1. title pages - shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… ·...

130
129 Chapter-IIIa Synthesis of new 1,3,5-triphenyl- bispyrazolines linked via the 3-aryl ring Synthetic and biological studies of pyrazolines and related heterocyclic compounds Mohamad Yusuf and Payal Jain Arabian Journal of Chemistry 2011, doi: 10.1016/j.arabjc.2011.09.013. Synthesis, characterization and antimicrobial studies of new bispyrazolines linked via 3-aryl ring with aliphatic chains Mohamad Yusuf and Payal Jain Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 2012, 96, 295-304.

Upload: others

Post on 30-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

129

Chapter-IIIa Synthesis of new 1,3,5-triphenyl-

bispyrazolines linked via the 3-aryl ring

� Synthetic and biological studies of pyrazolines and related heterocyclic

compounds

Mohamad Yusuf and Payal Jain

Arabian Journal of Chemistry 2011, doi: 10.1016/j.arabjc.2011.09.013.

� Synthesis, characterization and antimicrobial studies of new

bispyrazolines linked via 3-aryl ring with aliphatic chains

Mohamad Yusuf and Payal Jain

Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 2012,

96, 295-304.

Page 2: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

130

The studies of heterocyclic compounds had been subject of the major attraction in the

past decades due to their occurrence in nature and numerous applications in the

biological systems.1 The derivatives of chalcones are the significant compounds

which are associated with a wide range of pharmaceutical activities.2-11 Chalcones are

the compounds having 1,3-diaryl-2-propene moiety, containing an olefinic, ketonic

and hydroxy group.2,4,6 The condensation reaction of nitrogen containing

binucleophilic reagents with chalcones is one of the most convenient method for the

synthesis of five, six and seven membered heterocyclics.12-30 Among the five

membered heterocyclics, pyrazolines have played a crucial part in the development of

heterocyclic chemistry and have been extensively used as the important synthones in

organic synthesis.30-34 Pyrazoline system has been found to be biological active and is

the significant constituent of many pharmaceutical and agrochemical products. In

particular their derivatives are extensively used as antitumor, antibacterial, antifungal,

antiviral, antiparasitic, antitubercular and insecticidal agents.35-44 The pyrazoline

derivatives are also reported for their antihypertensive, anti-inflammatory,

antidepressant, antiarthritic and analgesic activities.45,46

3,5-Diaryl-1H-pyrazoles 3.4 were prepared47 from the cyclization of 1,3-diketone 3.3

with hydrazine hydrochloride (Scheme-3.1).

+ NNH

Ar'

ArLiHMDS, toluene NH2NH2.HCl, EtOH

3.1 3.2 3.33.4

Ar C CH3

O

Ar' C Cl

O

Ar C

O

CH2 C Ar'

O

Scheme-3.1

The reaction48 of dibenzalacetone 3.7 with hydrazine hydrate and formic acid yielded

a novel 2-pyrazoline 3.8 (Scheme-3.2).

CHO +CH3

CH3

OCH CH C CH CH

ONaOH/ EtOH

NN

O

H

NH2NH2/ HCOOH

3.5 3.63.7

3.8

Scheme-3.2

Page 3: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

131

A new series of pyrazolines 3.12 and isoxazolines 3.13 have been synthesized49 from

the reaction of 1-(4’-substituted phenyl)-3-(6’’-methoxynapthaline)-2-propene-1-one

3.11 with hydrazine hydrate and hydroxylamine hydrochloride respectively

(Scheme-3.3).

R

CH3

O

+O

H

OCH3

R

O

OCH3

R

NNH

OCH3

R

NO

OCH3

MeOH, NH2NH2.H2O NH2OH. HCl

KOH/ MeOH

3.93.10

3.11

3.133.12

Scheme-3.3

1,3,5-Triaryl-2-pyrazolines 3.1650 have been prepared from the reaction of chalcones

and phenyl hydrazine hydrochloride (Scheme-3.4) in the presence of sodium acetate-

acetic acid aqueous solution under ultrasound irradiation.

Ar1

O

Ar2 +NHNH2.HCl

N

N

Ar1

Ar2

CH3COONa/ AcOH/H2O

a) Ar1=C6H5, Ar2=4-CH3OC6H4 b) Ar1=C6H5, 4-CH3C6H4 c) Ar1=C6H5, Ar2=C6H5 d) Ar1=C6H5, Ar2=4-ClC6H4, e) Ar1=C6H5, Ar2=3-ClC6H4, f) Ar1=C6H5,

Ar2=2-ClC6H4, g) Ar1=C6H5, Ar2=3-BrC6H4, h) Ar1=C6H5, Ar2=4-O2NC6H4, i) Ar1=4-ClC6H4, Ar2=C6H5, j)Ar1=3-O2NC6H4, Ar2=C6H5,

3.14 3.15 3.16

ultrasound

Scheme-3.4

Some biologically significant bisheterocycles51 bearing pyrazoline moiety 3.20 have

been obtained starting from pyrazolyl aldehyde 3.17 through the sequence of reactions

which are described in Scheme 3.5.

Page 4: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

132

N

NH

Cl

CHO

CH3

N

N

Cl

CHO

CH3

CN

N

NCH3

CN

NNH

PhCl

N

NCH3

CN

NN

Ph

X

Z

Cl

Br

NC

PhNHNH2/ NaOAc

CAT, EtOH

CH2

CX Z

X = H, CH3, H, H, H, H, H, H

Z= Ph, Ph, CH3CN, CH2Cl, CH2Br, CH2OH, COOMe, COOEt

3.17 3.18

3.193.20

K2CO3/ DMF

Scheme-3.5

The analgesic and anti-inflammatory properties of novel 3/4-substituted-5-

trifluoromethyl-5-hydroxy-4,5-dihydro-1H-1-carboxyamidepyrazoles 3.22 (where

3/4-substituent are H/H, Me/H, Et/H, Pr/H, i-Pr/H, Bu/H, t-Bu/H, Ph/H, 4-Br-Ph/H

and H/Me) were determined52 and these compounds were prepared in the exploration

of the bioisosteric replacement of benzene present in salicylamide with a

5-trifluoromethyl-4,5-dihydro-1H-pyrazole scaffold (Scheme-3.6).

R1

OR

CF3

O

R2

NN

R1R

2

F3C

OH

O NH2

NH2NHCONH2.HCl/ MeOH/ Pyridine

3.213.22

Scheme-3.6

The cyclocondensation reaction53 of chalcone 3.23 and isoniazid led to the formation

of 3-substituted 4,5-dihydropyrazole 3.24 (Scheme-3.7).

CX3R

1

OMeON

N

ON

OH

CX3

R1

/ MeOH

R1= H, Me, Ph, 4-MePh, 2-thienyl, 2-furnyl, 4-MePh, 2-thienyl, 2-furyl ; X= F, Cl

3.23

3.24

NH2 NH C C6H4N

O

Scheme-3.7

Page 5: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

133

The pyrazolines 3.29 are prepared54 from the reaction of chalcones 3.26 with

hydrazine hydrate followed by condensation with appropriate aryl isothiocyanate

(Scheme-3.8).

CH3

OH

CH3

O

+ RCHO

CH3

OH

O

R

NHN

CH3

OH

R

NN

CH3

OH

R

NH

SCH3

NH

SOCH3

NN

CH3

OH

R

NCS

CH3

NCS

OCH3EtOH

EtOH

EtOH/ NaOH EtOH/ NH2NH2.H2O

3.25 3.263.37

3.28 3.29

Scheme-3.8

The N-substituted pyrazolines55 3.43 have been synthesized are prepared starting from

the aromatic aldehyde 3.40 through the two step reactions which are shown in

Scheme-3.9.

+N

CONHNH2

AcOH

NaOH/ EtOH

3.40 3.41 3.42

3.43

Ar C H

O

Ar C CH3

O

Ar CH CH C Ar'

O NN

Ar

Ar'

CH2

N

Scheme-3.9

The synthesis56 of novel 3,5-diaryl-pyrazolines 3.45-3.49 have been investigated in

order to study their monoamine oxidase (MAO) inhibitory properties (Scheme-3.10).

Page 6: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

134

OH O R

R'

OH

N N

R

R'

NH2

S

OH

N N

R

R'

NHNH

OH

OH

N NH

R

R'

OH

N N

R

R'

O

OH

N N

R

R'

S O

O

R2

R=OH, H; R1= H, OH; R2= CH3

PhCOCl, pyridine, reflux

/

EtOH

CH3I/

R2-C6H4SO2Cl, THF

3.44

3.453.46

3.47

3.48

3.49

NH2NH2.H2O, EtOH

NH2OH

NH2 NH C NH2

S

Scheme-3.10

3,5-Diarylcarbothioamide-pyrazolines 3.53-3.55 designed as mycobactin analogs

were reported to be potent antitubercular agents under the iron limiting conditions.57

These compounds were obtained via the usual reactions which are shown in

Scheme-3.11.

CH3

OR

R1

OR

R1

R2

R3

R4N N

H

R1 R R2R3

R4

N N

R1 RX

NH

S

R5

R6

N N

R1 R R2R3

R4

NH2

S

N N

R1 R R2R3

R4

NHS

R5

R6

X= O, S

3.50 3.513.52

3.533.54

3.55

a b

c

de, b, c

a) i: R2, R3, R4-C6H2-CHO/ aq. NaOH ii) HCl; b) NH2NH2/H2O/EtOH c) R5/R6-C6H3-NCS/EtOH d) NH2NHCSNH2, NaOH/MeOH/HCl e) thiophene-2-carboxaldehyde or furfuraldehyde

Scheme-3.11

Page 7: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

135

The cyclization of chalcones 3.58 with 2-(quinolin-8-yloxy)-acetohydrazide 3.59

under basic condition58 led to the formation of new pyrazoline derivatives 3.60

(Scheme-3.12).

Scheme-3.12

Some more synthetic methods have been reported in literature upon the synthesis of

biologically significant pyrazolines.59-69

Bispyrazolines are the molecules which are formed by joining two pyrazoline

moieties together through the alkyl chains of varying lengths. It is evident from the

above literature survey that chalcones are very important synthones in the

heterocyclic synthesis and these intermediates may be used for the preparation of

bisheterocyclics. By keeping these aspects in view, investigations have been focused

upon the cyclization reaction of new bischalcones 3.64-3.69 built around the aliphatic

chains of varying lengths.

CH3

O

R1 +H

O

R2

O

R1 R2

NOH

NO

O O CH3

NO

O NHNH2

+

NN

N

O

O

R R

NaOH/ EtOH

NaOH/ EtOH

ClCH2COOEt, K2CO3, Acetone

N2H4.2H2O

3.56 3.57

3.58

3.59

3.60

3.61

3.62

3.59

Page 8: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

136

O CH2 (CH2)n CH2 O

O O

3.64-3.69

n = 2, 3, 4, 6, 8, 10

The bisheterocyclics 3.70-3.75 required for this study were prepared starting from

chalcone 3.63 which was obtained from the Claisen-Schmidt70 reaction of

o-hydroxyacetophenone with benzaldehyde (Scheme-3.13). The decomposition of the

resulting reaction mixture into iced HCl provided a crude product which was

crystallized from MeOH to yield pure compound 3.63 (82%, m.p. 55-57οC).

OH

O

CH3 +NaOH/ EtOH/ O0C

12

31'

2'3'

4'

5'

6'

H

O

OH

O

1''

2''

3''

4''

5''

6''

3.63

Scheme-3.13

The IR spectrum of 3.63 showed strong absorptions at 3216, 1695 and 1604 cm-1 due

to O-H, C=O and C=C stretching frequency respectively. In its 1H-NMR spectrum

(400 MHz, CDCl3), the lowest downfield resonance was placed at δ 12.81

(1H, exchangeable with D2O) that can be ascribed to OH proton. The double bond

protons H-3 and H-2 were very well resonating at δ 7.91 (1H, d, Jtrans=15.5 Hz) and

7.65 (1H, d, Jtrans=15.5 Hz) respectively. The hydrogens belonging to phenyl rings

were centred at 7.68 (2H, dt, J=1.0, 2.8, 4.4 Hz, H-2’’, 6’’), 7.51 (1H, td,

Jm,o=1.6, 7.2 Hz, H-4’), 7.44 (3H, m, H-3’’, 4’’, 5’’), 7.04 (1H, dd, Jp,o=1.0, 8.4 Hz,

H-5’) and 6.95 (1H, td, Jp,o=1.1, 8.1 Hz, H-3’). The most upfield appearance of H-3’

as compared to other protons could be ascribed to the + I effect of the 2’-OH group.

Finally, structure of 3.63 was confirmed from its GC-MS spectrum which exhibited

the molecular ion at m/z 224 (68%).

Synthesis of bispyrazolines 3.70

The compound 3.70 was obtained in two steps:

(i). Synthesis of bischalcone 3.64

Page 9: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

137

The chalcone 3.63 was treated with 1,4-dibromobutane in the presence of anhydrous

K2CO3 and tetrabutyl ammonium iodide (PTC) in dry acetone under refluxing

conditions (Scheme-3.14). After completion of reaction, the resulting mass was

poured into iced-HCl to provide a solid substance which was crystallized from

CH3OH:CHCl3 (3:1) to yield pure compound 3.64 as a yellow solid

(69%, m.p. 92-94oC).

OH

O

12

3

2''3''

5''6''6'

5'

4'

3'4''

3.63

K2CO3/acetone/ Br-(CH2)4-Br/Bu4N+I-/ ∆

12

31'

2'3'4'

5'6'

1''2'' 3''

4''

5''6''

O CH2 (CH2)2

O

CH2 O

O

3.64

Scheme-3.14

The compound 3.64 in its IR spectrum exhibited major bands at 1660 (C=O), 1596

(C=C), 2930, 2862 (methylene C-H) and 1230, 1025 (C-O). 1H-NMR (400 MHz,

CDCl3) spectrum of 3.64 was consistent to the proposed structure and confirmed the

symmetry in molecule. The most downfield resonance appeared as a two protons

doublet of doublet (Jm,o=1.7, 7.6 Hz) at δ 7.62 which could be ascribed to H-6’ while

protons H-4’, H-5’ & H-3’ produced three signals at δ 7.42 (2H, ddd,

Jp,m,o=1.0, 1.8, 7.4 Hz), 7.02 (2H, td, Jp,o=0.7, 7.4 Hz) and 6.82 (2H, d, Jo=8.2 Hz)

respectively. Two broad doublets centered at δ 7.52 (2H, Jtrans=15.9 Hz) and 7.31

(2H, Jtrans=15.9 Hz) could be represented by trans hydrogens H-3 and H-2

respectively. The protons belonging to C-3 phenyl ring were resonating at δ 7.50

(4H, m, H-2’’, 6’’) and 7.34 (6H, m, H-3’’,4’’, 5’’). In the aliphatic region, two

triplets integrating for four hydrogens each were observed at δ 3.90 (4H, Jvic=6.2 Hz,

OCH2CH2) and 1.88 (4H, Jvic=6.2 Hz, OCH2CH2).

Page 10: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

138

In the 13C-NMR (100 MHz, CDCl3) spectrum of 3.64, signal of the C=O group was

observed at δ 192.80. The carbon atoms belonging to double bond resonated at

δ 142.62 (C-3) & 112.71 (C-2) and the downfield occurrence of former can be

ascribed to its β-position in the enone system. Other noticeable resonance present at

δ 157.50 could be furnished by C-2’ due to its direct linkage to the electronegative

oxygen atom. The remaining aromatic carbon atoms were found to be placed at

δ 134.67 (C-4”), 133.78 (C-1’), 129.40 (C-6’), 128.61 (C-2”, 6’’), 128.24 (C-4’),

127.25 (C-5’) and 120.51 (C-3’’, 5”). The upfield appearance of the C-3’ at δ 112.23

could be ascribed to its ortho placement with respect to C2’-OCH2 group. The

intervening chain furnished two signals at δ 67.70 (OCH2CH2) and 26.04 (OCH2CH2).

ESI-MS spectrum of 3.64 also corroborated its structure which exhibited (M+Na) ion

at m/z 525 (11%) along with other significant ions at m/z 279 (70%), 130 (76%),

93 (100%) and 77 (23%). Its mass fragmentation pattern has been depicted in

Chart-1.

(ii). Cyclization of bischalcone 3.64

The compound 3.64 was refluxed with phenyl hydrazine in EtOH/AcOH medium

(Scheme-3.15) and cooling of the resulting reaction mixture provided a solid

substance. The crude product was crystallized from MeOH to yield pure bispyrazoline

3.70 (63%, m.p. 130-132oC).

1'

3'

4'

5'

6'

2'O CH2 (CH2)2 CH2 O

O O

12

3

1''

2'' 3''

4''

5''6''

3''

4''

5''

6''

2''1''

12

34 5

5''' 3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)2 CH2 O

NN

HX

HMHA

HM

HA

HX

PhNHNH2/ EtOH/ AcOH /∆

3.64

3.70

Scheme-3.15

Page 11: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

139

O CH2 (CH2)2 CH2 O

O Om/z 502

O

O

H2C (CH2)2 CH2 O

O

O

O

CH2

O

O

O

HC

....

....

....

....

....

....

.....

m/z 223 (80%)m/z 279 (70%)

m/z 147 (13%)

m/z 93 (100%)

m/z 207 (42%)

m/z 77 (23%)

m/z 130 (76%)

++

+

+

++

+.

a

a

b

b

-C6H4

m/z 525 (M+Na, 11%)

.+

-C15O2H11

-C4H8

-O

-O

-C6H5

Chart-1

IR spectrum of 3.70 was very helpful to interpret its structure which did not exhibit a

strong absorption at 1660 cm-1 indicating the involvement of carbonyl group during

the cyclization reaction of 3.64. Here significant band was observed at 1598 cm-1 due

to the C=N moiety of pyrazoline ring.

In the ESI-MS mass spectrum of 3.70, (M+1) ion was observed at 683 (18%) and its

mass fragmentation pattern has been depicted in Chart-2.

An analysis of 1H-NMR spectrum of 3.70 was helpful to ascertain the symmetrical

feature of molecule. The comparison of 1H-NMR spectra of 3.64 and 3.70 revealed

that the resonances at δ 7.52 (2H, d) and 7.31 (2H, d) present in the former were

found missing altogether in the later which describes the involvement of enone moiety

in the cyclization process. The phenyl ring present at C-3 provided a downfield

Page 12: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

140

doublet of doublet at δ 7.92 (Jp,o=1.0, 7.8 Hz) which could be ascribed to H-6’ while

the proton H-4’, H-5’ & H-3’ were observed at δ 7.15 (2H, td, Jm,o= 2.0, 7.8 Hz),

6.82 (2H, td, Jm,o=1.8, 7.6 Hz) and 6.63 (2H, d, Jo=8.4 Hz) respectively. The upfield

appearance of H-3’ as compared to other hydrogens seems to be decided by the

shielding effect of C-2’ alkoxy group. Regarding the protons of the N-1 and C-5

phenyl rings, two multiplets integrating for ten protons each were centred at

δ 7.28 and 6.99 which could be represented by H-2’’, 6’’, 3’’’, 4’’’, 5’’’ and H-3’’,

4’’, 5’’, 2’’’, 6’’’ respectively. The silent feature of this spectrum was the signals of

the pyrazoline ring protons (H-X, H-M & H-A). The non equivalent protons (H-M &

H-A) present at C-4 were resonating at δ 3.94 (2H) & 3.17 (2H) respectively while

H-X was found to be placed at δ 5.14 (2H). The coupling value of JMX=12.1 Hz &

JAX=6.6 Hz describes the cis relationship between H-X & H-M while H-X & H-A are

trans oriented to each other. The geminal coupling value between H-M & H-A was

found to be 17.3 Hz. The downfield occurrence of H-X as compared to H-M & H-A

may be ascribed to its benzylic nature and its placement adjacent to the nitrogen atom.

UV-Vis spectrum of 3.70 exhibited two maxima at 362 and 259 nm which may be

ascribed to n→π* and π→π* transitions respectively.

In the 13C-NMR (100MHz, CDCl3) spectrum of 3.70, the pyrazoline ring carbon

atoms C-3, C-5 & C-4 were present at δ 146.61, 64.35 & 46.74 respectively. The

carbon atoms C-2’ & C-1’’’ which are directly bonded to the hetero atom (O & N)

showed themselves at δ 156.78 and 146.54 respectively. The signals present at

δ 144.95 and 140.92 were assignable to C-1’’ and C-4’’ respectively. The carbon

atoms C-4’, C-6’, C-1’, C-5’ & C-3’ belonging to C-3 phenyl ring resulted suitable

signals at 142.79, 128.95, 122.12, 120.89 and 113.86 respectively. The remaining

resonances in the aromatic region were found to be placed at δ 129.97 (C-3’’’, 5’’’),

128.52 (C-3’’, 5’’), 125.85 (C-2’’, 6’’) and 118.80 (C-4’’’). The carbon atoms

C-2’’’, 6’’’ were resonating at δ 112.27 due to the electron donating effect of the N-1.

The internal chain could provide two signals at δ 67.75 (OCH2CH2) and 26.16

(OCH2CH2) and again the downfield resonances of the former could be attributed to

its direct linkage to the electronegative oxygen atom.

Synthesis of bispyrazoline 3.71

The compound 3.71 was again obtained in the two steps:

(i). Synthesis of bischalcone 3.65

Page 13: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

141

The chalcone 3.63 was reacted with 1,5-dibromopentane (Scheme-3.16) under the

similar conditions as used earlier for 3.64 to yield pure compound 3.65

(64%, m.p. 89-91oC).

OH

O

K2CO3/acetone/ Br-(CH 2)5-Br/Bu4N+I-/ ∆

1 2

3

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

O CH2 (CH2)3

O

CH2 O

O

3.63

5'

4'3'

2'

1'6'

12

31''

2''

3''

4''

5''

6''

3.65

Scheme-3.16

UV-Vis spectrum of 3.65 had two maxima at 289 and 222 nm which may be provided

by n→π* and π→π* transitions respectively. The functional group region of its IR

spectrum had strong absorptions at 1654 (C=O) and 1596 (C=C) cm-1 along with

methylene (C-H) and ether (C-O) stretchings at 2948, 2869 and 1240, 1025 cm-1

respectively.

The 1H-NMR spectrum of 3.65 showed the double bond hydrogens H-3 and H-2 at

δ 7.54 (2H, d, Jtrans=15.9 Hz) and 7.36 (2H, d, Jtrans=15.9 Hz) respectively and the

electophilic nature of β-carbon atom in the enone moiety is responsible for the

downfield resonance of H-3. A doublet of doublet at δ 7.62 (2H, Jm,o=1.7, 7.6 Hz), a

doublet of double doublet at δ 7.40 (2H, Jp,m,o= 0.6, 1.8, 7.4 Hz), a triplet of doublet at

δ 7.00 (2H, Jp,o=0.6, 7.6 Hz) and a doublet at δ 6.82 (2H, Jo=8.2 Hz) were easily

represented by H-6’, H-4’, H-5’ and H-3’ respectively. The protons H-2’’, 6’’ and

H-3’’, 4’’, 5’’ furnished a four hydrogens doublet of doublet at δ 7.50

(Jm,o=2.1, 7.6 Hz) and a six protons multiplet at δ 7.28 respectively. The intervening

chain methylene group OCH2CH2CH2, OCH2CH2CH2 and OCH2CH2CH2 resulted

three signals at δ 3.84 (4H, t, Jvic=6.2 Hz), 1.50 (4H, t, Jvic=6.2 Hz) and 1.30

(2H, quintet, Jvic=3.7 Hz) respectively.

Page 14: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

142

NN

O CH 2 (CH 2)2 CH 2 O

NN

H

H

H

H

H

H

NN

O CH 2 (CH 2)2 CH 2 O

NN

H

HH

H

H

-H

+

NN

O CH 2 (CH 2)2 CH 2 O

NN

H

H

+

NN

O CH 2 CH 2 CH 2 O

NH

N

H

H

H

H

H

H

NN

O CH2 CH 2 CH2 O

NN

H

H

H+

NN

O CH 2 CH2 CH 2 O

NN

H

H

H

H

NN

O CH 2 CH2 CH 2 O

NN

H

H

H+

NN

O CH 2 CH 2 CH 2 O

N

C C CH2 O

Ph

Ph

Ph Ph

CH CH CH 2 O

Ph

O

+

m/z 682

m/z 592 (26%)

-C7H6

m/z 591 (10%)

-H

-H

m/z 590 (18%)

m/z 589 (80%)

-H

-NH2

m/z 573 (72%)

-N3H2

m/z 529 (61%)

m/z 511 (18%)

-H2O

m/z 457 (4%)

-C6H7O

m/z 434 (15%)

+

NN

O C C CH2 O

NN

H

H

H

m/z 509 (100%)

-C6H8

m/z 683 (M+1, 18%)

.+

+

+

C C CH 2 O

Ph+

m/z 681 (42%)

m/z 679 (39%)

......

.

......

.

+.

-H2

.

Chart-2

The ESI-MS spectrum of 3.65 exhibited significant ions at m/z 539 (M+Na, 14%),

145 (100%), 144 (29%), 102 (3%), 77 (17%) and its mass fragmentation pattern was

found to be similar as shown in Chart-1 (vide experimental).

The quick examination of 13C-NMR spectrum of 3.65 revealed noticeable signals at

δ 192.94 (C=O), 157.58 (C-2’), 142.67 (C-3) and 112.72 (C-2). The resonances

placed at δ 134.89, 133.60 and 132.26 were easily belonging to C-4’’, C-1’ and C-1’’

Page 15: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

143

respectively while carbon atoms C-6’, C-2’’, 6’’, C-4’ & C-5’ appeared at δ 129.62,

128.70, 128.10 and 127.24 respectively. The remaining signals in the aromatic region

were located at δ 120.50 (C-3’’, 5’’) and 112.20 (C-3’). Three different methylene

groups of the intervening chain were found to be resonating at δ 67.73

(OCH2CH2CH2), 29.00 (OCH2CH2CH2) and 25.60 (OCH2CH2CH2).

(ii). Cyclization of bischalcone 3.65

The compound 3.71 (67%, m.p. 136-138oC) was prepared from the reaction of 3.65

with phenyl hydrazine (Scheme-3.17) under the similar conditions as used earlier for

3.70.

1'

3'

4'

5'

6'

2'O CH2 (CH2)3 CH2 O

O O

12

3

1''

2''3''

4''

5''6''

3''

4''

5''6''

2''1''12

34

5

5''' 3'''2'''

6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)3 CH2 O

NN

HX

HMHA

HM

HA

HX

PhNHNH2/ EtOH/ AcOH /∆

3.65

3.71

Scheme-3.17

IR spectrum of 3.71 showed recognizable bands at 1592 (C=N), 2932, 2826

(methylene C-H) and 1240, 1025 (C-O) cm-1. Its ESI-MS spectrum in addition to

molecular ion at m/z 696 (11%), exhibited prominent ions at m/z 695 (19%), 693

(21%), 606 (64%), 605 (28%), 604 (78%), 603 (73%), 587 (58%), 547 (25%), 529

(40%) and 522 (7%). The UV-Vis spectrum of 3.71 had two maxima at 354 and 250

nm due to to n→π* and π→π* transitions respectively.

In the 400 MHz 1H-NMR (CDCl3) spectrum of 3.71, a doublet of doublet integrating

for two protons at δ 7.82 (Jp,o=1.2, 7.8 Hz) could be assigned to H-6’. To the right of

this signal, a ten protons multiplet centered at δ 7.18 appeared due to H-2’’’, 3’’’, 5’’’,

6’’’, 4’ while protons H-2’’, 6’’, H-5’ and H-4’’ were resonating at δ 7.07 (4H, td,

Jm,o=2.1, 7.8 Hz), 6.91 (2H, dd, Jp,o=1.1, 7.8 Hz) and 6.84 (2H, td, Jm,o=1.8, 8.0 Hz)

Page 16: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

144

respectively. A triplet of doublet placed at δ 6.81 (2H, Jp,o=1.1, 8.0 Hz) may be

furnished by H-4’’’. Towards the upfield position in the aromatic region, the signals

present at δ 6.72 (4H, td, Jm,o=2.0, 7.8 Hz) and 6.62 (2H, m) were easily given by

H-3’’, 5’’ and H-3’ respectively. The well defined doublet of doublets integrating for

two hydrogens each at δ 5.09 (JXM=12.1 Hz, JXA=7.0 Hz), 3.73 (JMX=12.1 Hz,

JMA=17.3 Hz) and 3.20 (JXA=7.0 Hz, JAM=17.3 Hz) were certainly generated by

pyrazoline ring hydrogens H-X, H-M & H-A respectively. The internal alkyl chain

also provided suitable signals at the expected position in the aliphatic region

(vide experimental). 13C-NMR spectrum of 3.71 also corroborated the proposed structure which had

pyrazoline ring carbon atoms (C-3, C-5 & C-4) at δ 146.54, 64.30 & 46.70

respectively. The internal chain methylene groups furnished three signals at δ 67.72

(OCH2CH2CH2), 29.00 (OCH2CH2CH2) & 26.51 (OCH2CH2CH2). The carbon atoms

belonging to three phenyl rings (N-1, C-3 & C-5) were also resonating at suitable

positions in the aromatic region (vide experimental).

Synthesis of bispyrazolines 3.72

The compound 3.72 was obtained in two steps:

(i). Synthesis of bischalcone 3.66

The bischalcone 3.66 was obtained from the reaction of 3.63 with 1,6-dibromohexane

(Scheme-3.18) under the similar conditions as described earlier for 3.64

(77%, 82-84oC).

OH

O

K2CO3/acetone/ Br-(CH2)6-Br/Bu4N+I-/ ∆

12

3

1'

2'3'

4'

5'6'

1''

2'' 3''

4''

5''6''

O CH2 (CH2)4

O

CH2 O

O

3.63

5'

4'3'

2'

1'6'

12

31''

2''

3''

4''

5''

6''

3.66

Scheme-3.18

Page 17: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

145

IR spectrum of 3.66 displayed major absorptions at 1659 (C=O), 1603 (C=C), 2937,

2870 (methylene C-H) and 1236, 1040 (C-O). Its 400 MHz 1H-NMR (CDCl3)

spectrum was similar to that of 3.64 and 3.65 except those of internal chain methylene

hydrogens which were resonating at δ 3.78 (4H , t , Jvic=6.2 Hz, OCH2CH2CH2), 1.58

(4H, t, Jvic=6.2 Hz, OCH2CH2CH2) & 1.33 (4H, quintet, Jvic= 3.7 Hz, OCH2CH2CH2).

The former protons were found slightly upfield as compared to similar hydrogen in

3.64 (δ 4.05) & 3.65 (δ 3.84); obviously due to the +I effect of the extra methylene

group present in 3.66. In the aromatic region, characteristic doublets of H-3 & H-2

were centered at δ 7.59 (2H, Jtrans=15.9 Hz) and 7.39 (2H, Jtrans=15.9 Hz) respectively.

The remaining protons belonging to the C-1 phenyl (H-3’, 4’, 5’ & 6’) and C-3 phenyl

(H-2’’, 3’’, 4’’, 5’’ & 6’’) rings were found to be placed at the expected δ and J values

in the aromatic region (vide experimental).

ESI-MS spectrum of 3.66 had (M+Na) ion at m/z 553 (100%) along with other ions at

m/z 159 (38%), 158 (7%), 102 (40%), 76 (32%) and its mass fragmentation pattern

was found to be similar as shown in Chart-1 (vide experimental).

The gross structure of 3.66 has been further supported by its 13C-NMR (100 MHz,

CDCl3). The downfield resonances placed at δ 192.60 and 157.61 could be given by

C=O and C-2’ respectively while the double bond carbon atoms C-3 and C-2 were

resonating at δ 142.65 and 112.64 respectively. The internal chain carbon atoms

generated three signals at δ 68.29 (OCH2CH2CH2), 29.20 (OCH2CH2CH2) and 25.90

(OCH2CH2CH2). The aromatic rings carbon atoms C-1’, 3’, 4’, 5’, 6’ and C-1’’, 2’’,

3’’, 4’’, 5’’, 6’’ were also found to be placed at the appropriate positions in the

aromatic region (vide experimental).

(ii). Cyclization of bischalcone 3.66

The compound 3.72 (79%, m.p. 150-152oC) was obtained (Scheme-3.19) from the

reaction of 3.66 with phenyl hydrazine under the same conditions as described above

for 3.70.

Page 18: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

146

1'

3'

4'

5'

6'

2'

12

3

1''

2'' 3''

4''

5''6''

3''

4''

5''

6''

2''1''

12

3 4

5

5'''3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)4 CH2 O

NN

HX

HMHA

HM

HA

HX

PhNHNH2/ EtOH/ AcOH /∆

3.66

O CH2 (CH2)4 CH2 O

O O

3.72

Scheme-3.19

The expected bands in the IR spectrum of 3.72 were obsereved at 1596 (C=N), 2934,

2878 (methylene stretch) and 1236, 1025 (C-O). Its 1H-NMR spectrum was highly

amenable to its interpretation and was similar to those of 3.70 & 3.71. At the lowest

downfield, a two hydrogens doublet of doublet at δ 7.89 (Jm,o=1.7, 7.4 Hz) could be

furnished by H-6’ due to its vicinity to the pyrazoline ring atom (N-2). Three doublet

of doublets centered at δ 5.09 (2H, JXM=12.1 Hz, JXA=7.0 Hz), 3.72

(2H, JMA=17.3 Hz, JMX=12.1 Hz) & 3.23 (2H, JAX=7.0 Hz, JAM=17.3 Hz) were

assigned to H-X, H-M and H-A respectively. In a double irradiation technique,

irradiation of doublet of doublet at δ 5.09 (H-X) converted the doublet of doublets at

δ 3.72 (H-M) and 3.23 (H-A) to doublet each which certainly describes that H-X,

H-M & H-A are intercoupling among each other.

The protons belonging to N-1, C-3 and C-5 phenyl rings were resonating at the

similar positions as described in 3.70 & 3.71 (vide experimental). The signals placed

at δ 3.68 (4H, m), 1.60 (4H, t, Jvic=6.4 Hz) and 1.32 (4H, quintet, Jvic=2.8 Hz) were

easily allotted to internal chain OCH2CH2CH2, OCH2CH2CH2 and OCH2CH2CH2

group respectively.

13C-NMR spectrum of 3.72 showed recognizable resonances at δ 156.93, 146.72,

146.75, 64.48 and 46.89 which were represented by C-2’, C-1’’’, C-3, C-5 and C-4

respectively. The carbon atom of the internal spacer produced three signals at δ 68.27

Page 19: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

147

(OCH2CH2CH2), 29.28 (OCH2CH2CH2) and 25.79 (OCH2CH2CH2). The carbon

atoms of the three phenyl rings present at N-1, C-3 & C-5 were found to be resonating

at the expected δ values in the aromatic region (vide experimental).

The appearance of ions in the ESI-MS spectrum of 3.72 at m/z 733 (M+Na, 32%),

709 (18%), 707 (27%), 620 (48%), 619 (78%), 618 (54%), 617 (60%), 601 (38%) and

536 (10%) also confirmed the proposed expression and its mass fragmentation pattern

was found to be similar as shown in Chart-2 (vide experimental).

Synthesis of bischalcones 3.67-3.69

The compounds 3.67-3.69 were prepared in good yields from the O-alkylation of

chalcone 3.63 with suitable 1,ω-dibromoalkane (1,8-dibromooctane,

1,10-dibromodecane & 1,12-dibromododecane respectively) under the similar

conditions as described earlier for 3.64-3.66. The characteristics spectral data of

3.67-3.69 have been presented in Table-1 (vide experimental).

1'

3'

4'

5'

6'

2'O CH2 (CH2)n CH2 O

O O

12

3

1''

2'' 3''

4''

5''6''

3.67 (n=6), 3.68 (n=8), 3.69 (n=10)

Synthesis of bispyrazolines 3.73-3.75

The compounds 3.73-3.75 were prepared from the cyclization reaction of the

bischalcones 3.67-3.69 with phenyl hydrazine under the similar conditions as

described earlier for 3.70. The physical and characteristics spectral data of 3.73-3.75

have been given in Table-2.

3''

4''5''

6''

2''1''

12

3 4

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)n CH2 O

NN

HX

HMHA

HM

HA

HX

3.73 (n=6), 3.74 (n=8), 3.75 (n=10)

Page 20: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

148

Table-1: Physical and characteristics spectral data of bischalcones 3.67-3.69

Jtrans= 15.9-15.7 Hz

Table-2: Physical and characteristics spectral data of bispyrazolines 3.73-3.75

*JXA= 7.2-7.0 Hz , JXM= 12.2-12.1 Hz , JMA= 17.8-17.2 Hz

To generalize the above described cyclization reaction of bischalcones, these

investigations have also been extended upon the synthesis of tolyl substituted

bispyrazolines 3.83-3.88.

3''

4''

5''

6''

2''1''1

23 4

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'6' N

N

O CH2 (CH2)n CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

3.83-3.88

n= 2, 3, 4, 6, 8, 10

Compd. m.p. (°C)

Yield (%)

IR (υmaxcm-1)

1H-NMR (δ )

13C-NMR (δ ) ESI-MS (m/z)

C=O C=C H-2* H-3* C=O C-3 C-2

3.67

70-72

71 1656

1598

7.35 (d)

7.54 (d)

192.89 142.42 112.38 559 (M+1)+

3.68

58-60 76

1665

1602

7.36 (d)

7.55 (d)

190.96 142.70 112.61 609 (M+Na)+

3.69

64-66 72 1655 1600 7.11 (d)

7.39 (d)

192.98 142.74 112.62 614 (M)+

Compd. m.p (°C)

Yield (%)

IR (υmax cm-1)

1H-NMR (δ) 13C-NMR (δ) ESI-MS (m/z)

C=N H-X* H-M* H-A* C=N C-5 C-4

3.73 165-167

75 1596 5.18 (dd)

3.93 (dd)

3.31 (dd)

147.98 64.55 46.91 738 (M)+

3.74 110-112

68 1594 5.25 (dd)

4.13 (dd)

3.35 (dd)

146.91 63.31 45.75 766 (M)+

3.75 125-127

65 1599 5.12 (dd)

4.00 (dd)

3.30 (dd)

147.89 64.34 44.35 795 (M+1)+

Page 21: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

149

The bisheterocyclics 3.83-3.88 needed for this study were synthesized starting from

chalcone 3.76 which was obtained from the Clasien-Schmidt reaction of

o-hydroxyacetophenone with tolualdehyde (Scheme-3.20). The decomposition of the

reaction mixture into iced HCl provided a crude substance that was crystallized from

MeOH to yield pure compound 3.76 (80%, m.p. 102-104oC).

OH

O

CH3+ NaOH/ EtOH/ O0C

12

31'

2'3'

4'

5'

6'

CH3

CH3

O

OH

O

CH3

1''

2''

3''

4''

5''

6''

3.76

Scheme-3.20

IR spectrum of 3.76 had three major absorptions at 3217 (O-H), 1690 (C=O) and

1600 (C=C) cm-1. In its 1H-NMR spectrum (400 MHz, CDCl3), the lowest downfield

resonance was placed at δ 12.87 (1H, OH) that was exchangeable with D2O. The

double bond protons H-3 and H-2 were very well resonating at δ 7.89 (1H, d,

Jtrans=15.4 Hz, H-3) and 7.62 (1H, d, Jtrans=15.4 Hz, H-2) respectively. The aromatic

ring hydrogens were centered at δ 7.57 (2H, d, Jo=8.0 Hz, H-2’’, 6’’), 7.50 (1H, td,

Jm,o=1.6, 8.4 Hz, H-4’), 7.24 (2H, d, Jo=8.0 Hz, H-3’’, 5’’), 7.03 (1H, dd, Jp,o=1.0,

8.4 Hz, H-5’) and 6.94 (1H, td, Jp,o=1.1, 8.0 Hz, H-3’). In the aliphatic region, a sharp

singlet integrating for three hydrogens at δ 2.40 was assignable to 4’’-CH3 group. The

structure of 3.76 was also confirmed from its GC-MS spectrum which exhibited the

molecular ion at m/z 238 (60%).

(i). Synthesis of bispyrazolines 3.83

The compound 3.83 was prepared in two steps:

Synthesis of bischalcone 3.77

The chalcone 3.76 was reacted with 1,4-dibromobutane in the presence of anhydrous

K2CO3 and tetrabutyl ammonium iodide (PTC) in dry acetone (Scheme-3.21). The

decomposition of reaction mixture into iced HCl provided a crude product that was

crystallized from MeOH to yield pure compound 3.77 (68%, m.p. 143-145oC).

Page 22: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

150

OH

O

CH3

12

3

2''3''

5''6''6'

5'

4'

3'4''

K2CO3/acetone/ Br-(CH 2)4-Br/Bu4N+I-/ ∆

12

31'

2'3'4'

5'6'

1''2'' 3''

4''

5''6''

CH3

O CH2 (CH2)2

O

CH2 O

O

CH3

3.77

Scheme-3.21

The presence of enone moiety and ether linkage was confirmed by the appearance of

absorptions at 1656 (C=O), 1598 (C=C) and 1235, 1020 (C-O) in the IR spectrum of

3.77. Its 1H-NMR (400 MHz, CDCl3) spectrum showed a doublet of doublet at δ 7.62

(2H, Jm,o=2.2, 7.6 Hz) which may be allotted to H-6’. The C-1 & C-3 phenyl ring

hydrogens presented themselves as a six protons multiplet at δ 7.41, four protons

doublet at δ 7.12 (Jo=7.0 Hz), two protons triplet of doublet at δ 7.01 (Jp,o=0.6,

7.4 Hz) and two protons doublet at δ 6.82 (Jo=8.2 Hz) which could be assigned to

H-2’’, 6’’, 4’, H-3’’, 5’’, H-5’ and H-3’ respectively. The olefinic protons H-3 and

H-2 were placed at δ 7.54 (2H, d) and 7.29 (2H, d) respectively and the coupling

value of Jtrans=15.9 Hz between these hydrogens describes their trans relationship. A

singlet integrating for six protons at δ 2.31 could be very well ascribed to CH3 group.

The protons of the internal chain as expected showed two signals at δ 3.89 (4H, t,

Jvic=6.2 Hz, OCH2) and 1.88 (4H, quintet, Jvic=6.2 Hz, OCH2CH2). The UV-Vis

spectrum of 3.77 furnished two maxima at 330 and 209 due to n→π* and π→π*

transitions respectively.

A look at 13C-NMR spectrum of 3.77 revealed that resonances due to enone moiety

were located at δ 192.96 (C=O), 142.66 (C-3) & 120.72 (C-2) while C-2’ directly

bonded to oxygen atom also appeared downfield at δ 157.44. The carbon atoms

belonging to the tolyl ring were present at δ 140.68 (C-4’’), 132.33 (C-1’’), 129.63

(C-2’’, 6’’) and 126.49 (C-3’’, 5’’). The remaining aromatic carbon atoms C-1’, C-6’,

C-4’, C-5’ & C-3’ were found to be placed at δ 132.79, 130.40, 129.43, 128.32 &

112.25 respectively. The aliphatic region was also occupied by three signals at

δ 67.78 (OCH2CH2), 26.10 (OCH2CH2) and 21.46 (CH3).

Page 23: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

151

The ESI-MS spectrum of 3.77 also confirmed the proposed structure which exhibited

important ions at m/z 554 (M+Na+1, 10%), 553 (M+Na, 21%), 243 (50%), 242

(100%), 186 (9%) & 142 (6%). Its mass fragmentation pattern has been presented in

Chart-3. O CH2 (CH2)2 CH2 O

O O

CH3 CH3

m/z 530

m/z 242 (100%)

m/z 243 (50%)

m/z 186 (9% )

m/z 142 (6%)

m/z 553 (M+Na, 21%)

m/z 554 (M+Na+1, 10%)

O CH2 (CH2)2 CH2 O

O O

C C CH OC

-C20O2H16

-C4H8

-C6H12O

...... ......

+

+

+

.

.

a a

Chart-3

(ii). Cyclization of bischalcone 3.77

The compound 3.77 was refluxed with phenyl hydrazine in EtOH/AcOH solution

(Scheme-3.22) and cooling of the resulting reaction mixture in an ice bath provided a

solid substance. The resulting product was crystallized from MeOH to yield pure

compound 3.83 (68%, m.p. 232-234oC).

1'

3'

4'

5'

6'

2'O CH2 (CH2)2 CH2 O

O O

CH3CH312

3

1''

2'' 3''

4''

5''6''

3''

4''

5''

6''

2''1''

12

34

5

5''' 3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)2 CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

PhNHNH2/ EtOH/ AcOH /∆

3.77

3.83

Scheme-3.22

Page 24: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

152

IR spectrum of 3.83 exhibited significant bands at 1598 (C=N), 2920, 2868

(methylene C-H) & 1232, 1018 (C-O) cm-1. In the aromatic region of its 1H-NMR

(400 MHz, CDCl3) spectrum, major signals were centred at δ 7.92 (2H, dd, Jp,o=1.2,

7.8 Hz), 7.29 (6H, m), 7.15 (4H, td, Jm,o=2.1, 7.6 Hz) and 7.05 (4H, dd, Jp,o=1.1, 9.0

Hz) which were belonging to H-6’, H-4’, 3’’’, 5’’’, H-2’’, 6’’ and H-2’’’, 6’’’

respectively. The protons H-5’, H-3’ and H-3’’, 5’’ were resonating at δ 6.96 (2H, td,

Jp,o=1.1, 7.8 Hz), 6.86 (2H, d, Jo=7.8 Hz) and 6.80 (4H, td, Jm,o=2.5, 7.8 Hz)

respectively while H-4’’’ resonated at δ 6.72 as a two proton doublet of triplet

(Jm,o=2.2, 8.0 Hz).

Three doublet of doublets present at δ 5.10 (2H, JXM=12.1 Hz, JXA=7.0 Hz), 3.89

(2H, JMX=12.1 Hz, JMA=17.2 Hz) and 3.24 (2H, JAX= 7.0 Hz, JAM=17.2 Hz) could be

assigned to pyrazoline ring protons H-X, H-M & H-A respectively. Rest of the

spectrum had a triplet at δ 3.94 (4H, t, OCH2), a singlet at δ 2.23 (6H, CH3) and a

quintet at δ 1.82 (OCH2CH2). The UV-Vis spectrum of 3.83 showed two maxima at

355 and 263 nm which may be ascribed to n→π* and π→π* transitions respectively.

The carbon framework of the compound 3.83 was confirmed from its 13C-NMR

(100 MHz, CDCl3) spectrum which displayed the signals of pyrazoline ring at

δ 146.76 (C-3), 65.87 (C-5) and 45.98 (C-4). The most downfield signal at δ 156.86

was easily attributed to C-2’ due to its direct linkage to the oxygen atom. The

resonances placed at δ 145.14, 145.12 and 139.99 could be provided by C-1’’’, C-1’’

and C-4’’ respectively. The remaining aromatic carbon atoms produced their signals

in the range of δ 137.05-118.75. The upfield appearance of C-3’ at δ 113.30 and

C-2’’’, 6’’’ at δ 112.25 certainly occurred due to the electron releasing effect of

C-2’ alkoxy group and CH3 group present at C-4’’ respectively. In addition to two

signals at δ 67.97 (OCH2) and 26.28 (OCH2CH2) in the aliphatic region, there also

appeared a resonance at δ 21.20 due to CH3 group. The ESI-MS spectrum of 3.83 had

(M+Na+1) and (M+Na) ions at m/z 734 (49%) and 733 (100%) respectively and its

mass fragmentation pattern has been shown in Chart-4.

Synthesis of bispyrazolines 3.84

The compound 3.84 was prepared in two steps:

(i). Synthesis of bischalcone 3.78

The chalcone 3.76 was reacted with 1,5-dibromopentane (Scheme-3.23) under the

similar conditions as used earlier for 3.77 to yield pure compound 3.78

(60%, m.p. 76-78oC).

Page 25: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

153

OH

O

CH3

K2CO3/acetone/ Br-(CH2)5-Br/Bu4N+I-/ ∆

1 2

3

1'

2'3'4'

5'

6'1''

2'' 3''

4''

5''6''

O CH2 (CH2)3

O

CH2 O

O

CH3CH3

5'

4'

3'

6'

2'

1'1

2

3

1''

2''3''

4''

5''

6''

3.76

3.78

Scheme-3.23

IR spectrum of 3.78 showed strong absorptions at 1654 and 1599 cm-1 due to C=O

and C=C groups respectively and the additional bands were also observed at 2938,

2863 (methylene C-H) and 1237, 1024 (C-O) cm-1. Its 1H-NMR (400MHz, CDCl3)

spectrum was very helpful to acertain the trans geometry around C-2 & C-3 double

bond which showed two doublets at δ 7.60 (2H, H-3) & 7.36 (2H, H-2) having

coupling value of 15.8 Hz. Due to the effect the C=O group, H-6’ was resonating at

δ 7.62 as a doublet of doublet (2H, Jm,o=1.8, 7.6 Hz). The p-disubstituted benzene ring

hydrogens generated a multiplet at δ 7.42 (6H, H-2’’, 4’, 6’’) and a doublet

(Jo=7.2 Hz) at δ 7.20 (4H, H-3’’, 5’’). The aromatic hydrogens H-5’ & H-3’ were

placed at δ 7.01 (2H, td, Jp,o=0.7, 7.4 Hz) and 6.94 (2H, d, Jo=8.4 Hz) respectively.

Four signals were also centered in the aliphatic region at δ 4.03 (4H, t, Jvic=6.4 Hz,

OCH2), 2.37 (6H, s, CH3), 1.78 (4H, m, OCH2CH2) and 1.51 (2H, m, OCH2CH2CH2). 13C-NMR (100MHz, CDCl3) of 3.78 showed the downfield resonances at δ 192.92,

157.53, 142.64, 129.66 & 120.75 may be assigned to C=O, C-2’, C-3, C-2’’, 6’’ &

C-2. The internal chain methylene groups produced three signals at δ 67.74

(OCH2CH2CH2), 29.06 (OCH2CH2CH2) and 25.80 (OCH2CH2CH2). The carbon

atoms belonging to the phenyl ring (C-3’, 4’, 5’, 6’ & C-1’’, 2’’, 3’’, 4’’, 5’’, 6’’)

were also found to be resonating at the appropriate places in the aromatic region

(vide experimental).

Page 26: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

154

NN

O CH2 (CH2)2 CH2 O

NN

CH3 CH3

H

H

H

H

H

H

NN

O CH2 (CH2)2 CH2 O

CH3

N

CH3

H

H

H

NN

O CH2 (CH2)2 CH2 O

CH3CH3

H

NN

O CH2 (CH2)2 CH2 O

CH3

H

NN

O CH2 (CH2)2 CH2 O

NN

CH3H

H

H

H

O CH CH (CH2)2

NN

CH3

H

H

H

O CH CH

NN

CH3

H

H

H

O CH CH

NN

CH3

H

H

H

H

O C C

NN

CH3

H

+

+

+

+

NN

O CH2 CH2 CH2 O

NN

CH3 CH3H

H

H

H

H

H

H

NN

O CH2 CH CH O

NN

H H H

O CH2

NN

H

NN

O

O CH2

N NN

O

+

+

+

m/z 710-C6H8N

m/z 616 (10%)

-N

m/z 602 (9%)

m/z 473 (8%)

m/z 541 (21%)

-C13H13

m/z 381 (92%)

m/z 353 (99%)

m/z 354 (18%)

m/z 349 (15%)

+H.

-C2H4

-H2, -H

m/z 543 (12%)

-C13H11

-C2H10

m/z 509 (13%)

m/z 483 (11%)

-C2H2

m/z 469 (5%)

-N

m/z 734 (M+Na+1, 49%)m/z 733 (M+Na, 100%)

+

......

+

+

.....

.

+.

+

+

Chart-4

(ii). Cyclization of bischalcone 3.78

The compound 3.84 (65%, m.p. 140-142oC) was prepared from the reaction of

bischalcone 3.78 with phenyl hydrazine (Scheme-3.24) under the similar conditions

as used earlier for 3.83.

Page 27: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

155

1'

3'

4'

5'

6'

2'O CH2 (CH2)3 CH2 O

O O

CH3CH312

3

1''

2'' 3''

4''

5''6''

3''

4''

5''

6''

2''1''1

2

3 4

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)3 CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

PhNHNH2/ EtOH/ AcOH /∆

3.78

3.84

Scheme-3.24

In the IR spectrum of 3.84, noticeable band was observed at 1596 due to the presence

of C=N moiety. A detailed analysis of its 1H-NMR (400 MHz, CDCl3) spectrum fully

lent support to the proposed structure. At the most downfield, a doublet of doublet

present at δ 7.88 (Jp,o=1.0, 7.8 Hz) could be assigned to H-6’. The pyrazoline ring

protons H-X, H-M & H-A furnished three resonances at δ 5.11 (2H, dd, JXM=12.1 Hz,

JXA=7.0 Hz), 3.78 (2H, dd, JMX=12.1 Hz, JMA=17.3 Hz) & 3.23 (2H, dd, JAX=7.0 Hz,

JAM=17.3 Hz). The phenyl ring protons H-3’, 4’, 5’, 6’, H-2’’, 3’’, 5’’, 6’’ and H-2’’’,

3’’’, 4’’’, 5’’’, 6’’’ were also resonating at the suitable δ and J values in the aromatic

region (vide experimental).

In the 100 MHz 13C-NMR (CDCl3) spectrum of 3.84, C-2’, C-1’’’ and C-4’’ were

found to be placed at δ 156.84, 145.11 and 139.98 respectively. The methylene groups

of the intervening chain were resonating at δ 67.99 (OCH2CH2CH2), 29.10

(OCH2CH2CH2) and 28.51 (OCH2CH2CH2). The pyrazoline ring carbon atoms C-3,

C-4 & C-5 provided three signals at δ 146.72, 46.27 & 64.23 respectively. The carbon

atoms of the three phenyl rings (N-1, C-3 & C-5) were found at the usual positions in

the aromatic region (vide experimental).

The ESI-MS spectrum of 3.84 also corroborated its structure which exhibited the

(M+1) ion at m/z 725 (78%) and its mass fragmentation pattern was found to be

similar as shown in Chart-4 (vide experimental).

Page 28: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

156

Synthesis of bischalcones 3.79-3.82

The compounds 3.79-3.82 were prepared in good yields from the O-alkylation of

chalcone 3.76 with suitable 1,ω-dibromoalkane (1,6-dibromohexane,

1,8-dibromooctane, 1,10-dibromodecane & 1,12-dibromododecane respectively)

under the similar conditions as described earlier for 3.77-3.78. The major spectral data

of 3.79-3.82 have been presented in Table-3 (Plate-25-28 & vide experimental).

1'

3'

4'

5'6'

2'

O CH2 (CH2)n CH2 O

O O

CH3 CH312

3

1''

2'' 3''

4''

5''6''

3.79 (n=4), 3.80 (n=6), 3.81 (n=8), 3.82 (n=10)

Synthesis of bispyrazolines 3.85-3.88

The compounds 3.85-3.88 were obtained from the reaction of 3.79-3.82 with phenyl

hydrazine under the similar condition as described earlier for 3.83. The physical and

characteristics spectral data of 3.85-3.88 have been provided in Table-4

(Plate-29-32).

3''

4''

5''6''

2''1''1

2

3 4

5

5''' 3'''2'''

6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)n CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

3.85 (n=4), 3.86 (n=6), 3.87 (n=8), 3.88 (n=10)

Page 29: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

157

Table-3: Physical and characteristics spectral data of bischalcones 3.79-3.82

*Jtrans=15.9-15.7 Hz

Table-4: Physical and characteristics spectral data of bispyrazolines 3.85-3.88

*JXA= 7.1-7.0 Hz , JXM= 12.1-12.0 Hz , JMA= 17.3-17.2 Hz

Mechanistic consideration

The cyclization reactions described above i.e. 3.64-3.69 & 3.77-3.82→3.70-3.75 &

3.83-3.88 can be visualized as having occurred through an initial attack (path a) of

phenyl hydrazine upon the carbonyl group of enone moiety under the influence of

protons followed by dehydration to produce 3.64’-3.69’ & 3.77’-3.82’. The later

further undergo cyclization with the addition of proton to give 3.70-3.75 & 3.83-3.88

as end product (Scheme-3.24a). In other way, phenyl hydrazine can also undergo

addition upon the enone part of 3.64-3.69 in the Michael fashion (path b) to give

Compd.

m.p. (°C)

Yield (%)

IR (υmaxcm-1)

1H-NMR (δ )

13C-NMR (δ )

ESI-MS (m/z)

C=O C=C H-3* H-2* C=O C-3 C-2

3.79 102-104

70 1652 1600 7.60 (d)

7.37 (d)

192.95 142.62 120.67 559 (M+1)+

3.80 110-112

73 1654 1593 7.57 (d)

7.36 (d)

192.99 142.66 120.66 587 (M+1)+

3.81 120-122

75 1659 1599 7.60 (d)

7.41 (d)

192.96 142.64 120.63 615 (M+1)+

3.82

93-95

80 1653 1599 7.43 (d)

7.17 (d)

192.97 142.67 120.64 665 (M+Na)+

Comp

d.

m.p (°C)

Yield (%)

IR (υmax cm-1)

1H-NMR (δ) 13C-NMR(δ)

ESI-MS (m/z)

C=N H-X* H-M* H-A* C=N C-5 C-4

3.85 80-

82

75 1598 5.10 (dd)

3.65 (dd)

3.33 (dd)

146.73 63.48 46.84 761 (M+Na)+

3.86 148-150

70 1596 5.16 (dd)

3.73 (dd)

3.04 (dd)

147.90 63.31 45.88 789 (M+Na)+

3.87 98-100

60 1596

5.17 (dd)

4.08 (dd)

3.30 (dd)

147.95 64.36 46.93 795 (M+1)+

3.88 120-122

61 1594

5.19 (dd)

4.05 (dd)

3.32 (dd)

147.97 64.38 46.81 823 (M+1)+

Page 30: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

158

3.70’-3.75’ & 3.83’-3.88’ as the intermediate which subsequently undergo cyclization

followed by dehydration to give 3.70”-3.75” & 3.83”-3.88” (Scheme-3.24a).

But inspite of our repeated and best efforts, we were not able to isolate any product

similar to 3.70’-3.75’ & 3.83’-3.88’. Thus, in bischalcones 3.64-3.69 & 3.77-3.82,

direct condensation of phenyl hydrazine with carbonyl group (path a) is preferred

over the Michael addition (path b, Scheme-3.24a).

NH2 NH Ar

O CH2(CH2)n

N NH

Ar

H

R

..

-}

-}H+

H+

ba

path b

..

-H2O

cyclisation

O

OH NH

HN

Ar

CH2(CH2)n

R

-} -}

O CH2(CH2)n

N NH

Ar

R

O CH2(CH2)n

NN

HH

H

Ar

R

..

-}-}O CH2(CH2)n

OH

NH NH

Ar

R

path a

H+

-H2O

3.64'-3.69' (R=H) & 3.77'-3.82' (R=CH3)

H+

-H+

3.70-3.75 (R=H)

(n = 2, 3, 4, 6, 8, 10)

-}

Ar = R

3.83-3.88 (R=CH3)

3.64-3.69 (R=H)

3.77-3.82 (R=CH3)

3.70'-3.75' (R=H)

3.83'-3.88' (R=CH 3)

cyclisation

3.70''-3.75'' (R=H)

3.83''-3.88'' (R=CH 3)

O

O CH2 (CH2)n

R

O CH2(CH2)n

N NH

OH

Ar

HH

R

, R = H, CH3

/+H.

Scheme-3.24a

Antimicrobial evaluations of bischalcones (3.64-3.69 & 3.77-3.82) &

bispyrazolines (3.70-3.75 & 3.83-3.88)

The in vitro antibacterial and antifungal activities of the prepared compounds

(3.64-3.69, 3.70-3.75, 3.77-3.82 & 3.83-3.88) were determined against five bacterial

strains viz. Klubsellia pneumoniae (MTCC 3384), Pseudomonas aeruginosa (MTCC

424), Escherichia coli (MTCC 443), Staphylococcus aureus (MTCC 96), Bacillius

subtilis (MTCC 441) and four fungi strains viz. Aspergillius janus (MTCC 2751),

Aspergillius niger (MTCC 281), Aspergillius flavus (MTCC 277) & Pencillium

glabrum (MTCC 4951). The zone of inhibition71 and MIC72 of these compounds were

Page 31: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

159

analyzed by using paper disc diffusion method and serial tube dilution method

respectively. These analyses were carried out by following the similar procedures

which are described on page no. 43,44 (Chapter-IIa) . Amoxicillin and Fluconazole

were used as reference drugs for antibacterial and antifungal examinations

respectively. The zone of inhibitions (mm) has been recorded as the average diameters

which are given in Table-5 & Table-7 (Fig.-1 & Fig.-3) and MIC values are

presented in Table-6 & Table-8 (Fig.-2 & Fig.-4).

Table-5 describes that compounds 3.68, 3.69, 3.81 & 3.82 were found to exhibit zone

of inhibition of 11 mm against Pseudomonas aeruginosa while the zone of inhibition

of 13 mm was provided by the compound 3.69 & 3.82 against the strain Klubsellia

pneumoniae. The compounds 3.66 & 3.79 showed the zone of inhibition of 11 mm

against Staphylococcus aureus. The compounds 3.64-3.69 and 3.77-3.82 provided

moderate activity against the above given fungi strains at the zone of inhibition of

6-10 mm.

Table-6 describes that compound 3.69 showed significant activity (MIC-4 µg/ml)

against the strain Aspergillius janus and the compounds 3.77, 3.79, 3.80 & 3.81

displayed similar activity against the stain Pseudomonas aeruginosa. The growth of

strain Bacillius subtilis was inhibited by the compounds 3.79, 3.80 & 3.81 at MIC of

4 µg/ml. The compound 3.80 displayed similar activity against the strain Aspergillius

niger while the compound 3.81 largely inhibited the growth of two fungi strains

Aspergillius janus and Aspergillius niger (MIC-4 µg/ml). The remaining compounds

exhibited noticeable MIC (8-16 µg/ml) against the tested microorganisms.

It is clear from the Table-7 that the bispyrazolines 3.71 & 3.84 inhibited the growth

of bacteria strain Pseudomonas aeruginosa and Klubsellia pneumoniae at zone of

inhibition of 11 & 12 mm respectively and the compounds 3.74 & 3.87 showed the

zone of inhibition of 11 mm against Klubsellia pneumoniae. The compounds 3.75 &

3.88 also had similar activity against Aspergillius flavus.

Table-8 describes that the compounds 3.70 & 3.83 were found to be highly active

against Klubsellia pneumoniae and Bacillius subtilis (MIC-8 µg/ml) while the rest of

compounds showed MIC of 8-16 µg/ml against the tested microorganisms.

Page 32: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

160

Table-5. In vitro zone of inhibitions (mm) of bischalcones 3.64-3.69 & 3.77-3.82

Compound Gram (-ve) bacteria Gram (+ve) bacteria Fungi

Escherichia

coli

Pseudomonas

aeruginosa

Klubssila

pneumoniae

Staphylococcus

aureus

Bacillius

subtilis

Aspergillus

janus

Pencilluim

glabrum

Aspergillus

niger

Aspergillius

flavus

3.64 -- -- 7 8 -- 8 9 -- 7

3.65 -- 8 7 6 -- 6 7 6 8

3.66 6 7 9 11 6 10 8 6 8

3.67 7 -- 8 9 7 -- 6 8 --

3.68 9 11 8 8 9 7 6 8 --

3.69 8 11 13 9 7 7 10 -- 9

3.77 -- -- 7 -- -- 8 9 -- 7

3.78 -- 8 7 10 -- 6 7 6 8

3.79 6 7 9 11 6 10 8 6 8

3.80 7 -- 8 9 7 -- 6 8 --

3.81 9 11 8 6 9 7 6 8 --

3.82 8 11 13 7 7 7 10 -- 9

Amoxicillin 18 25 19 20 23 -- -- -- --

Fluconazole -- --

-- -- -- 22 26 22 23

Page 33: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

161

Table-6. In vitro MIC (µg/ml) of bischalcones 3.64-3.69 & 3.77-3.82

Compd. Gram (-ve) bacteria Gram (+ve) bacteria Fungi

Escherichia

coli

Klubssila

pneumoniae

Pseudomonas

aeruginosa

Staphylococcus

aureus

Bacillius

subtilis

Aspergillus

janus

Pencilluim

glabrum

Aspergillus

niger

Aspergillius

flavus

3.64 16 16 16 16 16 16 16 8 8

3.65 16 16 16 8 16 16 16 8 8

3.66 16 8 16 16 8 8 16 8 16

3.67 8 8 16 16 8 16 16 16 16

3.68 8 16 8 16 16 8 8 16 16

3.69 8 8 8 16 16 4 16 8 16

3.77 16 8 4 8 8 16 8 8 16

3.78 16 8 16 16 8 16 16 8 16

3.79 16 8 4 8 4 16 16 8 8

3.80 8 8 4 8 4 8 16 4 16

3.81 16 8 4 8 4 16 16 4 4

3.82 16 8 8 8 8 16 16 16 16

Amoxicillin 2 2 2 2 2 -- -- -- --

Fluconazole -- -- -- -- -- 1 1 1 1

Page 34: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

162

Table-7. In vitro zone of inhibitions (mm) of bispyrazolines 3.70-3.75 & 3.83-3.88

Gram (-ve) bacteria Gram (+ve) bacteria Fungi

Compound

Escherichia

coli

Pseudomonas

aeruginosa

Klubssila

pneumoniae

Staphylococcus

aureus

Bacillius

subtilis

Aspergillus

janus

Pencilluim

glabrum

Aspergillus

niger

Aspergillius

flavus

3.70 -- 9 8 8 -- 9 10 -- 9

3.71 -- 11 12 6 7 7 9 7 --

3.72 6 7 -- 7 6 -- 9 8 --

3.73 7 -- 8 7 6 6 7 8 10

3.74 -- 8 11 10 -- 6 8 10 10

3.75 8 -- -- 6 7 8 -- 10 11

3.83 -- 9 8 -- -- 9 10 -- 9

3.84 -- 11 12 9 7 7 9 7 --

3.85 6 7 -- 10 6 -- 9 8 --

3.86 7 -- 8 9 6 6 7 8 10

3.87 -- 8 11 8 -- 6 8 10 10

3.88 8 -- -- 8 7 8 -- 10 11

Amoxicillin 18 25 19 20 23 -- -- -- --

Fluconazole -- -- -- -- --

22 26 22 23

Page 35: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

163

Table-8. In vitro MIC (µg/ml) of bispyrazolines 3.70-3.75 & 3.83-3.88

Gram (-ve) bacteria Gram (+ve) bacteria Fungi

Compound Escherichia

coli

Klubssila

pneumoniae

Pseudomonas

aeruginosa

Staphylococcus

aureus

Bacillius

subtilis

Aspergillus

janus

Pencilluim

glabrum

Aspergillus

niger

Aspergillius

flavus

3.70 8 4 16 16 16 8 8 8 16

3.71 16 8 8 16 16 8 16 8 8

3.72 8 8 16 8 8 8 8 8 8

3.73 8 8 8 16 8 8 16 8 16

3.74 8 8 16 16 16 8 16 16 16

3.75 16 8 16 16 16 8 8 16 16

3.83 16 8 8 8 4 16 16 16 16

3.84 16 16 8 16 16 16 8 16 8

3.85 16 16 16 16 16 16 8 8 8

3.86 16 16 8 16 16 8 8 8 8

3.87 16 8 16 8 16 16 16 16 16

3.88 8 16 16 16 16 16 16 16 16

Amoxicillin 2 2 2 2 2 -- -- -- --

Fluconazole -- -- -- -- -- 1 1 1 1

Page 36: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

164

Figure-1. In vitro zone of inhibitions (mm) of bischalcones 3.64-3.69 & 3.77-3.82

Figure-2. In vitro MIC ( µg/ml) of bischalcones 3.64-3.69 & 3.77-3.82

Figure-3. In vitro zone of inhibitions (mm) of bispyrazolines 3.70-3.75 & 3.83-3.88

Page 37: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

165

Figure-4. In vitro MIC ( µg/ml) of bispyrazolines 3.70-3.75 & 3.83-3.88

It is evident from the above zone of inhibition and MIC data that bischalcones and

bispyrazolines linked through the internal chain of four, six, eight and ten carbon atoms

exhibited significant activity.

It may be concluded that this study describes the general and efficient method for the

synthesis of new series of bispyrazolines linked via the 3-aryl ring under the normal

conditions. The significant antimicrobial activities were provided by the bischalcones and

bispyrazolines built around internal spacer consisting of the even number of methylene

groups. The compounds involving longer internal chain seems to be better antimicrobial

products. The importance of this work lies in the possibility that the new compounds

might be more efficacious derivatives against the tested strains for which through

investigations regarding their toxicity and biological studies could be helpful in designing

the potential antimicrobial agents.

Page 38: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

166

Experimental

Synthesis of (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one 3.63

A solution of o-hydroxyacetophenone (5.0 ml, 0.0070 mol), benzaldehyde (5.0 ml,

0.0070 mol) and NaOH (5.0 g, 0.024 mol) in EtOH (25.0 ml) was stirred in an ice

bath for 10 hrs. During the course of reaction, the initially formed creamish mixture

changed to a reddish gummy mass. The resulting mass was poured into iced-HCl to

provide a crude substance which was crystallized from CH3OH to yield a pure

compound 3.63.

O

OH3'

4'

5'

6'

1'

2'

12

3

1''

2''

3''

4''

5''

6''

3.63

3.63: Yellow needles, Yield 82%; m.p.: 55-57oC. UV-Vis (MeOH) λmax(nm): 330,

233; IR (KBr) cm-1: 3216 (O-H), 1695 (C=O), 1604 (C=C); 1H-NMR (400 MHz,

CDCl3): δ 12.81 (1H, s, OH), 7.94 (1H, dd, Jp,o=1.0, 8.4 Hz, H-6’), 7.91 (1H, d,

Jtrans=15.5 Hz, H-3), 7.68 (2H, dt, J=1.0, 2.8, 4.4 Hz, H-2’’, 6’’), 7.65 (1H, d,

Jtrans=15.5 Hz, H-2), 7.51 (1H, td, Jm,o=1.6, 7.2 Hz, H-4’), 7.44 (3H, m, H-3’’, 4’’,

5’’), 7.04 (1H, dd, Jp,o=1.0, 8.4 Hz, H-5’), 6.95 (1H, td, Jp,o=1.1, 8.1 Hz, H-3’);

GC-MS: m/z (M)+ 224 (68%). Anal. Calc. for C15O2H12: Calc. C, 80.35 %; H, 5.36 %;

Found: C, 80.43 %; H, 5.32 %.

Synthesis of (2E, 2’E)-1,1’-(2,2’-(butane-1,4-diylbis(oxy))bis(2,1-

phenylene))bis(3-phenylprop-2-en-1-one) 3.64

A suspension of chalcone 3.63 (2.0 g, 0.00840 mol), K2CO3 (2.0 g),

1,4-dibromobutane (0.90754 g, 0.00420168 mol) and tetrabutyl ammonium iodide

(1.0 g) in dry acetone (25 ml) was refluxed for 6 hrs with continuous stirring. The

progress of reaction was monitored by TLC. After the completion of reaction, the

reaction mixture turned into a colourless mass which was poured over iced-HCl to

provide crude solid which was crystallized from CH3OH:CHCl3 (3:1) to yield a pure

compound 3.64.

1'

3'

4'

5'

6'

2'O CH2 (CH2)2 CH2 O

O O

12

3

1''

2''3''

4''

5''6''

3.64

Page 39: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

167

3.64: Yellow solid; Yield 69%; m.p.: 92-94oC. UV-Vis (MeOH) λmax(nm): 286, 229;

IR (KBr) cm-1: 2930, 2862 (methylene C-H), 1660 (C=O), 1596 (C=C), 1230, 1025

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.62 (2H, dd, Jm,o=1.7, 7.6 Hz, H-6’), 7.52

(2H, d, Jtrans=15.9 Hz, H-3), 7.50 (4H, m, H-2’’, 6’’), 7.42 (2H, ddd, Jp,m,o=1.0, 1.8,

7.4 Hz, H-4’), 7.34 (6H, m, H-3’’, 4’’, 5’’), 7.31 (2H, d, Jtrans=15.9 Hz, H-2), 7.02

(2H, td, Jp,o=0.7, 7.4 Hz, H-5’), 6.82 (2H, d, Jo=8.2 Hz, H-3’), 3.90 (4H, t,

Jvic=6.2 Hz, OCH2CH2), 1.88 (4H, t, Jvic=6.2 Hz, OCH2CH2); 13C-NMR (100 MHz,

CDCl3): δ 192.80 (C=O), 157.50 (C-2’), 142.62 (C-3), 134.67 (C-4’’), 133.78 (C-1’),

132.34 (C-1’’), 129.40 (C-6’), 128.61 (C-2’’, 6’’), 128.24 (C-4’), 127.25 (C-5’),

120.51 (C-3’’, 5’’), 112.71 (C-2), 112.23 (C-3’), 67.70 (OCH2CH2), 26.04

(OCH2CH2); MS(ESI): m/z 525 (M+Na, 11%), 279 (70%), 223 (80%), 207 (42%),

147 (13%), 130 (76%), 93 (100%), 77 (23%). Anal. Calc. for C34O4H30: Calc.

C, 81.27 %; H, 5.97 %; Found: C, 81.32 %; H, 6.01 %.

Synthesis of (2E, 2’E)-1,1’-(2,2’-(pentane-1,5-diylbis(oxy))bis(2,1-

phenylene))bis(3-phenylprop-2-en-1-one) 3.65

The bischalcone 3.65 was prepared from the reaction of chalcone 3.63 (2.0 g, 0.00840

mol) with 1,5-dibromopentane (0.9661342 g, 0.0042016 mol) under the similar

conditions as used earlier for 3.64.

1'

3'

4'

5'

6'

2'O CH2 (CH2)3 CH2 O

O O

12

3

1''

2'' 3''

4''

5''6''

3.65

3.65: Yellow solid; Yield 64%; m.p.: 89-91oC. UV-Vis (MeOH) λmax(nm): 289, 222;

IR (KBr) cm-1: 2948, 2869 (methylene C-H), 1654 (C=O), 1596 (C=C), 1240, 1025

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.62 (2H, dd, Jm,o=1.7, 7.6 Hz, H-6’), 7.54

(2H, d, Jtrans=15.9 Hz, H-3), 7.50 (4H, dd, Jm,o=2.1, 7.6 Hz, H-2’’, 6’’), 7.40 (2H, ddd,

Jp,m,o=0.6, 1.8, 7.4 Hz, H-4’), 7.36 (2H, d, Jtrans=15.9 Hz, H-2), 7.28 (6H, m, H-3’’,

4’’, 5’’), 7.00 (2H, td, Jp,o=0.6, 7.6 Hz, H-5’), 6.82 (2H, d, Jo=8.2 Hz, H-3’), 3.84

(4H, t, Jvic=6.2 Hz, OCH2CH2CH2), 1.50 (4H, t, Jvic=6.2 Hz, OCH2CH2CH2), 1.30

(2H, quintet, Jvic=3.7 Hz, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 192.94

(C=O), 157.58 (C-2’), 142.67 (C-3), 134.89 (C-4’’), 133.60 (C-1’), 132.26 (C-1’’),

129.62 (C-6’), 128.70 (C-2’’, 6’’), 128.10 (C-4’), 127.24 (C-5’), 120.50 (C-3’’, 5’’),

Page 40: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

168

112.72 (C-2), 112.20 (C-3’), 67.73 (OCH2CH2CH2), 29.00 (OCH2CH2CH2), 25.60

(CH2CH2CH2); MS(ESI): m/z 539 (M+Na, 14%), 145 (100%), 144 (29%), 102 (3%),

77 (17%). Anal. Calc. for C35O4H32: Calc. C, 81.39 %; H, 6.20 %; Found: C, 81.45 %;

H, 6.17 %.

Synthesis of (2E, 2’E)-1,1’-(2,2’-(hexane-1,6-diylbis(oxy))bis(2,1-

phenylene))bis(3-phenylprop-2-en-1-one) 3.66

The bischalcone 3.66 was obtained from the reaction of chalcone 3.63 (2.0 g,

0.00840 mol) with 1,6-dibromohexane (1.025 g, 0.00420168 mol) under the similar

conditions as described earlier for 3.64.

1'

3'

4'

5'

6'

2'O CH2 (CH2)4 CH2 O

O O

12

3

1''

2''3''

4''

5''6''

3.66

3.66: Yellow solid; Yield 77%; m.p.: 82-84oC. UV-Vis (MeOH) λmax(nm): 296, 230;

IR (KBr) cm-1: 2937, 2870 (methylene C-H), 1659 (C=O), 1603 (C=C), 1236, 1040

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.65 (2H, dd, Jm,o=1.7, 7.6 Hz, H-6’), 7.59

(2H, d, Jtrans=15.9 Hz, H-3), 7.51 (4H, dd, Jm,o=2.9, 7.6 Hz, H-2’’, 6’’), 7.43 (2H, ddd,

Jp,m,o=0.6, 1.8, 7.4 Hz, H-4’), 7.39 (2H, d, Jtrans=15.9 Hz, H-2), 7.32 (6H, m, H-3’’,

4’’, 5’’), 7.01 (2H, td, Jp,o=0.6, 7.6 Hz, H-5’), 6.89 (2H, d, Jo=8.2 Hz, H-3’), 3.78

(4H, t, Jvic=6.2 Hz, OCH2CH2CH2), 1.58 (4H, t, Jvic=6.2 Hz, OCH2CH2CH2), 1.33

(4H, quintet, Jvic=3.7 Hz, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 192.60

(C=O), 157.61 (C-2’), 142.65 (C-3), 135.85 (C-1’), 135.72 (C-4’’), 132.40 (C-1’’),

129.53 (C-6’), 128.50 (C-2’’, 6’’), 128.22 (C-4’), 127.32 (C-5’), 120.31 (C-3’’, 5’’),

112.64 (C-2), 112.10 (C-3’), 68.29 (OCH2CH2CH2), 29.20 (OCH2CH2CH2), 25.90

(CH2CH2CH2); MS(ESI): m/z 553 (M+Na, 100%), 159 (38%), 158 (7%), 102 (40%),

76 (32%). Anal. Calc. for C36O4H34: Calc. C, 81.50 %; H, 6.41 %; Found: C, 81.46 %;

H, 6.44 %.

Synthesis of (2E, 2’E)-1,1’-(2,2’-(octane-1,8-diylbis(oxy))bis(2,1-phenylene))bis(3-

phenylprop-2-en-1-one) 3.67

The bischalcone 3.67 was obtained from the reaction of chalcone 3.63 (2.0 g,

0.00840 mol) and 1,8-dibromooctane (1.142 g, 0.00420168) under the similar

conditions as used for 3.64.

Page 41: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

169

1'

3'

4'

5'

6'

2'O CH2 (CH2)6 CH2 O

O O

12

3

1''

2''3''

4''

5''6''

3.67

3.67: Brown solid; Yield 71%; m.p.: 70-72oC. UV-Vis (MeOH) λmax(nm): 294, 226;

IR (KBr) cm-1: 2922, 2857 (methylene C-H), 1656 (C=O), 1598 (C=C), 1238, 1029

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.59 (2H, dd, Jm,o=1.8, 7.6 Hz, H-6’), 7.54

(2H, d, Jtrans=15.8 Hz, H-3), 7.47 (4H, ddd, Jp,m,o=0.6, 1.8, 7.8 Hz, H-2’’,6’’), 7.40

(2H, ddd, Jp,m,o=0.5, 1.9, 7.6 Hz, H-4’), 7.35 (2H, d, Jtrans=15.8 Hz, H-2), 7.27

(6H, m, H-3’’, 4’’, 5’’), 6.95 (2H, td, Jm,o=1.8, 7.5 Hz, H-5’), 6.88 (2H, d, Jo=8.3 Hz,

H-3’), 3.91 (4H, t, Jvic=6.2 Hz, OCH2CH2CH2CH2), 1.86 (4H, quintet, Jvic=6.2 Hz,

OCH2CH2CH2CH2), 1.60 (4H, quintet, Jvic=6.2 Hz, OCH2CH2CH2CH2), 1.00

(4H, quintet, Jvic=6.0 Hz, OCH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3):

δ 192.89 (C=O), 157.82 (C-2’), 142.42 (C-3), 135.20 (C-4’’), 133.04 (C-1’), 130.16

(C-1’’), 129.36 (C-6’), 128.85 (C-2’’, 6’’), 128.31 (C-4’), 127.28 (C-5’), 120.68

(C-3’’, 5’’), 112.38 (C-2), 112.30 (C-3’), 68.54 (OCH2CH2CH2CH2), 30.97

(OCH2CH2CH2CH2), 29.17 (CH2CH2CH2CH2), 26.16 (CH2CH2CH2CH2); MS(ESI):

m/z 559 (M+1, 8%), 475 (5%), 453 (3%), 242 (100%), 184 (24%), 142 (38%). Anal.

Calc. for C38O4H38: Calc. C, 81.72 %; H, 6.81 %; Found: C, 81.68 %; H, 6.85 %.

Synthesis of (2E, 2’E)-1,1’-(2,2’-(decane-1,10-diylbis(oxy))bis(2,1-

phenylene))bis(3-phenylprop-2-en-1-one) 3.68

The bischalcone 3.68 was prepared by reacting chalcone 3.63 (2.0 g, 0.00840 mol)

with 1,10-dibromodecane (1.260 g, 0.00420168 mol) under the similar conditions as

described earlier for 3.64.

1'

3'

4'

5'

6'

2'O CH2 (CH2)8 CH2 O

O O

12

3

1''

2''3''

4''

5''6''

3.68

3.68: Brown solid; Yield 76%; m.p.: 58-60oC. UV-Vis (MeOH) λmax(nm): 290, 224;

IR (KBr) cm-1: 2938, 2870 (methylene C-H), 1665 (C=O), 1602 (C=C), 1240, 1025

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.55 (2H, d, Jtrans=15.8 Hz, H-3), 7.51 (2H, dd,

Page 42: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

170

Jm,o=1.8, 7.8 Hz, H-6’), 7.48 (4H, td, Jm,o=1.8, 7.8 Hz, H-2’’, 6’’), 7.40 (2H, ddd,

Jp,m,o=1.0, 1.9, 7.6 Hz, H-4’), 7.36 (2H, d, Jtrans=15.8 Hz, H-2), 7.28 (6H, m,

H-3’’, 4’’, 5’’), 6.95 (2H, t, Jo=7.5 Hz, H-5’), 6.90 (2H, d, Jo=8.3 Hz, H-3’), 3.96

(4H, t, Jvic=6.1 Hz, OCH2CH2CH2CH2CH2), 1.65 (4H, quintet, Jvic=6.1 Hz,

OCH2CH2CH2CH2CH2), 1.30 (4H, quintet, Jvic=6.1 Hz, OCH2CH2CH2CH2CH2), 1.18

(4H, m, OCH2CH2CH2CH2CH2), 1.07 (4H, m, OCH2CH2CH2CH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 190.96 (C=O), 158.90 (C-2’), 142.70 (C-3), 135.80 (C-4’’),

132.83 (C-1’), 130.50 (C-1’’), 129.57 (C-6’), 128.53 (C-2’’, 6’’), 128.35 (C-4’),

127.26 (C-5’), 120.64 (C-3’’, 5’’), 112.61 (C-2), 112.14 (C-3’), 68.35

(OCH2CH2CH2CH2CH2), 29.18 (OCH2CH2CH2CH2CH2), 29.00

(CH2CH2CH2CH2CH2), 26.35 (CH2CH2CH2CH2CH2), 26.01 (CH2CH2CH2CH2CH2);

MS(ESI): m/z 609 (M+Na, 78%), 215 (30%), 214 (6%), 158 (33%), 156 (58%), 128

(100%). Anal. Calc. for C40O4H42: Calc. C, 81.91 %; H, 7.16 %; Found: C, 81.86 %;

H, 7.12 %.

Synthesis of (2E, 2’E)-1,1’-(2,2’-(dodecane-1,12-diylbis(oxy))bis(2,1-

phenylene))bis(3-phenylprop-2-en-1-one) 3.69

The bischalcone 3.69 was synthesized by reacting chalcone 3.63 (2.0 g, 0.00840 mol)

with 1,12-dibromododecane (1.401 g, 0.00420168 mol) under the similar conditions

as described earlier for 3.64.

1'

3'

4'

5'

6'

2'O CH2 (CH2)10 CH2 O

O O

12

3

1''

2''3''

4''

5''6''

3.69

3.69: Yellow solid; Yield 72%; m.p.: 64-66oC. UV-Vis (MeOH) λmax(nm): 298, 227;

IR (KBr) cm-1: 2919, 2852 (methylene C-H), 1655 (C=O), 1600 (C=C), 1238, 1022

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.56 (6H, dd, Jm,o=1.8, 7.6 Hz, H-2’’, 4’’, 6’’),

7.39 (2H, d, Jtrans=15.7 Hz, H-3), 7.36 (2H, ddd, Jp,m,o=1.0, 1.9, 7.6 Hz, H-4’), 7.11

(2H, d, Jtrans=15.7 Hz, H-2), 7.00 (4H, d, Jo=8.0 Hz, H-3’, 5’), 6.93 (6H, m, H-6’, 3’’,

5’’), 4.01 (4H, t, Jvic=6.3 Hz, OCH2CH2CH2CH2CH2CH2), 1.72 (4H, quintet,

Jvic=6.3 Hz, OCH2CH2CH2CH2CH2CH2), 1.32 (4H, quintet, Jvic=7.2 Hz,

OCH2CH2CH2CH2CH2CH2), 1.15 (4H, m, OCH2CH2CH2CH2CH2CH2), 1.00 (8H, m,

OCH2CH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 192.98 (C=O), 156.87

Page 43: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

171

(C-2’), 142.74 (C-3), 134.09 (C-4’’), 132.80 (C-1’), 130.54 (C-1’’), 129.51 (C-6’),

128.59 (C-2’’, 6’’), 128.19 (C-4’), 127.38 (C-5’), 120.34 (C-3’’, 5’’), 112.62 (C-2),

112.19 (C-3’), 68.62 (OCH2CH2CH2CH2CH2CH2), 29.53

(OCH2CH2CH2CH2CH2CH2), 29.42 (CH2CH2CH2CH2CH2CH2), 29.38

(CH2CH2CH2CH2CH2CH2), 29.28 (CH2CH2CH2CH2CH2CH2), 26.45

(CH2CH2CH2CH2CH2CH2); MS(ESI): m/z 614 (M, 8%), 243 (17%), 242 (100%), 186

(8%), 184 (3%), 142 (2%). Anal. Calc. for C42O4H46: Calc. C, 82.08 %; H, 7.49 %;

Found: C, 82.13 %; H, 7.53 %.

Synthesis of 1,4-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1,5-diphenyl-1H-pyrazole]

butane 3.70

A mixture of bischalcone 3.64 (1.0 g, 0.001886 mol), phenyl hydrazine (0.4080 g,

0.0037735 mol) and glacial AcOH (5 ml) in dry EtOH (30 ml) was refluxed for 8 hrs.

The progress of reaction was monitored by TLC. The resulting reaction mixture was

concentrated under vacuum to obtain a solid substance which was further crystallized

from MeOH to yield pure compound 3.70.

3''

4''

5''

6''

2''1''

12

34

5

5''' 3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)2 CH2 O

NN

HX

HMHA

HM

HA

HX

3.70

3.70: Yellow solid; Yield 63%; m.p.: 130-132oC. UV-Vis (MeOH) λmax(nm): 362,

259; IR (KBr) cm-1: 2928, 2873 (methylene C-H), 1598 (C=N), 1239, 1022 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.92 (2H, dd, Jp,o=1.0, 7.8 Hz, H-6’), 7.28 (10H, m,

H-3’’’, 4’’’, 5’’’, 2’’, 6’’), 7.15 (2H, td, Jm,o=2.0, 7.8 Hz, H-4’), 6.99 (10H, m, H-2’’’,

6’’’, 3’’, 4’’, 5’’), 6.82 (2H, td, Jm,o=1.8, 7.6 Hz, H-5’), 6.63 (2H, d, Jo=8.4 Hz, H-3’),

5.14 (2H, dd, JXM=12.1 Hz, JXA=6.6 Hz, HX), 3.94 (2H, dd, JMX=12.1 Hz,

JMA=17.3 Hz, HM), 3.71 (4H, t, Jvic=6.7 Hz, OCH2CH2), 3.17 (2H, dd, JAX=6.6 Hz,

JAM=17.3 Hz, HA), 1.70 (4H, quintet, Jvic=6.4 Hz, OCH2CH2); 13C-NMR (100 MHz,

CDCl3): δ 156.78 (C-2’), 146.61 (C-3), 146.54 (C-1’’’), 144.95 (C-1’’), 142.79

(C-4’), 140.92 (C-4’’), 129.97 (C-3’’’, 5’’’), 128.95 (C-6’), 128.52 (C-3’’, 5’’),

125.85 (C-2’’, 6’’), 122.12 (C-1’), 120.89 (C-5’), 118.80 (C-4’’’), 113.86 (C-3’),

Page 44: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

172

112.27 (C-2’’’, 6’’’), 67.75 (OCH2CH2), 64.35 (C-5), 46.74 (C-4), 26.16 (OCH2CH2);

MS(ESI): m/z 683 (M+1, 18%), 681 (42%), 679 (39%), 592 (26%), 591 (10%), 590

(18%), 589 (80%), 573 (72%), 529 (61%), 511 (18%), 509 (100%), 457 (4%), 434

(15%). Anal. Calc. for C46O2N4H42: Calc. C, 80.93 %; H, 6.15 %; N, 8.21 %; Found:

C, 80.96 %; H, 6.10 %; N, 8.16 %.

Synthesis of 1,5-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1,5-diphenyl-1H-pyrazole]

pentane 3.71

The compound 3.71 was synthesized from the reaction of bischalcone 3.65 (1.0 g,

0.001838 mol) with phenyl hydrazine (0.3975 g, 0.003676 mol) under the similar

conditions as described above for 3.70.

3''

4''

5''

6''

2''1''

12

34 5

5''' 3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)3 CH2 O

NN

HX

HMHA

HM

HA

HX

3.71

3.71: Brown solid; Yield 67%; m.p.: 136-138oC. UV-Vis (MeOH) λmax(nm): 354,

250; IR (KBr) cm-1: 2932, 2826 (methylene C-H), 1592 (C=N), 1240, 1025 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.82 (2H, dd, Jp,o=1.2, 7.8 Hz, H-6’), 7.18 (10H, m,

H-2’’’, 3’’’, 5’’’, 6’’’, 4’), 7.07 (4H, td, Jm,o=2.1, 7.8 Hz, H-2’’, 6’’), 6.91 (2H, dd,

Jp,o=1.1, 7.8 Hz, H-5’), 6.84 (2H, td, Jm,o=1.8, 8.0 Hz, H-4’’), 6.81 (2H, td,

Jp,o=1.1, 8.0 Hz, H-4’’’), 6.72 (4H, td, Jm,o=2.0, 7.8 Hz, H-3’’,5’’), 6.62 (2H, m,

H-3’), 5.09 (2H, dd, JXM=12.1 Hz, JXA=7.0 Hz, HX), 3.82 (4H, m, OCH2CH2CH2),

3.73 (2H, dd, JMX=12.1 Hz, JMA=17.3 Hz, HM), 3.20 (2H, dd, JAX=7.0 Hz,

JAM=17.3 Hz, HA), 1.60 (4H, quintet, Jvic=6.8 Hz, OCH2CH2CH2), 1.41 (2H, quintet,

Jvic=6.8 Hz, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 156.06 (C-2’), 146.93

(C-1’’’), 146.54 (C-3), 144.90 (C-1’’), 142.24 (C-4’), 139.91 (C-4’’), 129.25 (C-3’’’,

5’’’), 128.84 (C-6’), 128.73 (C-3’’, 5’’), 125.54 (C-2’’, 6’’), 122.06 (C-1’), 120.59

(C-5’), 118.70 (C-4’’’), 112.97 (C-3’), 112.04 (C-2’’’, 6’’’), 67.72 (O CH2CH2CH2),

64.30 (C-5), 46.70 (C-4), 29.00 (OCH2CH2CH2), 26.51 (OCH2CH2CH2); MS(ESI):

m/z 696 (M, 11%), 695 (19%), 693 (21%), 606 (64%), 605 (28%), 604 (78%), 603

Page 45: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

173

(73%), 587 (58%), 547 (25%), 529 (40%), 522 (7%). Anal. Calc. for C47O2N4H44:

Calc. C, 81.03 %; H, 6.32 %; N, 8.04 %; Found: C, 81.08 %; H, 6.35 %; N, 8.09 %.

Synthesis of 1,6-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1,5-diphenyl-1H-pyrazole]

hexane 3.72

The compound 3.72 was obtained from the reaction of bischalcone 3.66 (1.0 g,

0.001792 mol) with phenyl hydrazine (0.3875 g, 0.003584 mol) under the same

conditions as described earlier for 3.70.

3''

4''

5''

6''

2''1''

12

34 5

5''' 3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)4 CH2 O

NN

HX

HMHA

HM

HA

HX

3.72

3.72: Yellow solid; Yield 79%; m.p.: 150-152oC. UV-Vis (MeOH) λmax(nm): 348,

254; IR (KBr) cm-1: 2934, 2878 (methylene C-H), 1596 (C=N), 1236, 1025 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.89 (2H, dd, Jm,o=1.7, 7.4 Hz, H-6’), 7.20 (10H, m,

H-3’’’, 5’’’, 4’, 2’’, 6’’), 7.09 (8H, m, H-4’’’, 3’’, 4’’, 5’’), 6.90 (2H, td,

Jm,o=1.9, 7.8 Hz, H-5’), 6.77 (2H, d, Jo=8.0 Hz, H-3’), 6.67 (4H, td, Jp,o=0.6, 7.8 Hz,

H-2’’’, 6’’’), 5.09 (2H, dd, JXM=12.1 Hz, JXA=7.0 Hz, HX), 3.72 (2H, dd,

JMA=17.3 Hz, JMX=12.1 Hz, HM), 3.68 (4H, m, OCH2CH2CH2), 3.23 (2H, dd,

JAX=7.0 Hz, JAM=17.3 Hz, HA), 1.60 (4H, t, Jvic=6.4 Hz, OCH2CH2CH2), 1.32

(4H, quintet, Jvic=2.8 Hz, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 156.93

(C-2’), 146.75 (C-3), 146.72 (C-1’’’), 145.07 (C-1’’), 142.96 (C-4’), 140.96 (C-4’’),

129.70 (C-3’’’, 5’’’), 128.90 (C-6’), 128.22 (C-3’’, 5’’), 125.90 (C-2’’, 6’’), 122.00

(C-1’), 120.86 (C-5’), 118.39 (C-4’’’), 112.62 (C-3’), 112.12 (C-2’’’, 6’’’), 68.27

(OCH2CH2CH2), 64.48 (C-5), 46.89 (C-4), 29.28 (OCH2CH2CH2), 25.79

(OCH2CH2CH2); MS(ESI): m/z 733 (M+Na, 32%), 709 (18%), 707 (27%), 620

(48%), 619 (78%), 618 (54%), 617 (60%), 601 (38%), 536 (10%). Anal. Calc. for

C48O2N4H46: Calc. C, 81.12 %; H, 6.47 %; N, 7.88 %; Found: C, 81.09 %; H, 6.52 %;

N, 7.83 %.

Page 46: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

174

Synthesis of 1,8-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1,5-diphenyl-1H-pyrazole]

octane 3.73

The compound 3.73 was prepared from the reaction of bischalcone 3.67 (1.0 g,

0.001706 mol) with phenyl hydrazine (0.3689 g, 0.003412 mol) under the similar

conditions as used earlier for 3.70.

3''

4''

5''

6''

2''1''

12

34 5

5''' 3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)6 CH2 O

NN

HX

HMHA

HM

HA

HX

3.73

3.73: Light yellow solid; Yield 75%; m.p.: 165-167oC. UV-Vis (MeOH) λmax(nm):

352, 253; IR (KBr) cm-1: 2932, 2853 (methylene C-H), 1596 (C=N), 1241, 1028

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.97 (2H, dd, Jm,o=1.9, 7.7 Hz, H-6’), 7.22

(14H, m, H-3’’’, 5’’’, 2’’, 3’’, 4’’, 5’’, 6’’), 7. 17 (2H, td, Jm,o=1.9, 7.7 Hz, H-4’), 7.05

(4H, dd, Jp,o=0.6, 7.6 Hz, H-2’’’, 6’’’), 6.98 (2H, td, Jm,o=2.0, 8.0 Hz, H-5’), 6.87

(2H, d, Jo=8.4 Hz, H-4’’’), 6.76 (2H, d, Jo=7.2 Hz, H-3’), 5.18 (2H, dd, JXM=12.2 Hz,

JXA=7.2 Hz, HX), 4.08 (4H, t, Jvic=6.4 Hz, OCH2CH2CH2CH2), 3.93 (2H, dd,

JMX=12.2 Hz, JMA=17.8 Hz, HM), 3.31 (2H, dd, JAX=7.2 Hz, JAM=17.8 Hz, HA), 1.72

(4H, quintet, Jvic=6.6 Hz, OCH2CH2CH2CH2), 1.34 (4H, quintet, Jvic=6.2 Hz,

OCH2CH2CH2CH2), 1.25 (4H, quintet, Jvic=6.2 Hz, OCH2CH2CH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 156.53 (C-2’), 147.98 (C-3), 145.14 (C-1’’’), 144.00 (C-1’’),

142.21 (C-4’), 140.30 (C-4’’), 129.94 (C-3’’’, 5’’’), 128.89 (C-6’), 128.08 (C-3’’,

5’’), 124.78 (C-2’’, 6’’), 121.90 (C-1’), 120.00 (C-5’), 118.77 (C-4’’’), 112.98 (C-3’),

112.16 (C-2’’’, 6’’’), 68.52 (OCH2CH2CH2CH2), 64.55 (C-5), 46.91 (C-4), 29.52

(OCH2CH2CH2CH2), 26.43 (OCH2CH2CH2CH2), 18.45 (OCH2CH2CH2CH2);

MS(ESI): m/z 738 (M, 25%), 737 (5%), 735 (28%), 648 (19%), 647 (61%), 646

(100%), 645 (21%), 629 (10%), 564 (87%), 561 (40%), 543 (30%). Anal. Calc. for

C50O2N4H50: Calc. C, 81.30 %; H, 6.77 %; N, 7.58 %; Found: C, 81.34 %; H, 6.80 %;

N, 7.53 %.

Page 47: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

175

Synthesis of 1,10-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1,5-diphenyl-1H-pyrazole]

decane 3.74

The compound 3.74 was prepared from the reaction of bischalcone 3.68 (1.0 g,

0.001628 mol) with phenyl hydrazine (0.3522 g, 0.003257 mol) under the similar

conditions as described above for 3.70.

3''

4''

5''

6''

2''1''

12

34 5

5''' 3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)8 CH2 O

NN

HX

HMHA

HM

HA

HX

3.74

3.74: Brown solid; Yield 68%; m.p.: 110-112oC. UV-Vis (MeOH) λmax(nm): 346,

256; IR (KBr) cm-1: 2929, 2855 (methylene C-H), 1594 (C=N), 1236, 1020 (C-O); 1H-NMR (400 MHz, CDCl3): δ 8.02 (2H, d, Jo=7.8 Hz, H-6’), 7.36 (10H, m, H-3’’’,

5’’’, 4’, 2’’, 6’’), 7.14 (6H, m, H-3’’, 4’’, 5’’), 7.12 (4H, m, H-2’’’, 6’’’), 7.10 (2H, d,

Jo=8.0 Hz, H-4’’’), 7.05 (2H, td, Jm,o=2.0, 7.8 Hz, H-5’), 6.80 (2H, d, Jo=8.0 Hz,

H-3’), 5.25 (2H, dd, JXM=12.1 Hz, JXA=6.9 Hz, HX), 4.13 (2H, dd, JMX=12.1 Hz,

JMA=17.2 Hz, HM), 4.02 (4H, t, Jvic=6.4 Hz, OCH2CH2CH2CH2CH2), 3.35 (2H, dd,

JAX=6.9 Hz, JAM=17.2 Hz, HA), 1.78 (4H, quintet, Jvic=6.3 Hz,

OCH2CH2CH2CH2CH2), 1.62 (4H, quintet, Jvic=6.2 Hz, OCH2CH2CH2CH2CH2), 1.35

(8H, m, OCH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 157.05 (C-2’),

146.91 (C-3), 146.82 (C-1’’’), 144.34 (C-1’’), 142.91 (C-4’), 139.91 (C-4’’), 128.83

(C-3’’’, 5’’’), 128.75 (C-6’), 128.00 (C-3’’, 5’’), 124.67 (C-2’’, 6’’), 121.76 (C-1’),

120.62 (C-5’), 118.65 (C-4’’’), 113.25 (C-3’), 112.20 (C-2’’’, 6’’’), 68.48

(OCH2CH2CH2CH2CH2), 63.31 (C-5), 45.75 (C-4), 29.62 (OCH2CH2CH2CH2CH2),

29.22 (OCH2CH2CH2CH2CH2), 26.38 (OCH2CH2CH2CH2CH2), 25.20

(OCH2CH2CH2CH2CH2); MS(ESI): m/z 766 (M, 100%), 765 (6%), 763 (17%), 676

(8%), 675 (60%), 674 (2%), 673 (43%), 657 (21%), 590 (9%), 589 (9%), 571 (12%),

467 (51%), 448 (49%). Anal. Calc. for C52O2N4H54: Calc. C, 81.46 %; H, 7.04 %;

N, 7.31 %; Found: C, 81.41 %; H, 7.02 %; N, 7.36 %.

Page 48: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

176

Synthesis of 1,12-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1,5-diphenyl-1H-pyrazole]

dodecane 3.75

The compound 3.75 was synthesized from the reaction of bischalcone 3.69 (1.0 g,

0.001502 mol) with phenyl hydrazine (0.3402 g, 0.003012 mol) under the same

conditions as used above for 3.75.

3''

4''

5''

6''

2''1''

12

34 5

5''' 3'''

2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)10 CH2 O

NN

HX

HMHA

HM

HA

HX

3.75

3.75: Orange solid; Yield 65%; m.p.: 125-127oC. UV-Vis (MeOH) λmax(nm): 362,

259; IR (KBr) cm-1: 2931, 2878 (methylene C-H), 1599 (C=N), 1238, 1028 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.90 (2H, dd, Jp,o=1.0, 7.8 Hz, H-6’), 7.28 (2H, m,

H-4’), 7.19 (10H, m, H-2’’’, 3’’’, 4’’, 5’’’, 6’’’) , 7.05 (4H, td, Jm,o=2.0, 7.8 Hz, H-2’’,

6’’), 7.00 (2H, td, Jp,o=1.1, 7.0 Hz, H-4’’’), 6.92 (2H, td, Jp,o=1.1, 7.8 Hz, H-5’), 6.80

(4H, td, Jm,o=2.2, 7.8 Hz, H-3’’, 5’’), 6.69 (2H, td, Jp,o=1.0, 7.8 Hz, H-3’), 5.12

(2H, dd, JXM=12.1 Hz, JXA=7.1 Hz, HX), 4.00 (2H, dd, JMX=12.1 Hz, JMA=17.3 Hz,

HM), 3.90 (4H, m, OCH2CH2CH2CH2CH2CH2), 3.30 (2H, dd, JAX=7.1 Hz, JAM=17.3

Hz, HA), 1.71 (4H, m, OCH2CH2CH2CH2CH2CH2), 1.30 (4H, m,

OCH2CH2CH2CH2CH2CH2), 1.21 (12H, m, OCH2CH2CH2CH2CH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 155.48 (C-2’), 147.89 (C-3), 146.79 (C-1’’’), 143.35 (C-1’’),

142.88 (C-4’), 139.92 (C-4’’), 128.87 (C-6’), 128.59 (C-3’’’, 5’’’), 128.26 (C-3’’,

5’’), 124.72 (C-2’’, 6’’), 121.87 (C-1’), 120.65 (C-5’), 118.63 (C-4’’’), 112.30 (C-3’),

112.13 (C-2’’’, 6’’’), 68.40 (OCH2CH2CH2CH2CH2CH2), 64.34 (C-5), 44.35 (C-4),

29.60 (OCH2CH2CH2CH2CH2CH2), 29.18 (OCH2CH2CH2CH2CH2CH2), 26.40

(OCH2CH2CH2CH2CH2CH2), 26.22 (OCH2CH2CH2CH2CH2CH2), 25.10

(OCH2CH2CH2CH2CH2CH2); MS(ESI): m/z 795 (M+1, 10%), 793 (48%), 791 (80%),

704 (3%), 703 (4%), 702 (5%), 701 (31%), 685 (2%), 618 (2%), 617 (3%), 599 (1%),

491 (3%), 476 (23%), 304 (40%), 256 (25%), 237 (20%), 158 (13%). Anal. Calc. for

C54O2N4H58: Calc. C, 81.61 %; H, 7.30 %; N, 7.05 %; Found: C, 81.66 %; H, 7.36 %;

N, 7.08 %.

Page 49: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

177

Synthesis of (E)-1-(2-hydroxyphenyl)-3-p-tolylprop-2-en-1-one 3.76

The compound 3.76 was prepared from o-hydroxyacetophenone (5.0 ml, 0.0070 mol)

and tolualdehyde (4.5 ml, 0.0070 mol) under similar conditions as used for 3.63.

O

OH CH33'

4'

5'

6'

1'

2'

12

3

1''

2''

3''

4''

5''

6''

3.76

3.76: Yellow solid; Yield 80%; m.p.: 102-104oC. UV-Vis (MeOH) λmax(nm): 340,

235; IR (KBr) cm-1: 3217 (O-H), 1690 (C=O), 1600 (C=C); 1H-NMR (400 MHz,

CDCl3): δ 12.87 (1H, s, OH), 7.93 (1H, ddd, Jp,m,o=1.0, 3.0, 8.0 Hz, H-5’), 7.89

(1H, d, Jtrans=15.4 Hz, H-3), 7.62 (1H, d, Jtrans=15.4 Hz, H-2), 7.57 (2H, d, Jo=8.0 Hz,

H-2’’, 6’’), 7.50 (1H, td, Jm,o=1.6, 8.4 Hz, H-4’), 7.24 (2H, d, Jo=8.0 Hz, H-3’’, 5’’),

7.03 (1H, dd, Jp,o=1.0, 8.4 Hz, H-5’), 6.94 (1H, td, Jp,o=1.1, 8.0 Hz, H-3’), 2.40 (3H, s,

CH3); GC-MS: m/z 238 (60%). Anal. Calc. for C16O2H14: Calc. C, 80.67 %;

H, 5.88 %; Found: C, 80.60 %; H, 5.92 %.

Synthesis of (2E,2’E)-1,1’-(2,2’-(butane-1,4-diylbis(oxy))bis(2,1-phenylene))bis(3-

p-tolylprop-2-en-1-one) 3.77

The bischalcone 3.77 was obtained from the reaction of chalcone 3.76 (2.0 g,

0.00820 mol) with 1,4-dibromobutane (0.90754 g, 0.00420168 mol) under the same

conditions as used earlier for 3.64.

1'

3'

4'

5'

6'

2'

O CH2 (CH2)2 CH2 O

O O

CH3CH312

3

1''

2'' 3''4''

5''6''

3.77

3.77: Yellow solid; Yield 68%; m.p.: 143-145oC. UV-Vis (MeOH) λmax(nm): 330,

209; IR (KBr) cm-1: 2936, 2871 (methylene C-H), 1656 (C=O), 1598 (C=C), 1235,

1020 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.62 (2H, dd, Jm,o=2.2, 7.6 Hz, H-6’),

7.54 (2H, d, Jtrans=15.9 Hz, H-3), 7.41 (6H, m, H-2’’, 6’’, 4’), 7.29 (2H, d,

Jtrans=15.9 Hz, H-2), 7.12 (4H, d, Jo=7.0 Hz, H-3’’, 5’’), 7.01 (2H, td, Jp,o=0.6, 7.4 Hz,

H-5’), 6.82 (2H, d, Jo=8.2 Hz, H-3’), 3.89 (4H, t, Jvic=6.2 Hz, OCH2CH2), 2.31 (6H, s,

CH3), 1.88 (4H, quintet, Jvic=6.2 Hz, OCH2CH2); 13C-NMR (100 MHz, CDCl3):

δ 192.96 (C=O), 157.44 (C-2’), 142.66 (C-3), 140.68 (C-4’’), 132.79 (C-1’), 132.33

Page 50: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

178

(C-1’’), 130.40 (C-6’), 129.63 (C-2’’, 6’’), 129.43 (C-4’), 128.32 (C-5’), 126.49

(C-3’’, 5’’), 120.72 (C-2), 112.25 (C-3’), 67.78 (OCH2CH2), 26.10 (OCH2CH2), 21.46

(CH3); MS(ESI): m/z 554 (M+Na+1, 10%), 553 (M+Na, 21%), 243 (50%), 242

(100%), 186 (9%), 142 (6%). Anal. Calc. for C36O4H34: Calc. C, 81.50 %; H, 6.41 %;

Found: C, 81.44 %; H, 6.45 %.

Synthesis of (2E,2’E)-1,1’-(2,2’-(pentane-1,5-diylbis(oxy))bis(2,1-

phenylene))bis(3-p-tolylprop-2-en-1-one) 3.78

The bischalcone 3.78 was prepared from the reaction of chalcone 3.76 (2.0 g, 0.00820

mol) with 1,5-dibromopentane (0.9661342 g, 0.0042016 mol) under the similar

conditions as used above for 3.64.

1'

3'

4'

5'

6'

2'

O CH2 (CH2)3 CH2 O

O O

CH3CH312

3

1''

2'' 3''4''

5''6''

3.78

3.78: Yellow solid; Yield 60%; m.p.: 76-78oC. UV-Vis (MeOH) λmax(nm): 318, 211;

IR (KBr) cm-1: 2938, 2863 (methylene C-H), 1654 (C=O), 1599 (C=C), 1237, 1024

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.62 (2H, dd, Jm,o=1.8, 7.6 Hz, H-6’), 7.60

(2H, d, Jtrans=15.8 Hz, H-3), 7.42 (6H, m, H-2’’, 4’, 6’’), 7.36 (2H, d, Jtrans=15.8 Hz,

H-2), 7.20 (4H, d, Jo=7.2 Hz, H-3’’, 5’’), 7.01 (2H, td, Jp,o=0.7, 7.4 Hz, H-5’), 6.94

(2H, d, Jo=8.4 Hz, H-3’), 4.03 (4H, t, Jvic=6.4 Hz, OCH2CH2CH2), 2.37 (6H, s, CH3),

1.78 (4H, m, OCH2CH2CH2), 1.51 (2H, m, OCH2CH2CH2); 13C-NMR (100 MHz,

CDCl3): δ 192.92 (C=O), 157.53 (C-2’), 142.64 (C-3), 140.62 (C-4’’), 132.80 (C-1’),

132.36 (C-1’’), 130.45 (C-6’), 129.66 (C-2’’, 6’’), 129.48 (C-4’), 128.27 (C-5’),

126.52 (C-3’’, 5’’), 120.75 (C-2), 112.28 (C-3’), 67.74 (OCH2CH2CH2), 29.06

(OCH2CH2CH2), 25.80 (CH2CH2CH2), 21.42 (CH3); MS(ESI): m/z 545 (M+1, 6%),

257 (64%), 256 (100%), 243 (79%), 228 (80%), 200 (37%), 156 (29%), 126 (26%),

110 (12%). Anal. Calc. for C37O4H36: Calc. C, 81.61 %; H, 6.62 %; Found:

C, 81.68 %; H, 6.59 %.

Synthesis of (2E,2’E)-1,1’-(2,2’-(hexane-1,6-diylbis(oxy))bis(2,1-phenylene))bis(3-

p-tolylprop-2-en-1-one) 3.79

The bischalcone 3.79 was obtained from the reaction of chalcone 3.76 (2.0 g,

0.00820 mol) with 1,6-dibromohexane (1.025 g, 0.00420168 mol) under the similar

conditions as used earlier for 3.64.

Page 51: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

179

1'

3'

4'

5'

6'

2'

O CH2 (CH2)4 CH2 O

O O

CH3CH312

3

1''

2'' 3''4''

5''6''

3.79

3.79: Yellow solid; Yield 70%; m.p.:102-104oC. UV-Vis (MeOH) λmax(nm): 322,

218; IR (KBr) cm-1: 2934, 2864 (methylene C-H), 1652 (C=O), 1600 (C=C), 1233,

1025 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.66 (2H, dd, Jm,o=1.7, 7.6 Hz, H-6’),

7.60 (2H, d, Jtrans=15.9 Hz, H-3), 7.48 (2H, dd, Jm,o=1.8, 7.8 Hz, H-4’), 7.45 (4H, d,

Jo=7.0 Hz, H-2’’, 6’’), 7.37 (2H, d, Jtrans=15.9 Hz, H-2), 7.16 (4H, d, Jo=7.0 Hz,

H-3’’, 5’’), 7.04 (2H, td, Jp,o=0.5, 7.3 Hz, H-5’), 6.92 (2H, d, Jo=8.2 Hz, H-3’), 3.92

(4H, t, Jvic=6.2 Hz, OCH2CH2CH2), 2.31 (6H, s, CH3), 1.62 (4H, quintet, Jvic=6.2 Hz,

OCH2CH2CH2), 1.38 (4H, quintet, Jvic=7.2 Hz, OCH2CH2CH2); 13C-NMR (100 MHz,

CDCl3): δ 192.95 (C=O), 157.66 (C-2’), 142.62 (C-3), 140.64 (C-4’’), 132.83 (C-1’),

132.41 (C-1’’), 130.48 (C-6’), 129.64 (C-2’’, 6’’), 129.50 (C-4’), 128.30 (C-5’),

126.38 (C-3’’, 5’’), 120.67 (C-2), 112.34 (C-3’), 68.32 (OCH2CH2CH2), 29.09

(OCH2CH2CH2), 25.92 (OCH2CH2CH2), 21.45 (CH3); MS(ESI): m/z 582 (M+Na+1,

14%), 581 (M+Na, 24%), 559 (M+1, 3%), 553 (8%), 376 (6%), 365 (9%), 361 (15%),

360 (100%), 339 (4%), 338 (12%), 243 (13%), 242 (90%), 202 (11%). Anal. Calc.

for C38O4H38: Calc. C, 81.72 %; H, 6.81 %; Found: C, 81.77 %; H, 6.84 %.

Synthesis of (2E,2’E)-1,1’-(2,2’-(octane-1,8-diylbis(oxy))bis(2,1-phenylene))bis(3-

p-tolylprop-2-en-1-one) 3.80

The bischalcone 3.80 was synthesized from the reaction of chalcone 3.76 (2.0 g,

0.00840 mol) with 1,8 dibromooctane (1.142 g, 0.00420168) under the same

conditions as described above for 3.64.

1'

3'

4'

5'

6'

2'

O CH2 (CH2)6 CH2 O

O O

CH3CH312

3

1''

2'' 3''4''

5''6''

3.80

3.80: Yellow solid; Yield 73%; m.p.: 110-112oC. UV-Vis (MeOH) λmax(nm): 325,

215; IR (KBr) cm-1: 2935, 2852 (methylene C-H), 1654 (C=O), 1593 (C=C), 1234,

1022 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.63 (2H, dd, Jm,o=1.8, 7.6 Hz, H-6’),

7.57 (2H, d, Jtrans=15.7 Hz, H-3), 7.44 (6H, m, H-2’’, 6’’, 4’), 7.36 (2H, d,

Page 52: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

180

Jtrans=15.7 Hz, H-2), 7.13 (4H, d, Jo=7.9 Hz, H-3’’, 5’’), 7.02 (2H, td, Jp,o=0.8, 7.6 Hz,

H-5’), 6.95 (2H, d, Jo=8.3 Hz, H-3’), 3.98 (4H, t, Jvic=6.3 Hz, OCH2CH2CH2CH2),

2.32 (6H, s, CH3), 1.67 (4H, quintet, Jvic=7.3 Hz, OCH2CH2CH2CH2), 1.31 (4H, m,

OCH2CH2CH2CH2), 1.09 (4H, m, OCH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3):

δ 192.99 (C=O), 157.74 (C-2’), 142.66 (C-3), 140.58 (C-4’’), 132.84 (C-1’), 132.46

(C-1’’), 130.50 (C-6’), 129.60 (C-2’’, 6’’), 129.56 (C-4’), 128.34 (C-5’), 126.38

(C-3’’, 5’’), 120.66 (C-2), 112.41 (C-3’), 68.58 (OCH2CH2CH2CH2), 29.29

(OCH2CH2CH2CH2), 29.18 (CH2CH2CH2CH2), 26.15 (CH2CH2CH2CH2), 21.48

(CH3); MS(ESI): m/z 611 (M+Na+1, 3%), 610 (M+Na, 32%), 588 (M+2, 6%), 587

(M+1, 10%), 361 (15%), 360 (100%), 339 (4%), 338 (22%), 332 (4%), 202 (12%).

Anal. Calc. for C40O4H42: Calc. C, 81.91 %; H, 7.16 %; Found: C, 81.86 %;

H, 7.19 %.

Synthesis of (2E,2’E)-1,1’-(2,2’-(decane-1,10-diylbis(oxy))bis(2,1-

phenylene))bis(3-p-tolylprop-2-en-1-one) 3.81

The bischalcone 3.81 was obtained from the reaction of chalcone 3.76 (2.0 g,

0.00840 mol) with 1,10-dibromodecane (1.260 g, 0.00420168 mol) under the same

reaction conditions as used earlier for 3.64.

1'

3'

4'

5'

6'

2'

O CH2 (CH2)8 CH2 O

O O

CH3CH312

3

1''

2'' 3''4''

5''6''

3.81

3.81: Yellow solid; Yield 75%; m.p.: 120-122oC. UV-Vis (MeOH) λmax(nm): 325,

223; IR (KBr) cm-1: 2935, 2873 (methylene C-H), 1659 (C=O), 1599 (C=C), 1238,

1021 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.64 (2H, dd, Jm,o=1.8, 7.6 Hz, H-6’),

7.60 (2H, d, Jtrans=15.9 Hz, H-3), 7.44 (6H, m, H-2’’, 6’’, 4’), 7.41 (2H, d,

Jtrans=15.9 Hz, H-2), 7.15 (4H, d, Jo=8.0 Hz, H-3’’, 5’’), 7.01 (2H, td, Jp,o=0.8, 9.0 Hz,

H-5’), 6.96 (2H, d, Jo=8.2 Hz, H-3’), 4.02 (4H, t, Jvic=6.3 Hz,

OCH2CH2CH2CH2CH2), 2.33 (6H, s, CH3), 1.74 (4H, quintet, Jvic=6.3 Hz,

OCH2CH2CH2CH2CH2), 1.36 (4H, quintet, Jvic=7.2 Hz, OCH2CH2CH2CH2CH2), 1.15

(4H, m, OCH2CH2CH2CH2CH2), 1.05 (4H, m, OCH2CH2CH2CH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 192.96 (C=O), 157.78 (C-2’), 142.64 (C-3), 140.55 (C-4’’),

132.89 (C-1’), 132.42 (C-1’’), 130.54 (C-6’), 129.61 (C-2’’, 6’’), 128.31 (C-4’),

128.25 (C-5’), 126.56 (C-3’’, 5’’), 120.63 (C-2), 112.42 (C-3’), 68.50

Page 53: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

181

(OCH2CH2CH2CH2CH2), 29.25 (OCH2CH2CH2CH2CH2), 29.20

(CH2CH2CH2CH2CH2), 26.38 (CH2CH2CH2CH2CH2), 26.12 (CH2CH2CH2CH2CH2),

21.40 (CH3); MS(ESI): m/z 638 (M+Na+1, 20%), 637 (M+Na, 60%), 615 (M+1, 6%),

361 (13%), 360 (100%), 339 (4%), 338 (20%), 332 (3%), 243 (11%), 242 (82%), 202

(4%). Anal. Calc. for C42O4H46: Calc. C, 82.08 %; H, 7.49 %; Found: C, 82.14 %;

H, 7.53 %.

Synthesis of (2E,2’E)-1,1’-(2,2’-(dodecane-1,12-diylbis(oxy))bis(2,1-

phenylene))bis(3-p-tolylprop-2-en-1-one) 3.82

The bischalcone 3.82 was prepared from the reaction of 3.76 (2.0 g, 0.00840 mol)

with 1,12-dibromododecane (1.401 g, 0.00420168 mol) under the same conditions as

described earlier for 3.64.

1'

3'

4'

5'

6'

2'

O CH2 (CH2)10 CH2 O

O O

CH3CH312

3

1''

2'' 3''4''

5''6''

3.82

3.82: Yellow solid; Yield 80%; m.p.: 93-95oC. UV-Vis (MeOH) λmax(nm): 328, 229;

IR (KBr) cm-1: 2917, 2850 (methylene C-H), 1653 (C=O), 1599 (C=C), 1235, 1020

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.63 (4H, dd, Jm,o=1.8, 7.6 Hz, H-4’, 6’), 7.43

(2H, d, Jtrans=15.8 Hz, H-3), 7.17 (2H, d, Jtrans=15.8 Hz, H-2), 7.02 (4H, d, Jo=8.0 Hz,

H-3’’, 5’’), 6.97 (8H, m, H-2’’, 6’’, 3’, 5’), 4.03 (4H, t, Jvic=6.3 Hz,

OCH2CH2CH2CH2CH2CH2), 2.34 (6H, s, CH3), 1.76 (4H, quintet, Jvic=6.3 Hz,

OCH2CH2CH2CH2CH2CH2), 1.39 (4H, quintet, Jvic=7.2 Hz,

OCH2CH2CH2CH2CH2CH2), 1.20 (4H, m, OCH2CH2CH2CH2CH2CH2), 1.09 (8H, m,

OCH2CH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 192.97 (C=O), 157.81

(C-2’), 142.67 (C-3), 140.51 (C-4’’), 132.86 (C-1’), 132.51 (C-1’’), 130.53 (C-6’),

129.59 (C-2’’, 6’’), 128.35 (C-4’), 126.53 (C-3’’, 5’’), 126.39 (C-5’), 120.64 (C-2),

112.44 (C-3’), 68.67 (OCH2CH2CH2CH2CH2CH2), 29.56

(OCH2CH2CH2CH2CH2CH2), 29.48 (CH2CH2CH2CH2CH2CH2), 29.43

(CH2CH2CH2CH2CH2CH2), 29.38 (CH2CH2CH2CH2CH2CH2), 26.28

(CH2CH2CH2CH2CH2CH2), 21.49 (CH3); MS(ESI): m/z 665 (M+Na, 17%), 361

(7%), 360 (31%), 243 (83%), 242 (100%), 241 (12%), 193 (8%), 186 (18%), 184

(6%), 152 (17%), 142 (13%), 106 (16%), 104 (44%). Anal. Calc. for C44O4H50: Calc.

C, 82.24 %; H, 7.78 %; Found: C, 82.28 %; H, 7.82 %.

Page 54: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

182

Synthesis of 1,4-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1-phenyl-5-p-tolyl-1H-

pyrazole] butane 3.83

The compound 3.83 was prepared from the reaction of bischalcone 3.77 (1.0 g,

0.001886 mol) with phenyl lhydrazine (0.4080 g, 0.0037735 mol) under the similar

conditions as used above for 3.70.

3''

4''

5''

6''

2''1''12

34

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)2 CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

3.83

3.83: Yellow solid; Yield 68%; m.p.: 232-234oC. UV-Vis (MeOH) λmax(nm): 355,

263; IR (KBr) cm-1: 2920, 2868 (methylene C-H), 1598 (C=N), 1232, 1018 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.92 (2H, dd, Jp,o=1.2, 7.8 Hz, H-6’), 7.29 (6H, m,

H-3’’’, 5’’’, 4’), 7.15 (4H, td, Jm,o=2.1, 7.6 Hz, H-2’’, 6’’), 7.05 (4H, dd, Jp,o=1.1, 9.0

Hz, H-2’’’, 6’’’), 6.96 (2H, td, Jp,o=1.1, 7.8 Hz, H-5’), 6.86 (2H, d, Jo=7.8 Hz, H-3’),

6.80 (4H, td, Jm,o=2.5, 7.8 Hz, H-3’’, 5’’), 6.72 (2H, dt, Jm,o=2.2, 8.0 Hz, H-4’’’), 5.10

(2H, dd, JXM=12.1 Hz, JXA=7.0 Hz, HX), 3.94 (4H, t, Jvic=5.8 Hz, OCH2CH2), 3.89

(2H, dd, JMX=12.1 Hz, JMA=17.2 Hz, HM), 3.24 (2H, dd, JAX=7.0 Hz, JAM=17.2 Hz,

HA), 2.23 (6H, s, CH3), 1.82 (4H, quintet, Jvic=6.8 Hz, OCH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 156.86 (C-2’), 146.76 (C-3), 145.14 (C-1’’’), 145.12 (C-1’’),

139.99 (C-4’’), 137.05 (C-4’), 129.74 (C-3’’’, 5’’’), 129.69 (C-6’), 128.99 (C-3’’,

5’’), 125.94 (C-2’’, 6’’), 122.18 (C-1’), 120.82 (C-5’), 118.75 (C-4’’’), 113.30 (C-3’),

112.25 (C-2’’’, 6’’’), 67.97 (OCH2CH2), 65.87 (C-5), 45.98 (C-4), 26.28 (OCH2CH2),

21.20 (CH3); MS(ESI): m/z 734 (M+Na+1, 49%), 733 (M+Na, 100%), 616 (10%),

602 (9%), 542 (12%), 541 (21%), 509 (13%), 506 (42%), 483 (11%), 473 (8%), 469

(5%), 381 (92%), 354 (18%), 353 (99%), 349 (15%). Anal. Calc. for C48O2N4H46:

Calc. C, 81.12 %; H, 6.47 %; N, 7.88 %; Found: C, 81.18 %; H, 6.44 %; N, 7.92 %.

Page 55: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

183

Synthesis of 1,5-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1-phenyl-5-p-tolyl-1H-

pyrazole] pentane 3.84

The compound 3.84 was obtained from the reaction of bischalcone 3.78 (1.0 g,

0.001838 mol) with phenyl hydrazine (0.3975 g, 0.003676 mol) under the similar

conditions which are described above for 3.70.

3''

4''

5''

6''

2''1''12

34

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)3 CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

3.84

3.84: Brown solid; Yield 65%; m.p.: 140-142oC. UV-Vis (MeOH) λmax(nm): 363,

253; IR (KBr) cm-1: 2936, 2864 (methylene C-H), 1596 (C=N), 1239, 1023 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.88 (2H, dd, Jp,o=1.0, 7.8 Hz, H-6’), 7.20 (10H, m,

H-2’’’, 3’’’, 5’’’, 6’’’, 4’), 7.11 (4H, td, Jm,o=2.1, 7.8 Hz, H-2’’, 6’’), 6.98 (2H, dd,

Jp,o=1.1, 7.8 Hz, H-5’), 6.86 (2H, td, Jp,o=1.1, 8.0 Hz, H-4’’’), 6.78 (4H, td,

Jm,o=2.0, 7.8 Hz, H-3’’, 5’’), 6.68 (2H, m, H-3’), 5.11 (2H, dd, JXM=12.1 Hz,

JXA=7.0 Hz, HX), 3.86 (4H, m, OCH2CH2CH2), 3.78 (2H, dd, JMX=12.1 Hz,

JMA=17.3 Hz, HM), 3.23 (2H, dd, JAX=7.0 Hz, JAM=17.3 Hz, HA), 2.23 (6H, s, CH3),

1.69 (4H, quintet, Jvic=6.8 Hz, OCH2CH2CH2), 1.44 (2H, quintet, Jvic=6.8 Hz,

OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 156.84 (C-2’), 146.72 (C-3), 145.11

(C-1’’’), 145.08 (C-1’’), 139.98 (C-4’’), 137.00 (C-4’), 129.70 (C-3’’’, 5’’’), 129.66

(C-6’), 128.95 (C-3’’, 5’’), 125.90 (C-2’’, 6’’), 122.15 (C-1’), 120.79 (C-5’), 118.72

(C-4’’’), 113.28 (C-3’), 112.15 (C-2’’’, 6’’’), 67.99 (OCH2CH2CH2), 64.23 (C-5),

46.27 (C-4), 29.10 (OCH2CH2CH2), 28.51 (OCH2CH2CH2), 21.18 (CH3); MS(ESI):

m/z 725 (M+1, 78%), 679 (17%), 678 (32%), 677 (13%), 630 (19%), 629 (10%), 616

(21%), 563 (5%), 562 (22%), 557 (19%), 556 (79%), 555 (41%), 546 (46%), 521

(100%), 520 (21%), 495 (54%), 481 (59%), 467 (23%), 463 (49%), 459 (64%), 453

Page 56: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

184

(17%), 427 (40%), 395 (36%), 368 (3%), 367 (61%), 363 (5%), 298 (44%), 188 (3%),

174 (20%). Anal. Calc. for C49O2N4H48: Calc. C, 81.21 %; H, 6.62 %; N, 7.73 %;

Found: C, 81.26 %; H, 6.58 %; N, 7.79 %.

Synthesis of 1,6-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1-phenyl-5-p-tolyl-1H-

pyrazole] hexane 3.85

The compound 3.85 was prepared from the reaction of bischalcone 3.79 (1.0 g,

0.001792 mol) with phenyl hydrazine (0.3875 g, 0.003584 mol) under the same

conditions as described above for 3.70.

3''

4''

5''

6''

2''1''12

34

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)4 CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

3.85

3.85: Yellow solid; Yield 75%; m.p. 80-82oC. UV-Vis (MeOH) λmax(nm): 357, 266;

IR (KBr) cm-1: 2939, 2873 (methylene C-H), 1598 (C=N), 1233, 1022 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.99 (2H, dd, Jp,o=1.0, 7.6 Hz, H-6’), 7.29 (6H, m,

H-3’’’, 5’’’, 4’), 7.20 (4H, td, Jm,o=2.1, 7.8 Hz, H-2’’, 6’’), 7.15 (2H, td, Jp,o=1.1, 7.8

Hz, H-5’), 7.12 (4H, dd, Jp,o=1.1, 8.9 Hz, H-2’’’,6’’’), 6.90 (2H, d, Jo=7.8 Hz, H-3’),

6.85 (4H, d, Jo=7.8 Hz, H-3’’, 5’’), 6.75 (2H, td, Jm,o=2.2, 8.0 Hz, H-4’’’), 5.10

(2H, dd, JXM=12.0 Hz, JXA=7.1 Hz, HX), 3.99 (4H, m, OCH2CH2CH2), 3.65 (2H, dd,

JMX=12.0 Hz, JMA=17.2 Hz, HM), 3.33 (2H, dd, JAX=7.1 Hz, JAM=17.2 Hz, HA), 2.20

(6H, s, CH3), 1.65 (4H, m, OCH2CH2CH2), 1.53 (4H, m, OCH2CH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 156.81 (C-2’), 146.73 (C-3), 145.39 (C-1’’’), 145.03 (C-1’’),

139.92 (C-4’’), 137.01 (C-4’), 129.68 (C-3’’’, 5’’’), 129.62 (C-6’), 128.92 (C-3’’,

5’’), 125.88 (C-2’’, 6’’), 122.12 (C-1’), 120.76 (C-5’), 118.70 (C-4’’’), 113.23 (C-3’),

112.12 (C-2’’’, 6’’’), 67.64 (OCH2CH2CH2), 63.48 (C-5), 46.84 (C-4), 29.45

(OCH2CH2CH2), 26.48 (OCH2CH2CH2), 21.14 (CH3); MS(ESI): m/z 761 (M+Na,

4%), 382 (5%), 381 (29%), 353 (42%), 258 (12%), 243 (20%), 242 (100%), 237

(13%). Anal. Calc. for C50O2N4H50: Calc. C, 81.30 %; H, 6.77 %; N, 7.58 %; Found:

C, 81.25 %; H, 6.81 %; N, 7.54 %.

Page 57: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

185

Synthesis of 1,8-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1-phenyl-5-p-tolyl-1H-

pyrazole] octane 3.86

The compound 3.86 was synthesized from the reaction of bischalcone 3.80 (1.0 g,

0.001706 mol) with phenyl hydrazine (0.3689 g, 0.003412 mol) under the similar

conditions as used earlier for 3.70.

3''

4''

5''

6''

2''1''12

34

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)6 CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

3.86

3.86: Orange solid; Yield 70%; m.p.: 148-150oC. UV-Vis (MeOH) λmax(nm): 365,

260; IR (KBr) cm-1: 2922, 2853 (methylene C-H), 1596 (C=N), 1240, 1022 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.95 (2H, dd, Jp,o=1.1, 7.8 Hz, H-6’), 7.35 (2H, m,

H-4’), 7.16 (10H, m, H-2’’’, 3’’’, 4’’’, 5’’’, 6’’’ ), 7.06 (4H, td, Jm,o=2.0, 8.4 Hz,

H-2’’, 6’’), 6.99 (4H, td, Jm,o=2.0, 8.4 Hz, H-3’’, 5’’), 6.86 (2H, td, Jm,o=2.0, 8.0 Hz,

H-5’), 6.73 (2H, td, Jp,o=1.0, 7.8 Hz, H-3’), 5.16 (2H, dd, JXM=12.0 Hz, JXA=7.1 Hz,

HX), 3.84 (4H, m, OCH2CH2CH2CH2), 3.73 (2H, dd, JMX=12.0 Hz, JMA=17.2 Hz,

HM), 3.04 (2H, dd, JAX=7.1 Hz, JAM=17.2 Hz, HA), 2.27 (6H, s, CH3), 1.72 (4H, m,

OCH2CH2CH2CH2), 1.38 (4H, m, OCH2CH2CH2CH2), 1.18 (4H, m,

OCH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 155.97 (C-2’), 147.90 (C-3),

145.78 (C-1’’’), 144.15 (C-1’’), 138.97 (C-4’’), 135.87 (C-4’), 128.80 (C-3’’, 5’’),

128.61 (C-6’), 128.09 (C-3’’, 5’’), 124.84 (C-2’’, 6’’), 121.11 (C-1’), 119.63 (C-5’),

117.67 (C-4’’’), 112.28 (C-3’), 111.12 (C-2’’’, 6’’’), 67.25 (OCH2CH2CH2CH2),

63.31 (C-5), 45.88 (C-4), 28.33 (OCH2CH2CH2CH2), 25.27 (OCH2CH2CH2CH2),

25.13 (OCH2CH2CH2CH2), 20.22 (CH3); MS(ESI): m/z 790 (M+Na+1, 18%), 789

(M+Na, 39%), 787 (33%), 785 (13%), 779 (14%), 777 (7%), 766 (M, 51%), 765

(100%), 763 (48%), 453 (3%), 441 (12%), 437 (18%), 419 (3%), 345 (14%), 263

(23%), 242 (98%), 237 (80%), 236 (20%), 220 (7%), 202 (8%), 187 (20%), 168

(19%), 105 (38%). Anal. Calc. for C52O2N4H54: Calc. C, 81.46 %; H, 7.04 %;

N, 7.31 %; Found: C, 81.50 %; H, 7.08 %; N, 7.36 %.

Page 58: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

186

Synthesis of 1,10-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1-phenyl-5-p-tolyl-1H-

pyrazole] decane 3.87

The compound 3.87 was prepared from the reaction of bischalcone 3.81 (1.0 g,

0.001628 mol) with phenyl hydrazine (0.3522 g, 0.003257 mol) under the same

conditions as described above for 3.70.

3''

4''

5''

6''

2''1''12

34

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)8 CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

3.87

3.87: Orange solid; Yield 60%; m.p.: 98-100oC. UV-Vis (MeOH) λmax(nm): 360, 271;

IR (KBr) cm-1: 2921, 2851 (methylene C-H), 1596 (C=N), 1237, 1026 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.97 (2H, dd, Jp,o=1.0, 7.8 Hz, H-6’), 7.37 (2H, m,

H-4’), 7.20 (8H, m, H-2’’’, 3’’’, 5’’’, 6’’’), 7.15 (4H, td, Jm,o=2.0, 7.8 Hz, H-2’, 6’),

7.05 (2H, td, Jp,o=1.1, 7.0 Hz, H-4’’’), 6.98 (2H, td, Jp,o=1.1, 7.8 Hz, H-5’), 6.87

(4H, td, Jm,o=2.2, 7.8 Hz, H-3’’, 5’’), 6.73 (2H, td, Jm,o=1.8, 7.8 Hz, H-3’), 5.17 (2H,

dd, JXM=12.1 Hz, JXA=7.0 Hz, HX), 4.08 (2H, dd, JMX=12.1 Hz, JMA=17.3 Hz, HM),

3.92 (4H, m, OCH2CH2CH2CH2CH2), 3.30 (2H, dd, JAX=7.0 Hz, JAM=17.3 Hz, HA),

2.29 (6H, s, CH3), 1.73 (4H, m, OCH2CH2CH2CH2CH2), 1.36 (4H, m,

OCH2CH2CH2CH2CH2), 1.23 (8H, m, OCH2CH2CH2CH2CH2); 13C-NMR (100 MHz,

CDCl3): δ 155.69 (C-2’), 147.95 (C-3), 146.89 (C-1’’’), 143.38 (C-1’’), 138.89

(C-4’’), 136.90 (C-4’), 128.90 (C-3’’’, 5’’’), 128.88 (C-6’), 128.08 (C-3’’, 5’’),

124.74 (C-2’’, 6’’), 121.90 (C-1’), 120.65 (C-5’), 118.70 (C-4’’’), 113.32 (C-3’),

112.17 (C-2’’’, 6’’’), 68.42 (OCH2CH2CH2CH2CH2), 64.36 (C-5), 46.93 (C-4), 29.64

(OCH2CH2CH2CH2CH2), 29.29 (OCH2CH2CH2CH2CH2), 26.40

(OCH2CH2CH2CH2CH2), 26.24 (OCH2CH2CH2CH2CH2), 21.12 (CH3); MS(ESI): m/z

795 (M+1, 12%), 793 (39%), 791 (22%), 742 (6%), 703 (4%), 686 (11%), 685 (28%),

639 (4%), 625 (5%), 599 (11%), 584 (4%), 582 (11%), 507 (10%), 465 (6%), 428

(9%), 382 (12%), 381 (62%), 360 (98%), 353 (100%), 338 (11%), 312 (4%), 298

(19%), 252 (3%), 251 (8%), 250 (48%), 237 (81%), 236 (84%), 222 (93%), 203 (7%),

202 (63%), 186 (6%), 144 (13%), 114 (12%), 102 (22%), 90 (4%). Anal. Calc. for

Page 59: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

187

C54O2N4H58: Calc. C, 81.61 %; H, 7.30 %; N, 7.05 %; Found: C, 81.57 %; H, 7.26 %;

N, 7.02 %.

Synthesis of 1,12-bis-[3-(2-oxy-phenyl)-4,5-dihydro-1-phenyl-5-p-tolyl-1H-

pyrazole] dodecane 3.88

The compound 3.88 was synthesized from the reaction of bischalcone 3.82

(1.0 g, 0.001502 mol) with phenyl hydrazine (0.3402 g, 0.003012 mol) under the

similar conditions as described earlier for 3.70.

3''

4''

5''

6''

2''1''12

34

5

5''' 3'''2'''6'''

4'''

1'''

1'

2'3'

4'

5'

6' NN

O CH2 (CH2)10 CH2 O

NN

HX

HMHA

HM

HA

HX

CH3 CH3

3.88

3.88: Orange solid; Yield 61%; m.p.: 120-122oC. UV-Vis (MeOH) λmax(nm): 353,

256; IR (KBr) cm-1: 2921, 2870 (methylene C-H), 1594, (C=N), 1235, 1023 (C-O); 1H-NMR (400 MHz, CDCl3): δ 7.93 (2H, dd, Jp,o=1.0, 7.8 Hz, H-6’), 7.32 (2H, m,

H-4’), 7.22 (8H, m, H-2’’’, 3’’’, 5’’’, 6’’’), 7. 10 (4H, td, Jm,o=2.0, 7.8 Hz, H-2’’,

6’’), 7.08 (2H, td, Jp,o=1.0, 7.0 Hz, H-4’’’), 6.99 (2H, td, Jp,o=1.0, 7.8 Hz, H-5’), 6.88

(4H, td, Jm,o=2.2, 7.8 Hz, H-3’’, 5’’), 6.74 (2H, td, Jp,o=1.1, 7.8 Hz, H-3’), 5.19

(2H, dd, JXM=12.1 Hz, JXA=7.0 Hz, HX), 4.05 (2H, dd, JMX=12.1 Hz, JMA=17.3 Hz,

HM), 3.94 (4H, m, OCH2CH2CH2CH2CH2CH2), 3.32 (2H, dd, JAX=7.0 Hz,

JAM=17.3 Hz, HA), 2.27 (6H, s, CH3), 1.75 (4H, m, OCH2CH2CH2CH2CH2CH2), 1.33

(4H, m, OCH2CH2CH2CH2CH2CH2), 1.28 (12H, m, OCH2CH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 155.82 (C-2’), 147.97 (C-3), 146.90 (C-1’’’), 143.40

(C-1’’), 138.77 (C-4’’), 136.93 (C-4’), 128.91 (C-3’’’,5’’’), 128.83 (C-6’), 128.02

(C-3’’, 5’’), 124.76 (C-2’’, 6’’), 121.91 (C-1’), 120.68 (C-5’), 118.73 (C-4’’’), 113.34

(C-3’), 112.19 (C-2’’’, 6’’’), 68.34 (OCH2CH2CH2CH2CH2CH2), 64.38 (C-5), 46.81

(C-4), 29.62 (OCH2CH2CH2CH2CH2CH2), 29.22 (OCH2CH2CH2CH2CH2CH2), 26.64

(OCH2CH2CH2CH2CH2CH2), 26.15 (OCH2CH2CH2CH2CH2CH2), 25.12

(OCH2CH2CH2CH2CH2CH2), 21.32 (CH3); MS(ESI): m/z 823 (M+1, 65%), 821

(18%), 819 (25%), 731 (80%), 714 (87%), 713 (91%), 667 (26%), 653 (31%), 627

(6%), 612 (95%), 610 (9%), 569 (13%), 535 (37%), 493 (22%), 456 (13%), 410

Page 60: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

188

(10%), 409 (18%), 388 (29%), 381 (69%), 366 (40%), 340 (59%), 326 (43%), 264

(62%), 236 (77%), 214 (11%), 172 (7%), 142 (16%), 130 (19%), 118 (83%). Anal.

Calc. for C56O2N4H62: Calc. C, 81.75 %; H, 7.54 %; N, 6.81 %; Found: C, 81.90 %;

H, 7.50 %; N, 6.78 %.

Page 61: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

189

References

1. Bart, S.; Halkes, A.; Vrasidas, I. and Rooijer, G. R. Bioorg. Med. Chem. Lett. 2002,

12,1567.

2. Dhar, D. N. The Chemistry of Chalcones and Related Compounds, John Wiley &

Sons, New York, 1981.

3. Grayer, R. J. Methods in Plant Biochemistry, P. M. Dey, J. B. Harborne (Eds.),

Academic Press, London 1989, 1, 283.

4. Bohm, B. A. Methods in Plant Biochemistry, P. M. Dey, J. B. Harborne (Eds.),

Academic Press, London 1989, 1, 237.

5. (a) Krutosikova, A. and Uher, M. Natural and Synthetic Sweet Substances, J.

Hudec (Ed.), Ellis Horwood, New York 1992, 99. (b) Dubois, G. E.; Crosby, G.

A.;Stephenson, R. A. and Wingard, Jr. R. J. Agric. Food Chem. 1977, 25,

763. (c) Dubois, G. E.; Crosby, G. A. and Stephenson, R. A. J. Med. Chem. 1981,

24, 408. (d) Kinghorn, A. D. and Kennelly, E. J. J. Chem. Edu. 1995, 72, 676.

6. Bohm, B. A. The Flavonoids-Advances in Research Since 1986, J. B. Chapman

(Ed.) London, 1994, 387.

7. Harborne, J. B. and Williams, C. A. Phytochemistry 2002, 55, 481.

8. Parmar, V. S.; Bisht, K. S.; Jain, R.; Singh, S.; Sharma, S. K.; Gupta, S.; Malhotra,

S.; Tyagi, O. D.; Vardhan, A.; Pati, H. N.; Berghe, D. V. and Vlietinck, A. J. Ind. J.

Chem. 1996, 35B, 220.

9. (a) Lewis, D. A. Chem. Br. 1992, 141. (b) Esaki, S.; Nishiyama, K.; Sugiyama, N.;

Nakajima, R.; Takao, Y. and Kamiya, S. Biosci. Biotech. Biochem. 1994, 58, 1479.

(c) Bois, F.; Beney, C.; Boumendjel, A.; Mariotte, A. M.; Conseil, G. and Pietro, A.

D. J. Med. Chem. 1998, 41, 4161.

10. Gadow, A.; Joubert, E. and Hansmann, C. F. J. Agri. Food Chem. 1997, 45, 632.

11. (a) Pincemail, J.; Deby, C. and Drieu, K.; Anton, R. Goutier R Proceedings of the

3rd International Symposium on Flavonoids in Biology and Medicine, Singapore,

1989, 161; (b) Jovanovic, S. V.; Steenken, S.; Tosic, M.; Marjanovic, B. and

Simic, M. G. J. Am. Chem. Soc. 1994, 116, 4846; (c) Bors, W.; Heller, W.;

Michel, C.; Stettmaier, K. Handbook of Antioxidants, E. Cadenas, L. Packer

(Eds.), Marcel Dekker, New York 1996, 409; (d) Rice-Evans, C. A.; Miller, N. J.

and Paganga, G. Free Rad. Biol. Med. 1996, 20, 933.

12. Kolos, N. N.; Paponov, B. V.; Orlov, V. D.; Lvovskaya, M. I. L.; Doroshenko, A.

Page 62: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

190

O. and Shishkin, O. V. J. Mol. Str. 2006, 785, 114-122.

13. Elguero, J.; In Comprehensive Heterocyclic Chemistry II, Katritzky, A. R.; Rees,

C. W. and Scriven, E. F. V. (Eds.), Pergamon, Oxford, 1996, 3, 1.

14. Yet, L.; In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden,

C. A.; Scriven, E. F. V. and Taylor, R. J. K. (Eds.), Pergamon, Oxford, 2008, 4, 1.

15. Ulven, T.; Receveur, J. M.; Grimstrup, M.; Rist, O.; Frimurer, T. M.; Gerlach, L.

O.; Mathiesen, J. M.; Kostenis, E.; Uller, L. and Hgberg, T. J. Med. Chem. 2006,

49, 6638.

16. Bonacorso, H. G.; Martins, M. A. P.; Bittencourt, S. R. T.; Lourega, R. V.;

Zanatta, N. and Flores, A. F. C. J. Fluor. Chem. 1999, 99, 177.

17. Martins, M. A. P.; Freitag, R.; Flores, A. F. C. and Zanatta, N. Synthesis 1995,

1491.

18. Martins, M. A. P.; Freitag, R. A.; Rosa, A.; Flores, A. F. C.; Zanatta, N. and

Bonacorso, H. G. J. Het. Chem. 1999, 36, 217.

19. Flores, A. F. C.; Zanatta, N.; Rosa, A.; Brondani, S. and Martins, M. A. P.

Tetrahedron Lett. 2002, 43, 5005.

20. Spingh, S. P. and Vaid, R. K. Ind. J. Chem. 1986, 25B, 288.

21. Knorr, L. B. Dt. Chem. Ges. 1893, 26, 100.

22. Thakare, V. G. and Wadodkar, K. N. Ind. J. Chem. 1986, 25, 610.

23. Ankhiwala, M. D. and Hathi, M. V. J. Ind. Chem. Soc. 1994, 71, 587.

24. Vounauwers, K. and Muller, B. Dt. Chem. Ges. 1908, 41, 4230.

25. Baker, A. and Butt, V. S. J. Chem. Soc. 1949, 2142.

26. Bauer, H. and Piatert, G. German Patent, (DOS) 3039311, 1981; Chem Abstr.

1981, 95, 63146.

27. Evans, N. A. and Waters, P. J. J. Soc. Dyers Colour. 1978, 94, 252.

28. Murayama, T. New Mater. New Proc. Electrochem.Tech. 1981, 1, 92.

29. Poduzhailo, V. F.; Pareyaslova, D. F.; Shripkina, V. I.; Verezubora, S. A. and

Andreeva, L. A. Zh. Prikl. Spektrosk. 1979, 26, 357; Chem. Abstr. 1977, 86,

162579.

30. Tomilovi, Y. V.; Okonnishnikova, G. P.; Shulishov, E. V. and Nefedov O. M.

Russ. Chem. Bt. 1995, 44, 2114.

31. Klimova, E. I.; Marcos, M.; Klimova, T. B.; Cecilio, A. T.; Ruben, A. T. and

Lena, R. R. J. Organomet. Chem. 1999, 585, 106.

32. Bhaskarreddy, D.; Padmaja, A.; Ramanareddy, P. V. and Seenaiah, B. Sulfur Lett.

Page 63: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

191

1993, 16, 227.

33. Padmavathi, V.; Sumathi, R. P.; Chandrasekhar, B. N. and Bhaskarreddy, D. J.

Chem. Res. 1999, 610.

34. Bhaskarreddy, D.; Chandrasekhar, B. N.; Padmavathi, V. and Sumathi, R. P.

Synthesis 1998, 491.

35. Roelfvan, S. G.; Arnold, C. and Wellnga, K. J. Agri. Food Chem. 1979, 84, 406.

36. Pelosi, S. S. US Patent 1976, 3946049/3962284.

37. Fahmy, A. M.; Hassan, K. M.; Khalaf, A. A. and Ahmed, R. A. Ind. J. Chem.

1987, 26B, 884.

38. Fuens, R. and Erdelen, C. Ger. Offen. 1995, 4, 336307.

39. Katri, H. Z. and Vunii, S. A. J. Ind. Chem. Soc. 1981, 58, 168.

40. Das, N. B. and Mittra, A. S. Ind. J. Chem. 1978, 16B, 138.

41. Delany, J. US Patent 1991, 4999368.

42. Nugent, R. A.; Murphy, M.; Schlachter, S. T.; Dunn, J. C.; Smith, R. J.; Staite, N.

D.; Galinet, L. A.; Shields, S. K.; Sspar, D. G.; Richard, K. A. and Rohloff, N. A.

J. Med. Chem. 1993, 36, 134.

43. Krishna, R.; Pande, B. R.; Bharthwal, S. P. and Parmar, S. S. Eur. J. Med. Chem.

1980, 15, 567.

44. Husain, M. I. and Shukla, S. Ind. J. Chem.1986, 25B, 983.

45. Ekta, B.; Srivastava V. K. and Kumar, A. Eur. J. Med. Chem. 2001, 36, 81.

46. Satyanarayana, K. and Rao M. N. A. Eur. J. Med. Chem. 1995, 30, 641.

47. Shaw, A. Y.; Liau, H.-H.; Lu, P.-J.; Yang, C.-N.; Lee, C.-H.; Chen, J.-Y.; Xu, Z.

and Flynn, G. Bioorg. Med. Chem. 2010, 18, 3270.

48. Singh, P.; Negi, J. S.; Pant, G. J. N.; Rawat, M. S. M. and Budakoti, A. Molbank

2009, M 614.

49. Jadhav, S. B.; Shastri, R. A.; Gaikwad, K. V. and Gaikwad, S. V. E. J. Chem.

2009, 6(S1), S-183.

50. Li, J.-T.; Zhang, X.-H. and Lin, Z.-P. Beilst. J. Chem. 2007, 3, 13.

51. Jayashankra, B. and Lokanatha R. K. M. E. J. Chem. 2008, 5(2), 309.

52. Sauzem, P. D.; Machado, P.; Rubin, M. A.; Sant’Anna, G. d S.; Faber, H. B.; de

Souza, A. H.; Mello, C. F.; Beck, P.; Burrow, R. A.; Bonacorso, H. G.; Marcos

A.P. and Martins, N. Z. Eur. J. Med. Chem. 2008, 43, 1237.

53. Almeida da Silva, P. E.; Ramos, D. F.; Bonacorso, H. G.; Iglesia, A. I. de la;

Oliveira, M. R.; Coelho, T.; Navarini, J.; Morbidoni, H. R.; Zanatta, N. and

Page 64: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

192

Martins, M. A. P. Inter. J. Antimic. Agents 2008, 32, 139.

54. Ali, M. A.; Shaharyar, M. and Siddiquig, A. A. Eur. J. Med. Chem. 2007, 42, 268.

55. Revanasiddappa, B. C.; Rao, R. N.; Subrahmanyam, E. V. S. and Satyanarayana,

D. E. J. Chem. 2010, 7(1), 295.

56. Sahoo, A.; Yabanoglu, S.; Sinha, B. N.; Ucar, G.; Basu, A and Jayaprakash, V.

Bioorg. Med. Chem. Lett. 2010, 20, 132.

57. Jayaprakash, V.; Sinha, B. N.; Ucar, G. and Ercan, A. Bioorg. Med. Chem. Lett.

2008, 18, 6362.

58. Hayat, F.; Salahuddin, A.; Umar, S. and Azam, A. Eur. J. Med. Chem. 2010, 45,

4669.

59. Conti, P.; Pinto, A.; Tamborini, L.; Rizzo, V. and Micheli, C. D. Tetrahedron

2007, 63, 5554.

60. Shevtson, A. V.; Kislukhin, A. A.; Kuznetson, V. V.; Petukhova, V. Y.;

Maslennikov, V. A.; Borissova, A. O.; Lyssenko, K. A. and Makhova, N. N.

Mandel. Commun. 2007, 17, 119.

61. Mishra, S. K.; Sahoo, S.; Panda, P. K.; Mishra, S. R.; Mohanta, R. K.; Ellaiah, P.

and Panda, C. S. Acta Poloniae Pharm. Drug Res. 2007, 64(4), 359.

62. Padmavathi, V.; Radhalakshmi, T.; Mahesh, K. and Mohan, A. V. N. Ind. J.

Chem. 2008, 47B, 1707.

63. Alex, K.; Tillack, A.; Schwarz, N. and Beller, M. Org. Lett. 2008, 10(12), 2377.

64. Insuasty, B.; Martinez, H.; Quiroga, J.; Abonia, R.; Nogueras, M. and Cobo, J.

J. Het. Chem. 2008, 45, 1521.

65. Biagini, P.; Biancalani, C.; Graziano, A.; Cesari, N. Giovannoni, M. P.; Cilibrizzi,

A.; Piaz, V. D.; Vergelli, C.; Crocetti, L.; Delcanale, M.; Armani, E.; Rizzi, A.;

Puccini, P.; Gallo, P. M.; Spinabelli, D. and Caruso, P. Bioorg. Med. Chem.

2010, 18, 3506.

66. Bondock, S.; Fadaly, W. and Metwally, M. A. Eur. J. Med. Chem. 2010, 45, 3692.

67. Bhat, A. R.; Athar, F. and Azam, A. Eur. J. Med. Chem. 2009, 44, 426-431.

68. Barsoum, F. F.; Hosni H. M. and Girgis, A. S. Bioorg. Med. Chem. 2006, 14,

3929.

69. Insuasty, B.; García, A.; Quiroga, J.; Abonia, R.; Ortiz A.; Nogueras, M. and

Cobo, J. Eur. J. Med. Chem. 2011, 46, 2436.

70. (a) Gennari, C. Comprehensive Organic Synthesis, Trost, B. M. and Fleming, I.

Page 65: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

193

(Eds.), Pergamon, Oxford, UK, 1991, 2, 629; (b) Mahrwald, R. (Ed.), Modern

Aldol Reactions; Wiley, VCH, Weinheim, Germany, 2004, 1-2; (c) Mukaiyama,

T.Organic Reactions, Dauben, W. G. (Eds.), J. Wiley & Sons: New York, NY,

USA, 1982, 28, 203; (d) Healthcock, C. H. Comprehensive Organic Synthesis,

Trost, B. M. And Fleming, I. (Eds.), Pergamon, Oxford, UK, 1991, 2, 133.

71. Baurer, A. W.; Kirby, M. M.; Sherris, J. C. and Turck, M. Am. J. Clinic. Path.

1966, 45, 493.

72. Pandey, K. S. and Khan, N. Arch. Pharm. Chem. Life Sci. 2008, 341, 418.

Page 66: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

194

Chapter-IIIb Synthesis of new 1,3-diphenyl-5-thienyl-

bispyrazolines linked via the 3-aryl ring

� Synthesis and Antimicrobial Studies of New Bis[4,5-dihydro-1- phenyl-5-

thienyl- 3-(phenyl-4-alkoxy)-1H-pyrazole] Derivatives

Mohamad Yusuf and Payal Jain

Journal of Heterocyclic Chemistry 2012, doi:10.1002/jhet.1805.

Page 67: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

195

In the chapter IIIa , the researches were oriented upon the preparation of

1,3,5-triphenyl-bispyrazolines. In this chapter (IIIb) , we plan to prepare thienyl

substituted bispyrazolines. The presence of thiophene may affect the formation and

biological behaviour of the resulting heterocyclic compounds. In the literature, some

examples are reported upon the synthesis of pyrazoline derivatives bearing thiophene

moiety and these substrates are found to exhibit significant biological activity. These

compounds are obtained from the cyclization reaction of thienyl/furyl substituted

chalcones with suitable hydrazine derivatives.

A series of 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide hydrazone derivatives

3.90 were synthesized by Bao-Xiang Zhao and et al1 (Scheme-3.25) and the effects

of these compounds on the growth of A549 cell have also been investigated. The

study on structure activity relationships and prediction of lipophilicities of compounds

showed that heterocyclics with Log P values in the range of 4.12-6.80 had significant

inhibitory effects on the growth of A549 cell and the hydrazones derived from

salicylaldehyde had much more inhibitory effects.

X

NN

O

NHNH2

R2

R1

X

NN

O

NHN

R2

Ar

R1

EtOH

R1= H, Cl, OMe; R2 = H, Cl, t-Bu, X= C, N

Ar = , , ,

3.89 3.90

ArCHO

O

O

OH OMe

O

Scheme-3.25

The tricyclic fused pyrazolines 3.92 have been prepared (Scheme-3.26) from the

reaction of 3-arylidenechromanones/thiochromones 3.91 with

4-carboxyphenyl-hydrazine in hot anhydrous pyridine solution.2

X

O

RNH NH2HOOC

Pyridine

where X= O, S, SO2 ; R= H, Me, MeO, F, Cl, Br

3.91

3.92

X

NNH

COOH

R

Scheme-3.26

Page 68: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

196

The reaction of substituted carboxylic acid hydrazides 3.93 with ethane-

tetracarbonitril in dimethyl formamide (Scheme-3.27) led to the formation3 of

diacylhydrazines 3.94 and 5-amino-1-substiuted pyrazole-3,3,4-tricarbonitriles 3.96.

R C

O

NH NH2 R C

O

NH NH C RO

+ NNH

NH2

CN

CN

CN

O

R

N

NH

O

H

NH

CN

CN

CN

R

R = , , , CH3

SCH3

N CH3NH

CH3

DMF

3.93 3.943.95 3.96

Scheme-3.27

New pyrazolines 3.100 have been synthesized4 from the cyclocondensation reaction

chalcones 3.99 with phenyl hydrazine (Scheme-3.28).

C

O

CH3 +X

CHOR

C

O

CH CHX

R

R

NN

X

HH

H

Alc. NaOH

3.973.98

3.99

3.100

X = O NH2NH

Scheme-3.28

Some other examples are also available in the literature upon the synthesis of

thienyl/furyl substituted pyrazolines.5

The above literature survey clearly describes that there is a need to explore the

synthesis and antimicrobial activities of thienyl substituted pyrazoline/bispyrazolines.

On the basis of these aspects, we have oriented our researches upon the synthesis of

new thiophene based bispyrazolines 3.109-3.115.

SN

N

O CH2 (CH2)n CH2 O

NN

S

HM

HA

HX

HM

HA

HX

3.109-3.115

n = 1, 2, 3, 4, 6, 8, 10

Page 69: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

197

The bispyrazolines 3.109-3.115 required for the present studies were synthesized from

the cyclization reactions of bischalcones 3.102-3.108 with phenyl hydrazine by

refluxing under EtOH/AcOH medium. The bischalcones were obtained from the

O-alkylation of chalcone 3.101 with suitable alkylating agents (1,3-dibromopropane,

1,4-dibromobutane, 1,5-dibromopentane, 1,6-dibromohexane, 1,8-dibromooctane,

1,10-dibromodecane & 1,12-dibromododecane). The compound 3.101 was prepared

from the Claisen-Schmidt6 reaction of 4-hydroxyacetophenone with

2-thiophenecarboxaldehyde. The structures of prepared compounds were determined

from the rigorous analysis of their IR, 1H-NMR, 13C-NMR & ESI-MS spectral data.

The elemental analysis results were also helpful to confirm the purity of these

products.

Synthesis of Chalcone 3.101

The chalcone 3.101 was obtained from the reaction of 4-hydroxyacetophenone with

2-thiophenecarboxaldehyde under NaOH/EtOH medium (Scheme-3.29). The

decomposition of the reaction mixture into iced HCl provided a crude substance

which was crystallized from MeOH to yield pure compound 3.101

(65%, m.p. 166-168οC).

OH

O

CH3

+

O

S

OH

NaOH/ EtOH/00C

SCHO

4''

1''

2 ''

3''

5 ''1

2

31'

2 '

3 '

4 '

5 '

6 '

3.101

Scheme-3.29

The IR spectrum of 3.101 showed three major absorptions at 3229 (O-H), 1688 (C=O)

& 1600 (C=C) cm-1. In its 1H-NMR spectrum (400 MHz, CDCl3), a D2O

exchangeable singlet was placed at δ 10.25 that can be ascribed to OH proton. The

double bond and theinyl ring hydrogens were very well resonating at δ 7.96 (1H, d,

Jtrans=15.1 Hz, H-3), 7.60 (1H, d, Jtrans=15.1 Hz, H-2), 7.12 (1H, d, J5’’,4’’ =4.8 Hz,

H-5’’), 7.43 (1H, d, J3’’,4’’ =3.7 Hz, H-3’’) and 6.89 (1H, d, J4’’,3’’ =3.7 Hz, H-4’’). The

GC-MS spectrum of 3.101 exhibited the molecular ion at m/z 230 (70%) which also

corroborated its structure.

Synthesis of bispyrazoline 3.109

The compound 3.109 was prepared in two steps:

(i). Synthesis of bischalcone 3.102

Page 70: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

198

The compound 3.101 was reacted with 1,3-dibromopropane in the presence of

anhydrous K2CO3 and tetrabutyl ammonium iodide (PTC) in dry acetone

(Scheme-3.30). The resulting reaction mixture was poured into iced-HCl to give a

solid substance. The crude product thus obtained was purified by crystallization from

CHCl3:MeOH (1:1) to yield pure bischalcone 3.102 (60%, m.p. 110-112oC).

O

S

OH

3.101

3''4''

5''6'2''

anhd. K2CO3 /BrCH2CH2CH2Br/ dry acetone/Bu4N+I-/∆

1''

4'

5'

3'2'

1'12

3

4''

1''

2 ''

3''

5 ''1

2

31'

2 '

3 '

4 '

5 '

6 '

SO

O CH2 CH2 CH2 O

OS

3.102

Scheme-3.30

The compound 3.102 in its IR spectrum exhibited strong absorption at 1660 cm-1 that

may be assigned to C=O group and other noticeable bands were observed at 1596

(C=C) and 1236, 1034 cm-1 (C-O). Its ESI-MS spectrum exhibited (M+1) ion at m/z

501 (9%) and its mass fragmentation has been shown in Chart-1 which clearly

confirm the proposed structure. UV-Vis spectrum of 3.102 exhibited two maxima at

280 and 234 nm which may be ascribed to n→π* and π→π* transitions respectively.

In the 1H-NMR (400 MHz, CDCl3) spectrum of 3.102, two doublets (Jo=8.5 Hz)

placed at δ 8.00 and 7.03 may be furnished by H-2’, 6’ and H-3’, 5’ respectively. The

signals present at δ 7.84 (2H, d, Jtrans=14.5 Hz), 7.51 (2H, d, J5’’,4’’ =4.9 Hz), 7.43

(4H, m) and 7.13 (2H, d, J4’’,3’’ =3.8 Hz) may be ascribed to H-3, H-5’’, H-2, 3’’ and

H-4’’ respectively. The intervening chain methylene protons were located at δ 4.29

(4H, t, Jvic=5.8 Hz, OCH2) and 2.08 (2H, t, Jvic=5.8 Hz, OCH2CH2).

13C-NMR (100 MHz, DMSO-d6) spectrum of 3.102 provided the signal of C=O, C-4’,

C-3 and C-2 at δ 186.60, 162.48, 139.80 and 120.10 respectively. The remaining

resonances in the aromatic region were found to be placed at δ 135.73 (C-2’’), 131.94

Page 71: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

199

(C-1’), 130.48 (C-2’, 6’), 130.25 (C-5’’), 129.32 (C-3’’), 128.20 (C-4’’) and 114.10

(C-3’, 5’). The carbon atoms of the symmetrical internal spacer furnished two signals

at δ 67.28 (OCH2CH2) and 25.20 (OCH2CH2).

S O

O CH2 CH2 CH2 O

OS

O

O CH2 CH2 CH 2 O

O

O

CH2 CH2 CH2 O

O

O

CH2 CH2 CH2 O

O

O

C C CH2 O

O

C C CH2 O

O

C C CH2 OCH 2 O

H

H2C O

H

S O

O CH CH CH2 O

O

C

S O

O CH CH CH2 O

C

C C CH2 O

C

S O

S O

m/z 501 (M+1, 9%)

m/z 500

m/z 436 (19%)

m/z 394 (8%)

m/z 339 (41%)

m/z 335 (14%)

m/z 307 (86%)

m/z 279 (28%)m/z 183 (71%)

m/z 107 (33%)

m/z 411 (22%)

m/z 383 (42%)

m/z 365 (11%)

m/z 135 (74%)

-2S

-C2H2O

-C4H7

-4H

-CO

-CO

+

+

++

+

+

+

+

+

+

-C4H9S

-CO

-H2O

+

+

+

.

.

.

......

....

....

......

....

....

......

......

.

......

.

-C6H5

......

.

Chart-1

(ii). Cyclization of bischalcone 3.102

The compound 3.102 was refluxed with phenyl hydrazine in EtOH/AcOH solution

(Scheme-3.31) and cooling of the resulting reaction mixture in an ice bath furnished a

Page 72: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

200

solid substance. The crude product was crystallized from MeOH to yield pure

compound 3.109 (62%, m.p. 99-101oC).

3''4''

5''6'2''

1''

4'

5'

3'2'

1'12

3

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

S O

O CH2 CH2 CH2 O

OS

SN

N

O CH2 CH2 CH2 O

NN

S

HM

HA

HX

HM

HA

HX

PhNHNH2/dry EtOH/ AcOH/∆

3.102

3.109

Scheme-3.31

IR spectrum of 3.109 showed a significant band at 1593 cm-1 due to the C=N moiety

of pyrazoline ring. Its ESI-MS spectrum was very helpful to interpret the proposed

expression which had (M+Na) ion at m/z 703 (7%) and the other noticeable ions were

placed at m/z 614 (80%), 420 (33%), 377 (53%), 303 (25%), 297 (62%) and 221

(89%). Its mass fragmentation pattern has been depicted in Chart-2.

In the 1H-NMR of 3.109, there was a doublet at δ 7.63 (4H, Jo=8.6 Hz) which may be

assigned to H-2’’’, 6’’’ and next to it was another doublet at δ 7.33

(2H, J3’’,4’’ =3.7 Hz) which could be furnished by H-3’’. Another doublet integrating

for two hydrogens at δ 7.22 (J5’’,4’’ =5.0 Hz) was denoted by H-5’’. The aromatic

protons H-3’’’, 5’’’ appeared as a doublet at δ 6.99 (4H, Jo=8.6 Hz) and H-3’, 4’, 5’ &

H-2’, 6’ were centred at δ 7.12 & 6.70 as a six hydrogens multiplet and four

hydrogens triplet (Jo=7.2 Hz) respectively. A doublet of doublet present at δ 6.89

(2H, J4’’,3’’ =3.7 Hz, J4’’,5’’ =5.0 Hz) may be assigned to H-4’’ proton. Three signals

corresponding to H-X, H-M and H-A were resonating at δ 5.60 (2H, dd, JXA=6.2 Hz,

JXM=11.8 Hz), 3.82 (2H, dd, JMX=11.8 Hz, JMA=17.2 Hz) and 3.19 (2H, dd,

JAX=6.2 Hz, JAM=17.2 Hz) respectively. A triplet present at δ 4.02 (4H, Jvic=5.8 Hz)

and a quintet at δ 2.50 (2H, Jvic=5.8 Hz) were easily provided by the protons of

OCH2CH2 and OCH2CH2 group respectively. UV-Vis spectrum of 3.109 had two

Page 73: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

201

maxima at 360 and 255 nm which may be provided by n→π* and π→π* transitions

respectively.

SN

N

O CH2 CH2 CH2 O

NN

S

H

H

H

H

H

H

NN

O CH2 CH2 CH2 O

NN

H

H

H

O CH2 CH2 CH2 O

NN

CH2 CH2 CH2 O

H2C CH2 CH2 O

O CH2 CH2 CH2 O

NN

S

H

H

H

NN

S

H

H

H

NN

H

H

H

NH

N

HH

H

m/z 680

m/z 614 (80%)

m/z 420 (33%)

m/z 297 (62%)

m/z 220 (17%)

m/z 377 (53%)

m/z 303 (25%)

m/z 221 (89%)

m/z 145 (10%)

-H2S2

-C6H7N2O

-C6H5

-C3H6O2

+

+

+

++

+

+

.....

.....

..... .....

.....

.

.

.

.

.

.

+

.........

.... +.

-C4SH2

-C6H4

a

-C19N2SH15

-C13N2H10

m/z 703 (M+Na, 7%)

Chart-2 13C-NMR spectrum of 3.109 provided enough evidence in favour of its carbon

framework. The signals located at δ 160.15, 154.26 and 145.15 were represented by

C-4’’’, C-3 and C-1’ respectively due to their direct linkage to the electronegative

atom (N & O). The remaining aromatic carbon atoms were found to be resonating at

δ 147.34 (C-2’’), 144.87 (C-1’’’), 128.03 (C-5’’), 127.55 (C-3’’), 126.26 (C-4’’),

126.30 (C-2’’’, 6’’’), 124.68 (C-3’, 5’), 118.60 (C-4’), 114.90 (C-3’’’,5’’’) and 113.77

(C-2’, 6’). The pyrazoline ring carbons C-5 and C-4 were suitably placed at δ 59.41 &

Page 74: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

202

43.39 respectively. The intervening chain OCH2CH2 and OCH2CH2 group were

represented by two signals at δ 67.10 and 24.47 respectively.

Synthesis of bispyrazoline 3.110

The compound 3.110 was again obtained in the two steps:

(i). Synthesis of bischalcone 3.103

The chalcone 3.101 was reacted with 1,4-dibromobutane (Scheme-3.32) under the

similar conditions as used earlier for 3.102 to yield pure compound 3.103

(70%, m.p. 172-174οC).

O

S

OH

3.101

3''4''

5'' 6'2''

Anhd. K2CO3 /BrCH2(CH2)2CH2Br/ dry acetone/Bu4N+I-/∆

1''

4'

5'

3'2'

1'12

3

4''

1''

2 ''

3''

5 ''1

2

31'

2 '

3 '

4 '

5 '

6 '

S O

O CH2 (CH2)2 CH2 O

OS

3.103

Scheme-3.32

IR spectrum of 3.103 showed strong absorptions at 1652 and 1595 cm-1 which are the

characteristic band of C=O and C=C group respectively. In its 1H-NMR (400 MHz,

CDCl3) spectrum, two doublets corresponding to four protons each H-2’, 6’ and

H-3’, 5’ were placed at δ 8.02 (Jo=8.8 Hz) and 7.01 (Jo=8.8 Hz) respectively. The

thienyl ring protons H-5’’, 3’’ & H-4’’ furnished three signals at δ 7.61 (2H, d,

J5’’,4’’ =5.0 Hz), 7.52 (2H, d, J3’’,4’’ =3.7 Hz) and 7.11 (2H, dd, J4’’,3’’ =3.7 Hz,

J5’’,4’’ =5.0 Hz) respectively. The hydrogens (H-3 & H-2) of the double bond were

centred at δ 7.83 (2H, d) & 7.45 (2H, d) and the coupling value of J2,3=15.2 Hz

describes their trans relationship. A triplet at δ 4.14 (4H, Jvic=5.8 Hz) and a quintet at

δ 1.96 (4H, Jvic=5.8 Hz) were assignable to the internal chain OCH2CH2 and

OCH2CH2 group respectively. UV-Vis spectrum of 3.103 had two maxima at 276 and

227 nm which may be ascribed to n→π* and π→π* transitions respectively.

ESI-MS spectrum of 3.103 was also helpful to corroborate the given structure which

exhibited the (M+1) ion at m/z 515 (6%) along with other ions at m/z 448 (100%),

447 (3%), 425 (6%), 406 (76%), 405 (44%), 387 (30%) and 353 (34%)

Page 75: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

203

(vide experimental). Its mass fragmentation pattern was found to be similar as shown

in Chart-1 (vide experimental). 13C-NMR spectrum of 3.103 contained the signals of enone moiety at δ 186.65 (C-1),

139.84 (C-3) and 120.13 (C-2). The carbon atom (C-4’) bonded to oxygen atom

resulted a signal at δ 162.45. The intervening chain OCH2CH2 and OCH2CH2 group

could contribute two resonances at δ 67.37 and 25.26 respectively. The aromatic ring

carbon atoms (C-1’, 2’, 3’, 5’, 6’ & C-2’’, 3’’, 4’’, 5’’) were found to be resonating at

the expected position (vide experimental).

(ii). Cyclization of bischalcone 3.103

The compound 3.110 (68%, m.p. 145-147oC) was prepared from the reaction of 3.103

with phenyl hydrazine (Scheme-3.33) under the similar conditions as used earlier for

3.109.

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

S O

O CH2 (CH2)2 CH2 O

OS

SN

N

O CH2 (CH2)2 CH2 O

NN

S

HMHA

HX

HM

HA

HX

PhNHNH2/ dry EtOH/ AcOH/∆

3.103

3.110

Scheme-3.33

In addition to the IR spectrum of 3.110 confirming the presence C=N functionality at

1597 cm-1, its 1H-NMR spectrum (400 MHz, DMSO-d6) also fully lent support to the

proposed structure. Here, three hydrogens H-X, H-M & H-A belonging to the

pyrazoline ring furnished well defined doublet of doublet each at δ 5.67

(2H, JXA=6.2 Hz, JXM=11.8 Hz), 3.86 (2H, JMX=11.8 Hz, JMA=17.2 Hz) and 3.21

(2H, JAX=6.2 Hz, JAM=17.2 Hz) respectively. The thienyl ring protons were found to

be resonating at δ 7.30 (2H, d, J3’’,4’’ =3.7 Hz, H-3’’), 7.17 (2H, d, J5’’,4’’ =5.0 Hz,

H-5’’) and 6.92 (2H, dd, J4’’,3’’ =3.7 Hz, J4’’,5’’ =5.0 Hz, H-4’’). Two more doublets

integrating for four hydrogens each at δ 7.67 (Jo=8.6 Hz) and 6.95 (Jo=8.6 Hz) were

Page 76: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

204

easily assignable to H-2’’’, 6’’’ & H-3’’’, 5’’’ respectively. A multiplet integrating for

six protons (H-3’, 4’, 5’) appeared at δ 7.09 while four protons (H-2’, 6’) furnished a

triplet at δ 6.73 (Jo=7.2 Hz). The two broad singlets present at δ 4.09 (4H) & 2.52

(4H) may be allotted to the protons of OCH2CH2 & OCH2CH2 group respectively.

In the 13C-NMR spectrum (100MHz, CDCl3) of 3.110, the carbon atom (C-4’’’, C-3

& C-1’) directly bonded to the heteroatom (O & N) were resonating at δ 160.12,

155.56 and 145.85 respectively. The remaining aromatic carbons were found to be

placed at the expected δ values (vide experimental). The signals present at δ 59.47,

43.41 could be furnished by pyrazoline ring carbons C-5 and C-4 respectively. In the

upfield region, two signals were also located at δ 67.13 (OCH2CH2) and 25.37

(OCH2CH2). The UV-Vis spectrum of 3.110 had two maxima at 368 and 263 nm due

to to n→π* and π→π* transitions respectively.

Encouraged by the above described facile cyclization reactions, it was considered to

be of major interest to extend this study on the bischalcones 3.104-3.108. The major

interest in these reactions was to investigate the effect of lengthy internal chains upon

the formation and antimicrobial behaviour of the bispyrazoline 3.111-3.115.

Synthesis of bischalcones 3.104-3.108

The compounds 3.104-3.108 were prepared in good yields from the O-alkylation of

chalcone 3.101 with suitable 1,ω-dibromoalkane (1,5-dibromopentane,

1,6-dibromohexane, 1,8-dibromooctane, 1,10-dibromodecane &

1,12-dibromododecane respectively) under the similar conditions as described earlier

for 3.102-3.103. The significant spectral parameters of these compounds have been

presented in Table-1 (Plate-33-37 & vide experimental).

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3S O

O CH2 (CH2)n CH2 O

OS

3.104 (n=3), 3.105 (n=4), 3.106 (n=6), 3.107 (n=8), 3.108 (n=10)

Page 77: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

205

Table-1: Physical and characteristics spectral data of bischalcones 3.104-3.108

*Jtrans= 15.3-14.9 Hz

Synthesis of bispyrazoline 3.111-3.115

The compounds 3.111-3.115 were prepared from the cyclization reaction of the

bischalcones 3.104-3.108 with phenyl hydrazine under the similar conditions as

described earlier for 3.109. The physical and characteristic spectral data of

3.111-3.115 have been provided in Table-2 (Plate-38-41 & vide experimental).

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

SN

N

O CH2 (CH2)n CH2 O

NN

S

HM

HA

HX

HM

HA

HX

3.111 (n=3), 3.112 (n=4), 3.113 (n=6), 3.114 (n=8), 3.115 (n=10)

Compd. m.p. (°C)

Yield (%)

IR (υmaxcm-1)

1H-NMR (δ) 13C-NMR (δ) ESI-MS (m/z)

C=O C=C H-3* H-2* C=O C-3 C-2

3.104 155-157

68

1656

1598

7.84 7.44

186.68 139.80 120.15 551 (M+Na)+

3.105 197-199

72

1657

1602

7.93

7.32

186.69 140.68 120.27 565 (M+Na)+

3.106 140-142 78 1658 1597 7.91 7.45 186.60

139.82 120.05 593 (M+Na)+

3.107 118-120 75 1652 1596 7.94

7.43

186.66 139.80 120.23 599 (M+1)+

3.108 130-132 80 1654 1595 7.93 7.36 186.86 139.78 120.33 649 (M+Na)+

Page 78: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

206

Table-2: Physical and characteristics spectral data of bispyrazolines 3.111-3.115

*JAX=6.9-6.2 Hz, JMX= 12.2-11.8 Hz, JMA=17.4-16.5 Hz.

Antimicrobial evaluations of bischalcones 3.102-3.108 & bispyrazolines

3.109-3.115

The in vitro antimicrobial activities of compounds 3.102-3.108 & 3.109-3.115 were

analysed against seven bacterial strains namely Klubsellia pneumoniae (MTCC 3384),

Pseudomonas aeruginosa (MTCC 424), Escherichia coli (MTCC 443),

Staphylococcus aureus (MTCC 96), Bacillius subtilis (MTCC 441), Pseudomonas

fluorescens (MTCC 103), Streptoccus pyrogens (MTCC 442) and five fungi strains

namely Aspergillius janus (MTCC 2751), Aspergillius niger (MTCC 281), Fusarium

oxysporum (MTCC 2480), Aspergillus sclerotiorum (MTCC 1008) & Pencillium

glabrum (MTCC 4951). The MIC of these compounds were evaluated by using serial

tube dilution method7 and according to the similar procedure which is described on

page no. 43,44 (Chapter-IIa) . Amoxicillin and Fluconazole were used as reference

drugs for antibacterial and antifungal activities respectively. The observed minimum

inhibitory concentrations (MIC-µg/ml) of the studied compounds 3.102-3.108 &

3.109-3.115 have been presented in Table-3 (Figure-1) and Table-4 (Figure-2)

respectively.

Compd. m.p

(°C)

Yield

(%)

IR

(υmax

cm-1)

1H-NMR (δ)

13C-NMR (δ)

ESI-MS (m/z)

C=N H-X* H-M* H-A* C=N C-5 C-4

3.111 125- 127

65 1592 5.62

3.81

3.24

155.50 59.49 43.47 709 (M+1)+

3.112 166-168

61 1599 5.59 3.85

3.23

155.58 59.59 43.50 723 (M+1)+

3.113 152-154

70 1595 5.58 3.83 3.22 155.78 59.74 43.62

750 (M)+

3.114 126-128

60 1596 5.56 3.82 3.20 156.23 59.73 43.54

779 (M+1)+

3.115 110-112

63 1596 5.60 3.84 3.21 155.42 59.62 43.25 829 (M+Na)+

Page 79: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

207

Table-3. In vitro MIC (µg/ml) of bischalcones 3.102-3.108

Gram negative bacteria Gram positive bacteria Fungi

Compound E.

coli

K..

pneumoniae

P.

aeruginosa

P.

fluorescens

S.

aureus

B.

subtilis

S.

pyrogens

A.

janus

P.

glabrum

A.

niger

F.

oxysporum

A.

sclerotiorum

3.102 50 25 50 50 50 50 25 50 50 25 25 50

3.103 50 25 25 50 50 25 25 50 25 25 50 50

3.104 25 12.5 12.5 25 50 25 25 25 25 12.5 12.5 12.5

3.105 50 25 25 12.5 50 12.5 12.5 25 25 12.5 12.5 12.5

3.106 25 25 25 12.5 25 25 12.5 12.5 25 12.5 12.5 25

3.107 25 25 12.5 12.5 25 25 12.5 25 12.5 25 12.5 25

3.108 25 50 12.5 12.5 25 12.5 12.5 100 12.5 12.5 25 25

Amoxicillin 6.25 6.25 6.25 3.12 3.12 6.25 6.25 - - - - -

Fluconazole

- - - - - - - 3.12 3.12 6.25 3.12 3.12

Page 80: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

208

Table-4. In vitro MIC (µg/ml) of bispyrazolines 3.109-3.115

Gram negative bacteria Gram positive bacteria Fungi

Compd.

E. coli K.

Pneumoniae

P.

aeruginosa

P.

fluorescens

S.

aureus

B.

subtilis

S.

pyrogens

A.

janus

P.

glabrum

A.

niger

F.

oxysporum

A.

sclerotiorum

3.109 50 25 50 25 50 50 25 25 25 50 25 25

3.110 50 25 50 25 50 25 25 25 50 50 25 25

3.111 25 12.5 25 12.5 50 25 12.5 25 12.5 25 12.5 12.5

3.112 25 12.5 50 12.5 25 50 12.5 12.5 12.5 25 12.5 25

3.113 12.5 25 25 12.5 25 12.5 25 12.5 12.5 25 12.5 12.5

3.114 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 25 12.5 12.5

3.115 25 12.5 12.5 12.5 25 12.5 12.5 12.5 12.5 50 12.5 12.5

Amoxicillin 6.25 6.25 6.25 3.12 3.12 6.25 6.25 - - - - -

Fluconazole

- - - - - - - 3.12 3.12 6.25 3.12 3.12

Page 81: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

209

Figure-1. In vitro MIC (µg/ml) of bischalcones 3.102-3.108

Figure-2. In vitro MIC (µg/ml) of bispyrazolines 3.109-3.115

It is clear from the Table-3 that compounds 3.104-3.108 exhibited MIC of 12.5 µg/ml

against three gram negative and one gram positive bacterial strains Klubsellia

pneumoniae, Pseudomonas aeruginosa, Pseudomonas fluorescens and Streptoccus

pyrogens respectively. The activity of similar order has been shown by 3.108 against

Pseudomonas aeruginosa, Bacillius subtilis & Streptoccus pyrogens. The compounds

3.105 & 3.107 were also found to be equally active against Bacillius subtilis &

Pseudomonas aeruginosa respectively.

Page 82: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

210

The compounds 3.104-3.106 (Table-3) provided significant activity

(MIC-12.5 µg/ml) against the two fungi strains Aspergillius niger & Fusarium

oxysporum. The compounds 3.104 & 3.105 also showed similar behaviour against

Aspergillus sclerotiorum while the compound 3.106 exhibited the noticeable MIC

against Aspergillius janus. The compounds 3.107 and 3.108 significantly inhibited the

growth of strains Pencillium glabrum, Fusarium oxysporum and Pencillium glabrum,

Aspergillius niger respectively.

Regarding the antimicrobial examinations of bispyrazolines (Table-4), the

compounds 3.111, 3.112 and 3.113 showed significant activity (MIC-12.5 µg/ml)

against Pseudomonas fluorescens, Pencillium glabrum and Fusarium oxysporum and

the compounds 3.111 & 3.112 furnished noticeable activity against Klubsellia

pneumoniae and Streptoccus pyrogens. The compound 3.114 and 3.115 had similar

activity against the most of tested bacterial strains. It was observed from Table-4 that

3.113-3.115 were also found to be active (MIC-12.5 µg/ml) against the four fungi

strains namely Aspergillius janus, Pencillium glabrum, Fusarium oxysporum and

Aspergillus sclerotiorum whereas the compound 3.111 could display noticeable

activity against the fungal strain Aspergillus sclerotiorum. The growth of fungi strains

Aspergillius janus, Pencillium glabrum and Fusarium oxysporum was significantly

inhibited by 3.112 at the MIC of 12.5 µg/ml.

The comparison of Table-3 and Table-4 shows that bispyrazolines 3.109-3.115

exhibited the noticeable antibacterial and antifungal properties at MIC of 12.5 µg/ml.

It may be concluded that this study describes the general method for the synthesis of

new bispyrazolines linked through the 3-aryl ring under the normal conditions. The

bispyrazolines seems to be better antimicrobial agents than their corresponding

bischalcones.

Page 83: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

211

Experimental

Synthesis of (2E)-1-(4-hydroxyphenyl)-3-(thiophene-2-yl)prop-2-en-1-one 3.101

A mixture of 4-hydroxyacetophenone (4.0 g, 0.02941 mol), 2-thiophenecarboxaldehyde

(3.29 g, 0.02941 mol) and NaOH (1.0 g, 0.024 mol) in ethanol (25.0 ml) was stirred in an

ice bath for 10 hrs. During the course of reaction, the initially formed greenish mixture

changed to a reddish gummy mass. The resulting mixture was poured into iced-HCl to

provide a yellow solid that was filtered, thoroughly washed with water and dried. The

crude substance thus obtained was crystallized from MeOH to obtain a pure solid 3.101.

O

S

OH 4''

1''

2''

3''

12

31'

2 '

3 '

4 '

5 '6 '

5''

3.101

3.101: Yellow needles; Yield 65%; m.p.: 166-168oC. UV-Vis (MeOH) λmax(nm): 336,

238; IR (KBr) cm-1: 3229 (O-H), 1688 (C=O), 1600 (C=C); 1H-NMR (400 MHz, CDCl3):

δ 10.25 (1H, s, OH), 7.96 (1H, d, Jtrans=15.1 Hz, H-3), 7.82 (2H, d, J=3.2 Hz, H-2’, 6’),

7.60 (1H, d, Jtrans=15.1 Hz, H-2), 7.52 (2H, d, J=2.6 Hz, H-3’, 5’), 7.43 (1H, d,

J3’’,4’’ =3.7 Hz, H-3’’), 7.12 (1H, d, J5’’,4’’ =4.8 Hz, H-5’’), 6.89 (1H, d, J4’’,3’’ =3.7 Hz,

H-4’’); MS(ESI): m/z (M)+ 230 (70%). Anal. Calc. for C13H10O2S: C, 67.82 %;

H, 4.34 %; S, 13.91 %; Found: C, 67.70 %; H, 4.30 %; S, 13.86 %.

Synthesis of (2E,2’E)-1,1’-(4,4’-(propane-1,3-diylbis(oxy))bis(4,1-phenylene))bis(3-

(thiophen-2-yl)prop-2-en-1-one 3.102

A suspension of chalcone 3.101 (2.0 g, 0.0086957 mol), anhydrous K2CO3 (2.0 g),

1,3-dibromopropane (0.87 g, 0.00434783 mol), tetra butyl ammonium iodide (1.0 g) in

dry acetone (25.0 ml) was refluxed for 6 hrs with continuous stirring. The progress of

reaction was monitored by TLC. After the completion of reaction, the reaction mixture

turned to a colourless mass which was poured over iced-HCl to obtain a solid. The crude

product thus obtained was crystallized from CHCl3:MeOH (1:1) to yield pure compound

3.102.

Page 84: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

212

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3S O

O CH2 CH2 CH2 O

OS

3.102

3.102: Brown solid; Yield 60%; m.p.: 110-112oC. UV-Vis (MeOH) λmax(nm): 280, 234;

IR (KBr) cm-1 2923, 2870 (methylene C-H), 1660 (C=O), 1596 (C=C), 1236, 1034

(C-O); 1H-NMR (400 MHz, CDCl3): δ 8.00 (4H, d, Jo=8.5 Hz, H-2’, 6’), 7.84 (2H, d,

Jtrans=14.5 Hz, H-3), 7.51 (2H, d, J5’’,4’’ =4.9 Hz, H-5’’), 7.43 (4H, m, H-2, 3’’),

7.13 (2H, d, J4’’,3’’ =3.8 Hz, H-4’’), 7.03 (4H, d, Jo=8.5 Hz, H-3’, 5’), 4.29 (4H, t,

Jvic=5.8 Hz, OCH2CH2), 2.08 (2H, t, Jvic=5.8 Hz, OCH2CH2); 13C-NMR (100 MHz,

CDCl3): δ 186.60 (C=O), 162.48 (C-4’), 139.80 (C-3), 135.73 (C-2’’), 131.94 (C-1’),

130.48 (C-2’, 6’), 130.25 (C-5’’), 129.32 (C-3’’), 128.20 (C-4’’), 120.10 (C-2), 114.10

(C-3’, 5’), 67.28 (OCH2CH2), 25.20 (OCH2CH2); MS(ESI): m/z 501 (M+1, 9%), 436

(19%), 411 (22%), 394 (8%), 393 (42%), 375 (11%), 339 (41%), 335 (14%), 307 (86%),

281 (28%), 182 (71%), 134 (74%), 106 (33%). Anal. Calc. for C29O4H24S2: Calc.

C, 69.60 %; H, 4.80 %; S, 12.80 %; Found: C, 69.87 %; H, 4.83 %; S, 12.85 %.

Synthesis of (2E,2’E)-1,1’-(4,4’-(butane-1,4-diylbis(oxy))bis(4,1-phenylene))bis(3-

(thiophen-2-yl)prop-2-en-1-one 3.103

The compound 3.103 was obtained by reacting 3.101 (2.0 g, 0.0086957 mol) with

1,4-dibromobutane (0.93 g, 0.00434783 mol) under similar conditions as described

earlier for 3.102.

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3S O

O CH2 (CH2)2 CH2 O

OS

3.103

3.103: Brown solid; Yield 70%; m.p.: 172-174oC. UV-Vis (MeOH) λmax(nm): 276, 227;

IR (KBr) cm-1 2939, 2874 (methylene C-H), 1652 (C=O), 1595 (C=C), 1238, 1021

(C-O); 1H-NMR (400 MHz, CDCl3): δ 8.02 (4H, d, Jo=8.8 Hz, H-2’, 6’), 7.83 (2H, d,

Jtrans=15.2 Hz, H-3), 7.61 (2H, d, J5’’,4’’ =5.0 Hz, H-5’’), 7.52 (2H, d, J3’’,4’’ =3.7 Hz,

Page 85: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

213

H-3’’), 7.45 (2H, d, Jtrans=15.2 Hz, H-2), 7.11 (2H, dd, J4’’,3’’ =3.7 Hz, J4’’,5’’ =5.0 Hz,

H-4’’), 7.01 (4H, d, Jo=8.8 Hz, H-3’, 5’), 4.14 (4H, t, Jvic=5.8 Hz, OCH2CH2), 1.96

(4H, quintet, Jvic=5.8 Hz, OCH2CH2); 13C-NMR (100 MHz, CDCl3): δ 186.65 (C=O),

162.45 (C-4’), 139.84 (C-3), 135.69 (C-2’’), 131.90 (C-1’), 130.46 (C-2’, 6’), 130.21

(C-5’’), 129.27 (C-3’’), 128.28 (C-4’’), 120.13 (C-2), 114.17 (C-3’, 5’), 67.37

(OCH2CH2), 25.26 (OCH2CH2); MS(ESI): m/z 515 (M+1, 6%), 448 (100%), 447 (3%),

425 (6%), 406 (76%), 405 (44%), 387 (30%), 353 (34%), 349 (18%), 321 (87%), 295

(92%), 196 (25%), 148 (38%), 120 (28%). Anal. Calc. for C30O4H26S2: Calc. C, 70.03 %;

H, 5.05 %; S, 12.45 %; Found: C, 70.31 %; H, 5.03 %; S, 12.49 %.

Synthesis of (2E,2’E)-1,1’-(4,4’-(pentane-1,5-diylbis(oxy))bis(4,1-phenylene))bis(3-

(thiophen-2-yl)prop-2-en-1-one 3.104

The compound 3.104 was synthesized by treating 3.101 (2.0 g, 0.0086957 mol) with

1,5-dibromopentane (0.99 g, 0.00434783 mol) under the similar conditions as used for

3.102.

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3S O

O CH2 (CH2)3 CH2 O

OS

3.104

3.104: Brown solid; Yield 68%; m.p.: 155-157oC. UV-Vis (MeOH) λmax(nm): 277, 225;

IR (KBr) cm-1 2932, 2869 (methylene C-H), 1656 (C=O), 1598 (C=C), 1239, 1027

(C-O); 1H-NMR (400 MHz, CDCl3): δ 8.01 (4H, d, Jo=8.2 Hz, H-2’, 6’), 7.84 (2H, d,

Jtrans=15.3 Hz, H-3), 7.56 (2H, d, J5’’,4’’ =5.0 Hz, H-5’’), 7.48 (2H, d, J3’’,4’’ =3.6 Hz,

H-3’’), 7.44 (2H, d, Jtrans=15.3 Hz, H-2), 7.13 (2H, dd, J4’’,3’’ =3.6 Hz, J4’’,5’’ =5.0 Hz,

H-4’’), 7.00 (4H, d, Jo=8.2 Hz, H-3’, 5’), 4.11 (4H, t, Jvic=6.2 Hz, OCH2CH2CH2), 1.92

(4H, quintet, Jvic=6.2 Hz, OCH2CH2CH2), 1.64 (2H, quintet, Jvic=6.2 Hz, CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 186.68 (C=O), 162.47 (C-4’), 139.80 (C-3), 135.63

(C-2’’), 131.95 (C-1’), 130.49 (C-2’, 6’), 130.24 (C-5’’), 129.29 (C-3’’), 128.22 (C-4’’),

120.15 (C-2), 114.12 (C-3’, 5’), 67.39 (OCH2CH2CH2), 25.28 (OCH2CH2CH2), 25.19

(CH2CH2CH2); MS(ESI): m/z 551 (M+Na, 24%), 462 (9%), 461 (48%), 439 (87%), 420

(44%), 419 (57%), 401 (60%), 367 (31%), 363 (7%), 335 (100%), 309 (28%), 210 (22%),

Page 86: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

214

162 (17%), 148 (90%). Anal. Calc. for C31O4H28S2: Calc. C, 70.45 %; H, 5.30 %;

S, 12.12 %, Found: C, 70.17 %; H, 5.28 %; S, 12.16 %.

Synthesis of (2E,2’E)-1,1’-(4,4’-(hexane-1,6-diylbis(oxy))bis(4,1-phenylene))bis(3-

(thiophen-2-yl)prop-2-en-1-one 3.105

The compound 3.105 was prepared by reacting 3.101 (2.0 g, 0.0086957 mol) with

1,6-dibromohexane (1.1 g, 0.00434783 mol) under the similar conditions as described

above for 3.102.

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3S O

O CH2 (CH2)4 CH2 O

OS

3.105

3.105: Brown solid; Yield 72%; m.p.: 197-199oC. UV-Vis (MeOH) λmax(nm): 282, 230;

IR (KBr) cm-1 2930, 2852 (methylene C-H), 1657 (C=O), 1602 (C=C), 1237, 1028

(C-O); 1H-NMR (400 MHz, CDCl3): δ 8.01 (4H, d, Jo=8.8 Hz, H-2’, 6’), 7.93 (2H, d,

Jtrans=15.2 Hz, H-3), 7.40 (2H, d, J5’’,4’’ =5.0 Hz, H-5’’), 7.35 (2H, d, J3’’,4’’ =3.5 Hz,

H-3’’), 7.32 (2H, d, Jtrans=15.2 Hz, H-2), 7.08 (2H, dd, J4’’,3’’ =3.5 Hz, J4’’,5’’ =5.0 Hz,

H-4’’), 6.97 (4H, d, Jo=8.8 Hz, H-3’, 5’), 4.06 (4H, t, Jvic=6.4 Hz, OCH2CH2CH2), 1.87

(4H, quintet, Jvic=6.4 Hz, OCH2CH2CH2), 1.58 (4H, quintet, Jvic=6.4 Hz, CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 186.69 (C=O), 162.26 (C-4’), 140.68 (C-3), 136.47

(C-2’’), 131.86 (C-1’), 130.23 (C-5’’), 130.39 (C-2’, 6’), 128.51 (C-3’’), 128.38 (C-4’’),

120.27 (C-2), 114.37 (C-3’, 5’), 67.83 (OCH2CH2CH2), 29.13 (OCH2CH2CH2), 25.90

(CH2CH2CH2); MS(ESI): m/z 581 (M+K, 3%), 566 (M+Na+1, 21%), 565 (M+Na, 53%),

543 (M+1, 45%), 476 (4%), 475 (13%), 453 (14%), 434 (26%), 433 (100%), 415 (20%),

381 (7%), 359 (17%), 358 (19%), 331 (13%), 313 (4%), 257 (5%), 249 (6%), 231 (22%),

210 (2%), 149 (7%). Anal. Calc. for C32O4H30S2: Calc. C, 70.84 %; H, 5.53 %; S, 11.80;

Found: C, 71.12 %; H, 5.51 %; S, 11.76 %.

Page 87: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

215

Synthesis of (2E,2’E)-1,1’-(4,4’-(octane-1,8-diylbis(oxy))bis(4,1-phenylene))bis(3-

(thiophen-2-yl)prop-2-en-1-one 3.106

The compound 3.106 was obtained from the reaction of 3.101 (2.0 g, 0.0086957 mol)

with 1,8-dibromooctane (1.2 g, 0.00434783) under the similar conditions as used earlier

for 3.102.

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3S O

O CH2 (CH2)6 CH2 O

OS

3.106

3.106: Yellow solid; Yield 78%; m.p.: 140-142oC. UV-Vis (MeOH) λmax(nm): 292, 223;

IR (KBr) cm-1 2940, 2858 (methylene C-H), 1658 (C=O), 1597 (C=C), 1239, 1020

(C-O); 1H-NMR (400 MHz, CDCl3): δ 7.99 (4H, d, Jo=8.6 Hz, H-2’, 6’), 7.91 (2H, d,

Jtrans=14.9 Hz, H-3), 7.52 (2H, d, J5’’,4’’ =4.5 Hz, H-5’’), 7.45 (4H, m, H-2, 3’’), 7.12

(2H, d, J4’’,5’’ =4.5 Hz, H-4’’), 6.98 (4H, d, J=8.6 Hz, H-3’, 5’), 4.02 (4H, t, Jvic=6.6 Hz,

OCH2CH2CH2CH2), 1.81 (4H, quintet, Jvic=6.6 Hz, OCH2CH2CH2CH2), 1.42 (8H, m,

CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 186.60 (C=O), 162.56 (C-4’), 139.82

(C-3), 135.64 (C-2’’), 131.49 (C-1’), 130.24 (C-2’, 6’), 130.05 (C-5’’), 128.63 (C-3’’),

128.05 (C-4’’), 120.05 (C-2), 113.96 (C-3’, 5’), 67.70 (OCH2CH2CH2CH2), 28.65

(OCH2CH2CH2CH2), 28.49 (OCH2CH2CH2CH2), 25.34 (OCH2CH2CH2CH2); MS(ESI):

m/z 610 (M+K+1, 2%), 609 (M+K, 9%), 594 (M+Na+1, 19%), 593 (M+Na, 46%), 571

(M+1, 100%), 500 (3%), 499 (9%), 475 (21%), 462 (27%), 461 (100%), 453 (29%), 443

(13%), 435 (10%), 386 (22%), 341 (27%), 325 (7%), 304 (10%), 231 (28%), 213 (6%),

202 (3%), 149 (17%), 137 (43%); Anal. Calc. for C34O4H34S2: Calc. C, 71.57 %;

H, 5.96 %; S, 11.22 %; Found: C, 71.85 %; H, 5.94 %; S, 11.26 %.

Synthesis of (2E,2’E)-1,1’-(4,4’-(decane-1,10-diylbis(oxy))bis(4,1-phenylene))bis(3-

(thiophen-2-yl)prop-2-en-1-one 3.107

The bischalcone 3.107 was synthesized by reacting 3.101 (2.0 g, 0.0086957 mol) with

1,10-dibromodecane (1.30 g, 0.00434783 mol) under the similar conditions as described

above for 3.102.

Page 88: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

216

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3S O

O CH2 (CH2)8 CH2 O

OS

3.107

3.107: Brown solid; Yield 75%; m.p.: 118-120oC. UV-Vis (MeOH) λmax(nm): 269, 218;

IR (KBr) cm-1 2937, 2850 (methylene C-H), 1652 (C=O), 1596 (C=C), 1253, 1082

(C-O); 1H-NMR (400 MHz, CDCl3): δ 8.00 (4H, d, Jo=8.4 Hz, H-2’, 6’), 7.94 (4H, m,

H-3, 5’’), 7.53 (2H, d, J3’’,4’’ =3.8 Hz, H-3’’), 7.43 (2H, d, Jtrans=15.0 Hz, H-2), 7.12

(2H, d, J4’’,5’’ =5.0 Hz, H-4’’), 6.98 (4H, d, Jo=8.4 Hz, H-3’,5’), 4.06 (4H, t, Jvic=6.1 Hz,

OCH2CH2CH2CH2CH2), 1.78 (4H, quintet, Jvic=6.1 Hz, OCH2CH2CH2CH2CH2), 1.35

(12H, m, CH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 186.66 (C=O), 162.50

(C-4’), 139.80 (C-3), 135.67 (C-2’’), 131.50 (C-1’), 130.26 (C-2’, 6’), 130.15 (C-5’’),

128.69 (C-3’’), 128.09 (C-4’’), 120.23 (C-2), 113.99 (C-3’, 5’), 67.56

(OCH2CH2CH2CH2CH2), 28.60 (OCH2CH2CH2CH2CH2), 28.52

(OCH2CH2CH2CH2CH2), 25.30 (OCH2CH2CH2CH2CH2), 25.12

(OCH2CH2CH2CH2CH2); MS(ESI): m/z 621 (M+Na, 98%), 600 (M+2, 24%), 599

(M+1, 72%), 577 (2%), 573 (6%), 558 (3%), 557 (7%), 543 (4%), 529 (9%), 528 (34%),

527 (92%), 525 (3%), 507 (4%), 506 (6%), 505 (23%), 497 (4%), 490 (7%), 489 (29%),

475 (27%), 453 (20%), 415 (4%), 414 (22%), 380 (13%), 354 (8%), 353 (19%), 337

(21%), 304 (26%), 275 (51%), 257 (100%), 241 (16%), 215 (12%). Anal. Calc. for

C36O4H38S2: Calc. C, 72.24 %; H, 6.35 %; S; 10.70 %; Found: C, 71.96 %; H, 6.33 %;

S, 10.74 %.

Synthesis of (2E,2’E)-1,1’-(4,4’-(dodecane-1,12-diylbis(oxy))bis(4,1-

phenylene))bis(3-(thiophen-2-yl)prop-2-en-1-one 3.108

The bischalcone 3.108 was prepared by treating 3.101 (2.0 g, 0.0086957 mol) with

1,12-dibromododecane (1.42 g, 0.004347 mol) under the similar conditions as used

earlier for 3.102.

Page 89: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

217

3''4''

5'' 6'2''

1''

4'

5'

3'2'

1'12

3S O

O CH2 (CH2)10 CH2 O

OS

3.108

3.108: Brown solid; Yield 80%; m.p.: 130-132oC. UV-Vis (MeOH) λmax(nm): 293, 227;

IR (KBr) cm-1 2920, 2855 (methylene C-H), 1654 (C=O), 1595 (C=C), 1238, 1022

(C-O); 1H-NMR (400 MHz, CDCl3): δ 8.00 (4H, d, Jo=8.8 Hz, H-2’, 6’), 7.93 (2H, d,

Jtrans=15.3 Hz, H-3), 7.40 (2H, d, J5’’,4’’ =5.0 Hz, H-5’’), 7.36 (2H, d, Jtrans=15.3 Hz, H-2),

7.33 (2H, d, J3’’,4’’ =3.7 Hz, H-3’’), 7.08 (2H, dd, J4’’,3’’ =3.7, J4’’,5’’ =5.1 Hz, H-4’’), 6.96

(4H, d, Jo=8.8 Hz, H-3’, 5’), 4.03 (4H, t, Jvic=6.5 Hz, OCH2CH2CH2CH2CH2CH2), 1.81

(4H, quintet, Jvic=6.5 Hz, OCH2CH2CH2CH2CH2CH2), 1.47 (4H, quintet, Jvic=5.6 Hz,

CH2CH2CH2CH2CH2CH2), 1.33 (12H, m, OCH2CH2CH2CH2CH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 186.86 (C=O), 162.44 (C-4’), 139.78 (C-3), 135.57 (C-2’’), 131.61

(C-1’), 130.22 (C-2’, 6’), 130.19 (C-5’’), 128.79 (C-3’’), 128.29 (C-4’’), 120.33 (C-2),

113.66 (C-3’, 5’), 67.78 (OCH2CH2CH2CH2CH2CH2), 29.64

(OCH2CH2CH2CH2CH2CH2), 28.82 (OCH2CH2CH2CH2CH2CH2), 25.39

(OCH2CH2CH2CH2CH2CH2), 25.19 (OCH2CH2CH2CH2CH2CH2), 25.00

(OCH2CH2CH2CH2CH2CH2); MS(ESI): m/z 665 (M+K, 16%), 649 (M+Na, 12%), 627

(M+1, 13%), 626 (M, 22%), 613 (9%), 612 (22%), 608 (14%), 595 (6%), 594 (12%), 572

(5%), 571 (14%), 563 (8%), 555 (11%), 547 (7%), 533 (2%), 525 (8%), 497 (6%), 496

(13%), 495 (32%), 479 (33%), 442 (100%), 415 (6%), 397 (5%), 332 (11%), 286 (6%).

Anal. Calc. for C38O4S2H42: Calc. C, 72.84 %; H, 6.70 %; S, 10.22 %; Found:

C, 73.13 %; H, 6.72 %; S, 10.26 %.

Synthesis of 1,3-bis[3-(4-phenyl)-4,5-dihydro-1-phenyl-5-(thiophen-2-yl)-1H-

pyrazole] propane 3.109

A mixture of 3.102 (1.0 g, 0.001929 mol), phenyl hydrazine (0.42 g, 0.0038839 mol) and

glacial acetic acid (5 ml) in dry EtOH (30 ml) was refluxed for 8 hrs. The progress of

reaction was monitored by TLC. The resulting reaction mixture was concentrated under

vacuum to obtain a solid substance which was further crystallized from MeOH to yield a

pure compound 3.109.

Page 90: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

218

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

SN

N

O CH2 CH2 CH2 O

NN

S

HMHA

HX

HM

HA

HX

3.109

3.109: Brown solid; Yield 62%; m.p.: 99-101oC. UV-Vis (MeOH) λmax(nm): 360, 255;

IR (KBr) cm-1 2945, 2840 (methylene C-H), 1593 (C=N), 1242, 1025 (C-O); 1H-NMR

(400 MHz, CDCl3): δ 7.63 (4H, d, Jo=8.6 Hz, H-2’’’, 6’’’), 7.33 (2H, d, J3’’,4’’ =3.7 Hz,

H-3’’), 7.22 (2H, d, J5’’,4’’ =5.0 Hz, H-5’’), 7.12 (6H, m, H-3’, 4’, 5’), 6.99 (4H, d,

Jo=8.6 Hz, H-3’’’, 5’’’), 6.89 (2H, dd, J4’’,3’’ =3.7 Hz, J4’’,5’’ =5.0 Hz, H-4’’), 6.70 (4H, t,

Jo=7.2 Hz, H-2’, 6’), 5.60 (2H, dd, JXA=6.2 Hz, JXM=11.8 Hz, HX), 4.02 (4H, t,

Jvic=5.8 Hz, OCH2CH2), 3.82 (2H, dd, JMX=11.8 Hz, JMA=17.2 Hz, HM), 3.19 (2H, dd,

JAX=6.2 Hz, JAM=17.2 Hz, HA), 2.50 (2H, quintet, Jvic=5.8 Hz, OCH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 160.15 (C-4’’’), 154.26 (C-3), 147.34 (C-2’’), 145.15 (C-1’),

144.87 (C-1’’’), 128.03 (C-5’’), 127.55 (C-3’’), 126.30 (C-2’’’, 6’’’), 126.26 (C-4’’),

124.68 (C-3’, 5’), 118.60 (C-4’), 114.90 (C-3’’’, 5’’’), 113.77 (C-2’, 6’), 67.10

(OCH2CH2), 59.41 (C-5), 43.39 (C-4), 24.47 (OCH2CH2); MS(ESI): m/z 703

(M+Na, 7%), 614 (80%), 420 (33%), 377 (53%), 303 (25%), 297 (62%), 221 (89%), 220

(17%), 145 (10%). Anal. Calc. for C41O2N4H36S2: Calc. C, 72.35 %; H, 5.29 %;

N, 8.20 %; S, 9.41 %; Found: C, 72.63 %; H, 5.27 %; N, 8.23 %; S, 9.38 %.

Synthesis of 1,4-bis[3-(4-phenyl)-4,5-dihydro-1-phenyl-5-(thiophen-2-yl)-1H-

pyrazole] butane 3.110

The compound 3.110 was synthesized from the reaction of bischalcone 3.103 (1.0 g,

0.00195 mol) with phenyl hydrazine (0.42 g, 0.0039 mol) under the similar conditions as

described above for 3.109.

Page 91: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

219

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

SN

N

O CH2 (CH2)2 CH2 O

NN

S

HMHA

HX

HM

HA

HX

3.110

3.110: Yellow solid; Yield 68%; m.p.: 145-147oC. UV-Vis (MeOH) λmax(nm): 368, 263;

IR (KBr) cm-1 2925, 2871 (methylene C-H), 1597 (C=N), 1238, 1019 (C-O); 1H-NMR

(400 MHz, CDCl3): δ 7.67 (4H, d, Jo=8.6 Hz, H-2’’’, 6’’’), 7.30 (2H, d, J3’’,4’’ =3.7 Hz,

H-3’’), 7.17 (2H, d, J5’’,4’’ =5.0 Hz, H-5’’), 7.09 (6H, m, H-3’, 4’, 5’), 6.95 (4H, d,

Jo=8.6 Hz, H-3’’’, 5’’’), 6.92 (2H, dd, J4’’,3’’ =3.7 Hz, J4’’,5’’ =5.0 Hz, H-4’’), 6.73 (4H, t,

Jo=7.2 Hz, H-2’, 6’), 5.67 (2H, dd, JXA=6.2 Hz, JXM=11.8 Hz, HX), 4.09 (4H, brs,

OCH2CH2), 3.86 (2H, dd, JMX=11.8 Hz, JMA=17.2 Hz, HM), 3.21 (2H, dd,

JAX=6.2 Hz, JAM=17.2 Hz, HA), 2.52 (4H, brs, OCH2CH2); 13C-NMR (100 MHz, CDCl3):

δ 160.12 (C-4’’’), 155.56 (C-3), 147.50 (C-2’’), 145.85 (C-1’), 144.77 (C-1’’’), 128.53

(C-5’’), 127.15 (C-3’’), 126.78 (C-2’’’, 6’’’), 126.66 (C-4’’), 124.48 (C-3’, 5’), 118.70

(C-4’), 114.40 (C-3’’’, 5’’’), 113.27 (C-2’, 6’), 67.13 (OCH2CH2), 59.47 (C-5), 43.41

(C-4), 25.37 (OCH2CH2); MS(ESI): m/z 717 (M+Na, 14%), 691 (100%), 675 (39%), 674

(11%), 673 (28%), 627 (8%), 612 (32%), 600 (83%), 511 (75%), 495 (57%), 332 (5%),

310 (8%), 276 (16%), 222 (72%), 145 (53%). Anal. Calc. for C42O2N4H38S2: Calc.

C, 72.62 %; H, 5.47 %; N, 8.07 %; S, 9.22 %; Found: C, 72.91 %; H, 5.49 %; N, 8.10 %;

S, 9.25 %.

Synthesis of 1,5-bis[3-(4-phenyl)-4,5-dihydro-1-phenyl-5-(thiophen-2-yl)-1H-

pyrazole] pentane 3.111

The compound 3.111 was prepared from the reaction of bischalcone 3.104 (1.0 g,

0.00189 mol) with phenyl hydrazine (0.40 g, 0.00378 mol) under the same conditions as

described earlier for 3.109.

Page 92: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

220

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

SN

N

O CH2 (CH2)3 CH2 O

NN

S

HMHA

HX

HM

HA

HX

3.111

3.111: Brown solid; Yield 65%; m.p.: 125-127oC. UV-Vis (MeOH) λmax(nm): 358, 273;

IR (KBr) cm-1 2930, 2869 (methylene C-H), 1592 (C=N), 1234, 1026 (C-O); 1H-NMR

(400 MHz, CDCl3): δ 7.68 (4H, d, Jo=8.6 Hz, H-2’’’, 6’’’), 7.32 (2H, d, J3’’,4’’ =3.7 Hz,

H-3’’), 7.19 (2H, d, J5’’,4’’ =5.0 Hz, H-5’’), 7.02 (6H, m, H-3’, 4’, 5’), 6.92 (4H, d,

Jo=8.6 Hz, H-3’’’, 5’’’), 6.90 (2H, dd, J4’’,3’’ =3.7 Hz, J4’’,5’’ =5.0 Hz, H-4’’), 6.79 (4H, t,

Jo=7.2 Hz, H-2’, 6’), 5.62 (2H, dd, JXA=6.2 Hz, JXM=11.8 Hz, HX), 4.03 (4H, t,

Jvic=6.0 Hz, OCH2CH2CH2), 3.81 (2H, dd, JMX=11.8 Hz, JMA=17.2 Hz, HM), 3.24

(2H, dd, JAX=6.2 Hz, JAM=17.2 Hz, HA), 2.32 (4H, quintet, Jvic=6.0 Hz, OCH2CH2CH2),

1.58 (2H, m, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 160.19 (C-4’’’), 155.50

(C-3), 147.67 (C-2’’), 145.80 (C-1’), 144.70 (C-1’’’), 128.59 (C-5’’), 127.19 (C-3’’),

126.67 (C-2’’’, 6’’’), 126.60 (C-4’’), 124.03 (C-3’, 5’), 118.79 (C-4’), 114.48

(C-3’’’, 5’’’), 113.45 (C-2’, 6’), 67.10 (OCH2CH2CH2), 59.49 (C-5), 43.47 (C-4), 28.39

(OCH2CH2CH2), 25.67 (OCH2CH2CH2); MS(ESI): m/z 709 (M+1, 4%), 705 (7%), 689

(16%), 688 (28%), 687 (31%), 666 (93%), 665 (80%), 641 (3%), 637 (54%), 626 (90%),

625 (39%), 614 (29%), 525 (56%), 509 (47%), 453 (62%), 421 (42%), 346 (70%), 324

(36%), 290 (53%), 236 (71%), 235 (65%), 159 (50%). Anal. Calc. for C43O2N4H40S2:

Calc. C, 72.88 %; H, 5.64 %; N, 7.90 %; S, 9.03 %; Found: C, 72.59 %; H, 5.62 %;

N, 7.93 %; S, 9.05 %.

Synthesis of 1,6-bis[3-(4-phenyl)-4,5-dihydro-1-phenyl-5-(thiophen-2-yl)-1H-

pyrazole] hexane 3.112

The compound 3.112 was obtained by treating bischalcone 3.105 (1.0 g, 0.00185 mol)

with phenyl hydrazine (0.39 g, 0.00370 mol) under the similar conditions as described

above for 3.109.

Page 93: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

221

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

SN

N

O CH2 (CH2)4 CH2 O

NN

S

HMHA

HX

HM

HA

HX

3.112

3.112: Yellow solid; Yield 61%; m.p.: 166-168oC. UV-Vis (MeOH) λmax(nm): 364, 245;

IR (KBr) cm-1 2937, 2876 (methylene C-H), 1599 (C=N), 1240, 1018 (C-O); 1H-NMR

(400 MHz, CDCl3): δ 7.66 (4H, d, Jo=8.8 Hz, H-2’’’,6’’’), 7.40 (2H, d, J3’’,4’’ =3.8 Hz,

H-3’’), 7.24 (2H, d, J5’’,4’’ =5.2 Hz, H-5’’), 7.10 (6H, m, H-3’, 4’, 5’), 6.93 (2H, dd,

J4’’,3’’ =3.8 Hz, J4’’,5’’ =5.2 Hz, H-4’’), 6.88 (4H, d, Jo=8.8 Hz, H-3’’’, 5’’’), 6.73 (4H, t,

Jo=8.7 Hz, H-2’, 6’), 5.59 (2H, dd, JXA=6.7 Hz, JXM=12.2 Hz, HX), 4.00 (4H, t,

Jvic=6.0 Hz, OCH2CH2CH2), 3.85 (2H, dd, JMX=12.2 Hz, JMA=17.4 Hz, HM), 3.23

(2H, dd, JAX=6.7 Hz, JAM=17.4 Hz, HA), 1.56 (4H, quintet, Jvic=6.0 Hz, OCH2CH2CH2),

1.51 (4H, quintet, Jvic=6.0 Hz, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 160.39

(C-4’’’), 155.58 (C-3), 147.73 (C-2’’), 145.95 (C-1’), 144.86 (C-1’’’), 128.78 (C-5’’),

127.14 (C-3’’), 126.69 (C-4’’), 126.43 (C-2’’’, 6’’’), 124.60 (C-3’, 5’), 118.91 (C-4’),

114.62 (C-3’’’, 5’’’), 113.48 (C-2’, 6’), 67.23 (OCH2CH2CH2), 59.59 (C-5), 43.50 (C-4),

28.43 (OCH2CH2CH2), 25.70 (OCH2CH2CH2); MS(ESI): m/z 723 (M+1, 18%), 722

(M, 22%), 721 (100%), 719 (19%), 703 (3%), 702 (9%), 701 (23%), 681 (4%), 680

(15%), 679 (30%), 655 (5%), 640 (2%), 639 (8%), 637 (13%), 633 (17%), 628 (8%), 539

(5%), 523 (10%), 475 (18%), 453 (22%), 435 (12%), 419 (7%), 360 (6%), 338 (13%),

304 (11%), 250 (14%), 249 (17%), 236 (12%), 173 (8%). Anal. Calc. for C44O2N4H42S2:

Calc. C, 73.13 %; H, 5.82 %; N, 7.76 %; S, 8.86 %; Found: C, 72.83 %; H, 5.84 %;

N, 7.73 %; S, 8.89 %.

Synthesis of 1,8-bis[3-(4-phenyl)-4,5-dihydro-1-phenyl-5-(thiophen-2-yl)-1H-

pyrazole] octane 3.113

The compound 3.113 was prepared from the reaction of bischalcone 3.106 (1.0 g,

0.00175 mol) with phenyl hydrazine (0.37 g, 0.0035 mol) under similar conditions as

used above for 3.109.

Page 94: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

222

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

SN

N

O CH2 (CH2)6 CH2 O

NN

S

HMHA

HX

HM

HA

HX

3.113

3.113: Yellow solid; Yield 70%; m.p.: 152-154oC. UV-Vis (MeOH) λmax(nm): 362, 259;

IR (KBr) cm-1 2920, 2858 (methylene C-H), 1595 (C=N), 1241, 1034 (C-O); 1H-NMR

(400 MHz, CDCl3): δ 7.60 (4H, d, Jo=8.2 Hz, H-2’’’, 6’’’), 7.38 (2H, d, J3’’,4’’ =3.8 Hz,

H-3’’), 7.23 (2H, d, J5’’,4’’ =4.9 Hz, H-5’’), 7.10 (6H, m, H-3’, 4’, 5’), 6.92 (2H, dd,

J4’’,3’’ =3.8 Hz, J4’’,5’’ =4.9 Hz, H-4’’), 6.86 (4H, d, Jo=8.2 Hz, H-3’’’, 5’’’), 6.74 (4H, t,

Jo=7.0 Hz, H-2’, 6’), 5.58 (2H, dd, JXA=6.8 Hz, JXM=12.2 Hz, HX), 3.99 (4H, t,

Jvic=6.1 Hz, OCH2CH2CH2CH2), 3.83 (2H, dd, JMX=12.2 Hz, JMA=16.5 Hz, HM), 3.22

(2H, dd, JAX=6.8 Hz, JAM=16.5 Hz, HA), 1.78 (4H, quintet, Jvic=6.1 Hz,

OCH2CH2CH2CH2), 1.48 (4H, quintet, Jvic=6.1 Hz, OCH2CH2CH2CH2), 1.41 (4H, m,

OCH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 160.50 (C-4’’’), 155.78 (C-3),

147.71 (C-2’’), 145.90 (C-1’), 144.80 (C-1’’’), 128.56 (C-5’’), 127.11 (C-3’’), 126.60

(C-4’’), 126.48 (C-2’’’, 6’’’), 124.59 (C-3’, 5’), 118.99 (C-4’), 114.69 (C-3’’’, 5’’’),

113.50 (C-2’, 6’), 67.45 (OCH2CH2CH2CH2), 59.74 (C-5), 43.62 (C-4), 28.49

(OCH2CH2CH2CH2), 25.79 (OCH2CH2CH2CH2), 25.19 (OCH2CH2CH2CH2); MS(ESI):

m/z 752 (M+2, 7%), 750 (M, 23%), 747 (53%), 702 (4%), 701 (12%), 659 (13%), 658

(4%), 568 (6%), 567 (9%), 565 (13%), 551 (8%), 489 (5%), 476 (3%), 475 (23%), 453

(17%), 429 (24%), 257 (100%). Anal. Calc. for C46O2N4H46S2: Calc. C, 73.60 %;

H, 6.13 %; N, 7.46 %; S, 8.53 %; Found: C, 73.89 %; H, 6.15 %; N, 7.43 %; S, 8.49 %.

Synthesis of 1,10-bis[3-(4-phenyl)-4,5-dihydro-1-phenyl-5-(thiophen-2-yl)-1H-

pyrazole] decane 3.114

The compound 3.114 was obtained from the reaction of bischalcone 3.107 (1.0 g,

0.00167 mol) with phenyl hydrazine (0.36 g, 0.00334 mol) under similar conditions as

used earlier for 3.109.

Page 95: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

223

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

SN

N

O CH2 (CH2)8 CH2 O

NN

S

HMHA

HX

HM

HA

HX

3.114

3.114: Yellow solid; Yield 60%; m.p.: 126-128oC. UV-Vis (MeOH) λmax(nm): 361, 254;

IR (KBr) cm-1 2931, 2855 (methylene C-H), 1596 (C=N), 1247, 1035 (C-O); 1H-NMR

(400 MHz, CDCl3): δ 7.64 (4H, d, Jo=8.7 Hz, H-2’’’, 6’’’), 7.34 (2H, d, J3’’,4’’ =3.6 Hz,

H-3’’), 7.19 (2H, d, J5’’,4’’ =5.2 Hz, H-5’’), 7.10 (6H, m, H-3’, 4’, 5’), 6.94 (2H, dd,

J4’’,3’’ =3.6 Hz, J4’’,5’’ =5.2 Hz, H-4’’), 6.92 (4H, d, Jo=8.7 Hz, H-3’’’,5’’’), 6.75 (4H, t,

Jo=7.0 Hz, H-2’, 6’), 5.56 (2H, dd, JXA=6.9 Hz, JXM=11.5 Hz, HX), 3.98 (4H, t,

Jvic=6.3 Hz, OCH2CH2CH2CH2CH2), 3.82 (2H, dd, JMX=11.8 Hz, JMA=17.0 Hz, HM),

3.20 (2H, dd, JAX=6.9 Hz, JAM=17.0 Hz, HA), 1.79 (4H, quintet, Jvic=6.3 Hz,

OCH2CH2CH2CH2CH2), 1.46 (4H, quintet, Jvic=6.3 Hz, OCH2CH2CH2CH2CH2), 1.35

(8H, m, OCH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 159.35 (C-4’’’),

156.23 (C-3), 145.79 (C-1’), 145.62 (C-2’’), 144.88 (C-1’’’), 128.38 (C-5’’), 126.90

(C-3’’), 126.43 (C-4’’), 125.61 (C-2’’’, 6’’’), 124.46 (C-3’, 5’), 118.74 (C-4’), 114.15

(C-2’, 6’), 113.19 (C-3’’’, 5’’’), 67.47 (OCH2CH2CH2CH2CH2), 59.73 (C-5), 43.54

(C-4), 28.84 (OCH2CH2CH2CH2CH2), 28.72 (OCH2CH2CH2CH2CH2), 28.61

(OCH2CH2CH2CH2CH2), 25.42 (OCH2CH2CH2CH2CH2); MS(ESI): m/z 779

(M+1, 38%), 778 (M, 42%), 777 (98%), 775 (100%), 773 (4%), 721 (3%), 719 (13%),

689 (21%), 679 (19%), 624 (6%), 623 (13%), 596 (12%), 595 (15%), 593 (28%), 577

(27%), 576 (3%), 517 (2%), 489 (3%), 476 (4%), 475 (27%), 453 (38%), 435 (17%), 395

(2%), 359 (5%), 358 (21%), 320 (13%), 304 (11%), 282 (12%). Anal. Calc. for

C48O2N4H50S2: Calc. C, 74.03 %; H, 6.42 %; N, 7.20 %; S, 8.22 %; Found: C, 74.32 %;

H, 6.39 %; N, 7.22 %; S, 8.25 %.

Page 96: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

224

Synthesis of 1,12-bis[3-(4-phenyl)-4,5-dihydro-1-phenyl-5-(thiophen-2-yl)-1H-

pyrazole] dodecane 3.115

The compound 3.115 was synthesized from the reaction of bischalcone 3.108 (1.0 g,

0.0016 mol) with phenyl hydrazine (0.34 g, 0.0032 mol) under the similar conditions as

described above for 3.109.

1''

2''

3''4''

5''

4'

1'2'

3'

6'

5'

1

2

34

5

1'''

2'''3'''

4'''

5'''

6'''

SN

N

O CH2 (CH2)10 CH2 O

NN

S

HMHA

HX

HM

HA

HX

3.115

3.115: Orange solid; Yield 63%; m.p.: 110-112oC. UV-Vis (MeOH) λmax(nm): 355, 248;

IR (KBr) cm-1 2923, 2875 (methylene C-H), 1596 (C=N), 1238, 1029 (C-O); 1H-NMR

(400 MHz, CDCl3): δ 7.66 (4H, d, Jo=8.8 Hz, H-2’’’, 6’’’), 7.24 (2H, d, J3’’,4’’ =3.7 Hz,

H-3’’), 7.16 (2H, d, J5’’,4’’ =5.2 Hz, H-5’’), 7.04 (6H, m, H-3’, 4’, 5’), 6.98 (4H, d,

Jo=8.8 Hz, H-3’’’, 5’’’), 6.90 (2H, dd, J4’’,3’’ =3.7 Hz, J4’’,5’’ =5.2 Hz, H-4’’), 6.74 (4H, t,

Jo=7.2 Hz, H-2’, 6’), 5.60 (2H, dd, JXA=6.6 Hz, JXM=11.8 Hz, HX), 3.98 (4H, t,

Jvic=6.4 Hz, OCH2CH2CH2CH2CH2CH2), 3.84 (2H, dd, JMX=11.8 Hz, JMA=17.2 Hz, HM),

3.21 (2H, dd, JAX=6.6 Hz, JAM=17.2 Hz, HA), 1.78 (4H, quintet, Jvic=6.4 Hz,

OCH2CH2CH2CH2CH2CH2), 1.45 (4H, quintet, Jvic=6.4 Hz, OCH2CH2CH2CH2CH2CH2),

1.30 (12H, m, OCH2CH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 160.45

(C-4’’’), 155.42 (C-3), 145.78 (C-1’), 145.53 (C-2’’), 144.79 (C-1’’’), 128.43 (C-5’’),

126.98 (C-3’’), 126.58 (C-4’’), 124.61 (C-2’’’, 6’’’), 124.16 (C-3’, 5’), 118.70 (C-4’),

114.22 (C-2’, 6’), 113.21 (C-3’’’, 5’’’), 67.38 (OCH2CH2CH2CH2CH2CH2), 59.62 (C-5),

43.25 (C-4), 28.94 (OCH2CH2CH2 CH2CH2CH2), 28.77 (OCH2CH2CH2CH2CH2CH2),

28.42 (OCH2CH2CH2CH2CH2CH2), 28.02 (OCH2CH2CH2CH2CH2CH2), 25.45

(OCH2CH2CH2CH2CH2CH2); MS(ESI): m/z 829 (M+Na, 68%), 805 (20%), 803 (49%),

801 (38%), 751 (50%), 749 (68%), 717 (8%), 707 (25%), 652 (55%), 651 (90%), 624

(69%), 604 (71%), 504 (33%), 481 (26%), 463 (8%), 423 (19%), 387 (3%), 386 (40%),

Page 97: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

225

348 (56%), 332 (7%), 310 (13%). Anal. Calc. for C50O2N4H54S2: Calc. C, 74.44 %;

H, 6.70 %; N, 6.95 %; S, 7.94 %; Found: C, 74.14 %; H, 6.72 %; N, 6.97 %; S, 7.97 %.

Page 98: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

226

References

1. Xia, Y.; Fan, C.-D.; Zhao, B.-X.; Zhao, J.; Shin, D.-S. and Miao, J.-Y. Eur. J. Med.

Chem. 2008, 43, 2347.

2. Levai, L. and Jeko, J. Acta Chim. Slov. 2009, 56, 566.

3. Abdel-Aziz, M.; Abuo-Rahma, G. E.-D. A. and Hassan, A. A. Eur. J. Med. Chem.

2009, 44, 3480.

4. Das, B. C.; Bhowmik, D.; Chiranjit, B. and Mariappan, G. J. Pharm. Res. 2010,

3(6), 1345.

5. Azarifar, D. and Khosravi, K. J. Chin. Chem. Soc. 2009, 56, 43.

6. (a) Gennari, C. Comprehensive Organic Synthesis, Trost, B. M. and Fleming, I.

(Eds.), Pergamon, Oxford, UK, 1991, 2, 629; (b) Mahrwald, R. Modern Aldol

Reactions; Wiley-VCH, Weinheim, Germany, 2004 1-2; (c) Mukaiyama, T.

Organic Reactions; Dauben, W. G. (Ed.) J. Wiley & Sons: New York, NY,

USA, 1982, 28, 203; (d) Healthcock, C. H. Comprehensive Organic Synthesis

Trost, B. M.; Fleming, I. (Eds.), Pergamon, Oxford, UK, 1991, 2, 133.

7. Pandey, K. S. and Khan, N. Arch. Pharm. Chem. Life Sci. 2008, 341, 418.

Page 99: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

227

Chapter-IIIc Synthesis of new 1,3,5-triphenyl-

bispyrazolines linked via the 5-aryl ring

� New bispyrazoline derivatives built around aliphatic chains: synthesis,

characterization and antimicrobial studies

Mohamad Yusuf and Payal Jain

Journal of Chemical Sciences (Accepted manuscript, Ms No. JCSC- D-12-

00021R1).

Page 100: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

228

The synthesis of bisheterocyclic compounds have been the subject of significant

attraction for the organic chemists in the past.1-8 These substrates are important from

the synthetic, structural and biological point of view. In the earlier chapters (IIIa &

IIIb ), the researchers were focussed upon the synthesis of bispyrazolines linked via

3-aryl ring. It would be advantageous here to explore the synthesis and

characterization studies of new bispyrazolines linked via 5-aryl ring with aliphatic

chains of varying lengths. The syntheses of these compounds have been planned

starting from dibenzaldehydes. The major interest in this study was to investigate the

utility of dibenzaldehyde for the preparation of new bisheterocyclic products

3.124-3.131.

The bispyrazolines 3.124-3.131 needed for the present study was prepared from the

cyclization reaction of bischalcones 3.116-3.123 with phenyl hydrazine by refluxing

under alcoholic medium in the presence of glacial acetic acid. The bischalcones were

obtained from the Claisen-Schmidt reaction9 of acetophenone with dibenzaldehydes

2.48-2.55. The structures of the prepared compounds were determined from the

rigorous analysis of their spectral data (UV-Vis, IR, 1H-NMR, 13C-NMR & ESI-MS).

The elemental analysis also confirmed the purity of these compounds.

NN HX

HM

HA

O CH2 (CH2)n CH2 O NNHX

HA

HM

3.124-3.131

n = 0, 1, 2, 3, 4, 6, 8, 10

Synthesis of bispyrazoline 3.124

The compound 3.124 was obtained in two steps:

(i). Synthesis of bischalcone 3.116

The dibenzaldehyde 2.48 was reacted with acetophenone in the presence of

NaOH/EtOH at room temperature for 12 hrs and the decomposition of resulting

reaction mixture into iced-HCl provided a solid product (Scheme-3.34). The crude

Page 101: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

229

substance thus obtained was purified by crystallization in CHCl3:MeOH (1:1) to

furnish pure compound 3.116 as a brown solid (64%, m.p. 102-104°C).

2.48

1'

2'3'

4'

5'6'

1''

2'' 3''

4''

5''6''

12

3

NaOH/EtOH/

O CH2 CH2 O C

O

HC

O

H

O CH2

O

CH2 O

O3.116

Ph C CH3

O

Scheme-3.34

The structure of 3.116 became evident from its spectroscopic data. Its IR spectrum

exhibited major absorptions at 2964, 2856 (methylene C-H), 1657 (C=O) and 1602

(C=C). Its UV-Vis spectrum had two maxima at 328 and 250 nm which may be

assigned to n→π* & π→π* transitions respectively.

In the 1H-NMR spectrum (400 MHz, CDCl3) of 3.116, aromatic protons (H-2’, 6’ &

3’, 4’, 5’) produced well defined signals at δ 8.01 (4H, dd, Jp,o=1.1, 8.8 Hz) and 7.52

(6H, m) respectively. The downfield resonance of former as compared to later protons

could be ascribed to its proximity to the C=O group. In this region, two broad

doublets centred at δ 7.73 (2H, Jtrans=15.6 Hz) and 7.39 (2H, Jtrans=15.6 Hz) were

represented by trans protons H-3 and H-2 respectively. Regarding the remaining

signals in the aromatic region, two triplet of doublets integrating for four hydrogens

each at δ 7.42 (Jp,o=1.1, 8.8 Hz) and 6.90 (Jp,o=1.1, 8.8 Hz) could be easily ascribed to

H-2’’, 6’’ and H-3’’, 5’’ respectively. A singlet at δ 4.01 (4H) may be provided by

internal chain OCH2 protons.

The ESI-MS spectrum of 3.116 exhibited heaviest ion at m/z 475 (M+1, 100%) and

other significant peaks were observed at m/z 334 (3%), 333 (78%), 332 (23%), 311

(37%), 310 (59%), 304 (38%), 293 (63%), 174 (8%) and 74 (9%). Its mass

fragmentation was found to be similar as shown in Chart-1 (vide experimental). 13C-NMR (100 MHz, CDCl3) spectrum of 3.116 was very helpful to corroborate its

proposed structure which confirmed the presence of C=O group by the appearance of

a downfield signal at δ 190.22. The carbon atoms C-4’’, C-3 and C-2 were located at

Page 102: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

230

δ 160.98, 144.62 and 119.90 respectively. The remaining signals in the aromatic

region were found to be present at δ 138.40 (C-1’), 130.22 (C-2’, 6’), 127.71 (C-1’’),

128.50 (C-2’’, 6’’), 138.50 (C-4’), 128.44 (C-3’, 5’) and 114.95 (C-3’’, 5’’). The

OCH2 group of the intervening chain also furnished a suitable signal at δ 64.20.

(ii). Cyclization of bischalcone 3.116

The compound 3.116 was refluxed with phenyl hydrazine in dry EtOH/AcOH

medium and cooling of the resulting reaction mixture in an ice bath yielded a solid

product (Scheme-3.35) which was crystallized from MeOH to yield pure compound

3.124 (70%, m.p. 90-92°C).

1'

2

2'

3

3'

4

4'

5

5'6'

1

1''

2'' 3''

4''

5''6''

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

12

3

EtOH/AcOH/ PhNHNH2/ ∆

O CH2

O

CH2 O

O

NN HX

HM

HA

O CH2 CH2 O NNHX

HA

HM

3.116

3.124

Scheme-3.35 IR spectrum of 3.124 displayed a significant band at 1590 cm-1 due to the C=N

moiety of the pyrazoline ring. Its 1H-NMR spectrum (400 MHz, DMSO-d6), showed

the signals of the aromatic protons H-2’’, 6’’ & H-3’’, 4’’, 5’’ at δ 7.67 (4H, dd,

Jp,o=1.1, 8.8 Hz) and 7.36 (6H, m) respectively. The phenyl ring (C-5) protons

furnished a doublet of doublet each at δ 7.12 (4H, Jp,o=1.1, 8.8 Hz, H-2’’’, 6’’’) and

6.80 (4H, Jp,o=1.1, 8.8 Hz, H-3’’’, 5’’’). The hydrogens belonging to the N-phenyl

ring were also resonating in the aromatic region at δ 7.18 (6H, m, H-3’, 4’, 5’) and

7.25 (4H, m, H-2’, 6’). The pyrazoline ring protons (H-X, M & A) were centred at

δ 5.23 (2H, dd, JXA=7.1 Hz, JXM=12.1 Hz), 3.76 (2H, dd, JMX=12.1 Hz, JMA=17.2 Hz)

and 3.10 (2H, dd, JAX=7.1 Hz, JAM=17.2 Hz) respectively. A singlet was also found at

δ 4.00 (4H) which may be assigned to OCH2 group hydrogens. UV-Vis spectrum of

Page 103: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

231

3.124 showed two maxima at 355 and 252 nm which could be ascribed to n→π* &

π→π* transitions respectively. 13C-NMR (100MHz, DMSO-d6) data of 3.124 had the noticeable signals at δ 158.38,

146.30 & 143.68 which were assignable to C-3, C-4’’’ and C-1’ respectively. The

remaining signals in the aromatic region were found to be placed at δ 132.64 (C-1’’’),

125.80 (C-2’’’, 6’’’), 132.26 (C-2’’, 6’’), 125.74 (C-4’’), 126.16 (C-1’’), 129.18

(C-3’’, 5’’), 125.90 (C-3’, 5’), 117.14 (C-4’), 112.64 (C-2’, 6’) and 113.22

(C-3’’’, 5’’’). Three signals were also observed in the aliphatic region at δ 66.48

(C-5), 63.30 (OCH2) and 43.76 (C-4).

The ESI-MS spectrum of 3.124 exhibited the (M+1) ion at m/z 655 (24%) and its

mass fragmentation pattern was found to be similar as shown in Chart-2

(vide experimental).

Synthesis of bispyrazoline 3.125

The compound 3.125 was obtained in two steps:

(i). Synthesis of bischalcone 3.117

The dibenzaldehyde 2.49 was treated with acetophenone under the similar reaction

conditions as described above for 3.116 to yield 3.117 as a brown solid

(77%, m.p. 156-158°C) (Scheme-3.36).

1'

2'

3'

4'

5'6'

1''

2'' 3''

4''

5''6''

O CH2 CH2 CH2 O

OO

12

3

NaOH/EtOH/

O CH2 CH2CH2 O C

O

HC

O

H

2.49

Ph C CH3

O

3.117

Scheme-3.36

IR spectrum of 3.117 had major bands at 2960, 2850 (methylene C-H), 1658 (C=O)

and 1600 (C=C). Its 1H-NMR spectrum (400 MHz, CDCl3) produced a doublet of

doublet at δ 8.00 (4H, dd, Jp,o=1.1, 8.8 Hz) and a multiplet at δ 7.58 (6H, m) which

were easily given by H-2’, 6’ and H-3’, 4’, 5’ respectively. The double bond

hydrogens H-3 & H-2 were resonating at δ 7.78 (2H) & 7.41 (2H) respectively as two

broad doublets and the trans relationship between these hydrogens was confirmed

Page 104: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

232

from their coupling value (Jtrans=15.6 Hz). The protons of p-disubsituted benzene

ring H-2’’, 6’’& H-3’’, 5’’ appeared as a triplet of doublet each at δ 7.49

(4H, Jp,o=1.1, 8.8 Hz) and 6.94 (4H, Jp,o=1.1, 8.8 Hz) respectively. Towards the

upfield, two signals present at δ 4.23 (4H, t, Jvic=6.3 Hz) and 2.31 (2H, quintet,

Jvic=6.3 Hz) could be assigned to OCH2CH2 and OCH2CH2 respectively.

The presence of ions at m/z 489 (M+1, 78%), 361 (32%), 348 (100%), 346 (7%), 332

(9%), 325 (55%), 307 (19%), 103 (14%) in the ESI-MS spectrum of 3.117 also

corroborated its structure. Its mass fragmentation pattern has been depicted in

Chart-1 (vide experimental). The UV-Vis spectrum of 3.117 provided two maxima at

353 & 246 nm which may be resulted by n→π* & π→π* transitions respectively.

The carbon framework of 3.117 was confirmed from its 13C-NMR (100 MHz,

DMSO-d6) spectral data. Here recognizable signals were located at δ 190.64 (C=O),

160.90 (C-4’’), 144.66 (C-3) and 119.93 (C-2). The remaining aromatic ring carbon

atoms were found to be resonating at the similar places as described in 3.116. The

aliphatic region was occupied by two resonances at δ 64.44 (OCH2CH2) and 29.12

(OCH2CH2).

(ii). Cyclization of bischalcone 3.117

The compound 3.117 was refluxed with phenyl hydrazine under the similar conditions

(Scheme-3.37) as used earlier for 3.124 to furnish 3.125 as a brown solid

(75%, m.p. 95-97°C).

1'

2

2'

3

3'

4

4'

5

5'6'

1

1''

2'' 3''4''

5''6''

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

O CH2 CH2CH2 O

OO

12

3

EtOH/AcOH/ PhNHNH2/ ∆

NN HX

HM

HA

O CH2 CH2 CH2 O NNHX

HA

HM

3.117

3.125

Scheme-3.37

IR spectrum of 3.125 did not exhibit any strong absorption at 1658 cm-1 indicating the

absence of C=O group in this compound and the C=N moiety of the pyrazoline ring

generated a band at 1597 cm-1.

Page 105: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

233

O CH2

O

CH2 CH2 O

O

m/z 488

m/z 348 (100%)

C CH CH CH2 O

O

CH CH CH O

O

+

CH C C O

O

+

CH C C

O

C

O

CH CHCH H

m/z 361 (32%)

m/z 346 (7%)

m/z 332 (9%)

m/z 307 (19%)

m/z 203 (81%)m/z 103 (14%)

CH CH2 O

O

+

m/z 324 (55%)

m/z 489 (M+1, 78%)

.....

. .. ..

. .. ..

. .. .... .. .

. .. ..

. .. ..

.....

.....

. .. ..

+

+

+

+

+.

.

aa

-C7O2H11

.

.

+.

Chart-1

A comparison of the 1H-NMR spectra (400 MHz, CDCl3) of 3.117 and 3.125 proved

very fruitful to assign the structural feature of later. The signals of H-3 & H-2 in

former at δ 7.78 and 7.41 were found missing altogether in 3.125 which describes

the involvement of enone moiety in the cyclization process. The aromatic protons

H-2’’, 6’’ and H-3’’, 4’’, 5’’ were centred at δ 7.70 (4H, dd, Jp,o=1.1, 8.8 Hz) & 7.38

(6H, m) respectively. Two doublet of doublets present at δ 7.08 (4H, Jp,o=1.1, 8.8 Hz)

and 6.85 (4H, Jp,o=1.1, 8.8 Hz) were assignable to H-2’’’, 6’’’ and H-3’’’, 5’’’

respectively. The resonances centred at δ 7.20 (6H, m) and 7.30 (4H, m) could be

Page 106: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

234

easily resulted by H-3’, 4’, 5’ and H-2’, 6’ respectively. The protons H-X, H-M &

H-A belonging to pyrazoline ring furnished three doublets of doublets at δ 5.20

(2H, JXA=7.1 Hz, JXM=12.1 Hz), 3.78 (2H, JMX=12.1 Hz, JMA=17.2 Hz) and 3.08

(2H, JAX=7.1 Hz, JAM=17.2 Hz) respectively. A triplet integrating for four hydrogens

at δ 4.08 and a quintet integrating for two hydrogens at δ 2.20 may be represented by

OCH2 and OCH2CH2 group respectively. 13C-NMR (100 MHz, DMSO-d6) data of 3.125 showed the signals of C-3, C-4’’’ and

C-1’ at δ 158.33, 146.31 and 143.70 respectively. Other aromatic carbon atoms were

resonating at the expected δ values. The characteristics pyrazoline ring carbon atoms

C-5 and C-4 were observed in the aliphatic region at δ 66.41 and 43.72 respectively

along with two more signals at δ 63.20 (OCH2) & 25.92 (OCH2CH2).

The ESI-MS spectrum of 3.125 had significant ions m/z 669 (M+1, 6%), 353 (62%),

349 (100%), 237 (98%) and its mass fragmentation pattern has been shown in

Chart-2 (vide experimental).

Synthesis of bispyrazoline 3.126

The compound 3.126 was obtained in two steps:

(i). Synthesis of bischalcone 3.118

The compound 3.118 (80%, m.p. 70-72°C) was obtained from the reaction of

dibenzaldeyde 2.50 with acetophenone under the similar reaction conditions as

described above for 3.116 (Scheme-3.38).

1'

2'3'

4'

5'6'

1''

2'' 3''

4''

5''6''

O CH2 (CH2)2 CH2 O

OO

12

3

NaOH/EtOH/

O CH2 (CH2)2 CH2 O C

O

HC

O

H

2.50

Ph C CH3

O

3.118

Scheme-3.38

IR spectrum of 3.118 (Plate-42) revealed important bands at 2931, 2875 (methylene

C-H), 1659 (C=O) and 1598 (C=C). In its 1H-NMR spectrum (400 MHz, CDCl3)

(Plate-43), a doublet of doublet at δ 8.01 (4H, dd, Jp,o=1.1, 8.5 Hz) and a multiplet at

δ 7.57 (6H, m) were easily denoted by H-2’, 6’ & H-3’, 4’, 5’ respectively. The trans

hydrogens H-3 and H-2 of the double bond were centred at δ 7.76 (2H) & 7.41 (2H)

Page 107: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

235

respectively as two broad doublets (Jtrans=15.6 Hz). The hydrogens of p-disubsituted

benzene (H-2’’, 6’’& 3’’, 5’’) appeared at δ 7.47 (4H, m) and 6.91 (4H, d, Jo=8.4 Hz)

respectively. The signals of internal chain could be resonating at δ 4.10 (4H, t,

Jvic=5.3 Hz, OCH2CH2) and 2.02 (4H, quintet, Jvic=5.3 Hz, OCH2CH2). UV-Vis

spectrum of 3.118 exhibited two maxima at 347 & 245 nm which may be ascribed to

the n→π* & π→π* transitions respectively.

NN H

H

H

O CH2 CH 2 CH2 O NNH

H

H

NN

O CH C CH2 O NN

+

O CH C CH2 O NN

O C C CH O

N

H

C CH

N

H

C CH

N

H

HC CH CH2 O NNH

H

H

O NNH

H

H

O NNH

H

H

H

C C CH2 O NN

+HC CH O N

NH

NN

H

H

H

H

.

m/z 688

m/z 525 (13%)

-C12H19

-N2

m/z 497 (8%)

-NH2

m/z 481 (23%)

-CO2

m/z 437 (46%)

-C6H5

m/z 360 (50%)

ba

b

m/z 353 (62%)

m/z 313 (8%)

m/z 237 (98%)

-C3H4

-C6H4

m/z 349 (100%)

m/z 261 (34%)

-4H

-C7H4

m/z 298 (4%)

c

m/z 669 (6%, M+1)

+

.....

.....

.....

+

+

+

+

+

+

+

+ .....

a

.....

.

.....a

a

.........

c

+.

Chart-2

Page 108: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

236

The ESI-MS spectrum of 3.118 (Plate-45) exhibited the (M+Na+1), (M+Na) and

(M+1) ions at m/z 526 (9%), 525 (18%) and 503 (4%) respectively and its mass

fragmentation pattern was found to be similar as shown in Chart-1

(vide experimental). 13C-NMR (100 MHz, CDCl3) spectrum of 3.118 (Plate-44) had significant signals at

δ 190.60 (C=O), 161.08 (C-4’’), 144.70 (C-3) and 119.82 (C-2). The aromatic carbon

atoms (C-1’, 2’, 3’, 4’, 5’, 6’ & C-1’’, 2’’, 3’’, 5’’, 6’’) were found to resonating at the

expected positions (vide experimental). The OCH2CH2 and OCH2CH2 group of the

intervening chain produced two resonances at δ 67.60 and 25.91 respectively.

(ii). Cyclization of bischalcone 3.118

The compound 3.118 was refluxed with phenyl hydrazine under the similar conditions

(Scheme-3.39) as used earlier for 3.124 to furnish 3.126 as a light yellow solid

(70%, m.p. 110-112°C).

1'

2

2'

3

3'

4

4'

5

5'6'

1

1''

2'' 3''4''

5''6''

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

O CH2 (CH2)2 CH2 O

OO

12

3

EtOH/AcOH/ PhNHNH2/ ∆

NN HX

HM

HA

O CH2 (CH2)2 CH2 O NNHX

HA

HM

3.118

3.126

Scheme-3.39

The presence of C=N moiety was confirmed by the appearance of a band at 1595 cm-1

in the IR spectrum of 3.126 (Plate-46). Its 1H-NMR spectrum (400 MHz, DMSO-d6)

was found to be similar to that of 3.124 & 3.125. The characteristics pyrazoline ring

protons (H-X, M & A) resulted three well defined doublet of doublets at δ 5.14

(2H, JXA=7.0 Hz, JXM=12.2 Hz), 3.69 (2H, JMX=12.2 Hz, JMA=17.0 Hz) and 3.04

(2H, JXA=7.0 Hz, JAM=17.0 Hz) respectively (Plate-47). The phenyl ring hydrogens

belonging to N-1 (H-2’-6’), C-3 (H-2’’-6’’) and C-5 (H-2’’’, 3’’’ & 5’’’, 6’’’) were

resonating at the expected δ and J values in the aromatic region (vide experimental).

The two broad singlets integrating for four hydrogens each at δ 3.73 and 1.81 may be

allotted to internal chain OCH2 and OCH2CH2 group hydrogens respectively. Two

Page 109: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

237

maxima exhibited at 368 & 246 nm in the UV-Vis spectrum of 3.126 which may be

ascribed to the n→π* & π→π* transitions respectively.

ESI-MS spectrum of 3.126 (Plate-49) showed significant ions at m/z 706 (M+Na+1,

8%), 705 (M+Na, 12%), 353 (100%), 331 (89%) and its mass fragmentation pattern

was found to be similar as shown in Chart-2 (vide experimental).

In the 13C-NMR (100 MHz, CDCl3) data of 3.126 (Plate-48), the carbon atoms

C-4’’’, C-3 and C-1’ were placed at δ 146.71, 158.49 and 144.90 respectively due to

their bonding to heteroatoms (N & O). The remaining aromatic carbons (C-2’-6’,

C-1’’-6’’, C-1’’’-3’’’ & C-5’’’, 6’’’) were found t o be resonating at the appropriate

δ values (vide experimental). The carbon atoms C-5, OCH2CH2, C-4 and OCH2CH2

were found to be resonating at δ 67.79, 64.03, 43.63 & 29.19 respectively.

Synthesis of bischalcones 3.119-3.123

The compounds 3.119-3.123 were obtained in good yield from the reactions of

2.51-2.55 with acetophenone under the similar conditions as described earlier for

3.116-3.118. The characterization data of 3.119-3.123 have been given in Table-1.

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

O CH2 (CH2)n CH2 O

OO

12

3

3.119 (n=3), 3.120 (n=4), 3.121 (n=6), 3.122 (n=8), 3.123 (n=10)

Table-1: Physical and characteristics spectral data of bischalcones 3.119-3.123

Jtrans=15.8-15.5 Hz

Compd. m.p. (°C)

Yield (%)

IR (υmaxcm-1)

1H-NMR (δ )

13C-NMR (δ ) ESI-MS ( m/z)

C=O C=C H-3* H-2* C=O C-3 C-2

3.119 120-

122

68

1658

1597

7.78 (d)

7.40 (d)

195.17 144.65 117.75 539 (M+Na)+

3.120 80-82

75 1654

1593

7.78 (d)

7.41 (d)

190.37 144.45 115.25 531 (M+1)+

3.121 64-

66

60 1655 1599 7.80 (d)

7.41 (d)

190.17 142.45 115.75 559 (M+1)+

3.122 96-

98

69 1665 1603 7.78 (d)

7.39 (d)

190.13 142.15 112.35 609 (M+Na)+

3.123

86-

88

61 1654 1596 7.75 (d)

7.34 (d)

190.10 142.11 112.32 637 (M+Na)+

Page 110: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

238

Synthesis of bispyrazolines 3.127-3.131

The compounds 3.127-3.131 were synthesized from the cyclization reactions of

bischalcones 3.119-3.123 with phenyl hydrazine under the similar conditions as

described earlier for 3.124-3.126.

NN OCH2 (CH2)n CH2O N

N

H

H H

H

HHM

A

X

1

2

3 4

5

1'

2'

3'5'

6'

1''

2''

3''

4''

5''

6''1'''

2''' 3'''

4'''

5'''6'''

4'

M

A

X

3.127 (n=3), 3.128 (n=4), 3.129 (n=6), 3.130 (n=8), 3.131 (n=10)

The significant characterization data of 3.127-3.131 have been presented in Table-2.

Table-2: Physical and characteristics spectral data of bispyrazolines 3.127-3.131

*JXA= 7.2-7.1 Hz, JXM= 12.3-11.1 Hz, JMA= 17.2-16.2 Hz

Stereochemistry of bispyrazolines 3.124-3.131

NN OCH2 (CH2)n CH2O N

N

H

H H

H

HHM

A

X

1

2

3 4

5

1'

2'

3'5'

6'

1''

2''

3''

4''

5''

6''1'''

2''' 3'''

4'''

5'''6'''

4'

M

A

X

3.124-3.131

n=0, 1, 2, 3, 4, 6, 8, 10

Compd. m.p

(°C)

Yield

(%)

IR

(υmax cm-1)

1H-NMR (δ) 13C-NMR (δ) ESI-MS

(m/z)

C=N H-X* H-M* H-A* C=N C-5 C-4

3.127 125-127

73 1598 5.22 (dd)

3.80 (dd)

3.11 (dd)

158.33 67.39 41.62 696 (M)+

3.128 160-162

60 1588 5.15 (dd)

3.73 (dd)

3.04 (dd)

158.10 67.41 43.62 733 (M+Na)+

3.129 175-177

67 1596 5.12 (dd)

3.70 (dd)

3.02 (dd)

158.41 67.95 43.65 738 (M)+

3.130 240-242

62 1602 4.88 (dd)

3.70 (dd)

3.30 (dd)

158.18 67.33 43.45 767 (M+1)+

3.131 150-152

60 1603 4.85 (dd)

3.72 (dd)

3.28 (dd)

158.15 67.30 43.42 817 (M+Na)+

Page 111: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

239

The stereochemical features of pyrazoline ring in 3.124-3.131 were determined from

the considerations of coupling constants (J). The vicinal coupling constant (3J)

between H-X and H-M was found to be 12.3-11.1 Hz which reflects that these

hydrogens are cis to each other while coupling value of JXA=7.2-7.1 Hz describes the

trans relationships between H-X and H-A. The coupling value of 17.2-16.2 Hz

between non equivalent protons H-M and H-A, evidently explain their geminal

placement at C-4. The phenyl rings placed at N-1 and C-5 are evidently trans oriented

to avoid any intramolecular repulsion.

Antimicrobial evaluations of bischalcones 3.116-3.123 & bispyrazolines

3.124-3.131

The antimicrobial activities of the newly prepared compounds 3.116-3.123 &

3.124-3.131 were screened against five bacterial strains namely Bacillius subtilis

(MTCC 441), Staphylococcus aureus (MTCC 96), Escherichia coli (MTCC 443),

Klubsellia pneumeniae (MTCC 3384), Pseudomonas aeruginosa (MTCC 424) and

three fungi strains Aspergillius janus (MTCC 2751), Aspergillius niger (MTCC 281)

& Pencillium glabrum (MTCC 4951). The in vitro zones of inhibitions (mm) and

minimum inhibitory concentration (µg/ml) of these compounds were determined by

using paper disc method10 and serial tube dilution method11 respectively. There

analysis were performed according to the similar procedures which are described on

page no. 43,44 (Chapter-IIa ). The results of zone of inhibition (mm) and MIC

(µg/ml) determinations of bischalcones 3.116-3.123 & bispyrazolines 3.124-3.131

have been presented in Table-3 (Figure-1 & Figure-3) and Table-4 (Figure-2 &

Figure-4) respectively.

It is clear from Table-3 that the compounds 3.117, 3.118, 3.126, 3.127 & 3.130

exhibited significant zone of inhibition (11-13 mm) against Aspergillius niger and the

compounds 3.120, 3.121, 3.125 & 3.126 were having zone of inhibition of 11-12 mm

against the strain Staphylococcus aureus. The compounds 3.126 & 3.131 inhibited the

growth of Aspergillius janus at the zone of inhibition 11 mm while the compound

3.127 & 3.128 were found to be active against Escherichia coli (zone of inhibition-12

mm) and Pencillium glabrum (zone of inhibition-11 mm). The compounds 3.118 &

3.121 had the zone of inhibition 11 & 13 mm against the strain Klubsellia pneumeniae

and Pseudomonas aeruginosa respectively. The compound 3.131 was found to be

active against Bacillius subtilis at the zone of inhibition of 11 mm.

Page 112: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

240

Table-3. In vitro zone of inhibitions (mm) of bischalcones 3.116-3.123 & bispyrazolines 3.124-3.131

Gram (-ve) bacteria Gram (+ve) bacteria Fungi

Compound Escherichia

coli

Klubsellia

pneumoniae

Pseudomonas

aeruginosa

Staphylococcus

aureus

Bacillius

subtilis

Aspergillus

janus

Pencilluim

glabrum

Aspergillus

niger

3.116 -- 8 7 -- -- 6 8 8

3.117 -- 6 7 8 -- 10 7 11

3.118 6 11 9 7 6 7 9 13

3.119 7 9 8 7 7 10 8 10

3.120 9 8 8 11 9 8 -- --

3.121 8 9 13 11 7 6 8 9

3.122 6 -- 9 8 -- 9 -- 6

3.123 -- 10 8 8 7 8 6 --

3.124 8 6 -- 9 6 6 8 9

3.125 7 8 8 11 10 9 6 10

3.126 9 7 10 12 8 11 9 11

3.127 12 -- 8 6 9 9 10 12

3.128 -- 9 9 -- 10 10 11 8

3.129 10 7 -- 6 -- 9 9 6

3.130 -- 8 -- 6 -- 9 6 13

3.131 6 10 9 10 11 11 6 9

Amoxicillin 17 18 21 20 18 -- -- --

Fluconazole -- -- -- -- -- 20 22 24

Page 113: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

241

Table- 4. In vitro MIC ( µg/ml) of bischalcones 3.116-3.123 & bispyrazolines 3.124-3.131

Gram (-ve) bacteria Gram (+ve) bacteria Fungi

Compound Escherichia

coli

Klubsellia

pneumoniae

Pseudomonas

aeruginosa

Staphylococcus

aureus

Bacillius

subtilis

Aspergillus

janus

Pencilluim

glabrum

Aspergillus

niger

3.116 16 8 8 16 32 16 8 32

3.117 16 16 16 16 8 8 8 32

3.118 32 16 16 8 8 8 8 16

3.119 16 8 8 8 16 8 16 8

3.120 4 8 8 8 16 8 4 8

3.121 8 8 8 8 16 16 4 16

3.122 8 16 16 16 8 16 8 4

3.123 8 8 8 8 16 16 4 8

3.124 16 16 16 16 16 16 8 16

3.125 16 8 8 32 32 8 16 16

3.126 16 4 16 8 16 16 8 16

3.127 32 32 8 4 32 8 16 32

3.128 16 4 8 8 16 16 8 16

3.129 16 4 16 16 8 8 16 16

3.130 16 8 32 16 16 8 16 32

3.131 32 8 32 8 32 16 16 8

Amoxicillin 2 2 2 2 2 -- -- --

Fluconazole -- -- -- -- -- 1 1 1

Page 114: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

242

Figure-1. In vitro zone of inhibitions (mm) of bischalcones 3.116-3.123

Figure-2. In vitro MIC ( µg/ml) of bischalcones 3.116-3.123

Page 115: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

243

Figure-3. In vitro zone of inhibitions (mm) for bispyrazolines 3.124-3.131

Figure-4. In vitro MIC (µg/ml) for bispyrazolines 3.124-3.131

Table-4 describes that compound 3.120 inhibited the growth of Escherichia coli at

MIC-4 µg/ml while the compound 3.126, 3.128 & 3.129 showed similar activity against

the strain Klubsellia pneumeniae. The compound 3.127 was found to be equally active

against Staphylococcus aureus while the compound 3.120, 3.121 & 3.123 exhibited the

activity of similar order against Pencillium glabrum. The compound 3.122 also provided

the MIC of 4 µg/ml against the strain Aspergillius niger. The remaining compounds

showed noticeable activity at MIC of 8-32 µg/ml.

Page 116: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

244

It is evident from the above zone of inhibition and MIC data that bischalcones linked

through the internal chain of six, eight and twelve carbon atoms furnished noticeable

antifungal properties while the bispyrazolines built around four, six and eight methylene

spacer units provided significant antibacterial behaviour.

It may be concluded that this study describes the general method for the synthesis of

new bispyrazolines linked through the 5-aryl ring under the normal conditions. The

significant antimicrobial activities were provided by the bischalcones and bispyrazolines

linked through the aliphatic chains consisting the even number of methylene groups.

Page 117: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

245

Experimental

Synthesis of (2E,2’E)-3,3’-(4,4’-(ethane-1,2-diylbis(oxy))bis(4,1-phenylene)) bis(1-

phenylprop-2-en-1-one) 3.116

A mixture of acetophenone (0.910 g, 0.0072 mol), dibenzaldehyde 2.48 (1.0 g,

0.0036 mol) and NaOH (0.01 mol) in EtOH (25.0 ml) was stirred for 12 hrs at room

temperature. The reaction was monitored by TLC. After the completion of reaction,

the resulting mixture was poured into iced-HCl to provide a crude substance which

was crystallized from CH3OH:CHCl3 (1:1) to yield a pure compound 3.116.

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

12

3

O CH2

O

CH2 O

O

3.116

3.116: Brown solid; Yield 64%; m.p.: 102-104oC. UV-Vis (MeOH) λmax(nm): 328,

250; IR (KBr) cm-1 2964, 2856 (methylene C-H), 1657 (C=O), 1602 (C=C); 1H-NMR

(400 MHz, CDCl3): δ 8.01 (4H, dd, Jp,o=1.1, 8.8 Hz, H-2’, 6’), 7.73 (2H, d,

Jtrans=15.6 Hz, H-3), 7.52 (6H, m, H-3’, 4’, 5’ ), 7.42 (4H, td, Jp,o=1.1, 8.8 Hz, H-2’’,

6’’), 7.39 (2H, d, Jtrans=15.6 Hz, H-2), 6.90 (4H, td, Jp,o=1.1, 8.8 Hz, H-3’’, 5’’), 4.01

(4H, s, OCH2); 13C-NMR (100 MHz, CDCl3): δ 190.22 (C=O), 160.98 (C-4’’), 144.62

(C-3), 138.50 (C-4’), 138.40 (C-1’), 130.22 (C-2’, 6’), 128.50 (C-2’’, 6’’), 128.44

(C-3’, 5’), 127.71 (C-1’’), 119.90 (C-2), 114.95 (C-3’’, 5’’), 64.20 (OCH2); MS(ESI):

m/z 475 (M+1, 100%), 334 (3%), 333 (78%), 332 (23%), 311 (37%), 310 (59%), 304

(38%), 293 (63%), 174 (8%), 74 (9%). Anal. Calc. for C32O4H26: Calc. C, 81.01 %;

H, 5.48 %; Found: C, 81.29 %; H, 5.42 %.

Synthesis of (2E,2’E)-3,3’-(4,4’-(propane-1,3-diylbis(oxy))bis(4,1-phenylene))

bis(1-phenylprop-2-en-1-one) 3.117

The compound 3.117 was synthesized from the reaction of 2.49 (1.0 g, 0.0035 mol)

with acetophenone (0.864 g, 0.0070 mol) under the similar conditions as used earlier

for 3.116.

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

O CH2 CH2 CH2 O

OO

12

3

3.117

Page 118: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

246

3.117: Brown solid; Yield 77%; m.p.: 156-158oC. UV-Vis (MeOH) λmax(nm): 353,

246; IR (KBr) cm-1 2960, 2850 (methylene C-H), 1658 (C=O), 1600 (C=C); 1H-NMR

(400 MHz, CDCl3): δ 8.00 (4H, dd, Jp,o=1.1, 8.8 Hz, H-2’, 6’), 7.78 (2H, d,

Jtrans=15.6 Hz, H-3), 7.58 (6H, m, H-3’, 4’, 5’ ), 7.49 (4H, td, Jp,o=1.1, 8.8 Hz, H-2’’,

6’’), 7.41 (2H, d, Jtrans=15.6 Hz, H-2), 6.94 (4H, td, Jp,o=1.1, 8.8 Hz, H-3’’, 5’’), 4.23

(4H, t, Jvic=6.3 Hz, OCH2CH2), 2.31 (2H, quintet, Jvic=6.3 Hz, OCH2CH2); 13C-NMR

(100 MHz, DMSO-d6): δ 190.64 (C=O), 160.90 (C-4’’), 144.66 (C-3), 138.59 (C-4’),

138.48 (C-1’), 130.26 (C-2’, 6’), 128.57 (C-2’’, 6’’), 128.42 (C-3’, 5’), 127.76

(C-1’’), 119.93 (C-2), 114.93 (C-3’’, 5’’), 64.44 (OCH2CH2), 29.12 (OCH2CH2);

MS(ESI): m/z 489 (M+1, 78%), 361 (32%), 348 (100%), 346 (7%), 332 (9%), 325

(55%), 307 (19%), 203 (81%), 103 (14%). Anal. Calc. for C33O4H28: Calc.

C, 81.14 %; H, 5.73 %; Found: C, 81.20%; H, 5.78 %.

Synthesis of (2E,2’E)-3,3’-(4,4’-(butane-1,4-diylbis(oxy))bis(4,1-phenylene))

bis(1-phenylprop-2-en-1-one) 3.118

The compound 3.118 was prepared from the reaction of 2.50 (1.0 g, 0.0034 mol) with

acetophenone (0.816 g, 0.0068 mol) under the similar conditions as used above for

3.116.

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

O CH2 (CH2)2 CH2 O

OO

12

3

3.118

3.118: White solid; Yield 80%; m.p.: 70-72oC. UV-Vis (MeOH) λmax(nm): 347, 245;

IR (KBr) cm-1 2931, 2875 (methylene C-H), 1659 (C=O), 1598 (C=C); 1H-NMR

(400 MHz, CDCl3): δ 8.01 (4H, dd, Jp,o=1.1, 8.5 Hz, H-2’, 6’), 7.76 (2H, d,

Jtrans=15.6 Hz, H-3), 7.57 (6H, m, H-3’, 4’, 5’), 7.47 (4H, m, H-2’’, 6’’), 7.41 (2H, d,

Jtrans=15.6 Hz, H-2), 6.91 (4H, d, Jo=8.4 Hz, H-3’’, 5’’), 4.10 (4H, t, Jvic=5.3 Hz,

OCH2CH2), 2.02 (4H, quintet, Jvic=5.3 Hz, OCH2CH2); 13C-NMR (100 MHz, CDCl3):

δ 190.60 (C=O), 161.08 (C-4’’), 144.70 (C-3), 138.54 (C-1’), 132.57 (C-4’), 130.26

(C-2’, 6’), 128.58 (C-3’, 5’), 128.42 (C-2’’, 6’’), 127.65 (C-1’’), 119.82 (C-2), 114.92

(C-3’’, 5’’), 67.60 (OCH2CH2), 25.91 (OCH2CH2); MS(ESI): m/z 526 (M+Na+1,

9%), 525 (M+Na, 18%), 503 (M+1, 4%), 362 (6%), 361 (39%), 360 (100%), 339

(12%), 338 (47%), 332 (7%), 321 (4%), 202 (38%), 102 (7%). Anal. Calc. for

C34O4H30: Calc. C, 81.20 %; H, 5.97 %; Found: C, 81.14 %; H, 5.92 %.

Page 119: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

247

Synthesis of (2E,2’E)-3,3’-(4,4’-(pentane-1,5-diylbis(oxy))bis(4,1-phenylene))

bis(1-phenylprop-2-en-1-one) 3.119

The compound 3.119 was synthesized from the reaction of 2.51 (1.0 g, 0.0032 mol)

with acetophenone (0.778 g, 0.0065 mol) under the similar conditions as used earlier

for 3.116.

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

O CH2 (CH2)3 CH2 O

OO

12

3

3.119

3.119: Yellow solid; Yield 68%; m.p.: 120-122oC. UV-Vis (MeOH) λmax(nm): 312,

238; IR (KBr) cm-1 2945, 2860 (methylene C-H), 1658 (C=O), 1597 (C=C); 1H-NMR

(400 MHz, CDCl3): δ 8.00 (4H, d, Jo=7.2 Hz, H-2’, 6’), 7.78 (2H, d, Jtrans=15.8 Hz,

H-3), 7.58 (4H, d, Jo=7.6 Hz, H-2’’, 6’’), 7.52 (6H, m, H-3’, 4’, 5’), 7.40 (2H, d,

Jtrans=15.8 Hz, H-2), 6.92 (4H, d, Jo=7.6 Hz, H-3’’, 5’’), 4.06 (4H, t, Jvic=6.3 Hz,

OCH2CH2CH2), 1.87 (4H, quintet, Jvic=6.3 Hz, OCH2CH2CH2), 1.69 (2H, quintet,

Jvic=6.3 Hz, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 195.17 (C=O), 161.27

(C-4’’), 144.65 (C-3), 135.50 (C-1’), 132.53 (C-4’), 129.26 (C-2’, 6’), 128.37 (C-3’,

5’), 128.12 (C-2’’, 6’’), 127.42 (C-1’’), 117.75 (C-2), 115.61 (C-3’’, 5’’), 65.55

(OCH2CH2CH2), 25.70 (OCH2CH2CH2), 23.72 (OCH2CH2CH2); MS(ESI): m/z 539

(M+Na, 70%), 376 (24%), 375 (23%), 374 (31%), 353 (45%), 352 (49%), 346

(100%), 335 (40%), 216 (12%), 116 (15%). Anal. Calc. for C35O4H32: Calc.

C, 81.39 %; H, 6.20 %; Found: C, 81.32 %; H, 6.26 %.

Synthesis of (2E,2’E)-3,3’-(4,4’-(hexane-1,6-diylbis(oxy))bis(4,1-phenylene))

bis(1-phenylprop-2-en-1-one) 3.120

The compound 3.120 was obtained from the reaction of 2.52 (1.0 g, 0.0030 mol) with

acetophenone (0.744 g, 0.0062 mol) under the similar conditions as described earlier

for 3.116.

1'

2'3'

4'

5'6'

1''

2'' 3''

4''

5''6''

O CH2 (CH2)4 CH2 O

OO

12

3

3.120

Page 120: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

248

3.120: Brown solid; Yield 75%; m.p.: 80-82oC. UV-Vis (MeOH) λmax(nm): 320, 235;

IR (KBr) cm-1 2938, 2863 (methylene C-H), 1654 (C=O), 1593 (C=C); 1H-NMR

(400 MHz, CDCl3): δ 8.01 (4H, d, Jo=7.3 Hz, H-2’, 6’), 7.78 (2H, d, Jtrans=15.7 Hz,

H-3), 7.58 (4H, dd, Jp,o=1.1, 8.8 Hz, H-2’’, 6’’), 7.50 (6H, m, H-3’, 4’, 5’), 7.41

(2H, d, Jtrans=15.7 Hz, H-2), 6.91 (4H, dd, Jp,o=1.1, 8.8 Hz, H-3’’, 5’’), 4.02 (4H, t,

Jvic=6.4 Hz, OCH2CH2CH2), 1.84 (4H, quintet, Jvic=6.4 Hz, OCH2CH2CH2), 1.56

(4H, t, Jvic=6.4 Hz, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 190.37 (C=O),

161.25 (C-4’’), 144.45 (C-3), 133.50 (C-1’), 132.33 (C-4’), 128.17 (C-3’, 5’), 128.10

(C-2’, 6’), 126.22 (C-2’’, 6’’), 125.42 (C-1’’), 115.25 (C-2), 115.21 (C-3’’, 5’’), 65.50

(OCH2CH2CH2), 25.70 (OCH2CH2CH2), 21.33 (OCH2CH2CH2); MS(ESI): m/z 554

(M+Na+1, 16%), 553 (M+Na, 40%), 531 (M+1, 4%), 376 (7%), 360 (100%), 358

(112%), 338 (48%), 332 (13%), 321 (8%), 202 (28%), 102 (5%). Anal. Calc. for

C36O4H34: Calc. C, 81.50 %; H, 6.40 %; Found: C, 81.57 %; H, 6.45 %.

Synthesis of (2E,2’E)-3,3’-(4,4’-(octane-1,8-diylbis(oxy))bis(4,1-phenylene))bis(1-

phenylprop-2-en-1-one) 3.121

The compound 3.121 was prepared from the reaction of 2.53 (1.0 g, 0.0026 mol) with

acetophenone (0.714 g, 0.0058 mol) under the similar conditions as used above for

3.116.

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

O CH2 (CH2)6 CH2 O

OO

12

3

3.121

3.121: Yellow solid; Yield 60%; m.p.: 64-66oC. UV-Vis (MeOH) λmax(nm): 318, 253;

IR (KBr) cm-1 2940, 2845 (methylene C-H), 1655 (C=O), 1599 (C=C); 1H-NMR

(400 MHz, CDCl3): δ 8.00 (4H, dd, Jp,o=1.1, 8.2 Hz, H-2’, 6’), 7.80 (2H, d,

Jtrans=15.5 Hz, H-3), 7.60 (6H, m, H-3’, 4’, 5’), 7.50 (4H, m, H-2’’, 6’’), 7.41 (2H, d,

Jtrans=15.5 Hz, H-2), 6.39 (4H, d, Jo=8.8 Hz, H-3’’, 5’’), 4.00 (4H, t, Jvic=6.9 Hz,

OCH2CH2CH2CH2), 1.81 (4H, quintet, Jvic=6.4 Hz, OCH2CH2CH2CH2), 1.48 (4H, t,

Jvic=5.4 Hz, OCH2CH2CH2CH2), 1.41 (4H, t, Jvic=5.6 Hz, OCH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 190.17 (C=O), 160.25 (C-4’’), 142.45 (C-3), 132.31

(C-4’), 131.50 (C-1’), 128.15 (C-2’, 6’), 127.17 (C-3’, 5’), 126.32 (C-2’’, 6’’), 125.02

(C-1’’), 115.75 (C-2), 114.21 (C-3’’, 5’’), 63.45 (OCH2CH2CH2CH2), 24.33

(OCH2CH2CH2CH2), 23.89 (OCH2CH2CH2CH2), 14.03 (OCH2CH2CH2CH2);

Page 121: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

249

MS(ESI): m/z 559 (M+1, 50%), 404 (100%), 388 (32%), 386 (26%), 360 (19%), 349

(70%), 348 (61%), 230 (19%), 130 (90%). Anal. Calc. for C38O4H38: Calc.

C, 82.31 %; H, 6.85 %; Found: C, 82.36 %; H, 6.89 %.

Synthesis of (2E,2’E)-3,3’-(4,4’-(decane-1,10-diylbis(oxy))bis(4,1-phenylene))

bis(1-phenylprop-2-en-1-one) 3.122

The compound 3.122 was synthesized by reacting 2.54 (1.0 g, 0.0024 mol) with

acetophenone (0.650 g, 0.0056 mol) under the similar conditions as described earlier

for 3.116.

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

O CH2 (CH2)8 CH2 O

OO

12

3

3.122

3.122: Brown solid; Yield 69%; m.p.: 96-98oC. UV-Vis (MeOH) λmax(nm): 320, 246;

IR (KBr) cm-1 2920, 2835 (methylene C-H), 1665 (C=O), 1603 (C=C); 1H-NMR

(400 MHz, CDCl3): δ 8.02 (4H, dd, Jp,o=1.1, 8.2 Hz, H-2’, 6’), 7.78 (2H, d,

Jtrans=15.5 Hz, H-3), 7.56 (6H, m, H-3’, 4’, 5’), 7.47 (4H, d, Jo=8.9 Hz, H-2’’, 6’’),

7.39 (2H, d, Jtrans=15.5 Hz, H-2), 6.36 (4H, d, Jo=8.8 Hz, H-3’’, 5’’), 3.99 (4H, t,

Jvic=6.9 Hz, OCH2CH2CH2CH2CH2), 1.80 (4H, quintet, Jvic=6.4 Hz,

OCH2CH2CH2CH2CH2), 1.46 (4H, t, Jvic=5.4 Hz, OCH2CH2CH2CH2CH2), 1.40

(4H, t, Jvic=5.6 Hz, OCH2CH2CH2CH2CH2), 1.20 (4H, t, Jvic=6.9 Hz,

OCH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 190.13 (C=O), 157.25

(C-4’’), 142.15 (C-3), 135.50 (C-1’), 132.11 (C-4’), 128.10 (C-2’, 6’), 126.20 (C-3’,

5’), 123.12 (C-2’’, 6’’), 122.32 (C-1’’), 112.35 (C-2), 111.31 (C-3’’,5’’), 65.45

(OCH2CH2CH2CH2CH2), 25.89 (OCH2CH2CH2CH2CH2), 24.13

(OCH2CH2CH2CH2CH2), 15.03 (OCH2CH2CH2CH2CH2), 11.23

(OCH2CH2CH2CH2CH2); MS(ESI): m/z 609 (M+Na, 32%), 432 (40%), 416 (47%),

414 (63%), 388 (63%), 377 (49%), 376 (54%), 258 (67%), 158 (34%). Anal. Calc. for

C40O4H42: Calc. C, 83.04 %; H, 7.26 %; Found: C, 82.97 %; H, 7.21 %.

Synthesis of (2E,2’E)-3,3’-(4,4’-(dodecane-1,12-diylbis(oxy))bis(4,1-phenylene))

bis(1-phenylprop-2-en-1-one) 3.123

The compound 3.123 was obtained by reacting 2.55 (1.0 g, 0.0022 mol) with

acetophenone (0.617 g, 0.0054 mol) under the similar conditions as described earlier

for 3.116.

Page 122: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

250

1'

2'3'

4'

5'6'

1''

2'' 3''4''

5''6''

O CH2 (CH2)10 CH2 O

OO

12

3

3.123

3.123: Brown solid; Yield 61%; m.p.: 86-88oC. UV-Vis (MeOH) λmax(nm): 314, 259;

IR (KBr) cm-1 2918, 2849 (methylene C-H), 1654 (C=O), 1596 (C=C); 1H-NMR

(400 MHz, CDCl3): δ 8.00 (4H, dd, Jp,o=1.1, 8.2 Hz, H-2’, 6’), 7.75 (2H, d,

Jtrans=15.5 Hz, H-3), 7.54 (6H, m, H-3’, 4’, 5’), 7.42 (4H, d, Jo=8.9 Hz, H-2’’, 6’’),

7.34 (2H, d, Jtrans=15.5 Hz, H-2), 6.32 (4H, d, Jo=8.8 Hz, H-3’’, 5’’), 3.96 (4H, t,

Jvic=6.9 Hz, OCH2CH2CH2CH2CH2CH2), 1.78 (4H, quintet, Jvic=6.4 Hz,

OCH2CH2CH2CH2CH2CH2), 1.48 (4H, t, Jvic=5.4 Hz, OCH2CH2CH2CH2CH2CH2),

1.38 (4H, t, Jvic=5.6 Hz, OCH2CH2CH2CH2CH2CH2), 1.15 (8H, t, Jvic=6.9 Hz,

OCH2CH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 190.10 (C=O), 157.22

(C-4’’), 142.11 (C-3), 135.45 (C-1’), 132.10 (C-4’), 128.11 (C-2’, 6’), 126.22 (C-3’,

5’), 123.10 (C-2’’, 6’’), 122.31 (C-1’’), 112.32 (C-2), 111.30 (C-3’’, 5’’), 65.43

(OCH2CH2CH2CH2CH2CH2), 25.84 (OCH2CH2CH2CH2CH2CH2), 24.11

(OCH2CH2CH2CH2CH2CH2), 24.05 (OCH2CH2CH2CH2CH2CH2), 15.00

(OCH2CH2CH2CH2CH2CH2), 11.21 (OCH2CH2CH2CH2CH2CH2); MS(ESI): m/z 637

(M+Na, 10%), 615 (M+1, 16%), 581 (13%), 536 (27%), 535 (11%), 527 (51%), 515

(6%), 514 (28%), 513 (100%), 400 (3%), 392 (8%), 391 (28%), 388 (5%), 361 (12%),

360 (67%), 339 (13%), 321 (9%), 303 (4%), 274 (12%), 202 (13%), 106 (7%), 104

(15%). Anal. Calc. for C42O4H46: Calc. C, 82.08 %; H, 7.49 %; Found:

C, 82.16 %; H, 7.54 %.

Synthesis of 1,2-bis(4-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl) phenoxy)

ethane 3.124

A mixture of bischalcone 3.116 (1.0 g, 0.0020 mol), phenyl hydrazine (0.4426 g,

0.0040 mol) and glacial AcOH (5 ml) in dry EtOH (30 ml) was refluxed for 8 hrs. The

progress of reaction was monitored by TLC. The resulting reaction mixture was

concentrated under vacuum to obtain a solid product which was crystallized from

MeOH to yield pure bispyrazoline 3.124.

Page 123: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

251

2

3 4

5

1

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

NN HX

HM

HA

O CH2 CH2 O NNHX

HA

HM

3.124

3.124: Brown solid; Yield 70%; m.p.: 90-92oC. UV-Vis (MeOH) λmax(nm): 355, 252;

IR (KBr) cm-1 2922, 2846 (methylene C-H), 1590 (C=N); 1H-NMR (400 MHz,

CDCl3): δ 7.67 (4H, dd, Jp,o=1.1, 8.8 Hz, H-2’’, 6’’), 7.36 (6H, m, H-3’’, 4’’, 5’’),

7.25 (4H, m, H-2’, 6’), 7.18 (6H, m, H-3’, 4’, 5’), 7.12 (4H, dd, Jp,o=1.1, 8.8 Hz,

H-2’’’, 6’’’), 6.80 (4H, dd, Jp,o=1.1, 8.8 Hz, H-3’’’, 5’’’), 5.23 (2H, dd, JXA=7.1 Hz,

JXM=12.1 Hz, HX), 4.00 (4H, s, OCH2), 3.76 (2H, dd, JMA=17.2 Hz, JMX=12.1 Hz,

HM), 3.10 (2H, dd, JAX=7.1 Hz, JAM=17.2 Hz, HA); 13C-NMR (100 MHz, DMSO-d6):

δ 158.38 (C-3), 146.30 (C-4’’’), 143.68 (C-1’), 132.64 (C-1’’’), 132.26 (C-2’’, 6’’),

129.18 (C-3’’, 5’’), 126.16 (C-1’’), 125.90 (C-3’, 5’), 125.80 (C-2’’’, 6’’’), 125.74

(C-4’’), 117.14 (C-4’), 113.22 (C-3’’’, 5’’’), 112.64 (C-2’, 6’), 66.48 (C-5), 63.30

(OCH2), 43.76 (C-4); MS(ESI): m/z 655 (M+1, 24%), 479 (9%), 435 (16%), 402

(61%), 392 (42%), 391 (100%), 385 (81%), 381 (59%), 354 (34%), 326 (28%). Anal.

Calc. for C44O2N4H38: Calc. C, 80.73 %; H, 5.81 %; N, 8.56 %; Found:

C, 80.91 %; H, 5.88 %; N, 8.49 %.

Synthesis of 1,3-bis(4-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl) phenoxy)

propane 3.125

The compound 3.125 was obtained from the reaction of 3.117 (1.0 g, 0.00200 mol)

with phenyl hydrazine (0.443 g, 0.00400 mol) under similar the conditions as

described earlier for 3.124.

2

3 4

5

1

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

NN HX

HM

HA

O CH2 CH2 CH2 O NNHX

HA

HM

3.125

Page 124: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

252

3.125: Brown solid; Yield 75%; m.p.: 95-97oC. UV-Vis (MeOH) λmax(nm): 356, 253;

IR (KBr) cm-1 2926, 2849 (methylene C-H), 1597 (C=N); 1H-NMR (400 MHz,

CDCl3): δ 7.70 (4H, dd, Jp,o=1.1, 8.8 Hz, H-2’’, 6’’), 7.38 (6H, m, H-3’’, 4’’, 5’’),

7.30 (4H, m, H-2’, 6’), 7.20 (6H, m, H-3’, 4’, 5’), 7.08 (4H, dd, Jp,o=1.1, 8.8 Hz,

H-2’’’, 6’’’), 6.85 (4H, dd, Jp,o=1.1, 8.8 Hz, H-3’’’, 5’’’), 5.20 (2H, dd, JXA=7.1 Hz,

JXM=12.1 Hz, HX), 4.08 (4H, t, Jvic=6.3 Hz, OCH2CH2), 3.78 (2H, dd, JAM =17.2 Hz,

JMX=12.1 Hz, HM), 3.08 (2H, dd, JAX=7.1 Hz, JAM=17.2 Hz, HA), 2.20 (2H, quintet,

Jvic=6.3 Hz, OCH2CH2); 13C-NMR (100 MHz, CDCl3): δ 158.33 (C-3), 146.31

(C-4’’’), 143.70 (C-1’), 132.61 (C-1’’’), 132.15 (C-2’’, 6’’), 129.26 (C-3’’, 5’’),

126.03 (C-1’’), 125.94 (C-3’, 5’), 125.78 (C-2’’’, 6’’’), 125.71 (C-4’’), 117.01 (C-4’),

112.44 (C-2’, 6’), 113.19 (C-3’’’, 5’’’), 66.41 (C-5), 63.20 (OCH2CH2), 43.72 (C-4),

25.92 (OCH2CH2); MS(ESI): m/z 669 (M+1, 6%), 525 (13%), 497 (8%), 481 (23%),

437 (46%), 360 (50%), 353 (62%), 349 (100%), 313 (8%), 298 (4%), 261 (34%), 237

(98%). Anal. Calc. for C45O2N4H40: Calc. C, 80.83 %; H, 5.98 %; N, 8.38 %; Found:

C, 80.56 %; H, 5.93 %; N, 8.44 %.

Synthesis of 1,4-bis(4-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl) phenoxy)

butane 3.126

The compound 3.126 was obtained from the reaction of 3.118 (1.0 g, 0.00198 mol)

with phenyl hydrazine (0.430 g, 0.00398 mol) under the similar conditions as

described earlier for 3.124.

2

3 4

5

1

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

NN HX

HM

HA

O CH2 (CH2)2 CH2 O NNHX

HA

HM

3.126

3.126: Light yellow solid; Yield 70%; m.p.: 110-112oC. UV-Vis (MeOH) λmax(nm):

368, 246; IR (KBr) cm-1 2919, 2870 (methylene C-H), 1595 (C=N); 1H-NMR (400

MHz, CDCl3): δ 7.65 (4H, dd, Jp,o=1.4, 8.5 Hz, H-2’’, 6’’), 7.30 (4H, m, H-3’’, 5’’),

7.22 (2H, m, H-4’’), 7.10 (8H, m, H-2’, 3’, 5’, 6’), 7.01 (4H, dt, Jp,o=1.1, 8.5 Hz,

H-2’’’, 6’’’), 6.74 (4H, dt, Jp,o=1.1, 8.6 Hz, H-3’’’, 5’’’), 6.68 (2H, dt,

Jm,o=2.6, 4.6 Hz, H-4’), 5.14 (2H, dd, JXM =12.2 Hz, JXA=7.0 Hz, HX), 3.90 (4H, brs,

Page 125: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

253

OCH2CH2), 3.69 (2H, dd, JXM =12.2 Hz, JMA=17.0 Hz, HM), 3.04 (2H, dd,

JAX =7.0 Hz, JAM=17.0 Hz, HA), 1.85 (4H, brs, OCH2CH2); 13C-NMR (100 MHz,

CDCl3): δ 158.49 (C-3), 146.71 (C-4’’’), 144.90 (C-1’), 134.49 (C-1’’’), 132.84

(C-2’’, 6’’), 128.92 (C-3’’, 5’’), 127.03 (C-1’’), 125.85 (C-2’’’, 6’’’), 125.71 (C-4’’),

125.36 (C-3’, 5’), 119.03 (C-4’), 115.01 (C-2’, 6’), 113.40 (C-3’’’, 5’’’), 67.79 (C-5),

64.03 (OCH2CH2), 43.63 (C-4), 29.19 (OCH2CH2); MS(ESI): m/z 706 (M+Na+1,

8%), 705 (M+Na, 12%), 507 (8%), 463 (12%), 420 (6%), 419 (16%), 413 (22%), 409

(13%), 382 (21%), 381 (83%), 354 (19%), 353 (100%), 331 (89%), 174 (14%). Anal.

Calc. for C46O2N4H42: Calc. C, 80.93 %; H, 6.15 %; N, 8.21 %; Found: C, 80.74 %;

H, 6.10 %; N, 8.15 %.

Synthesis of 1,5-bis(4-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl)

phenoxy)pentane 3.127

The compound 3.127 was prepared by reacting 3.119 (1.0 g, 0.00192 mol) with

phenyl hydrazine (0.4186 g, 0.003874 mol) under the similar conditions described

above for 3.124.

2

3 4

5

1

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

NN HX

HM

HA

O CH2 (CH2)3 CH2 O NNHX

HA

HM

3.127

3.127: Yellow solid; Yield 73%; m.p. 125-127oC. UV-Vis (MeOH) λmax(nm): 356,

240; IR (KBr) cm-1 2946, 2830 (methylene C-H), 1598 (C=N); 1H-NMR (400 MHz,

CDCl3): δ 7.72 (4H, d, Jo=7.8 Hz, H-2’’, 6’’), 7.37 (4H, dd, Jp,o=1.1, 8.8 Hz, H-2’’’,

6’’’), 7.30 (6H, m, H-3’’, 4’’, 5’’), 7.20 (6H, m, H-3’, 4’, 5’), 7.11 (4H, m, H-2’, 6’),

6.85 (4H, dd, Jp,o=1.1, 8.8 Hz, H-3’’’, 5’’’), 5.22 (2H, dd, JXA=7.1 Hz, JXM=11.1 Hz,

HX), 3.95 (4H, t, Jvic=6.3 Hz, OCH2CH2CH2), 3.80 (2H, dd, JMX=11.1 Hz,

JMA=16.2 Hz, HM), 3.11 (2H, dd, JAX=7.1 Hz, JAM=16.2 Hz, HA), 1.82 (4H, quintet,

Jvic=6.3 Hz, OCH2CH2CH2), 1.64 (2H, quintet, Jvic=6.3 Hz, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 158.33 (C-3), 146.45 (C-4’’’), 144.60 (C-1’), 134.21

(C-1’’’), 132.02 (C-2’’, 6’’), 127.46 (C-3’’, 5’’), 125.03 (C-1’’), 123.60 (C-2’’’, 6’’’),

123.42 (C-3’, 5’), 120.91 (C-4’’), 119.21 (C-4’), 114.40 (C-2’, 6’), 111.29 (C-3’’’,

Page 126: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

254

5’’’), 67.39 (C-5), 64.22 (OCH2CH2CH2), 41.62 (C-4), 25.76 (OCH2CH2CH2), 20.76

(OCH2CH2CH2); MS(ESI): m/z 696 (M, 41%), 553 (22%), 525 (25%), 509 (13%),

465 (100%), 388 (7%), 381 (40%), 377 (89%), 341 (98%), 326 (66%), 289 (50%),

265 (71%). Anal. Calc. for C47O2N4H44: Calc. C, 81.03 %; H, 6.32 %; N, 8.04 %;

Found: C, 81.20 %; H, 6.26 %; N, 8.00 %.

Synthesis of 1,6-bis(4-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-

yl)phenoxy)hexane 3.128

The compound 3.128 was prepared from the reaction of 3.120 (1.0 g, 0.00188 mol)

with phenyl hydrazine (0.4074 g, 0.003773 mol) under the same conditions as used

earlier for 3.124.

2

3 4

5

1

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

NN HX

HM

HA

O CH2 (CH2)4 CH2 O NNHX

HA

HM

3.128

3.128: Brown solid; Yield 60%; m.p.: 160-162oC. UV-Vis (MeOH) λmax(nm): 357,

238; IR (KBr) cm-1 2932, 2846 (methylene C-H), 1588 (C=N); 1H-NMR (400 MHz,

CDCl3): δ 7.64 (4H, dd, Jp,o=1.2, 8.6 Hz, H-2’’, 6’’), 7.32 (4H, m, H-3’’, 5’’), 7.20

(2H, m, H-4’’), 7.14 (8H, m, H-2’, 3’, 5’, 6’), 7.00 (4H, dt, Jp,o=1.1, 8.4 Hz, H-2’’’,

6’’’), 6.78 (4H, dt, Jp,o=1.1, 8.4 Hz, H-3’’’, 5’’’), 6.67 (2H, td, Jm,o=2.4, 4.8 Hz,

H-4’), 5.15 (2H, dd, JXA=7.2 Hz, JXM=12.2 Hz, HX), 3.84 (4H, t, Jvic=6.4 Hz,

OCH2CH2CH2), 3.73 (2H, dd, JMX=12.2 Hz, JMA=17.1 Hz, HM), 3.04 (2H, dd,

JAX=7.2 Hz, JAM=17.1 Hz, HA), 1.70 (4H, quintet, Jvic=6.1 Hz, OCH2CH2CH2), 1.45

(4H, m, OCH2CH2CH2); 13C-NMR (100 MHz, CDCl3): 158.10 (C-3), 146.51 (C-4’’’),

144.70 (C-1’), 134.51 (C-1’’’), 130.05 (C-2’’, 6’’), 128.66 (C-3’’, 5’’), 127.03

(C-1’’), 125.91 (C-4’’), 125.70 (C-2’’’, 6’’’), 125.44 (C-3’, 5’), 119.01 (C-4’), 114.44

(C-2’, 6’), 113.39 (C-3’’’, 5’’’), 67.41 (C-5), 64.00 (OCH2CH2CH2), 43.62 (C-4),

29.09 (OCH2CH2CH2), 26.53 (OCH2CH2CH2); MS(ESI): m/z 733 (M+Na, 93%), 535

(90%), 491 (28%), 448 (100%), 447 (89%), 441 (38%), 437 (43%), 410 (59%), 409

(19%), 382 (73%), 381 (7%), 359 (25%). Anal. Calc. for C48O2N4H46: Calc.

C, 81.12 %; H, 6.47 %; N, 7.88 %; Found: C, 81.38 %; H, 6.41 %; N, 7.93 %.

Page 127: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

255

Synthesis of 1,8-bis(4-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl)phenoxy)octane

3.129

The compound 3.129 was obtained from the reaction of 3.121 (1.0 g, 0.00178 mol)

with phenyl hydrazine (0.387 g, 0.003584 mol) under similar conditions as described

above for 3.124.

2

3 4

5

1

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

NN HX

HM

HA

O CH2 (CH2)6 CH2 O NNHX

HA

HM

3.129

3.129: Brown solid; Yield 67%; m.p.: 175-177oC. UV-Vis (MeOH) λmax(nm): 370,

243; IR (KBr) cm-1 2925, 2852 (methylene C-H), 1596 (C=N); 1H-NMR (400 MHz,

CDCl3): δ 7.62 (4H, dd, Jp, o=1.0, 8.7 Hz, H-2’’, 6’’), 7.32 (4H, m, H-3’’, 5’’), 7.20

(2H, m, H-4’’), 7.10 (8H, m, H-2’, 3’, 5’, 6’), 7.02 (4H, dt, Jp,o=1.0, 8.4 Hz, H-2’’’,

6’’’), 6.76 (4H, dt, Jp,o=1.0, 8.4 Hz, H-3’’’, 5’’’), 6.68 (2H, td, Jm,o=2.6, 4.8 Hz, H-4’),

5.12 (2H, dd, JXA=7.2 Hz, JXM=12.3 Hz, HX), 3.81 (4H, t, Jvic=6.4 Hz,

OCH2CH2CH2CH2), 3.70 (2H, dd, JMX=12.3 Hz, JMA=17.0 Hz, HM), 3.02 (2H, dd,

JAX=7.2 Hz, JAM=17.0 Hz, HA), 1.66 (4H, quintet, Jvic=6.0 Hz, OCH2CH2CH2CH2),

1.35 (4H, m, OCH2CH2CH2CH2), 1.28 (4H, m, OCH2CH2CH2CH2); 13C-NMR

(100 MHz, CDCl3): δ 158.41 (C-3), 146.74 (C-4’’’), 144.36 (C-1’), 134.46 (C-1’’’),

132.85 (C-2’’, 6’’), 129.97 (C-1’’), 128.85 (C-3’’, 5’’), 125.84 (C-3’, 5’), 125.73

(C-4’’), 125.35 (C-2’’’, 6’’’), 119.04 (C-4’), 114.66 (C-2’, 6’), 113.43 (C-3’’’, 5’’’),

67.95 (C-5), 64.34 (OCH2CH2CH2CH2), 43.65 (C-4), 29.31 (OCH2CH2CH2CH2),

29.26 (OCH2CH2CH2CH2), 26.01 (OCH2CH2CH2CH2); MS(ESI): m/z 738 (M, 45%),

563 (21%), 519 (100%), 486 (33%), 476 (9%), 475 (12%), 469 (63%), 465 (50%),

438 (71%), 410 (84%), 409 (18%). Anal. Calc. for C50O2N4H50: Calc. C, 81.21 %;

H, 6.62 %; N, 7.73 %; Found: C, 81.15 %; H, 6.58 %; N, 7.68 %.

Synthesis of 1,10-bis(4-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl) phenoxy)

decane 3.130

The compound 3.130 was synthesized by reacting 3.122 (1.0 g, 0.0017064 mol) with

phenyl hydrazine (0.3686 g, 0.003412 mol) under the similar conditions as given

above for 3.124.

Page 128: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

256

2

3 4

5

1

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

NN HX

HM

HA

O CH2 (CH2)8 CH2 O NNHX

HA

HM

3.130

3.130: Brown solid; Yield 62%; m.p.: 240-242oC. UV-Vis (MeOH) λmax(nm): 362,

247; IR (KBr) cm-1 2925, 2854 (methylene C-H), 1602 (C=N); 1H-NMR (400 MHz,

CDCl3): δ 7.60 (4H, dd, Jp,o=1.0, 8.7 Hz, H-2’’, 6’’), 7.29 (4H, m, H-3’’, 5’’), 7.21

(2H, m, H-4’’), 7.15 (8H, m, H-2’, 3’, 5’, 6’), 7.02 (4H, dt, Jp,o=1.0, 8.9 Hz, H-2’’’,

6’’’), 6.75 (4H, dt, Jp,o=1.0, 8.9 Hz, H-3’’’, 5’’’), 6.63 (2H, td, Jm,o=2.6, 4.9 Hz, H-4’),

4.88 (2H, dd, JXA=7.2 Hz, JXM=12.0 Hz, HX), 3.84 (4H, t, Jvic=6.2 Hz,

OCH2CH2CH2CH2CH2), 3.70 (2H, dd, JMX=12.0 Hz, JMA=17.2 Hz, HM), 3.30

(2H, dd, JAX=7.2 Hz, JAM=17.2 Hz, HA), 1.67 (4H, quintet, Jvic=6.4 Hz,

OCH2CH2CH2CH2CH2), 1.36 (4H, m, OCH2CH2CH2CH2CH2), 1.24 (4H, m,

OCH2CH2CH2CH2CH2), 1.10 (4H, quintet, Jvic=6.3 Hz, OCH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 158.18 (C-3), 146.30 (C-4’’’), 143.32 (C-1’), 134.24

(C-1’’’), 133.63 (C-2’’, 6’’), 129.63 (C-1’’), 127.96 (C-3’’, 5’’), 125.55 (C-3’, 5’),

125.47 (C-4’’), 125.23 (C-2’’’, 6’’’), 119.01 (C-4’), 114.38 (C-2’, 6’), 113.22 (C-3’’’,

5’’’), 67.81 (OCH2CH2CH2CH2CH2), 67.33 (C-5), 43.45 (C-4), 29.22

(OCH2CH2CH2CH2CH2), 29.06 (OCH2CH2CH2CH2CH2), 26.04

(OCH2CH2CH2CH2CH2), 19.11 (OCH2CH2CH2CH2CH2); MS(ESI): m/z 767 (M+1,

51%), 591 (100%), 547 (79%), 504 (44%), 503 (40%), 497 (21%), 493 (84%), 466

(38%), 465 (23%), 438 (30%), 437 (21%), 415 (9%). Anal. Calc. for C52O2N4H54:

Calc. C, 81.30 %; H, 6.77 %; N, 7.58 %; Found: C, 81.42 %; H, 6.82 %; N, 7.63 %.

Synthesis of 1,12-bis(4-(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl)phenoxy)

dodecane 3.131

The compound 3.131 was synthesized by reacting 3.123 (1.0 g, 0.00167 mol) with

phenyl hydrazine (0.3482 g, 0.003387 mol) under the similar conditions as described

above for 3.124.

Page 129: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

257

2

3 4

5

1

1''

2''3''

4''

5''6''

1'''

2''' 3'''4'''

5'''6'''1'2 '

3'4'

5'

6'

NN HX

HM

HA

O CH2 (CH2)10 CH2 O NNHX

HA

HM

3.131

3.131: Brown solid; Yield 60%; m.p.: 150-152oC. UV-Vis (MeOH) λmax(nm): 359,

243; IR (KBr) cm-1 2920, 2850 (methylene C-H), 1603 (C=N); 1H-NMR (400 MHz,

CDCl3): δ 7.62 (4H, dd, Jp,o=1.0, 8.7 Hz, H-2’’, 6’’), 7.25 (4H, m, H-3’’, 5’’), 7.19

(2H, m, H-4’’), 7.12 (8H, m, H-2’, 3’, 5’, 6’), 7.00 (4H, dt, Jp,o=1.0, 8.9 Hz, H-2’’’,

6’’’), 6.72 (4H, dt, Jp,o=1.0, 8.9 Hz, H-3’’’, 5’’’), 6.61 (2H, td, Jm,o=2.6, 4.9 Hz,

H-4’), 4.85 (2H, dd, JXA=7.2 Hz, JXM=12.0 Hz, HX), 3.80 (4H, t, Jvic=6.2 Hz,

OCH2CH2CH2CH2CH2CH2), 3.72 (2H, dd, JMX=12.0 Hz, JMA=17.0 Hz, HM), 3.28

(2H, dd, JAX=7.2 Hz, JAM=17.0 Hz, HA), 1.63 (4H, quintet, Jvic=6.4 Hz,

OCH2CH2CH2CH2CH2CH2), 1.32 (4H, m, OCH2CH2CH2CH2CH2CH2), 1.20 (4H, m,

OCH2CH2CH2CH2CH2CH2), 1.12 (8H, quintet, Jvic=6.3 Hz,

OCH2CH2CH2CH2CH2CH2); 13C-NMR (100 MHz, CDCl3): δ 158.15 (C-3), 146.33

(C-4’’’), 143.30 (C-1’), 134.22 (C-1’’’), 133.60 (C-2’’, 6’’), 129.61 (C-1’’), 127.94

(C-3’’, 5’’), 125.50 (C-3’, 5’), 125.42 (C-4’’), 125.20 (C-2’’’, 6’’’), 119.00 (C-4’),

114.34 (C-2’, 6’), 113.20 (C-3’’’, 5’’’), 67.80 (OCH2CH2CH2CH2CH2CH2), 67.30

(C-5), 43.42 (C-4), 29.20 (OCH2CH2CH2CH2CH2CH2), 29.02

(OCH2CH2CH2CH2CH2CH2), 26.08 (OCH2CH2CH2CH2CH2CH2), 24.00

(OCH2CH2CH2CH2CH2CH2), 19.10 (OCH2CH2CH2CH2CH2CH2); MS(ESI): m/z 817

(M+Na, 32%), 619 (9%), 575 (14%), 532 (34%), 531 (100%), 525 (21%), 521 (29%),

493 (44%), 465 (17%), 443 (38%). Anal. Calc. for C54O2N4H58: Calc. C, 78.58 %;

H, 6.80 %; N, 7.05 %; Found: C, 78.42 %; H, 6.83 %; N, 7.08 %.

Page 130: 1. Title Pages - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13579/10/10_chapter 3.… · moieties together through the alkyl chains of varying lengths. It is evident from

258

References

1. Srinivas, A.; Nagaraj, A. and Reddy, C. H. J. Het. Chem. 2008, 45, 1121.

2. Padmavathi, V.; Reddy, K. V.; Padmaja, A. and Reddy, D. B. Phosphorous, Sulfur

and Silicon 2003, 178, 171.

3. Mazzei, M.; Nieddu, E.; Melloni, E. and Minafra, R. Farmaco II 2003, 58, 121.

4. Modzelewska, A.; Pettit, C.; Achanta, G.; Davidson, N. E.; Huang, P. and Khan, S.

R. Bioorg. Med. Chem. 2006, 14, 3491.

5. Padmavathi, V.; Mohan, A. V. N.; Mahesh, K. and Padmaja, A. Chem. Pharm.

Bull. 2008, 56(6), 815.

6. Ram, V. J.; Saxena, A. S.; Srivastava, S. and Chandra, S. Bioorg. Med. Chem. Lett.

2000, 10, 2159.

7. Srivastava, S.; Joshi, S.; Singh, A. R.; Yadav, S.; Saxena, A. S.; Ram, V. J.;

Chandra, S. and Saxena, J. K. Med. Chem. Res. 2008, 17, 234.

8. Findik, E.; Dingil, A.; Karaman, I. and Ceylan, M. Syn. Commu. 2009, 39, 4362.

9. (a) Gennari, C. Comprehensive Organic Synthesis; Trost, B. M. and Fleming, I.

(Eds.), Pergamon, Oxford, UK, 1991, 2, 629; (b) Mahrwald, R. Modern Aldol

Reactions; Wiley-VCH, Weinheim, Germany, 2004, 1-2; (c) Mukaiyama, T.

Organic Reactions; Dauben W G (Ed.) J. Wiley & Sons: New York, NY, USA,

1982, 28, 203; (d) Healthcock, C. H. Comprehensive Organic Synthesis Trost, B.

M.; Fleming, I. (Eds.), Pergamon, Oxford, UK, 1991, 2, 133.

10. Baurer, A. W.; Kirby, M. M.; Sherris, J. C. and Turck, M. Am. J. Clin. Path. 1966,

45, 493.

11. Pandey, K. S. and Khan, N. Arch. Pharm. Chem. Life Sci. 2008, 341, 418.