18. more special functions

27
18. More Special Functions 1. Hermite Functions 2. Applications of Hermite Functions 3. Laguerre Functions 4. Chebyshev Polynomials 5. Hypergeometric Functions 6. Confluent Hypergeometric Functions 7. Dilogarithm

Upload: olin

Post on 21-Jan-2016

76 views

Category:

Documents


1 download

DESCRIPTION

18. More Special Functions. Hermite Functions Applications of Hermite Functions Laguerre Functions Chebyshev Polynomials Hypergeometric Functions Confluent Hypergeometric Functions Dilogarithm Elliptic Integrals. 1.Hermite Functions. Hermite ODE :. Hermite functions - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 18. More Special Functions

18. More Special Functions

1. Hermite Functions

2. Applications of Hermite Functions

3. Laguerre Functions

4. Chebyshev Polynomials

5. Hypergeometric Functions

6. Confluent Hypergeometric Functions

7. Dilogarithm

8. Elliptic Integrals

Page 2: 18. More Special Functions

1. Hermite Functions

2 2 0n n nH xH nH Hermite ODE :

Hermite functionsHermite polynomials ( n = integer )

2 2n

n x xn n

dH x e e

d x

2 2

2 0x xn ne H n e H

Rodrigues formula

exp 2w d x x 2xe

0

0

1

qd x

p

nn

n n

p y q y y

wp wq w pe

w p y w y

dy w p

w d x

2 2

0

,!

nt t x

nn

tg x t e H x

n

Generating function :Assumed starting point here.

Hermitian form

Page 3: 18. More Special Functions

Recurrence Relations 2 2

0

,!

nt t x

nn

tg x t e H x

n

2

12

1

21 !

nt t x

nn

g tt x e H x

t n

10 0

2! !

n n

n nn n

t tt x H x H x

n n

0 11

2 2 2!

n

n nn

txH x nH x xH x

n

1 02H x xH x 1 12 2n n nH x nH x xH x 1n

2 2

0

2!

nt t x

nn

g tte H x

x n

1

0 1

2 2! 1 !

n n

n nn n

t tt H x H x

n n

1 11 !

n

nn

tH x H x

n

0 0H x 12n nH x nH x 1n

0,0 1g x H x All Hn can be generated by recursion.

Page 4: 18. More Special Functions

Table & Fig. 18.1. Hermite Polynomials

Mathematica

Page 5: 18. More Special Functions

Special Values 2 2

0

,!

nt t x

nn

tg x t e H x

n

2

0

0, 0!

nt

nn

tg t e H

n

2

0 !

nn

n

t

n

2 1 2

2 1 20 0

0 02 1 ! 2 !

n n

n nn n

t tH H

n n

2 1 0 0nH 2

2 !0

!n

n

nH

n 0n

2 2

0

,!

nnt t x

nn

tg x t e H x

n

0 !

n

nn

tH x

n

n

n nH x H x

Page 6: 18. More Special Functions

Hermite ODE 1 12 2n n nH x nH x xH x

12n nH x nH x

1 2n n nH H xH

1 2 2n n n nH H H xH 2 1 2 2n n nn H H xH

2 2 0n nH xH nH Hermite ODE

Page 7: 18. More Special Functions

Rodrigues Formula 2 2

0

,!

nt t x

nn

tg x t e H x

n

2 2t t xge

t t

22 t xxe et

22 t xxe e

x

1

1 1 !

n

nn

tH x

n

2 2

0

n nn x x

n n

t

ge e

t x

nH x 0n

22n n

t xxn n

ge e

t t

22

nn t xx

ne e

x

!m n

mm n

tH x

m n

Rodrigues Formula

Page 8: 18. More Special Functions

Series Expansion 2 2

0

,!

nt t x

nn

tg x t e H x

n

2 2

0

2

!

mmt t x

m

t t xe

m

0 0

2!

m mm j jm

jm j

tC x t

m

0 0

2! !

jmm j m j

m j

x tm j j

n m j

k j

0, ,

0, ,

n

k m

2j m n m 0, ,2

nk

consistent only if n is even

For n odd, j & k can run only up to m 1, hence &

/22

0 0

22 ! !

knn k n

n k

g x tn k k

2 1n m max

11 / 2

2k n n

/22

0

22 ! !

knn k

nk

H x xn k k

Page 9: 18. More Special Functions

Schlaefli Integral

1

0

1

1

1 !

2

nn

n n

n

n nC

p y q y y

qw d x

p p

dy w p

w d x

n w py x d z

w i z x

2

2

1

!

2

tx

n nC

n eH x e d t

i t x

2 2 0n nH xH nH

2

1 xp w e

2

2

1

!

2

s xx

nC

n ee d s

i s

s t x

2 2

1

!

2

s x s

n nC

n eH x d s

i s

Page 10: 18. More Special Functions

Let

Orthogonality & Normalization2 2 0n nH xH nH

2

1 xp w e

2xn m n nmd x e H x H x c

n m n nmd x x x c

2 / 2xn nx e H x

2 / 2xn nH e 2 / 2x

n n nH e x

2 / 2xn n n n n nH e x x x 2 / 2 22 1x

n n ne x x

22 1 2 2 0n n n n n nx x x x n

22 1 0n nn x

Orthogonal

Page 11: 18. More Special Functions

2 2

0 0

, ,! !

n mx x

n mn m

s td x e g s x g t x d x e H x H x

n m

2 2

0

,!

nt t x

nn

tg x t e H x

n

2 2 22 2

0 0 ! !

n mx s s x t t x

nm nn m

s td x e e e c

n m

22 2 2

20 !

n nx s t xs t

nn

s te d x e c

n

2ste

0

2

!

nn n

n

s tn

2 !n

nc n

2

2 !x nn m nmd x e H x H x n

2xn m n nmd x e H x H x c

Page 12: 18. More Special Functions

Set

Let

2. Applications of Hermite Functions

Simple Harmonic Oscillator (SHO) :2

21

2 2

pH k z

m

2 2

22

1

2 2

dk z z E z

m d z

x z2 2

22

1

2 2k x E

m

22 1 0n nn x

d

d x

22 2 2 4

20

m mE k x z

2 41

mk

1/4

2

m k

2 2

2mE

2 0x

2 mE

k

m

k

m

2E

Page 13: 18. More Special Functions

n

mz

n nz x

2 0x 2E

mx z z

22 1 0n nn x

1

2nE n

2 / 2xne H x

2

2

mz

n

me H z

2 1n

2

2

mz

n n

mz e H z

Eq.18.19

is erronous

Page 14: 18. More Special Functions

Fig.18.2. n

Mathematica

Page 15: 18. More Special Functions

Let

Operator Appoach2

2 21

2

pH m x E

m

,x p f x p px f r

,x p i

i x x fx x

f fi x x f

x x

i f

see § 5.3

2

2 2 2 21 1 pm x i p m x i p m x i x p px

mm m

2

2

1

1

b m x i pm

b m x i pm

4bb b b H

2

2 2 2 21 1 pm x i p m x i p m x i x p px

mm m

2 ,bb b b i x p 2

Factorize H :

Page 16: 18. More Special Functions

Set 2

ba

, 1a a

1

2 2

1

2 2

ma x i p

m

ma x i p

m

1

2H aa a a 1

2a a

2

2

1

1

b m x i pm

b m x i pm

4bb b b H

2bb b b

1

2

1

2

ma x i p

m

ma x i p

m

or

Page 17: 18. More Special Functions

, 1a a 1

2H a a

, , 0A A A c

, , ,A BC B A C A B C

c = const , ,a H a aa ,a a a a

n nH a aH a n nE a

1n na with 1n nE E

, ,a H a aa ,a a a a

n nH a a H a n nE a

1n na with 1n nE E

i.e., a is a lowering operator

i.e., a+ is a raising operator

Page 18: 18. More Special Functions

Since

n n n na a a a 1

2n n

H

1

2nE

0ma 0j j m we have ground state 1

2mE

1

2m nE n

1n nE E

Set m = 0 1

2nE n

with ground state 0

1

2E

1

2

ma x i p

m

1

2

ma x i p

m

1n na

1n na

n na a n

Excitation = quantum / quasiparticle :a+ a = number operator

a+ = creation operator a = annihilation operator

1n na n

n na a n

11n na n

Page 19: 18. More Special Functions

ODE for 0

0 0a

1

2

ma x i p

m

0 0d

xm d x

0

0

d mx d x

20ln

2

mx C

20 exp

2

mA x

Page 20: 18. More Special Functions

Molecular Vibrations

Born-Oppenheimer approximation :

intelec nuclH H H H

nucl transl vib rotH H H H

For molecules or solids :

For molecules :

e nm m ;elecH E r R r R r R treated as parameters

vibH E R R R

nucl vibH HFor solids : R = positions of nucleir = positions of electron

Harmonic approximation : Hvib quadratic in R.

Transformation to normal coordinates Hvib = sum of SHOs.

Properties, e.g., transition probabilities require m = 3, 4 2

1j

mx

m nj

I d x e H x

Page 21: 18. More Special Functions

for

Example 18.2.1. Threefold Hermite Formula

23

31

j

xn

j

I d x e H x

0 are integersjn

n

n nH x H x 3 0I oddj

j

n

deg nH x n for3 0I i j kn n n i,j,k = cyclic permuation of 1,2,3

Triangle condition

Page 22: 18. More Special Functions

2 2

0

,!

nt t x

nn

tg x t e H x

n

23

31

,xj

j

Z d x e g x t

Consider

2

3 3 32 2

1 2 2 3 3 11 1 1

2 2j j jj j j

x t t t t t t t t x x t

23

2

1

exp 2xj j

j

d x e t t x

2

3

3 1 2 2 3 3 11

exp 2jj

Z d x x t t t t t t t

1 2 2 3 3 1exp 2 t t t t t t

1 2 2 3 3 10

2

!

NN

N

t t t t t tN

3 1 2

1 2 3

1 2 2 3 3 10 1 2 3

2 !

! ! ! !

Nn n n

N n n n N

Nt t t t t t

N n n n

3 1 1 22 3

1 2 3

1 2 30 1 2 3

2

! ! !

Nn n n nn n

N n n n N

t t tn n n

Page 23: 18. More Special Functions

3 1 1 22 3

1 2 3

3 1 2 30 1 2 3

2

! ! !

Nn n n nn n

N n n n N

Z t t tn n n

2 2

0

,!

nt t x

nn

tg x t e H x

n

23

31

,xj

j

Z d x e g x t

1 2 3

2

1 2 3

1 2 3

1 2 33

, , 0 1 2 3! ! !

m m m

xm m m

m m m

t t tZ d x e H x H x H x

m m m

1 2 3

2 3 1

3 1 3

1 2 3

m n n

m n n

m n n

n n n N

23

31

j

xm

j

I d x e H x

1 2 3 /2 1 2 33

1 2 3

! ! !2

! ! !

m m m m m mI

N m N m N m

1 1

2 2

3 3

n N m

n N m

n N m

1 1

2 2

3 3

1 2 3 2

m N n

m N n

m N n

m m m N

1 2 3m m m even

Page 24: 18. More Special Functions

Hermite Product Formula 2 2

0

,!

nt t x

nn

tg x t e H x

n

2 21 2 1 2 1 2, , exp 2g x t g x t t t t t x

1 2

1 2

1 2

1 2

, 0 1 2! !

m m

m mm m

t tH x H x

m m

1 22 2

1 2 1 2exp 2 t tt t t t x e 1 2 1 2

0 0

2

! !

n

nn

t t t tH x

n

1 2 1 2

0 0 0

2

! ! !

s n sn

nn s

t t t tH x

s n s

1 2

0 0 0

2

! ! !

s n sn

nn s

t tH x

s n s

1 21 2

2 1

1 2

min ,1 2

1 2 20 0 0 1 2

2, ,

!! !

m mm m

m mm m

t tg x t g x t H x

m m

1

2

m s

m n s

1

2 1 2

s m

n m m

Set

Range of set by q! q 0

Page 25: 18. More Special Functions

1 21 2

2 1

1 2

min ,1 2

20 0 0 1 2

2

!! !

m mm m

m mm m

t tH x

m m

1 2

1 2

1 2

1 21 2

, 0 1 2

, ,! !

m m

m mm m

t tg x t g x t H x H x

m m

1 2

1 2 2 1

min ,1 2

20 1 2

! ! 2

!! !

m m

m m m m

m mH x H x H x

m m

1 2

1 2

2 1

min ,

20

2 !m m

m m

m mH x C C

i jH H

i jH H

Mathematica

Page 26: 18. More Special Functions

Example 18.2.2.Fourfold Hermite Formula

24

41

j

xm

j

I d x e H x

1Integers 0j jm m j

1 2

1 2

1 2 2 1

min ,

20

2 !m m

m m

m m m mH x H x H x C C

2 4 2

1 2 3 4

2 1 4 32 20 0

2 ! 2 !m m

m m m m xm m m mC C C C d x e H x H x

2 41 2 3 4 4 3

2 1 4 3

2

2 , 2 4 30 0

2 ! 2 ! 2 2 !m m

m m m m m m

m m m mC C C C m m

2

2 !x nn m nmd x e H x H x n

2 1 4 32 2m m m m 4 3 2 1

1

2m m m m

4 3 4 3 2 1

12

2m m m m m m 2 :p

4 1min ,

4 3 1 2 3 4

40 4 3 1 2 3 4

2 2 ! ! ! ! !

! ! ! ! ! !

Mm M m m m m m m mI

M m m M m M m m m

Mathematica

M

Page 27: 18. More Special Functions

Product Formula with Weight exp(a2 x2)

2 2 / 221

min , 2

20

2 11

2

1 2 1! !2

m nm na x

m n m n

m n

m nd x e H x H x a

a

m n am n a

Ref: Gradshteyn & Ryzhik, p.803