ~ . $

- " 0 t- 4 , o o i - - - L E A S T " " ~ Q t, ,I ~ R E S- ~ + o o ] I " I E T H O D

0 . 5 0 .

0 . 4 0

O . 3 0

0 , ~ 0

0 , 1 0

O

- 0 , 1 0

- 0 . 2 0 '

• 0 , :S 0

- 0 , 4 0

- 0 , S 0

^ ;

~o ,° ,0 ,~o ~0,o ~ o

- L E ^ S , - + Q + A R .

H E T H D D

z .o o t H ~

OJlO

0,4

0

-0.40-

- 0 , 8 0 -

- 1 . 2 0 -

- t . 4 0 - L E A S T - S Q U A R E SP I E T H O D

- ~ . 0 0 .

1 5 . 0I It 3 . S

U / H a

0 . 2 0 - D

0 . 0 4 3 + 0 6 . 0 ~ . 0 I ~ , 0

O " ~ I I [ l I I Ir ~ . . 5 , 4 . 5 , . s 1 0 ,$

+ " ' t

- o . , , T

- O + 2 0 J

( a ) U p s t r e a m b o 6 i e . g i r d e r

l~ OI I

U / N B

I 0 , O O H *

0 , 0 0 1 /I , 0 0

4 . O 0

2 , 0 0

~ 8 . O g . o 1 2 , 0 15,0, , ' ' * ' ! l I

- ~ o °~ , :s ' , :s ' ;. s ' , ~ s ~ S S u / . e

" 4 , 0 0- I . O O

- 0 , 0 o -- LE A S T -1 4 E T H O D Q U A R E S

- 1 0 , o o J ~

O . 5 0

0 ` 4 0

O - 3 0

0, s o :

0 , I 0 -

0

- -~ lO 1

- 0 . : 1 0

- 0 , 3 0

- 0 . 4 0

- 0 , = O

• : ; : ~ ' ' I II - 5 4 , $ ? . 5 1 0 , 5 1 3 . $

U I H 9

- L E A S T = S Q U A R E SM E T H S O

2,00[,0 , 0 0 H ~ H ;

O . O 0 1 , 6 0 I "

" ° o.o ,o.o ,,.o ,0,o , ,.o °" °t +.o . _ p ~ ' ~ ' , ' 0 ' ' " oo o ~ - " ~ ~ • ' + ' . ~ -~ ' ' ~ ' - ' ~ - -

+ , + ~ .. r , ~ . + , , p ,~ , . ~ , ,T ' ~ + " + + " l , . p,+, m ~ . . ,

"+'°° - ' ~ . + . . u,",o "0,'° u,, .o- 4 , 0 0 " - • • 0 I t 0

I . i . + o |

I ' - - L [ A G t " G Q U A rIf~ S , b o o | - - L I ~ A S l o S G U A I IE S

t I q G T I IO O - , . o 0 [ H E l lt O O

- + 0 0

- ~ 0 0 '

- I ~ 0 0

At0 ,16 0 , 1 5 "

0,1~ 0 , t ~ ~

~ O B 0 , 0 0 '

0 . 0 4 0 , 0 4~ t t ~ o , , ! o , a ? o . ~ ! , o

- 0 , 0 4 ' ~ U / N O - 0 .0 4 ,

" 0 , 0 | + - 0 , 0 8 '

. 0 , 1 ~0 , 1 ~ .

• 0 ,i~ ' - - L E A S T - S Q U A n E S \ - 0 , reH E I I I O D

! 0 , 0 0

III.OO

41.OO

4.OO

1 , 0 0

0

• 1 ,00 '

- q O g '

- I , O D

• t , O 0 '

• 1 0 ` 0 0 ,

H ;

• ~ o + . ~ + : , , i .

~ : s • , :s " ~ , l " i ~ , l ' m + li f ' + "

U / N O

- - L E A S T - S Q U A R E SM E T H O D

0 ` 5 0 1 ^ ;^ ~ 0 , 4 0

0 , 3 0 . ~ , . ~ J ' - ' ~ " , ,

0`10I I , Q | S , O

-"~ - , ~ :o . . . . o~ i , + " , i s " , i , ' [ , ' ~ ' i , i ' r ', 1 ' l l s " l i s "

U /N O - 0,3D"0 1̀0 '0 , 3 0 ' Q / H O

L E A S T - 5 Q U A n E S . o .4 o | " L ( A S T - S Q U A R E SH E i f O 0 | t IE T ) IO O

T

( b ) D o w n s t r e a m b o s i e . s i r d e r

F i g . 6 F l u t t e r d e r i v a t i v e s ( E r e c t i o n - s y s t e m ( I V ) . S t e p ( 1 1 ) ; (~ = + 3 0

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 11/12

1289

O.IZ

Z 0.10

0.06

i 0.04

< 00 2

o

-O,OZ

-004

~ C A S E - ( I ) - - - C A S E - - ( 2 ) . .. .. . C A S E - - ( 3 )

- - O - - 3 - d i m e n g i o n a l m o d e l

- - 4 - - S e c t i o n m o d e l

- - - - t - - - - - -- -4 I t- I I I I 4 II0 20 3o 40 SO 60 tO gO gO IO0

WIND VELOCITY (MF$)

0.12

0.10

O.O8

o

0.06

0.04

0.02

ol

F i g . 7 L o g a r i t h m i c d e c r e m e n t F i g . 8f o r t o r s i o n a l a n d c o u p l e df l u t t e r

( E r e c t i o n - s y s t e m ( IV ) ,S t e p ( 1 1 ); u = + 3 °)

o Sectionmodel /B o

' V ° ~ o0 0 O0

, a

tO 20 30 40 50 6 0 7 0 8 0

-- Prolo ly i~eV (m/s)

R o t a t i o n a l c e n t e r a t P t . 4 8 4( E r e c t i o n - s y s t e m ( IV ) .S t e p (1 1 ) w i t h d o w n s t r e a mb o g i e - g i r d e r ; (z =+ 3 °

w h e r e 8z a n d 82 a r e t h e l o g a r i t h m i c d e c r e m e n t s o f t h e s e c t i o n a l m o d e l sw i t h u p s t r e a m a n d d o w n s t r e a m b o g i e -g i rd e r s, re s p e c t i v e ly .

T h e V - 8 c u r v e o b t a i n e d b y E q .( 3 0 ) u s i n g s e c t io n m o d e l t e s t s a n d t h a to b t a i n e d b y 8 - d i m e n s i o n a l m o d e l t e s t s a r e c o m p a r e d w i t h t h e a n a l y s i s u s i n gf l u t t e r d e r i v a t i v e s i n F i g . 7 . I t i s o b s e r v e d t h a t ( i ) c a s e - (3 ) g i v e s t h e l o w e s td a m p i n g b y a n a l y s i s a n d i s r e m a r k a b l y c o n s i s te n t w i t h t h e m o d e l te s t s , ( ii )t h e V - 8 cu r v e o f t h e s e c t i o n m o d e l s h o u l d b e a m e n d e d b y E q . (3 0 ) a n d ( ii i)s e c t i o n m o d e l t e s t s w i t h o u t a d d i t i o n a l d a m p i n g ASj m a y b e t oo c o n s e r v a t i v e .

T h e l a t e r a l e x c u r s i o n o f r o t a t i o n a l c e n t e r a t P t . 4 3 4 b y a n a l y s i s i s c o m p a r e dw i t h t h a t o b t a i n e d i n s e c t i o n a l m o d e l t e s t s i n F i g . 8 . T h e g o od a g r e e m e n tb e t w e e n t h e m m a y b e r e g a r d e d a s a v e r if i ca t i o n t o t h e a c c u r ac y o f t h ep r o p o s e d a n a l y s i s .

T a b l e 2 S u p p l e m e n t a r y d a m p i n g

E r e c t i o n s y s t e m ( I V ) . S t e p ( l l ) ( a = + 3 °)

10 0.0031 0.0009 0.0030 549.2 0.003020 0.0126 0.0017 0.0060 549.3 0.006030 0.0305 0.0025 0.0089 549.5 0.008940 0.0543 0.0033 0.0118 550.3 0.011850 0.0824 0.0041 0.0148 551.6 0.014760 0.1140 0.0049 0.0177 553.9 0.017670 0.1483 0.0057 0.0207 557.1 0.020480 0.1851 0.0065 0.0236 561.5 0.023290 0.2243 0.0073 0.0265 567.3 0.0259

100 0.2664 0.0081 0.0295 574.7 0.0285

N . B . ) My = 359 . 6 ( t . m 2 /9 ), M~ = 549 . 2 ( t . m ~ /9 ), I X ~ , ~ I = 1.0

8/6/2019 1992-H. Tanaka a, N. Yamamura a, M. Tatsumi b

http://slidepdf.com/reader/full/1992-h-tanaka-a-n-yamamura-a-m-tatsumi-b 12/12

1290

6 . C O N C L U D I N G R E M A R K S

A c o u p le d f l u t t e r a n a l y s i s a s w e l l a s t h e e q u i v a l e n c y f or s e c ti o n m o d e la n d p r o t o t y p e b r i d g e ( o r 3 - d i m e n s i o n a l m o d e l ) a r e d i s c u s s e d . T h e r e s u l t s

a r e s u m m a r i z e d a s , ( i) c o u p l e d f l u t t e r b e h a v i o r c a n be p r e d i c t e d b yE q s .( 7 )- (1 4 ) w h e n t h e f l u t t e r d e r i v a t i v e s a r e m e a s u r e d a n d ( ii ) t h e V - 5 c u r v eo b t a i n e d b y s e c t i o n m o d e l t e s t s , w h i c h s a t i s f y re d u c e d f r e q u e n c y a s w e l l a sm a s s a n d m o m e n t o f i n e r t i a e q u i v a le n c y , m a y b e a m e n d e d b y a n a d d i t i o n a ld a m p i n g t e r m A h j o f E q s .( 2 0) -( 2 9) w i t h o u t m e a s u r i n g t h e f l u t t e r d e r i v a t i v e s .F o r t h i s p u r p o s e , t h e m o d e l a m p l i t u d e r a t i o s [ Xmo [ c a n b e t a k e n f r o m t h et e s t s a n d H ~i (K i) i n E q . (2 0 ) i s o b t a i n e d b y q u a s i - s t e a d y f o r m u l a .

I t s h o u l d b e a d d e d t h a t E q s . ( 2 0 ) - ( 2 9 ) a r e g i v e n u n d e r t h e a s s u m p t i o n o fa n a l og o u s b e n d i n g a n d t o rs i o n a l m o d e s h a p e s, th e r e f o re , f u r t h e r a m e n d m e n ti s n e c e s s a r y w h e n b e n d i n g a n d t o r s i o n a l m o d e s h a p e s d i f f e r w i d e l y , e . g , i nc a s e o f a m o n o - c a b le s u s p e n s i o n b r i d g e o r a s i n g l e - p l a n e c a b l e - s t a y e d b r i d g e .

A c k n o w l e d g e m e n tT h e a u t h o r s e x t e n d s s i n c e r e a p p r e c i a t i o n t o P ro f . N . S h i r a i s h i o f K y o t o

U n i v e r s i t y f o r h i s v a l u a b l e s u g g e s t i o n s o n t h i s s t u d y .

R E F E R E N C E S

1 . F . B l e i c h , D y n a m i c I n s t a b i l i t y o f T r u s s - S t i f f e n e d S u s p e n s i o n B r i g d e su n d e r W i n d A c t i o n , T r a n s . A S C E , V o l . 1 1 4 , p p . 1 1 7 7 - 1 2 3 2 ( 1 9 4 9 )

2 . R . H . S c a n l a n , T h e A c t i o n o f F l e x i b l e B r i d g e s u n d e r W i n d , P a r t I. ( F l ut t e rT h e o r y ) , J o u r n a l o f S o u n d a n d V i b r a t i o n , 6 0 ( 2 ) , p p . 1 8 7 - 1 9 9 ( 1 9 7 8 )

3 . T . M i y a t a , H . Y a m a d a , a n d H . O t a , F l u t t e r A n a l y s i s o f A T r u s s S t i f f e n e dS u s p e n s i o n B r i g d e b y . 3 D M o d e l M e t h o d , P r o c . o f J S C E , V o l 4 0 4 , p p .267-275 , Ap r i l (1989) (l.n . Ja p an es e ) . _ _ •

4 . R .H . S c a n l a n , I n t e r p r e t i n g A e r o e l a s t l c M o d e ls o f C a b l e - S t a y e d B r i g a e s ,J o u r n a l o f E n g i n e e r i n g M e c h a m c s , A S C E , V o l. 1 1 3, N o . E M 4 , p p. 5 5 5 . 5 7 5 ,A r i l (1987)

5. ~I~.T a n a k a , N . Y am a . m u ra , a n d M . T a t s u m l , I n t e r p r e t i n g s e c ti o n a l m o d e lt e s t s t o p r e d i c t 3 - d lm e n m o n a l f l u t t e r b e h a v i or o f l o ng - sp a n b n g d e s ,C a n a d a - J ~ a p a n W o r k s h o p o n B r i d g e A e r o d y n a m i c s , N R C N o . 3 1 8 7 1 , p p .2 3 9 -2 4 8 , O t t a w a , C a n a d a , S e p t . 2 5 - 2 7 ( 1 9 8 9 ) _ _

6 .R . H . S c a n l a n , S t a t e - o f - t h e - A r t M e t h o d s fo r C a l c u l a t i n g F l u t t e r ,V o r t e x - In d u c e d , a n d B u f f e t in g R e s p o n s e o f B r i d g e S t r u c t u r e s , F i n a l R e p o r tt o F H W A N o . F H W A / R D - 8 0 / 0 5 0 ( 1 9 8 1 ) .

7. M . It o, E x p e r i m e n t a l R e s e a r c h o f W i n d S t a b i l i t y fo r t h e I n n o s h i m a B r i d g ei n G i r d e r E r e c t i o n S t e p s , B E L - R e p o r t N o . 8 1 3 0 1 , t h e U n i v e r s i t y o f T o k y o ,( 1 9 8 1 ) ( i n J a p a n e s e )

8 . T . U e d a a n d A . K u m a g a i , 2 - D i m e n s i o n a l W i n d T u n n e l T e s t s f o r S a f e t y o ft h e I n n o s h i m a B r i d g e i n E r e c t i o n a n d C o m p l e t i o n , T h e H i t a c h i Z o s e nT e c h n i c a l R e v i e w , V o l . 4 2 ( 1 9 8 1 ) ( i n J a p a n e s e )