1983_davis_krupa_deidzic_the economics of direct control of residential loads on the design and...

12
7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t… http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 1/12 IEEE Transactions on Power Apparatus and Systems, Vol. PAS-102, No. 3, March 1983 THE ECONOMICS OF DIRECT CONTROL OF RESIDENTIAL LOADS ON THE DESIGN AND OPERATION OF THE DISTRIBUTION SYSTEM PART 11 LOAD CHARACTERISTICS MURRAY W. DAVIS, Senior Member IEEE The Detroit Edison Company Detroit, Michigan THEODORE J. KRUPA, Member IEEE The Detroit Edison Company Detroit, Michigan MATTHEW J. DIEDZIC, Member IEEE The Detroit Edison Company Detroit, Michigan Abstract - This paper is the second of a series of three papers which addresses the economics and effects of controlling central air condi- tioning, water heating, and service voltage on the design and operation of the energy delivery system. Various load control strategies are described which benefit the system generation and T&D system. A unique approach is developed to measure the load reductions and recovery l oa ds of central air conditioning (A/C) and the test data collected over a four-year period is displayed for four different control periods and five different ambient temperature ranges. The thermal response of customers' homes is quantified for the A/C control periods. This paper also summarizes the electric water heater control- led and uncontrolled load characteristics for the many control strategies tested. Circuit and customer voltage profiles are portrayed for the summer and winter seasons along with the percent changes in real and reactive power for changes in customer service voltage. INTRODUCTION As stated in the Introduction to Part I', the economic benefit of directly controlling customer loads depends on the magnitude of the load reduction, the percentage of energy payback, the cost of control equipment and the length of time the load can be controlled during periods of high fuel costs or during periods of system generation and T D capacity shortages. The purpose of this paper is to define the characteristics of the controllable residential load and show how these characteristics a re modified by using direct load control strategies. A number of strategies involving the radio control of water heaters (W/H), residential central air conditioners (A/C) and service voltage (SVC) was investigated. Each strategy or combination of strategies was tested to s ee how the modified characteristics of the load reflected back through the distribution network, and ultimately (Part III) how these modified characteristics affect the distribution design criteria and the selection of an economic system design. Development of Load Control Strategies The purpose of previous direct load control experiments and studies has been to defer high cost generation capacity and to save high cost fuel. However, there may be pitfalls in ignoring the distribution system when designing load control strategies which benefit only the system generation. This is especially true when there is a time shift between system and distribution peak loads. Figure 1 shows the relationship between Detroit Edison's system, residential distribution circuit, and major appliance daily load profiles on a summer day when the outdoor temperature reached a maximum of 97F. Detroit Edison's system load normally peaks in the early afternoon (2 pm to 3 pm), whereas the residential distribution circuit peak load occurs in the evening (6 pm to 8 pm). The early afternoon system peak is attributable to a large component of industrial load which peaks early in the day while the early evening distribution peak results from the large component of residential central air conditioning load which peaks at from 5 pm to 82 SM 440-6 A paper recommended and approved by the IEEE Power Systems Engineering Committee of the IEEE Power Engineering Society for presentation at the IEEE PES 1982 Summer Meeting, San Francisco, California, July 18-23, 1982. Manuscript submitted September 14 , 1981; made avail- able fo r printing May 20, 1982. 1.0 .9 .8 .7 .6 cL L .5 .4 .3 .2 .1 '  SytmLa /- _\ I J \ \ ,~~~~~~~~~~~~ / Electric Range L I PI I% l f~~~~~~~~~~~~~~~~~~  , Circuit Load N \oad \ W/ H Load 4---JD.t-46tt 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 am pm am Time-hrs Fig. 1. A Comparison of System, Distribution Circuit and Major Appliance Loads on a Hot Summer Day. 6 pm. This implies that a load control strategy aimed at reducing system peak loads may produce recovery loads which create higher than normal distribution circuit peaks. To further explain the signifi- cance of this discussion, strategies designed to benefit only system generation and to benefit both generation and distribution facilities are given in Figure 2. The strategy benefitting only the generation con- sisted of interrupting the A/C from 1 pm to 5 pm with 15 minutes of off-time and interrupting the W/H from 2 pm to 6 pm. Even though the circuit load was reduced by 12 percent at the time of system peak, the recovery load created a distribution peak 16.6 percent higher than its uncontrolled peak load. However, strategies can be devised to reduce both the system and distribution peaks, such as a 1 pm to 10 pm A/C control and a 7 pm to 10 pm W/H control. In this case, the load reduction at the time of the system peak was slightly less than before, but the peak load on the distribution circuit was 4.3 percent less than the uncontrolled profile. The art of developing load control strategies involves obtaining as much load reduction as possible while still meeting the needs of the customer, and having the recovery loads appear during a desired or off-peak period. Over a four year period, a number of control strategies were tested on the Hickory distribution circuit. From these tests, load reductions, recovery loads, energy consumption, thermal responses of customers' homes and distribution facilities, distribution network energy losses and voltage profiles were measured. Th e cost-benefit of each strategy was then evaluated. 0018-9510/83/0002-0654$01.00 1983 IEEE 654 COMPOSITION OF 1977 CIRCUIT PEAK LOAD MAX. 97°F 7-20-77 U-  

Upload: aq9037

Post on 13-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 1/12

I E E E T r a n s a c t i o n s o n P o w er A p p a r a t u s a n d S y s t e m s , V o l . P A S - 1 0 2 , N o . 3 , M a r c h 1 9 8 3

THE ECONOMICS OF DIRECT CONTROLOF RESIDENTIAL LOA DS

ON THE DESIGN A ND OPERATIONOF THE D I S T R I B U T I O N SYSTEM

P ART 1 1

LOAD CHARACTERISTICS

MU R R A Y W . D A V I S , S e n i o r Member I E E ET h e D e t r o i t E d i s o n Company

D e t r o i t , M i c h i g a n

THEODORE J . K RUP A, Member I E E ET h e D e t r o i t E d i s o n Company

D e t r o i t , M i c h i g a n

MATTHEW J . D I E D Z I C , Member I E E ET h e D e t r o i t E d i s o n Company

D e t r o i t , M i c h i g a n

A b s t r a c t - T h i s p a p e r i s t h e s e c o n d o f a s e r i e s o f t h r e e p a p e r s w h i c ha d d r e s s e s t h e e c o n o m i cs a n d e f f e c t s o f c o n t r o l l i n g c e n t r a l a i r c o n d i -t i o n i n g , w a t e r h e a t i n g , a n d s e r v i c e v o l t a g e o n t h e d e s i g n a n d o p e r a t i o no f t h e e n e r g y d e l i v e r y s y s t e m . V a r i o u s l o a d c o n t r o l s t r a t e g i e s a r ed e s c r i b e d w h i c h b e n e f i t t h e s y s t e m g e n e r a t i o n a n d T&D s y s t e m . Au n i q u e a p p r o a c h i s d e v e l o p e d t o m e a s u r e t h e l o a d r e d u c t i o n s a n dr e c o v e r y l oa ds o f c e n t r a l a i r c o n d i t i o n i n g ( A / C ) a n d t h e t e s t d a t ac o l l e c t e d o v e r a f o u r - y e a r p e r i o d i s d i s p l a y e d f o r f o u r d i f f e r e n t c o n t r o lp e r i o d s a n d f i v e d i f f e r e n t a m b i e n t t e m p e r a t u r e r a n g e s . T h e t h e r m a lr e s p o n s e o f c u s t o m e r s ' h o m e s i s q u a n t i f i e d f o r t h e A / C c o n t r o lp e r i o d s . T h i s p a p e r a l s o s u m m a r i z e s t h e e l e c t r i c w a t e r h e a t e r c o n t r o l -l e d a n d u n c o n t r o l l e d l o a d c h a r a c t e r i s t i c s f o r t h e many c o n t r o ls t r a t e g i e s t e s t e d . C i r c u i t a n d c u s t o m e r v o l t a g e p r o f i l e s a r e p o r t r a y e df o r t h e s u m m e r a n d w i n t e r s e as o ns a l o ng w i t h t h e p e r c e n t c h a n g e s i n

r e a l a n d r e a c t i v e p o w e r f o r c h a n g e s i n c u s t o m e r s e r v i c e v o l t a g e .

INTRODUCTION

As s t a t e d i n t he I nt r od u c ti o n t o P a r t I ' , t h e e c o n o m i c b e n e f i t o fd i r e c t l y c o n t r o l l i n g customer l o a d s d e p e n d s on t h e m a g n i t u d e o f t h el o a d r ed u c ti o n , t h e percentage o f energy p a y b a c k , t h e cost o f c o n t r o le q u i p m e n t a n d t h e l en gt h o f t i me t h e l o a d can b e c o n t r o l l e d d u r i n gp e ri o ds o f h i g h f u e l c o s t s or d u r i n g p e r i o d s o f s y s te m g e n e r a t i o n andT D c a p a c i t y s h o r t a g e s . T h e purpose o f t h i s paper i s t o d e f i n e t h ec h a r a c t e r i s t i c s o f t h e c o n tr o l l a b l e r e s i d e n t i a l l o a d a n d show h o w t h e s ec h a r a c t e r i s t i c s are m o d i f i e d b y u s i n g d i r e c t l o a d c o n t r o l s t r a t e g i e s . Anumber o f s t r a t e g i e s i n v o l v i n g t h e r a d i o c o n t r o l o f water h e a t e r s( W / H ) , r e s i d e n t i a l c e n t r a l a i r c o n d i t i o n e r s ( A / C ) a n d s e r v i c e v o l t a g e( S V C ) was i n v e s t i g a t e d . E a c h s t r a t e g y o r c o m b i n a t i o n o f s t r a t e g i e swas t e s t e d t o s ee how t h e m o d i f i e d c h a r a c t e r i s t i c s o f t h e l o a d r e f l e c t e db a c k t h r o u g h t h e d i s t r i b u t i o n n e t w o r k , a n d u l t i m a t e l y ( P a r t I I I ) h o wt h e s e m o d i f i e d c h a r a c t e r i s t i c s a f f e c t t h e d i s t r i b u t i o n d e s i g n c r i t e r i aa n d t h e s e l e c t i o n o f a n e c o n o m i c system d e s i g n .

D e v e l o p m e n t o f Load C o n t r o l S t r a t e g i e s

T h e p u r p o s e o f p r e v i o u s d i r e c t l o a d c o n t r o l e x p e r i m e n t s a n d s t u d i e sh a s b e e n t o d e f e r h i g h c o s t g e n e r a t i o n c a p a c i t y a n d t o s a v e h i g h c o s t

f u e l . H o w e v e r , t h e r e may b e p i t f a l l s i n i g n o r i n g t h e d i s t r i b u t i o n systemwhen d e s i g n i n g l o a d c o n t r o l s t r a t e g i e s w h i c h b e n e f i t o n l y t h e systemg e n e r a t i o n . T h i s i s e s p e c i a l l y t r u e when t h e r e i s a t i m e s h i f t b e t w e e ns y s t e m a n d d i s t r i b u t i o n p e a k l o a d s . F i g u r e 1 s h o w s t h e r e l a t i o n s h i pb e t w e e n D e t r o i t E d i s o n ' s s y s t e m , r e s i d e n t i a l d i s t r i b u t i o n c i r c u i t , a n dm a j o r a p p l i a n c e d a i l y l o a d p r o f i l e s on a summer d a y when t h e o u t d o o rt e m p e r a t u r e r e a c h e d a maximum o f 9 7 F . D e t r o i t E d i s o n ' s sy stem l o a dn o r m a l l y p e a k s i n t h e e a r l y a f t e r n o o n ( 2 pm t o 3 p m ) , w h e r e a s t h er e s i d e n t i a l d i s t r i b u t i o n c i r c u i t p e a k l o a d o c c u r s i n t h e e v e n i n g ( 6 pm t o8 p m ) . T h e e a r l y a f t e r n o o n sy stem p e a k i s a t t r i b u t a b l e t o a l a r g e

component o f i n d u s t r i a l l o a d w h i c h p e a k s e a r l y i n t h e d a y w h i l e t h ee a r l y e v e n i n g d i s t r i b u t i o n p e a k r e s u l t s f r o m t h e l a r g e c omponent o fr e s i d e n t i a l c e n t r a l a i r c o n d i t i o n i n g l o a d w h i c h p e a k s a t f r o m 5 pm t o

82 SM 4 4 0 - 6 A paper r ec om me nd ed a nd a pp ro ve d b y t h e I E E EPower Systems Engineering Committee of th e IEEE PowerEngineering Society fo r p r e s e n t a t i o n at t h e IEEE PES 1982Summer Meeting, San Fr a n ci s co , C a l i f o r n i a , July 18-23,

1 9 8 2 . Manuscript submitted September 14 , 1981; m a d e avail-able fo r printing M a y 2 0 , 1982.

1 . 0

. 9

. 8

. 7

. 6

c LL . 5

. 4

. 3

. 2

.1 '

 

SytmLa /-

_\ I

J

\ \ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

/

E l e c t r i c R a n g e L

IP II% l

f ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

, C i r c u i t L o a d

N

\oad \

W/ H L o a d

4 - - - J D . t - 4 6 t t2 4 6 8 10 12 14 16 18 2 0 22 2 4 2 4 6

am pm am

T i m e - h r s

F i g . 1 . A C o m p a r i s o n o f S y s t e m , D i s t r i b u t i o n C i r c u i t and M a j o rA p p l i a n c e L o a d s o n a H o t Summer D a y .

6 p m . T h i s i m p l i e s t h a t a l o a d c o n t r o l s t r a t e g y a i m e d a t r e d u c i n gs y s t e m p e a k l o a d s may p r o d u c e recovery l o a d s w h i c h c r e a t e h i g h e rt h a n n o r m a l d i s t r i b u t i o n c i r c u i t p e a k s . To f u r t h e r e x p l a i n t h e s i g n i f i -c a n c e o f t h i s d i s c u s s i o n , s t r a t e g i e s d e s i g n e d t o b e n e f i t o n l y s y s t e mg e n e r a t i o n a n d t o b e n e f i t b o t h g e n e r a t i o n a n d d i s t r i b u t i o n f a c i l i t i e s are

g i v e n i n F i g u r e 2 . T h e s t r a t e g y b e n e f i t t i n g o n l y t h e g e n e r a t i o n con-

s i s t e d o f i n t e r r u p t i n g t h e A/C f r o m 1 pm t o 5 pm w i t h 1 5 m i n u t e s o fo f f - t i m e a n d i n t e r r u p t i n g t h e W/H f r o m 2 pm t o 6 p m. Even t h o u g h t h ec i r c u i t l o a d was r e d u c e d b y 1 2 p e r c e n t a t t h e t i m e o f s y s t e m p e a k , t h erecovery l o a d c r ea t ed a d i s t r i b u t i o n p e a k 1 6 . 6 p e r c e n t h i g h e r t h a n i t s

u n c o n t r o l l e d p e a k l o a d . H o w e v e r , s t r a t e g i e s c a n b e d e v i s e d t o r e d u c eb o t h t h e s y s t e m a n d d i s t r i b u t i o n p e a k s , s u c h a s a 1 pm t o 1 0 pm A/Cc o n t r o l a n d a 7 pm t o 1 0 pm W/H c o n t r o l . I n t h i s case, t h e l o a dr e d u c t i o n a t t h e t i m e o f t h e s y s t e m p e a k was s l i g h t l y l e s s t h a n b e f o r e ,b u t t h e p e a k l o a d on t h e d i s t r i b u t i o n c i r c u i t was 4 . 3 p e r c e n t l e s s t h a nt h e u n c o n t r o l l e d p r o f i l e .

T h e a r t o f d e v e l o p i n g l o a d c o n t r o l s t r a t e g i e s i n v o l v e s o b t a i n i n g as

much l o a d r e d u c t i o n as p o s s i b l e w h i l e s t i l l m e e t i n g t h e n e e d s o f t he

c u s t o m e r , a n d h a v i n g t h e recovery l o a d s appear d u r i n g a d e s i r e d or

o f f - p e a k p e r i o d . O v e r a f o u r year p e r i o d , a number o f c o n t r o l s t r a t e g i e sw e r e t e s t e d on t h e H i c k o r y d i s t r i b u t i o n c i r c u i t . From t h e s e t e s t s , l o a dr e d u c t i o n s , recovery l o a d s , energy c o n s u m p t i o n , t h e r m a l responses o fc u s t o m e r s ' homes a n d d i s t r i b u t i o n f a c i l i t i e s , d i s t r i b u t i o n networkenergy l o s s e s a n d v o l t a g e p r o f i l e s were m e a s u r e d . Th e c o s t - b e n e f i t o fe a c h s t r a t e g y was t h e n e v a l u a t e d .

0 0 1 8 - 9 5 1 0 / 8 3 / 0 0 0 2 - 0 6 5 4 $ 0 1 . 0 0 1 9 8 3 IEEE

6 5 4

COMPOSITION OF 1 9 7 7 CIRCUIT P E A K LOADMAX. 9 7 ° F

7 - 2 0 - 7 7

U-

 

Page 2: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 2/12

SUMMERCONTROLLED C I R CU IT LOADS

n C o n t r o l

g y ~ ~~ ^ 1 6 . 6 %

s t r i b u t i o nk \ L 4 . 3 %

\ S y s t e m &n e r \ J I i ~7( O D i s t r i b u t i o n -

~~ ~ ~~~Control -

I,f ~ ~ S t r a t e g y

-

A / C a n d W / H C o n t r o l S t r a t e g i e s -

------ 1 - 1 0 pm A / C , 1 5 m i n \7 - 1 0 pm W/H

1 - 5 pm A / C , 1 5 m i n

2 - 6 p m W/H

 

I I I I I I I I I

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 4 6

am pm a m

T i m e-

h r sF i g . 2 . S y s t e m a n d D i s t r i b u t i o n L o a d C o n t r o l S t r a t e g i e s .

C o n t r o l S t r a t e g i e s T e s t e d

T h r e e d i f f e r e n t m e t h o d s o f d i r e c t l o a d c o n t r o l w e r e i n v e s t i g a t e d :( 1 ) A / C c y c l i n g , ( 2 ) W/H i n t e r r u p t i o n a n d ( 3 ) s e r v i c e v o l t a g e c o n t r o l( S V C ) . T a b l e s I a n d I I d i s p l a y t h o s e t e s t s c o n d u c t e d w h e r e a s i g n i f i c -a n t a m o u n t o f d a t a w a s c o l l e c t e d . S i n c e t h e A / C d e m a n d s a r e a f u n c -t i o n o f t h e a m b i e n t a i r t e m p e r a t u r e a n d o t h e r m e t e o r o l o g i c a l p a r a m e t -e r s , t e s t r e s u l t s w e r e c a t e g o r i z e d u n d e r f i v e d i f f e r e n t d a i l y maximumt e m p e r a t u r e r a n g e s ( s e e T a b l e I ) . F o u r d i f f e r e n t c o n t r o l p e r i o d s w e r es e l e c t e d t o b e n e f i t t h e g e n e r a t i o n o r d i s t r i b u t i o n f a c i l i t i e s . A t o t a l o f

1 4 5 A / C t e s t s w e r e m a d e w i t h t h e n o m i n a l o f f - t i m e v a r y i n g 1 0 a n d 2 0m i n u t e s d u r i n g e a c h h o u r o f t h e c o n t r o l p e r i o d .

TABLE I

A i r C o n d i t i o n i n g L o a d C o n t r o l S t r a t e g i e sC o n tr o l P er io d s

1 - 5 pm 2 - 6 pm 6 - 1 0 pm 1 - 1 0 pm

7 7 7 8 7 7 7 8 7 9 8 0 7 7 7 8 7 7 7 9 8 0x x x x

xxx

xxxxx

xxxx

x xx

xxx

x

x

x

x

x

6 5 5

T h e W/ H b i m o d a l d a i l y l o a d p r o f i l e s a r e p r i m a r i l y a f u n ct i on o f i n l e tw a t e r t e m p e r a t u r e a n d t h e d i f f e r e n c e s b e t w e e n summer a n d w i n t e rl i v i n g h a b i t s , t h e r e f o r e t h e W/H u n i t s w e r e i n t e r r u p t e d d u r i n g e a c h o ft h e f o u r s e a s o n s f o r m o s t o f t h e 1 7 c o n t r o l p e r i o d s s h o w n i n T a b l e I I ,w i t h t h e o f f - t i m e v a r y i n g f r o m o ne t o f i v e h o u r s . A t o t a l o f 3 8 3 W/ Ht e s t s w e r e c o n d u c t e d .

S i m u l t a n e o u s c o n t r o l o f A / C , W/H a n d SVC w a s a l s o t e s t e d . T h i r t yt e s t s w e r e c o n d u c t e d u s i n g c o m b i n a t i o n s o f A / C a n d W/ H c o n t r o ls t r a t e g i e s a n d 5 5 t e s t s w e r e c o n d u c t e d u s i n g A / C , W/ H a n d SVCs t r a t e g i e s . T e s t s i n v o l v i n g o n l y SVC w e r e c o n d u c t e d o n 1 7 8 d a y sd u r i n g t h e f o u r s e a s o n s .

Load C h a r a c t e r i s t i c s

T h e e c o n o m i c b e n e f i t s o f d i r e c t l o a d c o n t r o l a r e r e l a t e d t o : ( 1 ) t h e

m a g n i t u d e o f t h e c o n t r o l l a b l e l o a d ; ( 2 ) t h e d e g r e e t o w h i c h t h e l o a d c a nb e c o n t r o l l e d ; ( 3 ) t h e a m o u n t o f t i m e d u r i n g t h e y e a r t h e l o a d i sa v a i l a b l e f o r c o n t r o l ( a n n u a l l o a d f a c t o r ) ; a n d ( 4 ) t h e c o s t t o c o n t r o l t h el o a d . A k n o w l e d g e o f u n c o n t r o l l e d a n d c o n t r o l l e d l o a d c h a r a c t e r i s t i c st h e r e f o r e , i s p a r a m o u n t t o e v a l u a t i n g t h e c o s t - e f f e c t i v e n e s s o f d i r e c tl o a d c o n t r o l s t r a t e g i e s . G i v e n i n F i g u r e 3 a r e t h e a n n u a l l o a d d u r a t i o nc u r v e s f o r b o t h t h e H i c k o r y d i s t r i b u t i o n c i r c u i t a n d t h e A / C c o m p o -n e n t o f t h e c i r c u i t l o a d w h i c h i s c o m p r i s e d o f 2 7 0 c e n t r a l A / C u n i t s . A na r b i t r a r y i n t e r s e c t i o n , s u c h a s p o i n t   A , s h o w s t h a t 9 0 p e r c e n t o f t h et i m e t h e c i r c u i t d e m a n d i s l e s s t h a n 4 6 p e r c e n t o f t h e a n n u a l p e a k l o a d .A l t h o u g h t h e A / C p e a k i s l a r g e , o r 4 6 p e r c e n t o f t h e c i r c u i t p e a k l o a d , i ti s o n l y a v a i l a b l e f o r c o n t r o l a b o u t 2 0 t o 3 0 p e rc en t o f t h e t i m e . A l s o , t h e

a i r c o n d i t i o n i n g l o a d i s n o t u s u a l l y i n t e r r u p t e d b u t i n s t e a d i s c y c l e df r o m 2 5 t o 5 0 p e rc en t ( 1 5 t o 3 0 m i n u t es o f o f f - t i m e d u r i n g a n y o n e h o u ro f c o n t r o l ) . T h e r e f o r e , t h e d e g r e e t o w h i c h A / C l o a d c a n b e c o n t r o l l e di s much l e s s t h a n t h e d e g r e e t o w h i c h W/H l o a d c a n b e c o n t r o l l e d ( 1 0 0p e r c e n t ) d u r i n g a n y o n e h o u r o f c o n t r o l . On t h e H i c k o r y c i r c u i t , a 2 5

p e r c e n t A / C c y c l i n g t i m e w o u l d r e d u c e t h e a n n u a l c i r c u i t p e a k l o a d b yo n l y 1 1 . 5 p e r c e n t .

1 0 0 r - I

9 0

8 0

7 0m0

- j

.

6 00 .

' 5 0

4 0

X 30

x xx

x

x

TABLE II

W a t e r H e a t i n g Load C o n t r o l S t r a t e g i e s

W i n t e r S p r i n g Summer F a l l77 7 8 7 9 8 0 77 7 8 79 80 7 7 7 8 7 9 8 0 7 7 7 8 7 9

x xxxxx

x xx

x x x

x  x x x x xx x

x

x x

x

x

x x

xx

x

x

xx

x

xxx

xxxx

xx

x

xxx

x

x

xx

x

X 2 0

1 0

80

CUMULATIVE LOAD DURATION - 1 9 7 8

D C 1 5 9 7 CIRCUIT & CENT R AL A IR CONDITIONING

T o t a l C i r c u i t

0 1 0 20 3 0 40 50 6 0 7 0 8 0 9 0 1 0 0

% o f Time

F i g . 3 . C u m u l a t i v e A n n u a l Load D u r a t i o n Curves f o r D i s t r i b u t i o nC i r c u i t and A / C .

F i g u r e 4 s h o w s t h e r a t i o b e t w e e n t h e t o t a l c i r c u i t A/C l o a d and t h e

A/C l o a d i n t er ru p t ed f o r a 1 5 m i n u t e o f f - t i m e . A l l l o a d s s h ow n are a t

t h e t i me o f c i r c u i t p e a k . Th e u n c o n t r o l l e d c i r c u i t l o a d c u rve r e p r e s e n t sX a n u p p e r b o u n d a r y o f a n e n v e l o p e o f p o s s i b l e d e m a n d s ; t h e s e ar e

X r e p r e s e n t a t i v e o f d a y s w h i c h a re c l e a r o r s l i g h t l y o v e r c a s t , b u t no r a i n .Th e pre senc e o f r a i n d u r i n g t h e d a y r e s u l t s i n a s i g n i f i c a n t r e d u c t i o n i n

c i r c u i t p e a k d e m a n d . .A t e m p e r a t u r e s e n s i t i v e l o a d c h a r a c t e r i s t i c b e g i n s t o d e v e l o p f o r

A/C l o a d when a m b i e n t t e m p e r a t u r e s are as low as 6 8 ° F . A t t h i st e m p e r a t u r e , t h e A/C l o a d i s d e t e c t a b l e , b u t b y nomeans c o n t r o l l a b l e .

T h e c i r c u i t demand i n c r e a s e s b y a n average o f 2 9 k W / O F i n t h e 7 0 ° -7 4 ° F maximum t e m p e r a t u r e range. Th e s l o p e o f t he t e m p e r a t u r e sen-

s i t i v e l o a d curve i n c r e a s e s r a p i d l y t o 5 7 k W / I F f o r t h e 8 0 ° - 8 4 ° F range

a n d r e a c h e s a maximum o f 7 2 k W / ° F f o r t h e 9 0 ° - 9 4 ° F r a n g e . D e m a n dc o m p a r i s o n s made b e t w e e n c l e a r s k y 9 7 ° F and 1 0 2 ° F d a y s , i n d i c a t e

1 . 2

1 . 1

1 . 0

. 9

. 8

. 7

. 6

. 5

. 4

. 3

L u ra t

i t u r ee

F

D F

F

D F

  F

MaximiAmbie

T e m p e r sRang

: - : 9 5 0 ]

9 0 - 9 4 0

8 5 - 8 9 0

8 0 - 8 4 0

7 5 - 7 9 0

C o n t r o l

P e r i o d spm-pm

1 - 42 - 3

2 - 4

2 - 5

2 - 62 - 7

3 - 4

3 - 5

3 - 6

4 - 5

4 - 64 - 74 - 8

5 - 6

5 - 7

7 - 1 08 - 1 1

x

x

x

x

x

- x

x

Page 3: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 3/12

6 5 6

5 . 0

A / C L o a d R e d u c t i o n

a t C i r c u i t P e a k 0 2 7 0 U n i t s

E C o n t r o l P e r i o d 1 - 1 0 p m

a ~ ~ ~ ~ ~ 1 5i n

H L o a d R e d u c t i o n C o n t r o l l a b l ea t C ta t C i r c u i t P e a k

1 0 0 0 do \2OTz,

a t C i r c u i t P ea k 1 2 8 U n i t sW H Load at

B a s e L o a d C i r c u i t P e a k

6 0 6 5 7 0 7 5 8 0 8 5 90 9 5 1 0 0

Maximum D a i l y T e m p e r a t u r e O F

F i g . 4 . C i r c u i t P e a k L o a d s and L o a d R e d u c t i o n s a s a F u n c t i o n o fMaximum D a i l y A m b i e n t T e m p e r a t u r e .

c i r c u i t d e m a n d s b e c o m e s a t u r a t e d a t 9 7 ° F a n d f u r t h e r i n c r e a s e s i n

d e m a n d a r e n o l o n g e r t h e r e s u l t o f i n c r e a s e s i n A / C l o a d b u t a r e s i m p l ya r e s u l t o f i n c r e a s e s i n b a s e l o a d s s u c h a s r e f r i g e r a t o r s , f a n s a n d o t h e ra p p l i a n c e l o a d s .

T h e 2 7 0 A / C ' s o n t h e c i r c u i t a c c o u n t f o r t h e r a p i d r i s e i n c i r c u i td e m a n d o n d a y s w i t h a n 8 0 ° - 1 0 0 ° F r a n g e o f maximum t e m p e r a t u r e s .T h i s t r a n s l a t e s i n t o a n i n c r e a s e o f 2 5 9 w a t t s p e r °F i n d i v e r s i f i e dd e m a n d f o r e a c h A / C u n i t . From t h e v i e w p o i n t o f d i s t r i b u t i o n r e l e a s e dc a p a c i t y , t h i s l o a d may seem a t t r a c t i v e t o c o n t r o l , b u t s i n c e i t s a n n u a ll o a d f a c t o r a n d h e n c e i t s l o a d m a n a g e m e n t e f f e c t i v e n e s s f a c t o r 2 i s l o w ,t h e b e n e f i t f o r t h e g en er at i on s y s t e m i n t e r m s o f d e f e r r i n g b a s e o ri n t e r m e d i a t e l o a d e d u n i t s may b e q u i t e s m a l l .

I n g e n e r a l , t h i s i s r e p r e s e n t a t i v e o f c o n di t i o n s w h i c h e x i s t i n n o r t h -e r n c l i m a t e s s i n c e t h e r e a r e r e l a t i v e l y f e w d a y s , u s u a l l y t e n o r l e s s ,w h e n t h e maximum a m b i e n t t e m p e r a t u r e e x c e e d s 9 0 ° F .C e n t r a l A i r C o n d i t i o n i n g Load C h a r a c t e r i s t i c s : T h e A / C u n i t h o u r l yd i v e r s i f i e d d e m a n d p r o f i l e s f o r t h e f i v e maximum a m b i e n t t e m p e r a t u r er a n g e s a r e s h o w n i n F i g u r e 5 . T h e s e d e m a n d s a r e b a s e d o n t h e m e t e r e d

A / C u n i t s o n t h e H i c k o r y c i r c u i t w h o s e a v e r a g e c o n n e c t e d n a m e p l a t er a t i n g i s 6 . 3 7 kW a n d c a p a c i t y i s 4 . 0 7 t o n s . T h e m e a s u r e d a v e r a g e f u l ll o a d r u n n i n g p o w e r f o r t h e s e u n i t s wa s 5 . 7 2 kW, o r 1 0 p e r c e n t l o w e rt h a n t h e m a n u f a c t u r e r s ' n a m e p l a t e d a t a . T h i s d i s c r e p a n c y was d u e t ob o t h a l o w e r s e r v i c e v o l t a g e o n h o t d a y s when t h e c i r c u i t i s h e a v i l yl o a d e d a n d m a n u f a c t u r i n g t o l e r a n c e s . I t i s n o t uncommon t o h a v es e r v i c e v o l t a g e s f i v e p e r c e n t b e l o w n o m i n a l a s w i l l b e d e s c r i b e d i n t h es e c t i o n o n v o l t a g e p r o f i l e s . T h e m e a s u r e d f u l l l o a d r u n n i n g c u r r e n t i si m p o r t a n t t o d e t e r m i n e t h e a c t u a l maximum d e m a n d s , d e m a n d r e d u c -t i o n s a n d r e c o v e r y l o a d s .

CENT R AL A IR CONDITIONING LOADS

SUMMER SEASONS1 9 7 7 , 1 9 7 8 , 1 9 7 9

r' ,

F i g . 5 . H o u r l y D i v e r s i f i e d A/C Demands.

:5 . 0

co

cm X

  E 4 . 0o D2 0: t 0

m 3 . 0*-

c 2 2 . 0O0

0

CONT ROLL E D AND UNCONTROLLEDA / C UNIT ( 3 T O N )

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 4 6a m p m am

T i m e - h r s

F i g . 6 . C o m p a r i s o n o f Demands f o r a n A / C U n i t o n C o n t r o l l e d andU n c o n t r o l l e d D a y s .

T h e A / C d e m a n d s a r e e x t r e m e l y t e m p e r a t u r e s e n s i t i v e , h o w e v e r ,o t h e r e n v i r o n m e n t a l f a c t o r s , p a r t i c u l a r l y r a i n , a l s o h a v e a s i g n i f i c a n te f f e c t . Any a m o u n t o f r a i n d u r i n g t h e d a y l i g h t h o u r s t e n d s t o l o w e r a n dd i s t o r t t h e h o u r l y A/C demand p a t t e r n s . T h e d e m a n d s s h o w n i n b o t hF i g u r e 5 a n d T a b l e I I I a r e f o r c l e a r a n d p a r t i a l l y o v e r c a s t d a y s o n l y .R a i n y d a y s h a v e b e e n e x c l u d e d ; t h i s i n cr ea s es t h e d i v e r s i f i e d d e -m a n d s , b u t m a k e s t h e m m o r e r e p r e s e n t a t i v e o f c i r cu m s t a n c e s whenl o a d c o n t r o l w o u l d b e i m p l e m e nt e d . T h e n u m b e r s h o w n i n p a r e n t h e s e so n F i g u r e 5 i n d i c a t e s t h e n u m b e r o f w e e k d a y s i n t h e D e t r o i t E d i s o ns e r v i c e a r e a w h i c h a r e l i k e l y t o f a l l w i t h i n e a c h maximum a m b i e n tt e m p e r a t u r e r a n g e s p e c i f i e d . S i n c e t h e r e a r e v e r y f e w h o t d a y s a n d

many t e s t s t o r u n , a u n i q u e m e t h o d w a s d e v e l o p e d t o c o n d u c t m u l t i p l et e s t s o n t h e s a m e d a y .

1 0 0 _

T a Ma 95X

Ta9a59F> '\Ta o Ma x 9 7 0 F

9 0

8 5

8 0 /

0 ~ ~ ~ ~ ~ ~ ~ ~0 7 5

F i g . 7 . O u t d o o r ( T a o ) T e m p e r a t u r e P r o f i l e s on C o n t r o l l e d a nd U n -c o n t r o l l e d D a y s .

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 4 6a m pm am

T i m e - h r s

Page 4: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 4/12

TABLE I I IU n co n t ro l l e d C en t ra l A i r C o n d i t i o n i n g

L o a d C h a r a c t e r i s t i c s f o r Summer S e a s o n s1 9 7 7, 1 97 8 , 1 9 7 9

MaximumA m b i e n t

T e m p e r a t u r eR a n g e

a ¢ 9 5 T F9 0 - 9 4 ° F

8 5 - 8 9 ° F

8 0 - 8 4 ° F

7 5 - 7 9 ° F

D a i l yP e a k( k W )

5 . 2 7 7

3 . 8 1 6

2 . 7 8 2

1 . 3 3 21 . 0 2 1

Timeo f

P e a k

4 p m

5 p m7 p m6 p m6 pm

D a i l y E n e r g yC o n s u m p t i o n

( k W h )6 a m - 6 a m

7 9 . 3 4 7

4 8 . 2 5 63 4 . 6 7 6

1 4 . 6 2 6

1 0 . 9 1 2

D a i l yL o a d F a c t o r6 a m - 6 a m

0 . 6 3 3

0 . 5 2 70 . 5 1 9

0 . 4 5 7

0 . 4 4 5

M e t h o d s o f C a l c u l a t i ng C en t r al A i r C o n d i t i o n i n g Load R e d u c t i o n sa n d R e c o v e r y L o a d s : A n u m b e r o f i n v e s t i g a t o r s h a v e d e t e r m i n e d A/Cl o a d r e d u c t i o n s a n d r e c o v e r y l o a d s b y s u b t r a c t i n g t h e h o u r l y l o a d s o nc o n t r o l l e d d a y s f r o m t h e h o u r l y l o a d s d u r i n g t h e c o n t r o l p e r i o d o n

6 5 7

u n c on t r ol l e d d a y s . I n some c a s e s l i t t l e c o n c e r n h a s b e e n e x e r c i s e d i ng r o u p i n g c o n t r o l l e d a n d u n c o n t r o l l e d d a y s w h i c h h a v e s i m i l a r d a i l ya m b i e n t t e m p e r a t u r e p r o f i l e s . P e r i o d s o f r a i n a n d o t h e r d i f f e r e n c e s i nw e a t h e r c o nd i ti o ns r e pr e se n t ed i n t h e c on tr ol l e d a n d u n c o n t r o l l e dd a y s a f f e c t t h e a m o u n t o f A/C l o a d a v a i l a b l e f o r c o n t r o l . I n F i g u r e s 6a n d 7 , a l t h o u g h t h e maximum a m b i e n t t e m p e r a t u r e f o r t h e t w o d a y sw a s 9 5 ° F o r g r e a t e r , t h e t e m p e r a t u r e p r o f i l e s f o r e a ch d a y w er e s i g -n i f i c a n t l y d i f f e r e n t , s u c h t h a t t h e c o m p u t e d l o a d r ed u ct i o n w o u l d b el e s s t h a n a c t u a l . I n g e n e r a l , when s t a t i s t i c a l c o m p a r i s o n s a r e madeb e t w e e n c o n t r o l l e d a n d u n c o n t r o l l e d l o a d s w i t h o u t c o n c e r n f o r d i f f e r -e n c e s i n w e a t h e r , t h e l o a d r ed u c t i on s a r e e i t h e r much s m a l l e r o r muchl a r g e r t h a n a c t u a l a n d t h e s t a n d a r d e r r o r s o f t h e e s t i m a t e a r e s o m e -t i m e s a s g r e a t a s t h e l o a d r e du c t i on s t h em s el v es . To a l l e v i a t e t h i sp r o b l e m , t h e H i c k o r y p r o j e c t u s e d t w o c i r c u i t l a t e r a l s w h i c h h a v ea p p r o x i m a t e l y t h e s a m e n u m b e r o f c u s t o me rs , c o n n e c t e d kW o f A/Cl o a d , t h e s a m e n u m b e r o f c o n t r o l l e d A / C ' s a n d a b o u t t h e s a m e c o n -n e c t e d kW o f c o n t r o l l e d A / C . ( S e e T a b l e I , P a r t I , a n d c o m p a r e t h es t a t i s t i c s f o r l a t e r a l s   1 a n d   2 . ) T h i s f e a t u r e a l l o w e d c o n t r o l l e d a n du n c o n t r o l l e d d a t a , b a s e d o n t h e s a m e w e a t h e r , t o b e c o l l e c t e d o n t h es a m e d a y .

DAILY TEMPERATURE PROFILES

l I I

2 6 1 0 1 4 1 8 22 2 6 1 0 1 4 1 8 2 2

am pm am pm

I II II II

2 6 10 14 1 8 22am pm

Time - h r s

I I I I I .1

2 6 10 14 1 8 22am pm

2 6 1 0 1 4 1 8 2 2

am p m

F i g . 8 . D a i l y Ambient T e m p e r a t u r e P r o f i l e s f o r t h e F i r s t and T h i r d

T e m p er a t u r e B u i l d up W e e k s .

I F

Page 5: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 5/12

EFFECT OF TEMPERATURE BUILDUP EFFECT OF P R EVIOUS HOT D A Y

LATERAL 1

7-19-77 @----

A/C Control

A, B, C, D

6-10pm

15 min

7-20-77

Uncontrolled

2 4 6 8 10 12 14 16 18 20 22 24 2 4 6

am PM am

Time hrs

LATERAL 2

7 - 8 - 7 7 - e - - e

A / C C o n t r o l

6 - 1 0 p m1 5 m i n

W / H C o n t r o l

2 - 6 pm7 - 2 1 - 7 7

U n c o n t r o l l e d

2 4 6 810121416-1.8202224 2 4 6

am PM am

Time hrs

Fig. 9. (a )   (b ) Comparison of Lateral  1 and Lateral  2 Load

Profiles

Anumberof examples willnowbe given to illustrate why air condi-

t i o n i n g load reductions and recovery loads cannot be obtained

bycomparing twodifferent d a y s ' load data. Tomake t h i s comparison two

sets of figures arereferred to: (1) the daily ambient temperature pro-

files in F i g u r e 8, and (2 ) the corresponding lateral load p r o f i ' l e s in

F i g u r e 9. At the top of F i g u r e 8 are the hourly ambient temperatures

for the first temperature b u i l d u p week, and at the bottom of this figure

arethe hourly ambienttemperatures for the third temperature b u i l d u p

week. These b u i ld u p p e ri o d s represent the two hottest weeks d u r i n g

the summer.

Example (a): Acomparison of controlled anduncontrolled loads on

days which have the same daily peak ambient temperature and are

within the sameambient temperature b u i l d u p p e r i o d is made in Fig-

ure9a. This figure shows the controlled anduncontrolled load profiles

onlateral for twodays where the peak ambienttemperatures are the

same, namely 970F. The uncontrolled loadonJuly 2 0 , 1977wassignifi-

c a n tly h i g h e r than the controlled profile onJuly 19 , 1977 up to the time

ofthe control p e r i o d . Thereasonfor this difference is because July 2 0 ,

1977was

thethird

day ofan

ambient temperature buildup p e r i o d andthe average temperature was30F h i g h e r onJuly 2 0 , 1977 than onJuly

19, 1977. Ifthe July 2 0 , 1977 load profile werea d j u s t e d downward to

match the h o u rl y demands before the control p e r i o d onJuly 19 , 1 9 7 7 ,

t h i s would result in small orn e g a t i v e load reductions.- Although this

comlarisonwasmade with lateral load profiles, the samewould be

true for individual A/C units.

Example (b): Acomparison of controlled anduncontrolled loads on

days which have the same daily peak ambient temperatures and are

from different ambient temperature buildup p e r i o d s show evenlarger

differences in load before the control p e r i o d . This example is given in

EFFECTOFRAIN FALL

5 , 0 0

400 F

LATERAL 1

A/C Control

A,B,C,D

6-10pm

15 mi n

300

200 F'

7-5-77 .---

100

0I I I ~~~~~~~II I I I I' II

2 4 6 8 10 12 14 16 18 20 22 24 2 4 6

am IPM am

Time hrs

Figure 9b. Both days, July 8, 1977 andJuly 2 1, 1977 hadthesamepeak

temperatureandamountof cloud cover, but followed different am-

bient temperature b u i l d u p p e r i o d s , are different days of the weekand

the average temperature onJuly 2 1, 1977 was 30F h i g h e r than the

average temperature onJuly 8, 1977 making the load profiles s i g n i f i ' c -antly different.

Example (c): Acomparison of the controlled load p ro fi le s ( Fi g -

ure9c ) onJuly 19 , 1977 andJuly 5, 1 9 7 7 , beginning at 7 pmandending

at 1 1 I pm, shows that the average difference betweenthese twoprofiles

is 21.8kWor the 6pmto 10pmA/C control p e r i o d . Since there are 21

controlled A/C units onlateral  , the difference in load percontrolled

A/Ccustomer is 1.03 Aswillbe seenlater, the average hourly load

reduction is 1.02kWperA/C unit, or21.42kWfor the 21 controlled

units d u r i n g a6 pmto 10pmcontrol period ondays where the

maximum ambient temperature is 950F orhi g her. The difference bet-

weenthe hourly controlled loads onthese twodayswasas larg e as the

load reduction i t s e l f , eventhough both days werecloudy until 10 am;

the day of the week wasthe same; and the maximum and average

temperature for each daywasapproximately equal. One ofthe reasons

why the load profile onJuly 19 , 1977waslowerthan the p r o f i ' l e of July

5, 1977 wasb e c ' a u s e heavy rain (1. 16 i n c h e s) wasrecorded for the

morning of July 19 , 1977.

Example (d): Ideally, the lateral load profiles should compare favor-

ably if (l) twoclear days areselectedwhere the maximum andaverage

temperature wasapproximately equal, (2 ) the days chosen are the

sameday of the week, and (3) both days arethe third and maximum

ambient temperature day ofathermal b u i l d u p p e r i o d. Such acase is

g i v e n in F i g u r e 9d , for lateral  2,andin Figure 8 for days July 6, 1977

and July 2 0 , 1977. The only difference is that July 6, 1977 is the third

CONTROLLED UNCONTROLLEDGROUP

LATERAL 1 

LATERAL 2

UNCONTROLLED

Lat  2 7-6-77

Lat 2 7-20-77

Lat  1 7-20-77-e--

2 4 6 8 10 12 14 16 18 -2 0 22 24 2 4 6

am PM am

Time hrs

500

400

300

200

100

0

Fig. 9. (c )   (d ) C o m p a r i ' s o n of Lateral  1 and Lateral  2 Load

Profiles

6 5 8

5 00 F

400

.300

200

100

S o 0

4 0 0

3 0 0

2 0 0

1 0 0

I 0

Page 6: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 6/12

6 5 9

d a y o f t h e f i r s t t h e r m a l b u i l d u p p e r i o d f o r t h e summer s e a s o n a n d J u l y2 0 , 1 9 7 7 i s t h e t h i r d d a y o f t h e s e a s o n ' s t h i r d t h e r m a l b u i l d u p p e r i o d .F o r t h i s i d e a l c a s e , t h e a v e r a g e d i f f e r e n c e b e t w e e n t h e l o a d s o n l a t e r a l 2 f o r t h e s e two d a y s d u r i n g t h e p e r i o d o f i n t e r e s t ( 2 p m t o 1 1 p m i fA / C u n i t s w e r e c o n t r o l l e d f r o m 1 p m t o 1 0 p m ) i s s t i l l 1 6 . 1 kW o r. 7 7 kW p e r c o n t r o l l e d A / C u n i t . S e l e c t i n g c o n t r o l l e d a n d u n c o n t r o l l e dd a t a i n t h i s manner w i l l r e d u c e t h e e r r o r i n c a l c u l a t i n g t h e l o a d r e d u c -t i o n s a n d r e c o v e r y l o a d s , b u t t h e r e a r e p r o b a b l y o n l y o n e o r two d a y sd u r i n g t h e summer s e a s o n w h e r e t h e s e i d e a l c o n d i t i o n s e x i s t . S i n c et h i s a p p r o a c h s e r i o u s l y l i m i t s t h e amount o f d a t a f o r a n a l y s i s , a more

s u i t a b l e m e t h o d i s t o c o m p a r e t h e c o n t r o l l e d a n d u n c o n t r o l l e d l o a dd a t a f r o m l a t e r a l s   1 a n d  2 o n t h e s a m e d a y . S i n c e t h e u n c o n t r o l l e dl o a d p r o f i l e s f o r l a t e r a l s   1 a n d  2 a r e n e a r l y t h e s a m e ( s e e F i g u r e 9 d ,J u l y 2 0 , 1 9 7 7 ) t h i s m e t h o d r e s u l t s i n t h r e e a d v a n t a g e s . F i r s t , s e l e c t i n gt w o d a y s w i t h s i m i l a r w e a t h e r c o n d i t i o n s i s n o l o n g e r n e c e s s a r y ;s e c o n d , a l l d a y s w h e n t h e l o a d i s c o n t r o l l e d d u r i n g t h e summer s e a s o na r e a v a i l a b l e f o r a n a l y s i s , a n d t h i r d , t h e s t a n d a r d e r r o r o f t h e e s t i m a t ef o r c a l c u l a t e d l o a d r e d u c t i o n s a n d r e c o v e r y l o a d s i s r e d u c e d t o a p -p r o x i m a t e l y h a l f t h a t o b t a i n e d f r o m t h e i d e a l c a s e o u t l i n e d a b o v e .

Some r e s e a r c h e r s 3 4 h a v e a t t e m p t e d t o c i r c u m v e n t t h e p r o b l e m o f

c o m p a r i n g l o a d s o n two d i f f e r e n t d a y s b y s e l e c t i n g c o n t r o l l e d a n du n c o n t r o l l e d g r o u p s o f a i r c o n d i t i o n e r s i n t h e i r s e r v i c e a r e a . W i t h t h i sm e t h o d , c o n t r o l l e d a n d u n c o n t r o l l e d l o a d s may b e c o m p a r e d o n t h es a m e d a y , b u t i f t h e t w o g r o u p s a r e n o t i n c l o s e p r o x i m i t y o r l o c a l i z e d ,r a i n p a t t e r n s a n d t e m p e r a t u r e p r o f i l e s c o u l d s t i l l b e s i g n i f i c a n t l y d i f f e -r e n t . W i t h t h e H i c k o r y c i r c u i t , a l l t h e d a t a w a s c o l l e c t e d w i t h i n ao n e- q u a rt e r s q u a r e m i l e a r e a a n d t h u s a l l c u s t o m e r s i n t h e e x p e r i m e n te x p e r i e n c e d t h e same w e a t h e r c o n d i t i o n s .

C e n t r a l A i r C o n d i t i o n i n g Load R e d u c t i o n a n d R e c o v e r y L o a d s : T h el o a d r e d u c t i o n a n d r e c o v e r y l o a d s o b t a i n e d f r o m l a t e r a l s   1 a n d  2 f o rt h e c o n t r o l p e r i o d s a n d a m b i en t t e m p e r a t u r e r a n g e s l i s t e d i n T a b l e Ia r e d i s p l a y e d i n F i g u r e 1 0 , a n d a r e a l s o t a b u l a t e d i n T a b l e s I V a n d V .I t s h o u l d b e n o t e d t h a t t h e f i r s t h o u r o f l o a d r e d u c t i o n b e g i n s o n e h o u ra f t e r t h e c o n t r o l s t r a t e g y i s i n i t i a t e d . T h e t h r e e c o n t r ol p e r i o d s s e l e c t e df o r t h e b e n e f i t o f s y s t e m g e n e r a t i o n w e r e 1 p m t o 5 p m , 2 p m t o 6 p m ,a n d 6 p m t o 1 0 p m , t h e l a t t e r p e r i o d b e i n g u s e d f o r p u m p e d s t o r a g eh y d r o . T h e f o u r t h , o r t h e 1 p m t o 1 0 p m c o n t r o l p e r i o d was t h e o n l yo n e w h i c h b e n e f i t e d b o t h g e n e r a t i o n a n d d i s t r i b u t i o n f a c i l i t i e s . Byo b s e r v i n g t h e d a t a i n T a b l e I V a n d F i g u r e 1 0 , t h e h o u r l y l o a d r e d u c -t i o n s t e n d e d t o i n c r e a s e t o a maximum v a l u e i n t h e t h i r d o r f o u r t h h o u ro f c o n t r o l f o r a l l c o n t r o l p e r i o d s . T h i s maximum v a l u e was t h e n f o l -l o w e d b y a r a p i d d e c l i n e i n l o a d r e d u c t i o n s t o w a r d t h e e n d o f t h ec o n t r o l p e r i o d .

T h e r e a s o n f o r t h e i n c r e a s e d u r i n g t h e f i r s t t h r e e t o f o u r h o u r s c o u l db e a t t r i b u t a b l e t o a p e r i o d o f s y n c h r o n i z a t i o n . W i t h t h e a i d o f F i g u r e 1 1t h i s s y n c h r o n i z a t i o n p e r i o d i s e x p l a i n e d a s f o l l o w s . F o r t h e f i r s t h o u ro f a c o n t r o l p e r i o d , some A / C u n i t s w o u l d n o t h a v e b e e n r u n n i n gd u r i n g t h e o f f - t i m e p e r i o d , w h e t h e r o r n o t t h e y h a d b e e n i n t e r r u p t e d ;a l s o some o t h e r A / C u n i t s w o u l d h a v e b e en r u n n i n g d u r i n g t h e o f f - t i m ei f t h e y h a d n o t b e e n i n t e r r u p t e d . On t h e H i c k o r y c i r c u i t t h e p r o b a b i l i t yo f a n A / C u n i t r u n ni n g d u ri n g t h e h o u r o f maximum d e m a n d i f i t h a d n o tb e e n i n t e r r u p t e d i n a n y p r e c e d i n g h o u r P ( O N ) i s s h o w n f o r a n u n d e r -s i z e d a n d a n o v e r s i z e d u n i t i n F i g u r e 1 2 . T h e d a t a s h o w s t h a t P ( O N ) i sa b o u t . 7 5 f o r a n a v e r a g e s i z e u n i t when t h e p e a k o u t d o o r t e m p e r a t u r e( T a o ) i s 9 0 ° F . D u r i n g t h e s e c o n d , t h i r d , a n d s o m e t i m e s f o u r t h h o u r o fc o n t r o l , P ( O N ) i n c r e a s e s , b e c a u s e more a n d more u n i t s t h a t were i d l ed u r i n g t h e p r e v i o u s o f f - t i m e s d e s i r e t o r u n when s w i t c h e d o f f a n d t h eo r i g i n a l d i v e r s i t y among t h e u n i t s i s l o s t . T h i s d e m a n d a c c u m u l a t i o nc o n t i n u e s , d e p e n d i n g o n u n i t s i z e , t e m p e r a t u r e , e t c . , u n t i l a l l t h e u n i t sa r e s y n c h r o n i z e d i n t i m e a n d t h e l o a d r e d u c t i o n s r e a c h a maximum.

6 . 0

5 . 0

E4. 0

. 0

, 3 . 0 _

2 . 0

6. 0

_ 5 . 0 _84-°

E4 4 . 0

1 3 . 0

2 . 0 -

6 . 0 -

5 . 0 -

4 .0 -C

Ec3 . 0 -

am

.

CONTROLLED AND UNCONTROLLEDLOAD CHARACTERISTICS a 9 5 0 F

2 - 6 p m C o n t r o l P e r i o d

N

1 . 0 -

1 2 . 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 1 2 3pm am

T i m e - h r s

F i g . 1 0 . A I C D emand R e d u c t i o n s and R e c o v e r y L o a d s f o r F o u rD i f f e r e n t C o n t r o l P e r i o d s .

T h e s y n c h r o n i z a t i o n p e r i o d i s f o l l o w e d b y a p e r i o d o f r e s i d u a l t h e r -m a l e f f e c t s . D u r i n g t h i s p e r i o d t h e r e i s c a r r y o v e r o f t h e r m a l e n e r g yf r o m e a c h c o n t r o l l e d h o u r t o s u b s e q u e n t h o u r s - o r t h e r m a l b u n c h i n g .T h e A / C u n i t i s a t t e m p t i n g t o d e p l e t e t h i s g a i n i n t h e r m a l e n e r g y a n dt h u s w o u l d c r e a t e h i g h e r d e m a n d s t h a n i t s u n c o n t r o l l e d p r o f i l e i fa l l o w e d t o r u n d u r i n g t h e o f f - t i m e . By s u b t r a c t i n g t h e c o n t r o l l e d p r o f i l ef r o m t h e u n c o n t r o l l e d p r o f i l e s m a l l l o a d r ed u c t io n s r e s u l t .From t h e l o a d r ed u c t i on t e s t d a t a i n F i g u r e 1 1 , i t i s a p p a r e n t t h a t o n l y

a p o r t i o n o f t h e t h e r m a l e n e r g y i s c a r r i e d f o r w a r d . Some f r a c t i o n o f t h e

LE IV

D i v e r s i f i e d C e n t r a l A i r C o n d i t i o n i n gLoad R e d u c t i o n s a n d R e c o v e r y L o a d s

1 7 . 5 M i n u t e O f f - T i m e , C l e a r D a y sMaximum A m b i e n t T e m p e r a t u r e ¢ 9 5 T F

H o u r l y Load R e d u c t i o n s ( - ) a n d R e c o v e r y L o a d s ( + ) , kW

2 p m 3 p m 4 p m 5 pm 6 p m 7 p m 8 p m- 1 . 1 0 - 1 . 2 2 - 1 . 3 1 - 1 . 2 1 - 1 . 1 5 + 0 . 8 0 + 0 . 4 6

- 1 . 2 0 - 1 . 2 8 - 1 . 4 5 - 1 . 2 0 - 1 . 1 3 + 0 . 8 4

- 1 . 0 5 - 1 . 1 5

- 1 . 1 6 - 1 . 2 6 - 1 . 3 3 - 1 . 4 2 - 1 . 2 5 - 1 . 1 9 - 1 . 0 8

9 p m

+ 0 . 5 9+ 0 . 7 6

- 1 . 2 0

- 0 . 9 0

1 0 pm 1 1 pm

  0 . 3 4

+ 0 . 3 6- 0 . 9 7 - 0 . 7 2

- 0 . 6 8 - 0 . 4 5

+ 0 . 9 5 + 0 . 2 6 + 0 . 1 8

+ 1 . 2 9 + 1 . 0 2 + 1 . 1 3

C o n t r o lP e r i o d

1 - 5 p m2 - 6 p m6 - 1 0 p m1 - 1 0 p m

1 2 p m I a m 2 a m 3 a m

+ 0 . 3 6

Page 7: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 7/12

TABLE V

C e n t r a l A i r C o n d i t i o n i n g A v e r a g e Load R e d u c t i o n s a n dR e c o v e r y L o a d s b y A m b i e n t T e m p e r a t u r e R a n g e

Load a n d E n e r g y SummaryN e t

E n e r g yL o s sk Wh

3 . 8 04 . 3 03 . 7 06 . 9 2

2 . 8 63 . 3 62 . 7 75 . 6 4

2 . 4 42 . 6 02 . 2 24 . 4 5

. 9 01 . 2 51 . 0 01 . 0 0

P e r c e n tE n e r g yP a y b a c k

¢950F

3 6 . 5 63 1 . 3 12 7 . 3 13 5 . 4 5

9 0 - 9 4 ° F3 1 . 92 3 . 32 6 . 72 4 . 1

8 5 - 8 9 ° F1 4 . 41 6 . 41 2 . 3

8 . 4

8 0 - 8 4 ° F

A v e r a g eLoad

R e d u c t i o nkW

1 . 2 01 . 2 51 . 0 21 . 0 7

. 8 4

. 8 8

. 7 6. 7 4

. 5 7

. 6 2

. 5 1

. 4 9

. 1 8

. 2 5

. 2 0

. 1 0

PROBABILTY OF AN A / C UNIT RUNNINGDURING THE HOUR OF MAXIMUM DEMAND

P e a kR e c o v e r y

LoadkW

. 8 0. 8 4

. 9 51 . 2 9

. 7 4

. 6 0

. 8 31 . 0 3

. 2 7

. 3 5

. 3 1

. 4 1

* N e g l i g i b l e

t h e r m a l b u i l d u p i s l o s t , h e n c e a l o s s o f e n e r g y c o n s u m p t i o n . T h ed a s h e d l i n e r e p r e s e n t s t h e t h e o r e t i c a l maximum d e m a n d r e d u c t i o n o na n h o u r l y b a s i s w i t h o u t c o ns i d e ri n g c a r r y ov e r o f e n e r g y ; i . e . , i f e a c hh o u r w e r e t h e f i r s t h o u r o f c o n t r o l . T h i s r e p r e s e n t s a n u p p e r b o u n d a r yo f p o s s i b l e l o a d r e d u c t i o n s , b a s ed o n t h e d i v e r s i f i e d h o u r l y d e m a n d sf o r r 9 5 0 F t e m p e r a t u r e s , a n d i n t h i s c a s e 1 7 . 5 m i n u t e s o f c o n t r o l . Th ed e m a n d r e d u c t i o n s f o r a 3 0 p e r c e n t e n e r g y c a r r y o v e r w e r e c o m p u t e df r o m t h e s a m e demand c u r v e b y a s s u m i n g t h a t 3 0 p e r c e n t o f t h e l o a dr e d u c t i o n d u r i n g a c o n t r o l l e d h o u r was c a r r i e d f o r w a r d t o t h e n e x th o u r , a n d t h a t t h e r e m a i n i n g 7 0 p e r c e n t was t h u s t r a n s m i t t e d t o t h e

s t r u c t u r e a n d e v e n t u a l l y l o s t t o t h e s u r r o u n d i n g s l a t e r i n t h e d a y . T h eh e a v y s o l i d l i n e r e p r e s e n t s t h e m e a s u r e d t e s t d a t a . I t i s e v i d e n t t h a t t h er e s i d u a l t h e r m a l e f f e c t w a s n ot a c on s ta nt 3 0 p e r c e n t a s a s s u m e d o v e rt h e e n t i r e c o n t r o l p e r i o d , b u t v a ri ed w i t h a m b i e n t t e m p e r a t u r e a n d t h e

n u m b e r o f c o n s e c u t i v e h o u r s o f c o n t r o l . D u r i n g a 1 0 h o u r c o n t r o lp e r i o d o n a h o t d a y , t h e r e s i d u a l t h e r m a l e f f e c t c a u s e d a s h a r p d e c l i n ei n l o a d r e d u c t i o n s d u r i n g t h e l a s t f o ur h ou r s o f c o n t r o l . T h i s i m p l i e st h a t b y t h i s t i m e , t h e a i r c o n d i t i o n e r w a s r u n n i n g a t a much h i g h e rd e m a n d d u r i n g t h e 4 2 . 5 m i n u t e t i m e p e r i o d t h a n i f i t w e r e n o t c o n t r o l -l e d e a r l i e r i n t h e d a y . T h e r e f o r e , i t c a n b e s a i d t h a t t h e l e v e l o fc o n t r o l l e d l o a d r i s e s w i t h r e s p e c t t o t h e u n c o n t r o l l e d c u r v e . I f s o , i t i sr e a s o n a b l e t o e x p e c t t h a t t h e l o w e r l e v e l o f l o ad r e d u c t i o n s d u r i n g a

c o n t r o l p e r i o d c a n r e s u l t f r o m t w o e n t i r e l y d i f f e r e n t p h e n o m e n a . O n e ,t h e l e v e l o f c o n t r o l l a b l e l o a d i s l o w s o t h e r e i s v e r y l i t t l e l o a d a v a i l a b l et o c o n t r o l ; a n d t w o , t h e r e s i d u a l t h e r m a l e f f e c t c a u s e s a i r c o n d i t i o n e r st o r u n much h a r d e r i n t h e l a t t e r s t a g e s o f a c o n t r o l p e r i o d , t h u s r a i s i n g

CENTR AL AIR CONDITIONING UNIT_ DIVERSIFIED D E M A N D REDUCTIONS- 1 - 1 0 p m CONTROL P E R I O D , 1 7 . 5 MI N

, x - *_ T h e o r e t i c a l Maximum

, ' X r Demand R e d u c t i o n

\ 0 ° O30% E n e r g yA m b i e n t T e m p e r a t u r e C a r r y o v e r-a n g e > . 9 5 0 F * Me a s u r e d Test

\D a t aS y n c r o n i z a t i o n R e s i d u a l T h e r m a l Effecta

I n c r e a s e D e c r e a s e

C o n t r o l P e r i o d R e c o v e r y P e r i o d

1 . 0

. 9

. 8

. 7

. 6

2o . 5

. 4

. 3

. 2

. 1

0

U n d e r s i z e d

O v e r s i z e d U n i t

7 0 8 0 9 0 1 0 0 1 1 0

Maximum D a i l y O u t d oo r A m b i e n t T e m p e r a t u r e , ( T a o ) F

F i g . 1 2 . P r o b a b i l i t y o f a n A / C U n i t Running D u r i n g t h e Hour o fMaximum Demand.

t h e l e v e l o f t h e c o n t r o l l e d l o a d . A p e r i o d o f r e c o v e r y a l w a y s f o l l o w st h e c o n t r o l p e r i o d . On d a y s when t h e maximum t e m p e r a t u r e e x c e e d s9 5 ° F , r e c o v e r y l o a d s w e r e e v i d e n t f o r t h r e e o r m o r e h o u r s . T a b l e Vg i v e s a summary o f t h e l o a d r e d u c t i o n s , r e c o v e r y l o a d s a n d e n e r g y f o rt h e f o u r c o n t r o l p e r i o d s t e s t e d .

D u r i n g t h e f i r s t s e a s o n o f t e s t s , i t w a s f o u n d t h a t t h e r a d i o r e c e i v e r sh a d a r a n d o m a n d i n o p e r a t i v e f a i l u r e r a t e o f a b o u t 1 5 p e r c e n t . T h e r e -f o r e , b e f o r e a n d a f t e r e a c h s ea s on a r e c e i v e r r e l i a b i l i t y t e s t was c o n -d u c t e d b y t r a n s m i t t i n g a s p e c i f i e d n u m b e r o f t e s t t o n e s a n d n o t i n gw h e t h e r e a c h r e c e i v e r r e s p o n d e d p r op e rl y ( b y o b s e r v i n g t h e r e c e i v e ro p e r a t i o n c o u n t e r s ) . T h o s e r e c e i v e r s w h i c h e i t h e r r e s p o n d e d r a n -

d o m l y o r f a i l e d t o r e s p o n d w e r e r e p l a c e d . T h e l o a d r ed u c t i on s i n T a b l eV may b e 1 5 t o 2 0 p e r c e n t h i g h e r t h a n some r e s e a r c h e r s ' d a t a b e c a u s et h e r e l i a b i l i t y o f t h e r e c e i v e r s w a s v e r y h i g h ( 9 9 p e r c e n t ) , t he d a ta wasc o l l e c t e d o n c l e a r d a y s , a n d t h e a v e r a g e u n i t s i z e w a s a b o u t 4 t o n . T h ea v e r a g e l o a d r ed u c t i on s w e r e t h e h i g h e s t f o r t h e 2 p m t o 6 p m c o n t r o l

p e r i o d f o r e a c h t e m p e r a t u r e r a n g e , b e c a u s e t h e c o n t r o l l a b l e l o ad s w e r eh i g h e r d u r i n g t h i s p e r i o d . T h e a v e r a ge l o ad r e d u c t i o n f o r t h e 1 p m t o1 0 p m c o n t r o l was t h e l o w e s t p r i m a r i l y d u e t o t h e r e s i d u a l t h e r m a le f f e c t o f t h e l o n g e r c o n t r o l p e r i o d . T h e n e t e n e r g y l o s s was t h e h i g h e s tf o r t h e 1 pm t o 1 0 p m c o n t r o l w i t h a n o v e r a l l e n e r g y p a y b a c k o f 3 5 . 4 5p e r c e n t o n d a y s when t h e a m b i e n t t e m p e r a t u r e was ¢ 9 5 0 F .

On l o w e r a m b i e n t t e m p e r a t u r e d a y s , t h e r e s i d u a l t h e r m a l e f f e c t was

s t i l l n o t i c e a b l e , b u t t o a l e s s e r d e g r e e . I n t h i s c a s e , t h e p r o c e s s o fr e c o v e r y b e g i ns d u r i ng t h e f i n a l s t a g e s o f c o n t r o l . T h i s m a k e s t h e l o a dr e d u c t i o n s a n d r e c o v e r y l o a d s s m a l l e r .

F o r t h e l o w e r t e m p e r a t u r e r a n g e s , t h e p a t t e r n o f h o u r l y l o a d r e d u c -t i o n s r e t a i n s i t s c h a r a c t e r i s t i c s h a p e b u t d e c l i n e s r a p i d l y f o r t h e 8 0 ° t o

8 4 ° F r a n g e . T h e l o a d r ed u ct i on s d u ri n g t h e s e l o w e r a m b i e n t t e m p e r a -t u r e s o c c u r p r i m a r i l y d u r i n g t h e s y n c h r o n i z a t i o n p e r i o d . O n c e s y n -c h r o n i z a t i o n i s c o m p l e t e , t h e l o a d r e d u c t i o n s f o r s u b s e q u e n t h o u r sd e c l i n e r a p i d l y t o z e r o . F i g u r e 1 0 i l l u s t r a t e s t h e i m p o r t a n c e o f c o n t r o l -l i n g l a t e i n t o t h e e v e n i n g h o u r s t o e l i m i n a t e d i s t r i b u t i o n p e a k r e c o v e r yl o a d s . F o r t h e 1 p m t o 5 p m a n d 2 p m t o 6 p m c o n t r o l p e r i o d s , t h e p e a kr e c o v e r y l o a d i s a c t u a l l y g r e a t e r t h a n t h e u n c o n t r o l l e d c a s e . T h e r e -f o r e , i n t h o s e i n s t a n c e s w h e r e T&D c a p a c i t y i s a c o n s i d e r a t i o n , A / Cl o a d c o n t r o l s ho ul d b e c on t i n u ed u n t i l 1 0 p m o r l a t e r t o m i t i g a t e t h ee f f e c t o f a l a t e e v e n i n g r e c o v e r y .I n d o o r T e m p e r a t u r e R e s p o n s e a n d C u s t o m e r C o m f o r t : O f t h e A / Cc o n t r o l p e r i o d s t e s t e d , i t was f o u n d t h a t t h e maximum i n d o o r t t e m p e r -

6 6 0

C o n t r o lP e r i o d

1 - 5 p m2 - 6 p m6 - 1 0 p m1 - 1 0 pm

1 - 5 p m2 - 6 p m6 - 1 0 p m1 - 1 0 pm

1 - 5 p m2 - 6 p m6 - 1 0 p m1 - 1 0 pm

1 - 5 p m2 - 6 p m6 - 1 0 p m1 - 1 0 p m

2 . 0

1 . 5

C0

R . ,

. 1 . 0C D

0

. 5

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 1 2 3PM T i m e - h r s

a m

F i g . 1 1 . C o m p a r i s o n o f T h e o r e t i c a l Maximum and Measured D i -v e r s i f i e d Demand R e d u c t i o n s f o r A / C .

Page 8: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 8/12

6 6 1

CONTROLLED AND UNCONTROLLEDA / C UNIT ( 3 t o n )

k W 2 . 0

6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 4a m pm a m

T i m e - h r s

F i g . 1 3 . A / C U n i t D emand and l n d o o r ( T a i ) T e m p e r a t u r e P r o f i l e s onC o n t r o l l e d and U nc o n t r o l l e d D a y s .

a t u r e r i s e a b o v e t h e u n c o n t r o l l e d t e m p e r a t u r e w a s o n l y 3 . 3 ° F w i t h a n

a v e r a g e o f l e s s t h a n 2 ° F . I t was c o n c l u d e d t h a t o t h e r v a r i a b l e s , s u c h a s

t h e d i f f e r e n c e i n o u t d o o r t e m p e r a t u r e p r o f i l e s o n c o n t r o l l e d a n d u n -

c o n t r o l l e d d a y s , t e n d e d t o m a s k t h e e f f e c t o f A / C c o n t r o l . T h i s mayo n l y b e t r u e i n n o r t h e r n c l i m a t e s w h e r e t h e r e i s t y p i c a l l y a 2 0 0 t o 3 0 ° Fd i f f e r e n c e b e t w e e n t h e maximum a n d m i n i m u m o u t d o o r t e m p e r a t u r e s .S u c h a n e x a m p l e i s g i v e n i n F i g u r e s 1 3 a n d 1 4 w h e r e t h e i n d o o rt e m p e r a t u r e ( T a i ) r i s e a b o v e t h e u n c o n t r o l l e d v a l u e w a s o n l y 1 ° F f o r a

2 pm t o 6 pm c o n t r o l o n a 9 5 ° F d a y . T h i s 2 4 0 0 s q u a r e f o o t , t w o - s t o r y

c o l o n i a l - t y p e home w a s c o n s i d e r e d t o h a v e a n u n d e r s i z e d A / C u n i t o f

CONTROLLED AND UNCONTROLLEDA / C UNIT ( 3 t o n )

0

i

100

9 5 X

90/

Ta o max 9 5 ° F x

85 7-20-80 /

/ // Ta o max= 9

8 0 / 8 - 7 - 7 9

7 5 .-- I n d o o rT e m p e r e2 - 6 pm C o n t r o l

70 7-20-80

65-

60 \ < -I n d o o r TempU n c o n t r o l l e d8 - 7 - 7 9

I r l , . . . . . . . . . . . . .

e r a t u r e ( T a i )

9 0

88

86

84

82

80

7 8

76

74

72

u2 4 6 8 1 0 1 2 1 4 1 6 1 8 20 22 24 2 4 6 u

am pm am

T i m e - h r s

F i g . 1 4 . R e l a t i o n s h i p b e t w e e n I n d o o r ( T a i ) and O u t d o o r ( T a o )T e m p e r a t u r e s .

u I ~ m

cn 1 . 5*-

W

C a- c_

W,w 4

1 . 0x

o . 50X

U -

0

S E A S O N A L WATER HE ATE R LO A D S1 9 7 8

z 1 1 --- S p r i n g  -A - Summer

| / t \a l l' A t W i n t e r

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 4 6

a m pm am

T i m e - h r s

F i g . 1 5 . W a t er H e a t i n g U n i t H o u r l y D i v e r s i f i e d Demands.

TABLE VI

S e a s o n a l U n c o n t r o l l e d Water H e a t i n g Load

C h a r a c t e r i s t i c s f o r 1 9 7 8( 8 7 g a l . a v g .

P r o f i l eW i n t e r

S p r i n gSummerF a l l

D a i l yP e a k( k W )

1 . 9 4 52 . 0 1 1

1 . 4 2 4

1 . 7 3 8

Timeo f

P e a k

9 a m

9 a m

8 a m

9 a m

D a i l y E n e r g yC o n s u m p t i o n

k Wh6 a m - 6 a m

2 5 . 6 2 1

2 6 . 3 7 7

1 7 . 3 7 9

2 2 . 2 9 3

D a i l y LoadF a c t o r

6 a m - 6 a m

0 . 5 4 9

0 . 5 4 7

0 . 5 0 9

0 . 5 3 4

3 t o n o r 4 . 5 kW. I t i s t h o u g h t t h a t t h e r e a s on t h e T a i r i s e w a s s o s m a l lmay b e d u e t o t h e r e l a t i v e l y f e w h o u r s Ta o w a s a b o v e 8 0 ° F a n d t h a t t h ehome was w e l l i n s u l a t e d f o r t h e w i n t e r h e a t i n g s e a s o n . S i n c e t h eA S H R A E c o m f o r t s t a n d a r d s w e r e m a i n t a i n e d f o r a l l t h e c o n t r o l

p e r i o d s t e s t e d , 9 6 p e r c e n t o f t h e c u s t o m e r s a c c e p t e d t h e s l i g h t l y h i g h e ri n d o o r t e m p e r a t u r e s .

W a t e r H e a t i n g Load C h a r a c t e r i s t i c s : T h e d i v e r s i f i e d W/H u n i t h o u r l ydemand p r o f i l e s f o r t h e f o u r s e a s o n s a r e g i v e n i n F i g u r e 1 5 . T h e s ed e m a n d s a r e b a s ed o n a n a v e r a g e c a p a c i t y o f 8 7 g a l l o n s w h i c h i s h i g h e rt h a n t h e s y s t e m a v e r a g e . As s e e n i n T a b l e V I t h e h i g h e r p e a k d e m a n d si n t h e w i n t e r - s p r i n g s e a s o n s a r e t h e r e s u l t o f l o w i n l e t w a t e r t e m p e r a -t u r e s . T h e l o w e r p e a k d e m a n d s i n t h e summer a r e d u e t o h i g h e r i n l e tw a t e r t e m p e r a t u r e s a n d l o w e r u s a g e i n t h e e v e n i n g h o u r s .

W a t e r H e a t i n g Load R e d u c t i o n s a n d R ec o v e ry L o a d s : T a b l e I I l i s t st h e W/H c o n t r o l p e r i o d s i n v e s t i g a t e d . T h e D e t r o i t E d i s o n Companyi n t e r r u p t s a p p r o x i m a t e l y 1 8 0 , 0 0 0 e l e c t r i c w a t e r h e a t e r s p r i m a r i l y f o rf u e l s a v i n g s , h o w e v e r , s y s t e m demand r e d u c t i o n s h a v e o c c a s i o n a l l yb e e n u s e d i n t i m e s o f s y s t e m g e n e r a t i o n c a p a c i t y s h o r t a g e s . F o r t h i sr e a s o n m o s t o f t h e c on t ro l p e r i o d s s e l e c t e d a r e i n t h e a f t e r n o o n o re v e n i n g . S e ve ra l o f t h e c ommon s t r a t e g i e s f o r t h e w i n t e r a n d summers e a s o n s , a n d t h e i r r e s u l t s a r e s u m m a r i z e d i n F i g u r e s 1 6 a n d 1 7 a n d

T a b l e V I I . T h i s d a t a may n o t b e t y p i c a l f o r s m a l l c a p a c i t y w a t e rh e a t e r s . Some o f t h e g e n e r a l c o n c l u s i o n s d e r i v e d f r o m t h e t e s t s a r eg i v e n b e l o w . I n v i e w i n g t h e t w o f i g u r e s a n d t h e t a b l e , when t h e w a t e rh e a t e r s a r e c o n t r o l l e d o n p e a k , t h e r e c o v e r y l o a ds a re h i g h e r , t h er e c o v e r y p e r i o d i s l o n g e r , a n d t h e p e r c e n t e n e r g y p a y b a c k s a r e h i g h e rt h a n when t h e u n i t s a r e c o n t r o l l e d d u r i n g t h e m i d - d a y v a l l e y l o a dh o u r s . T h i s i s t r u e i n b o t h t h e summer a n d w i n t e r . T h e f i r s t h o u r o fr e c o v e r y l o a d i s a p p r o x i m a t e l y t h e s a m e d u r i n g summer a n d w i n t e r .S i n c e t h e u n c o n t r o l l e d l o a d s a r e l o w e r i n t h e s u m m e r , t h e p e r c e n te n e r g y p a y b a c k s a r e h i g h e r b e c a u s e m o s t o f t h e p a y b a c k i s a c h i e v e d i nt h e f i r s t h o u r o f r e c o v e r y . A n o t h e r r e a s o n why t h e p a y b a c k s c o u l d b el o w e r i n t h e w i n t e r i s b e c a u s e l o w e r t e m p e r a t u r e w a t e r i s u s e d d u r i n gt h e c o n t r o l p e r i o d a n d t h u s l e s s p e r c e n t a g e o f p a y b a c k e n e r g y i sn e e d e d .

T h e W/ H l o a d i s m o r e d e s i r a b l e t o c o n t r o l t h a n A / C l o a d b e c a u s eW/H l o a d r ed u c t i on s o f f r o m . 5 kW t o 1 . 0 kW c a n b e a c hi e ve d y e a r -r o u n d , w h i l e t h e s a m e r a n g e o f A / C l o a d r e d u c t i o n s c a n o n l y b e

Page 9: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 9/12

TABLE V I I

E l e c t r i c Water H e a t i n g Load R e d u c t i o nand R e c o v e r y L o a d s

L o a d a n d E n e r g y SummaryP e a k A v e r a g e 1 s t Hour

N e t P e r c e n t L o a d Load R e c o v e r yE n e r g y E n e r g y R e d u c t i o n R e d u c t i o n Loadk Wh P a y b a c k kW kW kW

W i n t e r- 1 . 1 6 6 1 1 . 1 2 0 . 9 9 1 . 4 6- 0 . 7 4 6 0 0 . 9 7 0 . 9 3 0 . 9 5- 1 . 4 2 6 4 1 . 1 1 0 . 9 9 1 . 6 3- 0 . 3 3 6 3 0 . 8 9 0 . 8 9 0 . 5 6- 0 . 6 3 7 9 1 . 1 1 1 . 0 0 1 . 4 1- 0 . 3 4 6 6 1 . 0 0 1 . 0 0 0 . 7 0- 0 . 7 4 6 5 1 . 1 1 1 . 0 6 0 . 6 9+ 0 . 0 7 1 0 6 1 . 1 1 1 . 1 1 0 . 8 9- 0 . 4 5 9 0 1 . 5 7 1 . 4 8 1 . 6 5

Summer8 3 0 . 7 5

1 0 0 0 . 7 19 8 0 . 8 5

1 6 3 0 . 8 51 4 7 0 . 8 91 0 4 0 . 8 81 0 3 0 . 7 3

0 . 7 00 . 6 80 . 7 10 . 7 40 . 8 70 . 7 80 . 7 3

1 . 2 91 . 0 91 . 5 70 . 9 71 . 7 31 . 7 01 . 5 0

CONTROLLED A ND UNCONTROLLEDW/H UNIT ( 8 7 g a l . a v g . )SUMMER SEASON

U n c o n t r o l l e d---- 2 - 4 pm C o n t r o l

L I

CONTROLLED AND UNCONTROLLEDW/ H UNIT ( 8 7 g a l . a v g . )WINTER SEASON

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 4 6am pm a m

T i m e - h r s

F i g . 1 7 . W i n t e r W a t e r H e a t e r D i s t r i b u t i o n C i r c u i t O f f - P e a k andO n - P e a k L o a d R e d u c t i o n s and R e c o v e r y P a t t e r n s .

o b t a i n e d when t h e a m b i e n t t e m p e r a t u r e i s 9 0 ° F o r g r e a t e r . A l s o t h ep e r c e n t e n e r g y p a y b a c k s f o r t h e w a t e r h e a t e r a r e two t o t h r e e t i m e sm o r e t h a n t h e 3 0 p e r c e n t p a y b a c k s o f A / C c o n t r o l i n a n o r t h e r nc l i m a t e .C u s t o m e r a n d C i r c u i t V o l t a g e P r o f i l e s

M o s t u t i l i t y d i s t r i b u t i o n s y s t e m s h a v e b e e n d e s i g n e d t o p r o v i d en o r m a l s e r v i c e v o l t a g e s w i t h i n a b a n d w i d t h o f R a n g e A , 1 1 4 t o 1 2 6 V ,a s s p e c i f i e d i n ANSI S t a n d a r d C 8 4 . 1 . D e t r o i t E d i s o n h a s u s e d v o l t a g er e d u c t i o n t o e n s u r e s y s t e m s e c u r i t y s i n c e 1 9 4 8 ; a n d h a s u s e d r a d i oc o n t r o l r e c e i v e r s o n 7 6 0 d i s t r i b u t i o n s t a t i o n b u s a n d l i n e r e g u l a t o r s t o

l o w e r t h e v o l t a g e f i v e p e r c e n t s i n c e 1 9 6 8 5 . ( S e e F i g u r e 3 , P a r t I com-p a n i o n p a p e r . ) B e f o r e u s i n g v o l t a g e c o n t r o l t o r e d u c e d e m a n d s o r

e n e r g y , u t i l i t i e s s h o ul d m e a s u r e t h e v o l t a g e p r o f i l e s t h r o u g h o u t t h ed i s t r i b u t i o n n e t w o r k f o r a t l e a s t o n e y e a r t o a v o i d s u b j e c t i n g c u s t o m e r st o v o l t a g e s b e l o w , 1 1 4 V . When t h e t e m p e r a t u r e i s g r e a t e r t h a n 9 0 0 F ,t h e c i r c u i t b e c o m e s h e a v i l y l o a d e d , a s s e e n i n F i g u r e 4 , a n d i t i s n o tuncommon f o r t h e s e r v i c e v o l t a g e t o d r o p 5 t o 1 0 v o l t s b e t w e e n t h ee a r l y m o r n i n g a n d t h e p e a k l o a d t i m e . S e e F i g u r e 1 8 . F o r t h e 1 9 7 8summer s e a s o n , t h e v o l t a g e r e g u l a t o r s o n l a t e r a l s   1 a n d  2 w e r e s e tt o r e g u l a t e a t a n o m i n a l 1 2 5 V a n d v o l t a g e h i s t o g r a m s w e r e c o n -s t r u c t e d i n . 5 V i n c r e m e n t s f o r t h e l a t e r a l s , t r a n s f o r m e r s , a n d c u s -

6 6 2

C o n t r o lP e r i o dpm-pm

1 - 42 - 42 - 63 - 43 - 64 - 54 - 65 - 67 - 1 0

1 - 42 - 42 - 64 - 65 - 77 - 1 08 - 1 1

2 . 5 I

2 . 0

1 . 5 1

- 0 . 3 60 . 0 0

- 0 . 0 6+ 0 . 9 2+ 0 . 8 1+ 0 . 1 0+ 0 . 0 6

1 . 0

. 5

2 4 6 8 1 0 1 2 1 4 1 6 1 8

a m pmT i m e - h r s

F i g . 1 6 . Summer W a t e r H e a t e r D i s t r i b u t i o n C i r c u i t O f f - P e a k andO n - P e a k L o a d R e d u c t i o n s and R e c o v e r y P a t t e r n s .

I I

Page 10: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 10/12

6 6 3

SUMMER SEASON 1 9 7 8

L ATE R AL   49 - 8 - 7 8

> 9 5 0 F

U- 1 0 -TR ANSF ORMER   1 5 X1

9 - 8 - 7 8

pm

s e r v i c e v o l t a g e o c c u r s o n t h e h e a v i e s t l o a d e d t r a n s f o r m e r a n d / o r a t t h ec u s t o m e r w i t h t h e h i g h e s t l o a d s a n d l o n g e s t s e c o n d a r y a n d s e r v i c ed r o p . F i g u r e s 1 9 ( b ) a n d 1 9 ( c ) i l l u s t r a t e t h a t t h e f i r s t c u s t o m e r f r o m t h e

2 5 0 f e e d p o i n t w i t h t h e h i g h e s t l o a d a n d s e r v e d f r o m a l i g h t l y l o a d e d t r a n s -

f o r m e r h a d t h e l o w e s t s e r v i c e v o l t a g e o n t h e c i r c u i t , o r 1 1 5 . 2 V . F i g u r e1 9 c l e a r l y i l l u s t r a t e s t h e d i f f i c u l t y i n m a i n t a i n i n g R a n g e A v o l t a g e s

2 0 0 d u r i n g h o t d a y s i f t h e s e r v i c e v o l t a g e i s i n t e n t i o n a l l y l o w e r e d t o o b t a i nd e m a n d o r e n e r g y r e d u c t i o n s . F u r t h e r m o r e , t h e H i c k o r y c i r c u i t i sc o m p a c t a n d s er v es o n l y a q u a r t e r s q u a r e m i l e a r e a ; w h i l e many r u r a l

1 5 0 c i r c u i t s may s e r v e a n a r e a o f 4 0 s q u a r e m i l e s . As a r e s u l t , t h e v o l t a g eX c o n t r o l t e s t s w e r e s c h e d u l e d o n t h e H i c k o r y c i r c u i t d u r i n g t h o s e d a y s' i n t h e s um m er when t h e t e m p e r a t u r e s - 9 0 ' F . B o t h t h e l a t e r a l v o l t a g e

1 0 0 r e g u l a t o r s a n d t h e d i s t r i b u t i o n s t a t i o n b u s r e g u l a t o r w e r e u s e d t oo b t a i n t h e d e s i r e d v o l t a g e r e d u c t i o n .

V o l t a g e c o n t r o l t e s t s w e r e s c h ed u l e d t h r ou g h o ut t h e f a l l , w i n t e r a n d

50 s p r i n g s e a s o n s , b e c a u s e t h e l o a d on t h e c i r c u i t was much l o w e r t h a n i nt h e s u m m e r . D u r i n g t h e w i n t e r t h e l a t e r a l v o l t a g e r e g u l a t o r s w e r e s e t t ot h r e e d i s t i n c t v o l t a g e l e v e l s o n a w e e k l y b a s i s t o m i t i g a t e t h e e f f e c t s o fw e a t h e r d i f f e r e n c e s . T h e v o l t a g e s e t t i n g s w e r e 1 2 4 V ( n o r m a l ) . 1 2 8 V

0 ( r a i s e ) a n d 1 2 0 V ( l o w e r ) . T h e r e g u l a t o r s w e r e i n c l o s e e l e c t r i c a l p r o -5 0 x i m i t y a n d t h e i n t e r a c t i o n c a u s e d a . 5 V d i f f e r e n c e i n t h e v o l t a g e

p r o f i l e s o n l a t e r a l s   1 a n d  4 a s s h o w n i n F i g u r e s 2 0 ( a ) a n d 2 0 f ) . T h ev o l t a g e c o n t r o l d u r i n g t h e w i n t e r p r o d u c e d v e r y p o o r c u s t o m er v o l t a g e

4 0 r e g u l a t i o n ; t h e w i d e r b a n d w i d t h s a n d f l a t t e r v o l t a g e p r o f i l e s b e i n gi n t e n t i o n a l l y c r e a t e d b y t h e t h r e e l a t e r a l v o l t a g e s e t t i n g s s p a n n i n ga l m o s t 1 0 v o l t s . T h e w i d e s t b a n d w i d t h o f 1 3 . 5 v o l t s o c c u r r e d i n F i g u r e

3 0 2 0 ( j ) f o r t h e l a s t c u s t o m e r o n l a t e r a l   4 . I n a c t u a l p r a c t i c e t h e w i d eb a n d w i d t h s s u c h a s t h o s e i n F i g u r e s 2 0 ( c ) , 2 0 ( h ) , 2 0 ( e ) , a n d 2 0 ( j ) w o u l d

X n o t o c c u r s i n c e t h e f e e d p o i n t v o l t a g e w o u l d b e s e t a t a n o m i n a l v a l u e o f= 1 2 4 v o l t s ; w i t h v o l t a g e r e d u c t i o n o n l y , t h e b a n d w i d t h s w o u l d b e n a r -

2 0 r o w e d t o a p p r o x i m a t e l y 9 v o l t s o r a r a n g e o f 1 2 3 t o 1 1 4 v o l t s . B e c a u s et h e h i g h v o l t a g e s ( 1 2 6 t o 1 2 9 V ) o c c u r r e d d u r i n g t h e l i g h t l o a d e a r l ym o r n i n g h o u r s , t h i s w a s d e e m e d a c c e p t a b l e f o r t e s t p u r p o s e s .

1 0

R e a l a n d R e a c t i v e Power C h a n g e s w i t h V o l t a g e C o n t r o l

T h e r e s u l t s o f t h e w i n t e r a n d summer v o l t a g e t e s t s a r e l i s t e d i n0 T a b l e V I I I . A o n e p e r c e n t c h a n g e i n v o l t a g e r e s u l t e d i n a b o u t a o n e6 p e r c e n t ( . 9 6 ) c h a n g e i n r e a l p o w e r f o r h i g h l o ad d a y s w h e r e t h e d a i l y

p e a k l o a d was g r e a t e r t h a n 9 0 p e r c e n t o f t h e w i n t e r p e a k . T h i s c o m -p a r e d t o o n l y . 7 6 c h a n g e when t h e d a i l y p e a k l o a d w a s 7 6 t o 1 0 0 p e r c e n t

5 o f t h e w i n t e r p e a k . T h i s i s t o b e e x p e c t e d s i n c e o n e o f t h e l a r g e s t

c o m p o n e n t s o f l o a d i n t h e w i n t e r was e l e c t r i c w a t e r h e a t i n g a n d f o r t h eh i g h e r l o a d d a y s t h e v o l t a g e d r o p t h r o u g h o u t t h e c i r c u i t i s g r e a t e r . T h ep e r c e n t AQ/AV i n t h e w i n t e r w a s m o r e t h a n t w ic e t h e p e r c e n t A P / A V .D u r i n g t h e ' s u m m e r , v o l t a g e c o n t r o l t e s t s c o u l d n o t b e c o nd u c t ed whent e m p e r a t u r e s e x c e e d e d 9 0 ' F b e c a u s e s o m e c u s t o m e r s w o u l d h a v e h a dv o l t a g e s b e l o w t h e 1 1 4 V m i n i m u m . T h e r e f o r e SVC t e s t s w e r e c o n -

J 9 d u c t e d i n t h e 8 0 - 9 0 ° F t e m p e r a t u r e r a n g e o n l y . T h e p e r c e n t c h a n g e i nr e a l p o w e r f o r t h i s t e m p e r a t u r e r a n g e w a s 1 . 2 6 w h i l e t h e c h a n g e i nr e a c t i v e p o w e r w a s 4 . 6 6 f o r e a c h p e r c e n t c h a n g e i n v o l t a g e . T h e

2 summer a n d w i n t e r v o l t a g e c o n t r o l t e s t s t h e r e f o r e i n d i c a t e d t h a tAQ/AV i n c r e a s e d w i t h a n i n c r e a s e i n t e m p e r a t u r e . T h i s a p p e a r s a p -p r o p r i a t e i n t h a t t h e A / C i n d u c t i o n m o t o r l o a d b e c o m e s p r e d o m i n a t e a t

1 a b o u t 8 0 ' t o 8 5 ' F .

TABLE V I I I

S o u r c e V o l t a g e C o n t r o l T e s t s

T i m e - h r s1 9 .

F i g . 1 8 . T y p i c a l L a t e r a l , T r a n s f o r m e r , and C u s t o m e r V o l t a g e ,P o w e r F a c t o r , and L o a d P r o f i l e s on a > ' 9 5 ° F D a y .

t o m e r s e r v i c e p o i n t s . T h e s m o o t h c u r v e s i n F i g u r e 1 9 r e p r e s e n t t h e T y p e o f D a y s % A Vv o l t a g e i n p e r c e n t t i m e f o r a l l summer d a y s a n d t h e v e r t i c a l b a r s A v e r a g e L o a dc o n s i s t o f d a t a f o r o n l y t h o s e d a y s w h e r e t h e t e m p e r a t u r e e x c e e d e d 7 6 - 1 0 0 % 5 . 49 0 ' F . T h e v e r t i c a l d a s h e d l i n e s s h o w t h e h i g h e s t a n d l o w e s t o b s e r v e dv o l t a g e s f o r e a c h l o c a t i o n . H i g h L o a d

From t h i s f i g u r e i t s h o u l d b e n ot e d t h a t t h e l o w e s t c u s t o m e r v o l t a g e s 9 0 - 1 0 0 % 5 . 5a r e a l m o s t i n d e p e n d e n t o f l o c a t i o n on t h e c i r c u i t . T h i s f a c t m a k e s i ts o m e w h a t d i f f i c u l t t o s e l e c t c i r c u i t s w h e r e v o l t a g e r e d u c t i o n c a n b ei m p l e m e n t e d . F i g u r e s 1 9 ( c ) a n d 1 9 ( h ) a r e t h e f i r s t c u s t o m e r s ' v o l t a g e 1 9 1h i s t o g r a m s a n d F i g u r e s 1 9 ( e ) a n d 1 9 i ) a r e t h e l a s t c u s t o m e r s ' v o l t a g e 8 0 - 9 0 ° F 7 . 0h i s t o g r a m s o n l a t e r a l s   1 a n d   4 , r e s p e c t i v e l y . T h e l o w e s t c u s t o m e r

7 8 , 1979 W i n t e r ( J a n u a r y , F e b r u a r y )

% V R a n g e ( l a t e r a l )

- 3 . 4 %( 1 2 0 . 8 V )

0 . 0 % + 2 . 0 %( 1 2 5 . 4 V ) ( 1 2 7 . 9 V )

- 3 . 7 % 0 . 0 % + 1 . 8 %( 1 2 0 . 9 V ) ( 1 2 5 . 5 V ) ( 1 2 7 . 8 V )

8 1 Summer ( J u l y , A u g u s t ) ( C i r c u i t )- 2 . 8 % 0 . 0 % + 4 . 2 %

( 1 1 9 . 5 V ) ( 1 2 2 . 9 V ) ( 1 2 8 . O V )

I n

4 -

1 2 5

1 2 7

1 2 6

1 2 5

1 2 4

- 1 0 0 i <

-8 0 \ ,

-60

-40 X

1 2 3 I - 2 0

am

S o u r c e

% A P % AA V A V

0 . 7 6 2 . 3 2

0 . 9 6 2 . 1 1

1 . 2 6 4 . 6 6

> )

Page 11: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 11/12

6 6 4

SUMMER VOL T AGE PROFILES

L ATE R AL   1

I u rLIt

% o f T i m e

5 0

- 4 0 -

_ 3 0 -

- 2 0 -

_ 1 0 _

0 - , r

3 0 [

2 0 -

a k

  b )

CUSTOMERt I

L O

N f I

N I n l .. ni

INI -

  c }

T R A NSFO R ME R

  d )

a w : ~ >s CUSTOMER I

L1L

1 2 4 1 2 2V o l t a g e

  X ( e )

1 2 0 1 1 8 1 1 6

FITT

2 0

1 0

0

2 0

1 0

0

2 0

1 0

0

  g )

CUSTOMER

LfI I LOLD a i ~ ~ ~ ~ ~ 1r d l l l V

( h )

TR ANSF ORMER

  i ,

ml | CUSTOMER

_ ~ L n f l nN gn~~~~~~~~~~~~~~~~~~~Ll

1 2 8 1 2 6 1 2 4 1 2 2V o l t a g e

m ~ ~ ~ ~ ~ ~ ~ ~ j )

1 2 0 1 1 8 1 1 6

F i g . 1 9 . L a t e r a l , T r a n s f o r m e r and Customer V o l t a g e H i s t o g r a m sD u r i n g t h e Summer S e a s o n .

CONCLUSIONS

O b t a i n i n g a c c u r a t e A/C l o a d r e d u c t i o n s a n d recovery l o a d s i s t h ef i r s t s t e p i n a s s e s s i n g t h e e c o n o m i c b e n e f i t o f c o n t r o l l i n g A /C l o a d s .Th e m e t h o d o u t l i n e d i n t h i s p a p e r h a d s e v e r a l a d v a n t a g e s . F i r s t , i tp e r m i t t e d a n a c c u r a t e measurement o f t h e l o a d r e d u c t i o n s a n d recov-

er y l o a d s b e c a u s e t h e c o nt r ol l e d a n d u n c o n t r o l l e d g r o u p s o f A /C l o a dwere c o n f i n e d t o a s m a l l g e o g r a p h i c area, n a m e l y one d i s t r i b u t i o nc i r c u i t ; t h u s , t h e e f f e c t o f w e a t h e r as a v a r i a b l e was t h e same f o r e a c hg r o u p . S e cQ n d , b e ca u s e a l l t h e c o nt r ol l a b l e l o a d s ( A / C a n d W/H) were

on t h e ` a m e d i s t r i b u t i o n c i r c u i t , t h e c h a n g e i n t h e n e t w o r k energy

l o s s e s a n d t h e r m a l c a p a c i t y c o u l d b e m o n i t o r e d f o r e a c h c o n t r o l

s t r a t e g y . T h i s c o u l d n o t b e a c h i e v e d b y s e l e c t i n g a random s a m p l e o fc o n t r o l l a b l e l o a d s w h i c h ar e l o c a t e d t h r o u g h o u t t h e e n t i r e T&D s y s-

t e m . A d i s t r i b u t i o n c i r c u i t l o a d m a n a g e m e n t s t u d y , s u c h a s t h e one

d e s c r i b e d i n t h i s paper, s h o u l d n o t r e p l a c e s t ud i es c o ns i s ti n g o fs y s t e m - w i d e s a m p l e s o f customer c o n t r o l l a b l e l o a d s ; h o w e v e r , t h i st y p e o f s t u d y d o e s c o m p l e m e n t t h e o t h e r s a d d i n g u n d e r s t a n d i n g as t o

h o w c h a n g e s in customer l o a d p r o f i l e s r e f l e c t b a c k t h r o u g h t h e system.A l s o , m o n i t o r i n g d i s t r i b u t i o n c i r c u i t s i s t h e o n l y a p p r o a c h a v a i l a b l e t o

d e t e r m i n e demand c h a n g e s r e s u l t i n g f r o m c h a n g e s i n s e r v i c e v o l t a g e .On e o f t h e d i s a d v a n t ag es o f a d i s t r i b u t i o n c i r c u i t l o a d m a n a g e m e n t

s t u d y i s t h a t t h e s a m p l e s i z e s ar e s m a l l a n d may n o t b e r e p r e s e n t a t i v e

o f t h e s y s t e m average. T h e r e f o r e , i t i s s u g g e s t e d t h a t a b l e n d o f t h er e s u l t s l e a r n e d f r o m d i s t r i b u t i o n c i r c u i t s t u d i e s a n d customer l o a dc o n t r o l s t u d i e s b e u s e d i n e s t i m a t i n g t h e s y s t e m - w i d e e c o n o m i c i m p l i -c a t i o n s o f s e r v i c e v o l t a ge c o nt r ol a n d d i r e c t l o a d c o n t r o l . P a r t I I I o ft h i s s e r i e s o f papers d e s c r i b e s how d i s t r i b u t i o n c i r c u i t a n d customerl o a d s t u d i e s c a n b e c o m b i n e d t o t r a n s l a t e s a m p l e r e s u l t s i n t o s y s t e m -

w i d e i m p a c t s .

REFERENCES

1. M u r r a y W. D a v i s , T h e o d o r e J . K r u p a , a n d Matthew J . D i e d z i c , J r . , Th e E c o n o m i c s o f D ir ec t C o n t ro l o f R e s i d e n t i a l L o a d s on t h eD e s i g n a n d O p e r a t i o n o f t h e D i s t r i b u t i o n S y s t e m , P a r t I D e s i g n o f

E x p e r i m e n t . Companion paper, m a n u s c r i p t s u b m i t t e d t o IEEE,pp . 1 - 8 , J a n u a r y , 1 9 8 1 .

2 . R o n a l d L . M c I n t y r e , J a m e s D . C y r u l e w s k i , a n d J a m e s M. G o o d -r i c h ,  P r a c t i c a l B en ef i t s o f Load M o d i f i c a t i o n f o r T h e D e t r o i t E d i -s o n Company. IEEE-PES Summer M e e t i n g , M i n n e a p o l i s , M i n -n e s o t a , 8 0 S M 5 1 6 - 5 , pp . 1 - 8 , J u l y 1 3 - 1 8 , 1 9 8 0 .

3 . G e o r g e W. B r a z i l ,   A r k a n s a s Power a n d L i g h t Company A i r C o n -d i t i o n i n g Load Management P r o g r a m . P a p e r p r e s e n t e d a t t h eIEEE-PES Summer M e e t i n g , V a n c o u v e r , B r i t i s h C o l u m b i a ,A 7 9 5 1 3 - 3 , pp. 1 - 7 , J u l y 1 5 - 2 0 , 1 9 7 9 .

L ATE R AL   4

1 2 62 8

Page 12: 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of the Distribution System Part II

7/27/2019 1983_Davis_Krupa_Deidzic_The Economics of Direct Control of Residential Loads on the Design and Operation of t…

http://slidepdf.com/reader/full/1983daviskrupadeidzicthe-economics-of-direct-control-of-residential-loads 12/12

6 6 5

WINTER VOLT A G E PROFILES

L ATE R AL   1

/ R E G U L A T O R BANDWITHS

T mI

  dI I

9 - 2  a )

4t -TRANSFORMER

a t 0 ' 4I L j L A I 1 0

II

1 2 8

( b )CUSTOMER

tc )

T R A NSFO R ME R

( d )

CUSTOMER~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ L O ,

1 2 6 1 2 4 1 2 2 12 0 1 1 8V o l t a g e

2 ( e )

LATERAL  4

% o f T i

2 0

1 0

0

2 0

1 0

0

2 0

1 0

0'

2 0

1 0

0

2 0

1 0

0

F I N

  f )

TRANSFORMER X

_~~~~~~~~~~~ o

  0 0

( h )

iai~~~~~~II

TR ANSF ORMER

- J~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~USTOMER

. 1 3 0 1 2 8 1 2 6 1 2 4 1 2 2 1 2 0 1 1 8 1 1 6V o l t a g e

LI I , I I   i ) l 4

F i g . 2 0 . L a t e r a l , T r a n s f o r m e r , and Customer V o l t a g e H i s t o g r a m sf o r T h r e e D i f f e r e n t L a t e r a l V o l t a g e S e tt i ng s D u r i n g t h eW i n t e r S e a s o n .

4 .  P o s i t i v e L o a d C o n t r o l P i l o t P r o g r a m . G e o r g i a P o w e r C o m p a n y ,p p . 1 - 1 9 , I n t e r i m R e p o r t 1 9 8 0 .

5 . B . F . S m i t h a n d E . H . A r j e s k i ,  Load Management b y R a d i o -C o n t r o l l e d V o l t a g e R e d u c t i o n . P r e s e n t e d t o EEI , E l e c t r i c a l S y s -tem a n d E q u i p m e n t C o m m i t t e e , Oklahoma C i t y O k l a h o m a ,p p . 1 - 2 2 , O c t o b e r 1 9 , 1 9 7 1 .

ACKNOWLEDGEMENTS

T h e a u t h o r s w i s h t o express t h e i r a p p r e c i a t i o n f o r t h e c o n t r i b u t i o n s

o f S a t y e n d r a B a s u f o r d e v e l o p i n g t h e computer programs a n d a n a l y z -i n g t h e d a t a . Th e a u t h o r s a l s o a p p r e c i a t e t h e a s s i s t a n c e o f S t a n l e y D .

Z a l e w s k i a n d M a r l a K . Cezon f o r p r e p a r a t i o n o f t h e f i g u r e s and t a b l e s

a n d a i d i n g i n t h e d a t a a n a l y s i s .

9 5e