12 comparison of biological attributes of culex quinquefasciatus (diptera_ culicidae) populations...

Post on 01-Mar-2016

6 views

Category:

Documents


0 download

DESCRIPTION

ss

TRANSCRIPT

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 1/13

    ResearchArticle

    ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndiaMangeshD.Gokhale,MandarS.Paingankar,andSachinD.Dhaigude

    DepartmentofMedicalEntomologyandZoology,NationalInstituteofVirology,MicrobialContainmentComplex,130/1SusRoad,Pashan,Pune411021,India

    Received27April2013Accepted2June2013

    AcademicEditors:A.I.KehrandM.V.Micieli

    Copyright2013MangeshD.Gokhaleetal.This isanopenaccessarticledistributedundertheCreative CommonsAttribution License, which permits unrestricted use, distribution, andreproductioninanymedium,providedtheoriginalworkisproperlycited.

    Abstract

    Understandingthepopulationdynamicsofmosquitopopulationsthroughlifetableanalysisandinsecticidesusceptibilityisimportanttoassessthelikelyimpactofvectorcontrolstrategiesaswellastoaidthedesignofnovelinterventions.Variationinthelifetablesandotherbiologicaldata was compared for two populations of Culex quinquefasciatus Say 1823 fromgeographicallyisolatedregions,GorakhpurandPunefromIndia.Underastandardizedrearingregimeandconstantlaboratoryconditions,mosquitoeswererearedandbiologicalattributesofthese populations were compared. Development and survival of immature and adult stagesofCulexquinquefasciatuswerefoundsignificantlydifferentinGorakhpurandPunepopulations.Principal component analysis of morphological data revealed that the two populations formsignificantly different clusters which can be differentiated from each other based on siphon,saddle, anal gills, and pecten teeth related variables. Insecticide susceptibility results suggestthatthelarvaefrombothareasweremoresusceptibletodeltamethrinascomparedtoDDTandmalathion. The current study provides baseline information on survivorship, morphologicalvariationand insecticidesusceptibilityofCulexquinquefasciatus.The resultsobtained in thisstudy suggest that different geographical areas with contrasting habitats have significantinfluenceonsurvivalandreproductivestrategiesofCulexquinquefasciatus.

    1.Introduction

    Feasible mosquito intervention strategies require indepth knowledge of the populationdynamicsandinsecticidesusceptibilitystatus.Tobetterunderstandthepopulationdynamicsofthevectorspecies,understandingtheparameterssuchasdevelopmenttime,rateofsurvival,andfecundity of particular importance. A life table describes the development, survival, andfecundityofacohortandprovidesbasicdataonpopulationgrowthparameters.Lifetablestudyalsoprovide,conciseinformationoninherentdifferencesin thesurvivorshipandreproductivestrategiesofpopulationsunderdifferentecologicalregimes[1]andcanhelpinexplainingwhycertainspeciesproliferateinparticularenvironments.

    CulexquinquefasciatusSay isacosmopolitanmosquitospecies found in tropical, subtropical,and warm temperate regions. Cx. quinquefasciatusacts as a vector of filarial worms [2, 3],protozoan parasites [4], and various arboviruses [59]. In India, Cx. quinquefasciatus is the

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 2/13

    principalvectorofbancroftial filariasis [10].Rapidurbanizationand industrializationwithoutproper drainage facilities are responsible for the establishment of theCx.quinquefasciatus invariouscitiesofIndia[11].Oftheestimatedglobal128millionlymphaticfilarialcases,91percentarecausedbyWuchereriabancroftiCobbold[12].Indiaalonecontributes40percenttotheworlds lymphatic filariasis disease burden [13]. The estimates of disease burden due tofilariasissuggestthat2.06milliondisabilityadjustedlifeyears(DALYs)arelostinIndia[14].

    Numerous studies have been carried out on Cx. quinquefasciatus biology and insecticidesusceptibility [1528]. Recently, Suman et al. [25, 28] reported significant variations inmorphology among eggs and life table attributes from the four strains of Cx.quinquefasciatus. Comparison of biological attributes such as insecticide susceptibility, lifetableanalysis,andmorphologicalvariationofCx.quinquefasciatusofendemicandnonendemicareasoflymphaticfilariasisisnotwelldocumented.

    Mosquitoes inhabiting in distinct location normally adapt to local conditions.Gorakhpur andPune are geographically well separated (~1500km) (Figure 1) and having different climaticconditions.UttarPradesh (Gorakhpur) isoneof the lymphatic filariasis endemic statesof theIndiawhereasMaharashtra(Pune)isnonendemictolymphaticfilariasis.Theenvironmentandclimaticfeaturesofthesetwoecotypesarealsodifferent.Itseemspossiblethatenvironmentalstressofthesetwoecoclimaticregionsinfluencetheirlifehistorytraits.Wehypothesizedthatthesemosquitostrainswilldifferintheirlifetableandbiologicalattributesbecausetheyappeartobeadaptedtotheirrespectivelocalenvironments.Totestthishypothesis,weinvestigatedthelife table analysis, morphological variation, and insecticide susceptibility between these twopopulationsofCx.quinquefasciatusfromgeographicallywellseparatedareasinIndia,namely,GorakhpurandPune.

    Figure 1: The sampling map indicates thesamplinglocations.

    2.MaterialsandMethods

    2.1.EthicsStatement

    All animals were handled in strict accordance with good animal practice as defined byInstitutional Animal Ethics Committee (IAEC) affiliated with National Institute of Virology(NIV), Pune, India. All animal work was approved by the IAEC. Animal experiments werecarriedoutinstrictcompliancewithCommitteeforthePurposeofControlandSupervisionofExperimentonAnimals(CPCSEA)guidelines,India.

    2.2.MosquitoCollectionandRearing

    Adultand larvaeofCx.quinquefasciatuswere sampled from twopopulations to examine thepossibility of population differences in the endemic and nonendemic areas of lymphaticfilariasis infection. Uttar Pradesh is an endemic area of JE virus and lymphatic filariasisinfection and Maharashtra is nonendemic to JE virus and lymphatic filariasis infections.Gorakhpur (2645N, 8324E) is situated in the Tarai belt near Himalaya ranges in UttarPradeshstateborderingNepalwhereasPune(1831N,7355E)issituatednearWesternGhats

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 3/13

    of India, inMaharashtra state. Gorakhpur is situated in the IndoGangetic Plain region thatreceives12001300mmofrainfallperyear.Annualtemperaturerangesbetween8Cinwinterand42C in summer.Thevegetationof this region is tropical,moist, anddeciduous.Pune issituatedinasemiaridregionthatreceives700800mmofrainfallperyear.Annualtemperatureranges between 12C in winter and 38C in winter. The vegetation of this region is drydeciduous.Larvaewerecollectedfromtemporaryandsemipermanentgroundwaterpoolsandfields.Morphometricanalysiswascarriedoutonthesefieldcollectedmosquitoes.Inthepresentstudy, to better understand baseline parameters of the life cycle of Culex quinquefasciatus,colonies of this species from two different ecological areasweremonitored under laboratoryconditions for life table analysis and insecticide susceptibility. Individuals of Cx.quinquefasciatuswereidentifiedusingkeysofBarraud[29].VoucherspecimensweredepositedinNationalInstituteofVirologymuseum,Pune,India.

    2.3.LifeTableAnalysis

    Rearingofmosquito in laboratoryenvironment imposesacertaindegreeofselectionpressureon mosquito biology. Mosquito colonies were maintained in standardized environmentalconditions which were favorable to mosquito survival. Hence, we assume that lifetableparameters derived from data collected from the colonized wild strains represent maximumestimates of their lifetable parameters and are likely to reflect true differences betweengeographicallyisolatedstrains.SimilarassumptionsweremadeearlierbyReisenetal.[30]andSuman et al. [28] to compare the lifetable attributes of geographically distinct strainsofCulexmosquitoes.

    ColoniesofeachpopulationweremaintainedatNationalInstituteofVirologyPuneinstandardlaboratoryconditionsat281C,705%relativehumidity(RH)andlight:dark(LD)12:12h.Thesecoloniesweremaintainedforuptosevengenerations(approximately4months).Theadultswereoffered10%glucosesolutionsoakedincottonpadsdaily,asasourceofnutrition.Afowlwasprovided as a sourceof blood twice aweek.Fowlsweremaintained in accordancewith approved guidelines of the Committee for the Purpose of Control and Supervision ofExperiments on Animals (CPCSEA) India. Egg rafts were collected from the individualmosquitoesinplasticcups(60ml)containingwaterandlinedwithfilterpapers,inthecage.Thesingle egg raft was transferred from the filter papers with the aid of mounting needles intoplastic bowls (10cm height and 25cm diameter) where they were held for 24 to 72h forhatching. Twentyfour hours after hatching, the larvae were maintained at a density of 100larvaeper tray (453010cm)containing2Lofdechlorinatedwater.The larvaewere fedwithmixtureofyeastextractanddogbiscuitpowder,sprinkledonthewatersurface.Oneveryalternateday,thewaterfromtheculturetraywaschangedcarefullyuntilpupation.Thepupaewere separated from the larvae daily and placed in plastic bowls (10cm height and 30cmdiameter)halffilledwithwater.Theseplasticbowlswithpupaewereplaced inadultholdingcages for emergence. Adults after emergence were offered 10% glucose solution soaked incotton pads daily. Fecundity was estimated based on the average numbers of eggs laid perfemale.Egghatchingratewasestimatedfromthenumberofeggshatchedperfemale.Durationofthepreadultdevelopmentperiodswasdeterminedbyobservingeachpandaily,andalllarvalskins were removed, scored to instar, and counted. There were two replicates for eachexperiment described above and the whole study was repeated three times, resulting in themonitoringofabout600larvaefromfirstinstarstagetoadulthood.

    2.4.SurvivalAnalysis

    Onehundrednewlyemergedlarvaewereplacedinbasins.Allbasinswerescreenedwithwhite,

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 4/13

    insectproof,nylonnettingtopreventcolonizationbyothermosquitoesandpredators.Eachdaythenumberof larvae alive and their stageofdevelopmentwere counted and recorded.Adultmosquitoesthatemergedwerecounteddaily,andthesexeswererecorded.Standardlife tableanalysiswasperformedonthedata(Table1).Computationofstagespecificsurvivorshipwasaccordingtotheformula:

    where isthenumberofindividualsenteringstage and isthenumberofindividualsthatenteredtheprecedingstage.

    Table 1:Mean duration and survival rates of lifestagesofCx.quinquefasciatus.

    2.5.MorphologicalAnalysis

    Fieldcollectedlarvaewereusedformorphometricanalysis.Eightmorphologicalcharactersandthree ratioswere scored formorphological analysis of fourth instar larvae (Table3). Siphonindex, analgill index, and siphonsaddle ratioareused in traditional taxonomy todistinguishamongspeciesandsubspecies.However,FakoorzibaandVijayan[31]andKanojiaetal.[32]have used these ratios even to distinguish between different populations. The characters offourthinstarlarvaeweremeasuredusingmicrometricocularswiththeleastcount0.01mm.

    2.6.AdultMosquitoBioassays

    Insecticide susceptibility testswere carried out using the standardWHOprotocol, insecticidesusceptibility test kits, and impregnated papers. Two to threedayold nonbloodfed adultfemaleCx.quinquefasciatusweretested.Threebatchesof20mosquitoeseachwereexposedtotestpapersimpregnatedwithDDT(4%),Deltamethrin(0.05%),andMalathion(5%).Controlsincludedbatchesofmosquitoesfromeachsiteexposedtountreatedpapers.

    2.7.LarvalBioassays

    Batches of fourth instars were exposed to insecticide solution (DDT, Deltamethrin andMalathion)diluted indistilledwater.Twenty larvaeperconcentrationandfiveconcentrationspertest,providingmortalitiesrangingfrom0to100%,wererun.Temperaturewasmaintainedat 28C throughout the test, and larval mortality was recorded after 1h exposure and thencorrected for controlmortality [33].Three replicateswith insect larvae fromdifferent rearingbatchesweremadeatdifferent times,and theresultswerepooled.Thedataweresubject toalogprobitanalysis[34]todeterminetheLC andLC valuesaswellastheir95%confidenceintervals(CI).

    2.8.AnalysisofData

    Survivalwasevaluatedbyscoringthenumberofdeadmosquitoes/larvaeeveryday,toestimatemosquitostagespecificlifespan.Larvaethosewhoareenteredinpupalstagewereconsideredascensoreddata.Thesurvivalrateforeachmosquitopopulationwasdescribedusinglifetableanalysis.Thesesurvivalcurveswerethencomparedusingthelogranktest.Pairwisecomparison

    50 95

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 5/13

    of each character was carried out using test, with the Bonferroni adjustment to theprobabilities(as11comparisonsweremadethereforeweused asourcutoffvalue).Datawereanalyzedusingmultivariate statistics.Multivariateanalysisoffers theadvantageoftaking into account all the variables in a single analysis, thus making it possible to assessvariation in the morphological characters of larvae from different collection sites. Principalcomponent analysis (PCA) was done to create uncorrelated principal components from theoriginal variables. Factor scores estimate the actual values of individual observations for thefactors,whereascorrelationbetweenvariablesandfactorsiscalledasfactorloading.Principalcomponents were extracted from the covariance matrix. Mean values (centroids) and 95%asymptotic confidence limits of the scores of individual larvae on the first two principalcomponents were computed for each sample. First two principal factors, which explainedmaximumvariationinthedata,wereanalyzedtounderstandthevariationinthemorphologyofdifferentindividuals.

    2.9.AnalysisofBioassayData

    Bioassay datawere pooled and analyzed (LC and 95%LC values) by using SPSS ver. 16program(SPSSInc.,Chicago,IL).

    2.9.1.AbbottsFormula

    Bioassaydatawerenotconsideredifthecontrolmortalitieswere>20%.ActualmortalitieswerecalculatedagainstcontrolmortalitiesbyusingAbbottsformula[33].Correctedmortality=(%survival in control experiment % survival in treated experiment)/(% survival in controlexperiment)100.

    2.9.2.LogProbitRegressionLines

    Logprobit regression lines were obtained by plotting percentage mortalities ( axisprobability) against concentration ( axislog). LC (dosage which kills 50% of thepopulation)andLC (dosagewhichkills95%ofthepopulation)valueswereobtained.Fitnessoftheregressionlineswasstatisticallytestedusing values[35].

    3.Results

    3.1.PreadultDevelopmentandSurvival

    The mean duration and survival rates of different life stages of Cx. quinquefasciatus ofGorakhpur and Pune are depicted in Table1. The percentage of egg hatching was lower inGorakhpur(86.57.3)ascomparedtoPune(91.53.8).LarvaltoadultsurvivalrateofCx.quinquefasciatusinPune(58.063.61)wassignificantlyhigherthanGorakhpur(28%0.76)( test ).PunepopulationofCx.quinquefasciatushadslightlylongerlarvaldevelopmenttime (14.57 days) when compared with that of Gorakhpur Cx. quinquefasciatuspopulation(13.33 days). Larval survival rate of Pune population (68%) was higher than Gorakhpurpopulation (42%) of Cx. quinquefasciatus ( test ). Pupal survival rates of bothpopulations were not significantly different ( test ). No significant difference wasobserved in male female emergence ratio ( test ). Survival rate of Cx.quinquefasciatusadultsofPunewashigherthanthoseofGorakhpur(logranktest on1degreesoffreedom, )(Figure2).

    50

    5095

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 6/13

    Figure 2: Survivorship curves of Cx.quinquefasciatusofGorakhpurandPune.(a)Adultsurvivorship curve of Gorakhpur population. (b)Adult survivorship curve of Pune population. Thesurvival rate for each mosquito population wasdescribed using life table analysis and wascomparedusingthelogranktest.

    3.2.Fecundity

    Comparison of egg production of Gorakhpur population and Pune population of Cx.quinquefasciatusisreportedinTable2.Gorakhpurpopulationproducedbiggereggraft (151186eggs)ascomparedtoPunepopulation(121160eggs).ThenumberofeggsperraftwerehigherinGorakhpurpopulation(16914.5)ascomparedtoPunepopulation(139.7515.96)(Table2).Thenumberofeggs/femalelifespanwashigherinGorakhpurpopulation(67632)(Table2).Eggs/female/daywas ranged from32.19 (1.68) inGorakhpurpopulationand26.59(2.45)inPunepopulation(Table2).

    Table2:ComparisonofbiologicalattributesinCx.quinquefasciatus.

    Table 3: Comparison of morphological charactersoftwopopulationsofCulexquinquefasciatus.

    3.3.PhenotypicVariationamongthePopulations

    The pairwise comparison of morphological characters using unpaired test revealed thatcharacterslikelengthofanalgills,lengthofsiphon,denticlesontheapicalpectenteeth,siphonsaddle ratio, and anal gill index were significantly different in both populations studied(Table3).PCAofthemorphologicalanalysisextractedfourfactorswitheigenvaluesmorethanone.Cumulatively,thesefactorsexplained79.61%ofthetotalvariabilityinthedata.Thefirstfactor (F1) explained 31.97% of the total variability while the second factor (F2) explained19.73% of total variability and together the first two factors explained 51.70% of the totalvariability.CharacterswhichshowedhighfactorloadingonF1includedlengthofsiphon,widthofanalgill,siphonindex,andsiphon/saddleratio,whilecharacterswhichshowedhighfactorloading on F2 included length of anal gill, length of saddle, and anal gill index. PCA coulddistinguish two significant clusters forCx.quinquefasciatusofPune,Cx.quinquefasciatus ofGorakhpur (Figure 3). Our null hypothesis that there is no significant difference inmorphometryofCx.quinquefasciatuspopulationswasrejected.

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 7/13

    Figure 3: Principal component analysis (PCA) ofmorphological data. (a) Clusters of differentpopulations. (b) Variables which discriminatebetweentheclusters.

    3.4.InsecticideSusceptibility

    BasedonWHOcriteria[36],Cx.quinquefasciatusfromGorakhpurandPuneshowedcompletesusceptibility to deltamethrin (100% mortality), potential resistance to malathion (~80%mortality),andcompleteresistancetoDDT(Lessthan80%mortality).Nosignificantdifferencewas noted in the toxicity of diagnostic concentrations of DDT, deltamethrin, and malathionbetween the Gorakhpur and Pune populations of Cx. quinquefasciatus ( test ). Thelarvicidal potency of DDT, deltramethrin, and malathion against Cx. quinquefasciatus isdepictedinTable4.GorakhpurpopulationshowedhigherLC valueforDDTandmalathionas compared to Pune population.No significant differencewas observed for LC values ofdeltamethrinforboththepopulations.

    Table 4: Comparative toxicity of DDT,deltamethrin, and malathion against populationsofCx. quinquefasciatus tested at the larval stage(larvalbioassays).

    4.Discussion

    Theeffectsofgeographicalandenvironmentaleventsonlifetableattributesandmorphologicalstructure of local populations of Cx. quinquefasciatus were analyzed in this study. Our nullhypothesisthatthereisnosignificantdifferencebetweenthelifecycleparameters,morphology,andprofilesofGorakhpurandPunepopulationswasrejected.GorakhpurandPunepopulationsof Cx. quinquefasciatus are significantly different with respect to life table attributes andmorphologicalcharacters.

    Gorakhpur andPune are~1500km apart, Gorakhpur area having the higher range of annualtemperatures, lower relative humidity for most of the year, and higher annual rain fall ascomparedtoPune.Accordingly,wemightexpectthatenvironmentalconditionsinPunewouldfavoursurvivalandreproductivepotentialofmosquitoes.ThepopulationfromGorakhpurareaexposedtoharshconditionsforsurvivalinnaturethanPunestrainhadashorterlifeexpectancy(2023 days in Gorakhpur vs 2427 days in Pune), laid eggs onmost days (1820 days inGorakhpur vs 2022days inPune), and constructed larger egg rafts (169 14.5 eggs/raft inGorakhpurvs139.7515.96eggs/raft inPune), indicatingthatGorakhpurstraininvestedthemostenergyinrapidreproduction.ThehighersurvivorshipofadultCx.quinquefasciatusinthePune compared to the Gorakhpur is likely caused because of favorable habitat andenvironmentalconditionsinPune.

    The percentage of eggs hatching was not significantly different in Gorakhpur (86.5 7.3)populationascomparedtoPune(91.53.8)( test ).Thepercentageofeggshatchinghas been reported to be 82.1% in Culex pipiens fatigans (synonymous with Cx.

    5050

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 8/13

    quinquefasciatusGomezetal.[37]),79.6%inCx.quinquefasciatus(SulemanandReisen[38]),and 80.5%95.6% in Cx. quinquefasciatus (Suman et al. [28] five populations from India)whichareclose to thevalues reported in thepresent study (Table1).Themeandevelopmenttimefromeggtoadultwasfoundtovarylittle,withshowingarangeof1day(15.4daysinGorakhpur and 16.5 days in Pune). These valueswere higher than the developmental periodreported for Cx. quinquefasciatus collected from Bikaner, Jamnagar, and Bhatinda areas ofIndia[28]. It hasbeendocumented thatvariations in immaturemosquitodevelopmental ratesdependonhabitatconditions [28,3942].The resultsobtained in this studyalso suggest thathabitatandenvironmentalconditionsplayimportantroleinbiologicalattributesofmosquitoes.

    Life expectancy is an important attribute of vector capacity as it plays important role intransmissionpathogens.Studiesonlymphaticfilariasistransmissionindicatethatmicrofilariaerequire1617daysinthemosquitovectortoreachtheinfectivestage[43].Thisperiodshortenswithhigher temperatureandhumidity [44]but increasesup to42days at lower temperatures[45]. As life table analysis suggests that Gorakhpur population invest more energy inreproduction it is likely to take bloodmealmore frequently. The repeated bitingmay causespread of diseases rapidly. Higher ambient temperatures and frequent biting nature of Cx.quinquefasciatusofGorakhpurmightberesponsibleforfrequentcasesoflymphaticfilariasisinthisarea.

    Multivariate analysis of morphological characters revealed that two populations of Cx.quinquefasciatus differ significantly in morphological characters (Table 2Figure3(a)).Principalcomponentanalysisofthedatasuggestedthatsiphon,saddle,analgillsand pecten teeth related variables were the most important distinguishing characters(Figure3(b)).Anal gills are longer inGorakhpur population as compared to Pune population(Table3).Assaltconcentrationofwaterincreasesthelengthofanalgillsstartsreducing[46].ThesaltconcentrationofPunewatermightbeaprobablereasonbehind thereducedanalgilllength.Thecausesofmorphologicaldifferencesbetweenpopulationsareoftenquitedifficulttoexplain.Phenotypeisunderthedoublecontrolofenvironmentalconditionsandgenotype,butmorphological changes canbe rapidwhendifferent environmental conditionsoccur [47].WehypothesizethattransitionofsaddleandanalgilllengthinCx.quinquefasciatuspopulationsisaconsequenceofenvironmentalconditionsselection.

    The history of insecticide resistance inCulex species suggests thatmembers ofCulex genushave a notorious reputation for developing resistance to insecticides, includingorganophosphates,carbamates,andpyrethroids[17,21,22,48,49]. In India, first evidenceofdevelopmentofDDTresistance inCx.quinquefasciatuswasobserved in1952 fromavillagenear Delhi [50]. Later, several areas like Nagpur, Pune, Patna, and Rajahmundry reportedresistance in Culex mosquitoes to various insecticides such as BHC, fenitrothion, DDT,malathion,and temephos[15,16,18,20,23,51]. InvestigationbyMukhopadhyayet al. [23]showed nomortality inCx.quinquefasciatus adults against the 4%DDT and 5%malathion.About 8%and14%mortalitywere found inCx.quinquefasciatus larvae in 0.125 and 3.125mg/l concentrationofDDTandmalathion, respectively.Thepresent studyconcludes that thelarvaeofboth thepopulationsofCx.quinquefasciatus arehighly susceptible todeltamethrin.However, Cx. quinquefasciatus populations in these areas showed resistance to DDT andmalathion. Therefore, as a baseline study it may be concluded that in future prudent use ofvector control strategies should be applied to reduce the Cx. quinquefasciatus nuisance inGorakhpurandPune.

    Insummary,thisstudyprovidesbaselineinformationonsurvivorship,morphologicalvariation,

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3B 9/13

    andinsecticidesusceptibilityofCulexquinquefasciatuspopulations.TheclimateconditionsofPuneseemsmorepermissive to thedevelopmentandsurvivalofCulexquinquefasciatus.Theinsecticide susceptibility results revealed that in the future different controlmeasureswill berequired to reduce the Cx. quinquefasciatus populations. This knowledge, coupled withenhanced understanding of the ecology ofCx. quinquefasciatus, will enable locally specific,efficientdeploymentofpublichealthresourcesinreducingtheburdenofCx.quinquefasciatus.

    ConflictofInterests

    Theauthorshavedeclaredthatnocompetinginterestsexist.

    Funding

    ThestudywassupportedbytheIndianCouncilofMedicalResearch,GovernmentofIndia.Thefundingagencyhadnoroleinstudydesign,datacollectionandanalysis,decisiontopublish,orpreparationofthepaper.

    Acknowledgments

    The authors thank Dr. A. C.Mishra, Director, National Institute of Virology, Pune, for thefacilitiesandencouragement.TheyappreciatethetechnicalassistanceprovidedbythefieldstaffofNIV.TheyarethankfultoDr.NeeleshDahanukar,IISER,Pune,forthevaluablesuggestionsandhelpinstatisticalanalysis.

    References

    1. R.Maharaj,LifetablecharacteristicsofAnophelesarabiensis(Diptera:Culicidae)undersimulatedseasonalconditions,JournalofMedicalEntomology,vol.40,no.6,pp.737742,2003.ViewatGoogleScholarViewatScopus

    2. S. M. M. Ahid, P. S. Da Silva Vasconcelos, and R. LourenodeOliveira, VectorcompetenceofCulexquinquefasciatusSayfromdifferentregionsofBraziltoDirofilariaimmitis,MemoriasdoInstitutoOswaldoCruz,vol.95,no.6,pp.769775,2000.ViewatGoogleScholarViewatScopus

    3. C.A.Lima,W.R.Almeida,H.Hurd,andC.M.R.Albuquerque,Reproductiveaspectsof the mosquito Culex quinquefasciatus(Diptera: Culicidae) infected with Wuchereriabancrofti(Spirurida:Onchocercidae),MemoriasdoInstitutoOswaldoCruz,vol.98,no.2,pp.217222,2003.ViewatGoogleScholarViewatScopus

    4. C. vanRiper III, S.G. vanRiper,M. L.Goff, andM. Laird, The epizootiology andecologicalsignificanceofmalariainHawaiianlandbirds,EcologyMonograph,vol.56,pp.327344,1986.ViewatGoogleScholar

    5. R.P.Meyer,J.L.Hardy,andS.B.Presser,ComparativevectorcompetenceofCulextarsalis and Culex quinquefasciatus from the Coachella, Imperial, and San JoaquinValleys of California for St. Louis encephalitis virus, American Journal of TropicalMedicineandHygiene,vol.32,no.2,pp.305311,1983.ViewatGoogleScholarViewatScopus

    6. S. Sucharit, K. Surathin, and S. R. Shrestha, Vectors of Japanese encephalitis virus

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3 10/13

    (JEV): species complexes of the vectors, The Southeast Asian Journal of TropicalMedicine and Public Health, vol. 20, no. 4, pp. 611621, 1989. View at GoogleScholarViewatScopus

    7. G. Aviles, M. S. Sabattini, and C. J. Mitchell, Peroral susceptibility of AedesalbifasciatusandCulexpipienscomplexmosquitoes(Diptera:Culicidae)fromArgentinatowesternequineencephalitisvirus,RevistadeSaudePublica,vol.24,no.4,pp.265269,1990.ViewatGoogleScholarViewatScopus

    8. M.R. Sardelis,M. J. Turell,D. J.Dohm, andM.L.O'Guinn, Vector competence ofselected North American Culex and Coquillettidia mosquitoes for West Nilevirus,EmergingInfectiousDiseases,vol.7,no.6,pp.10181022,2001.ViewatGoogleScholarViewatScopus

    9. G. Molaei, T. G. Andreadis, P. M. Armstrong et al., Host feeding pattern of Culexquinquefasciatus(Diptera:Culicidae) and its role in transmissionofWestNilevirus inHarrisCounty,Texas,AmericanJournalofTropicalMedicineandHygiene,vol.77,no.1,pp.7381,2007.ViewatGoogleScholarViewatScopus

    10. M. Das, Vectors of filariasis with special reference to India, The Journal ofCommunicableDiseases,vol.8,pp.101109,1976.ViewatGoogleScholar

    11. D.Singh,TheCulexpipiensfatigansprobleminSouthEastAsiawithspecialreferencetourbanization,BulletinoftheWorldHealthOrganization,vol.37,no.2,pp.239243,1967.ViewatGoogleScholarViewatScopus

    12. E.MichaelandD.A.P.Bundy,Globalmappingof lymphaticfilariasis,ParasitologyToday, vol. 13, no. 12, pp. 472476, 1997.View at Publisher View at GoogleScholarViewatScopus

    13. E.Michael,D.A.P.Bundy,andB.T.Grenfell,Reassessingtheglobalprevalenceanddistribution of lymphatic filariasis,Parasitology, vol. 112, no. 4, pp. 409428,1996.ViewatGoogleScholarViewatScopus

    14. R.K.Shenoy,Managementofdisabilityinlymphaticfilariasisanupdate,JournalofCommunicableDiseases,vol.34,no.1,pp.114,2002.ViewatGoogleScholarViewatScopus

    15. N.Rajagopalan,J.C.Vedamanickam,andS.R.Ramani,DevelopmentofresistancetoBHCbyC. fatigans in the course of a larva control programme, Bulletin of NaturalSocietyofIndiaMalariaControl,vol.2,pp.211213,1954.ViewatGoogleScholar

    16. P. Krishnarao, V. K. Raina, and T. K. Ghosh, Susceptibility status of Culexquinquefasciatus (Rajahmundry strain) to insecticides,Journal of CommunicableDiseases,vol.21,no.2,pp.145147,1989.ViewatGoogleScholarViewatScopus

    17. J. A. Bisset, M. M. Rodriguez, J. Hemingway, C. Diaz, G. J. Small, and E. Ortiz,Malathionandpyrethroid resistance inCulexquinquefasciatus fromCuba: efficacyofpirimiphosmethylinthepresenceofatleastthreeresistancemechanisms,MedicalandVeterinaryEntomology,vol.5,no.2,pp.223228,1991.ViewatGoogleScholarViewatScopus

    18. A.K.Mukhopadhyay,S.N.Sinha,R.L.Yadav,andM.V.Narasimham,Susceptibility

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3 11/13

    status of Culex quinquefasciatus in Patna to insecticides, Indian Journal of PublicHealth,vol.37,no.2,pp.5760,1993.ViewatGoogleScholarViewatScopus

    19. L.J.Kanhekar,S.K.Patnaik,P.K.Rao,M.V.Narayana,V.K.Raina,andA.Kumar,Some aspects of the bionomics of Culex quinquefasciatus (Diptera: Culicidae) inRajahmundrytown,AndhraPradesh,JournalofCommunicableDiseases,vol.26,no.4,pp.226230,1994.ViewatGoogleScholarViewatScopus

    20. S.K.Patnaik,L.J.Kanhekar,P.KrishnaRao,V.K.Raina,andA.Kumar,Astudytoevaluatetheimpactofdifferentdose/frequencyofTemephos50%ECforcontrolofCx.quinquefasciatus vector of bancroftian filariasis, Journal of Communicable Diseases,vol.29,no.2,pp.171174,1997.ViewatGoogleScholarViewatScopus

    21. F. Chandre, F. Darriet, M. Darder et al., Pyrethroid resistance inCulexquinquefasciatusfromWestAfrica,MedicalandVeterinaryEntomology,vol.12,no.4,pp.359366,1998.ViewatPublisherViewatGoogleScholarViewatScopus

    22. S.Kasai, I. S.Weerashinghe, and T. Shono, P450monooxygenases are an importantmechanismofpermethrinresistanceinCulexquinquefasciatusSay larvae,ArchivesofInsectBiochemistry andPhysiology, vol. 37, no. 1, pp. 4756, 1998.View at GoogleScholarViewatScopus

    23. A.K.Mukhopadhyay,S.K.Patnaik,andP.SatyaBabu,Susceptibilitystatusofsomeculicine mosquitoes to insecticides in Rajahmundry town of Andhra Pradesh,India,JournalofVectorBorneDiseases,vol.43,no.1,pp.3941,2006.ViewatGoogleScholarViewatScopus

    24. S.McCann,J.F.Day,S.Allan,andC.C.Lord,AgemodifiestheeffectofbodysizeonfecundityinCulexquinquefasciatussay(Diptera:Culicidae),JournalofVectorEcology,vol.34,no.2,pp.174181,2009.ViewatPublisherViewatGoogleScholarViewatScopus

    25. D. S. Suman, A. R. Shrivastava, B. D. Parashar, S. C. Pant, O. P. Agrawal, and S.Prakash, Variation in morphology and morphometries of eggs of Culexquinquefasciatus mosquitoes from different ecological regions of India, Journal ofVectorEcology,vol.34,no.2,pp.191199,2009.ViewatPublisherViewatGoogleScholarViewatScopus

    26. S.A.deMorais,C.Moratore,L.Suesdek, andM.T.Marrelli, GeneticmorphometricvariationinCulexquinquefasciatusfromBrazilandLaPlata,Argentina,MemoriasdoInstituto Oswaldo Cruz, vol. 105, no. 5, pp. 672676, 2010. View at GoogleScholarViewatScopus

    27. M.B.Kaliwal,A.Kumar,A.B.Shanbhag,A.P.Dash,andS.B.Javali,Spatiotemporalvariations in adult density, abdominal status & indoor resting pattern of CulexquinquefasciatusSay in Panaji, Goa, India, Indian Journal ofMedical Research, vol.131,no.5,pp.711719,2010.ViewatGoogleScholarViewatScopus

    28. D.S.Suman,S.N.Tikar,M.J.Mendkietal.,Variationsinlifetablesofgeographicallyisolated strains of the mosquito Culex quinquefasciatus, Medical and VeterinaryEntomology, vol. 25, no. 3, pp. 276288, 2011. View at Publisher View at GoogleScholarViewatScopus

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3 12/13

    29. P. J. Barraud, The Fauna of British India Including Ceylon and Burma, Today andTomorrowsPrintersandPublishers,NewDelhi,India,1934.

    30. W.K.Reisen,T.F.Siddiqui,Y.Aslam,andG.M.Malik,Geographicvariationamongthe life table characteristics of Culex tritaeniorhynchus from Asia, Annals ofEntomologicalSocietyofAmerica,vol.72,pp.700709,1979.ViewatGoogleScholar

    31. M.R.Fakoorziba andV.A.Vijayan, Variation inmorphological characters of Culextritaeniorhynchus (Diptera: Culicidae), a Japanese encephalitis vector at Mysore,India,JournalofCommunicableDiseases,vol. 35,no.3,pp.206213,2003.ViewatGoogleScholarViewatScopus

    32. P. C. Kanojia, M. S. Paingankar, A. A. Patil, M. D. Gokhale, and D. N. Deobagkar,MorphometricandallozymevariationinCulextritaeniorhynchusmosquitopopulationsfrom India, Journal of Insect Science, vol. 10, article no. 138, 2010. View atPublisherViewatGoogleScholarViewatScopus

    33. W.S.Abbott, Amethodof computing the effectivenessof an insecticide, JournalofEconomicEntomology,vol.18,pp.265267,1925.ViewatGoogleScholar

    34. J.E.Throne,D.K.Weaver,andJ.E.Baker,Probitanalysis:assesinggoodnessof fitbasedonbacktransformationandresiduals,JournalofEconomicEntomology,vol. 88,pp.15131516,1995.ViewatGoogleScholar

    35. F.Matsumura,ToxicologyofInsects,PlenumPress,NewYork,NY,USA,2ndedition,1985.

    36. WHO, Test procedures for secticide resistance monitoring in malaria vectors, bioefficacy and persistence of insecticides on treated surfaces, Tech. Rep.WHO/CDS/MAL/98.12,WorldHealthOrganization,Geneva,Switzerland,1998.ViewatGoogleScholar

    37. C.Gomez,J.E.Rabinovich,andC.E.MachadoAllison,PopulationanalysisofCulexpipiens fatigans wied. (Diptera: Culicidae) under laboratory conditions, Journal ofMedical Entomology, vol. 13, no. 45, pp. 453463, 1977. View at GoogleScholarViewatScopus

    38. M.SulemanandW.K.Reisen,CulexquinquefasciatusSay:lifetablecharacteristicsofadults reared from wildcaught pupae from North West Frontier Province,Pakistan,MosquitoNews,vol.39,pp.756762,1979.ViewatGoogleScholar

    39. G. R. A. Okogun, Lifetable analysis of Anopheles malaria vectors: generationalmortality as tool inmosquitovector abundanceandcontrol studies, Journal ofVectorBorne Diseases, vol. 42, no. 2, pp. 4553, 2005. View at Google Scholar View atScopus

    40. H. Yurttas and B. Alten, Geographic differentiation of life table attributesamong Anopheles sacharovi (Diptera: Culicidae) populations in Turkey, Journal ofVectorEcology,vol.31,no.2,pp.275284,2006.ViewatPublisherViewatGoogleScholarViewatScopus

    41. Y.A.Afrane,G.Zhou,B.W.Lawson,A.K.Githeko,andG.Yan,LifetableanalysisofAnophelesarabiensisinwesternKenyahighlands:effectsoflandcoversonlarvaland

  • 4/27/2015 ComparisonofBiologicalAttributesofCulexquinquefasciatus(Diptera:Culicidae)PopulationsfromIndia

    data:text/htmlcharset=utf8,%3Cdiv%20style%3D%22border%3A%200px%20none%3B%20fontfamily%3A%20MinionProRegular%2C%20Times%3 13/13

    adultsurvivorship,AmericanJournalofTropicalMedicineandHygiene,vol.77,no.4,pp.660666,2007.ViewatGoogleScholarViewatScopus

    42. I. K. Olayemi and A. T. Ande, Life table analysis of Anopheles gambiae (Diptera:Culicidae)inrelationtomalariatransmission,JournalofVectorBorneDiseases,vol.46,no.4,pp.295298,2009.ViewatGoogleScholarViewatScopus

    43. T. L. Bancroft, On the metamorphosis of the young form ofFilariabancroftiCobb,JournalofProceedingsoftheRoyalSocietyofNewSouthWales,vol.82,pp.6265,1899.ViewatGoogleScholar

    44. G. Chandra, S. N. Chatterjee, B. D. Banerjee, and G. Majumdar, Effect of seasonalvariations on the development ofWuchereria larvae inCulex quinquefasciatus, BasicandAppliedBiomedicalSciences,vol.5,pp.2124,1997.ViewatGoogleScholar

    45. P. E. C.MansonBahr and D. R. Bell, Mansons Tropical Disease, ELBS Publishers,London,UK,2003.

    46. V. B. Wiggleworth, The function of anal gills of the mosquito larva, Journal ofExperimentalBiology,vol.10,pp.1626,1933.ViewatGoogleScholar

    47. T. Klepaker, Morphological changes in a marine population of threespinedstickleback,Gasterosteusaculeatus,recentlyisolatedinfreshwater,CanadianJournalofZoology,vol.71,no.6,pp.12511258,1993.ViewatGoogleScholarViewatScopus

    48. H. Ben Cheikh, Z. Ben AliHaouas, M. Marquine, and N. Pasteur, Resistance toorganophosphorusandpyrethroidinsecticidesinCulexpipiens(Diptera:Culicidae)fromTunisia, Journal ofMedical Entomology, vol. 35, no. 3, pp. 251260, 1998. View atGoogleScholarViewatScopus

    49. V. Corbel, S. Duchon, M. Zaim, and J.M. Hougard, Dinotefuran: a potentialneonicotinoidinsecticideagainstresistantmosquitoes,JournalofMedicalEntomology,vol.41,no.4,pp.712717,2004.ViewatGoogleScholarViewatScopus

    50. A. W. A. Brown and R. Pal, Insecticide Resistance in Arthropod, World HealthOrganization,Geneva,Switzerland,1971.

    51. H. M. Tahir, A. Butt, and S. Y. Khan, Response of Culex quinquefasciatus todeltamethrininLahoredistrict,JournalofParasitologyandVectorBiology,vol.1,no.3,pp.1924,2009.ViewatGoogleScholar