1 sensitivity of coupled laser- accelerated ion beams into conventional structures p. antici, m....

28
1 Sensitivity of coupled Sensitivity of coupled laser-accelerated ion laser-accelerated ion beams into conventional beams into conventional structures structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle P. Antici, L. Lancia, M. Migliorati, A. Mostacci, L. Palumbo, L. Picardi, C. Ronsivalle

Upload: imogene-bryant

Post on 16-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

1

Sensitivity of coupled laser-Sensitivity of coupled laser-accelerated ion beams into accelerated ion beams into

conventional structuresconventional structures

P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

P. Antici, L. Lancia, M. Migliorati, A. Mostacci, L. Palumbo, L. Picardi, C. Ronsivalle

Page 2: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

2

Motivation and context

There are several conventional beamline facilities that are looking at laser-driven beamline projects

CALAAPOLLON

Page 3: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

3

Starting point: we consider „today“ measured parameters and try to make beamlines out of it

---- -- -- -- -- --

--

+ -+ -+ -+ -

Surface contaminant (H2O)

H+ ion

Bulk Target (Al)

e-

Laser:few J / ~1 ps (>10 TW)

I2 >1018 W cm-2 m2Up to 67 MeVEmittance 100 times better thanconventional acceleratorsDuration a few ps

TNSA 100 TW laser

Issue: Large energy spreadLarge beam divergence(Low energy)

---- -- -- -- -- --

--

---- -- -- -- -- --

--

+ -+ -+ -+ -

Surface contaminant (H2O)

H+ ionH+ ion

Bulk Target (Al)

e-e-

Laser:few J / ~1 ps (>10 TW)

I2 >1018 W cm-2 m2Up to 67 MeVEmittance 100 times better thanconventional acceleratorsDuration a few ps

TNSA 100 TW laser

Issue: Large energy spreadLarge beam divergence(Low energy)

Issue: Large energy spread Large beam divergence (Low energy)

Page 4: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

4

General scheme for beam capture and post-acceleration

Drift space (to exit target

chamber)

Conventional capturing section

(4 or 5 Quadrupoles)

Laser-generated proton source

Accelerating section (48 DTL cells)

Device to focus

and energy-select protons

t=350 fsI~3×1018 W.cm-2

=1 µmCPA1

diverging protonbeam

proton source foil

CPA2

focused protonbeam

t=350 fsI~3×1018 W.cm-2

=1 µmCPA1

diverging protonbeam

proton source foil

CPA2

focused protonbeam

Looking for the best compromise in terms of1) Highest (stable) energy 2) Highest dose 3) Lowest energy spread4) Smallest beam divergence5) Fully characterized source6) Feasible

Page 5: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

5

Starting point: we consider „today“ measured parameters and try to make beamlines out of it

- - - - - - - - - - - - - - --

+ -+ -+ -+ -

Surface contaminant (H2O)

H+ ion

Bulk Target (Al)

e-

Laser:few J / ~1 ps (>10 TW)

I2 >1018 W cm-2 m2Up to 67 MeVEmittance 100 times better than conventional acceleratorsDuration a few ps

TNSA 100 TW laser

Issue: Large energy spread Large beam divergence (Low energy)

Page 6: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

6

t=350 fsI~3×1019 W.cm-2 =1 µm

t=350 fsI~3×1018 W.cm-2 =1 µm

CPA1

diverging protonbeam

proton source foil

CPA2

focused protonbeam

T.Toncian et al; Science 16 Feb. (2006)Patent: 10 2005 012 059.8 PILZ (2005)

RCF and/orMagnetic Spectrometer

Focusing & energy selection: ultra-fast laser-triggered ion micro-lens

Page 7: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

7

Best results in terms of energy spread, number of protons and beam divergence

simulation with the micro-lens (0.2 MeV resolution)

simulation with the micro-lens(0.1 MeV resolution)

w/o the micro-lens with the

micro-lens

E/E ~ 3%

Page 8: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

8

We use parameters measured in the micro-lens output for injection in the conventional section

• 6.9 to 7.1 MeV after the cylinder 2 109 protons (320 pC)

• transverse source sizes (FWHM): x=y=80 µm with σx=σy=20 µm

• residual divergence:x’=y’=40 mrad with σx’= σy’=9 mrad

• un-normalized emittance 0.180 mm.mrad

0

0.005

0.01

0.015

6 7 8 9 10 11

mean proton energy (MeV)Simulations: Parmela / TStep

Page 9: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

9

Drift Tube Lin(ear)ac(celerator) designed with EM Field solver for particle accelerators

gap gap gap

We used typical state of the art capturing sections and accelerating structures DTLs (SNS)

48 cells, 0.17 MeV/cell, f=350 MHz

We use the drift-kick method (electric fields are designed with SUPERFISH, average = 3 MV/m)

Page 10: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

10

5

10

15

0 100 200 300 400 500 600 700 800

Propagation axis (cm)

Pro

ton

ener

gy (

MeV

)

0

2

4

6

x

y

Unn

orm

aliz

ed

emitt

ance

(m

m.m

rad)

(a)

(c)

0

0.4

0.8

x

y

Nor

mal

ized

em

ittan

ce

(mm

.mra

d)

(b)0

2

4

6

8

10

0 100 200 300 400 500 600 700 800

Propagation axis (cm)

Bu

nch

len

gth

(m

m)

Propagation axis (cm)

Tra

nsv

ers

e b

ea

m

size

(m

m)

0

2

4

6

8

10

12

14

XY

0 100 200 300 400 500 600 700 800sourceDriftspace

Focusingsection

Accelerating section(DTL Tank)

Parmela results without space-charge

Page 11: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

11

Space charge effects

1

10

100

0 0,2 0,4 0,6 0,8 1 1,2

Unnorm E XUnnorm E Y

Proton charge (mA)

0,1

1

10

0 0,2 0,4 0,6 0,8 1 1,2

Norm E XNorm E Y

Proton charge (mA)

1

10

100

0 0,2 0,4 0,6 0,8 1 1,2

Beam Size XBeam Size YBunch size

Proton charge (mA)

Average current for 350 MHz (all particules = 112 mA), SNS is 0.11 mA P. Antici et al., J. of Applied Physics, 104, 124901 (2008)

Page 12: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

12

SCDTL improves capturing and post-acceleration

• Short DTL tanks + side coupling cavities • Side coupling cavities on axis with very

small Permanent Magnet Quadrupole (PMQ) (3 cm long, 2 cm o.Ø, 6 mm i. Ø) for transverse focusing.

• Designed for medical applications• S-band (3 GHz) very versatile to develop

L. Picardi et al., "Struttura SCDTL", Patent n. RM95-A000564

SCDTL:

Page 13: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

13

SCDTL specification

FrequencyNumber of modulesNumber of tanks/moduleNumber of cells/tankInter-tank distance

Bore radius

Total lengthAverage electric field, E0

Acc. electric field, E0TSynchronous phase,s

Maximum PMQ gradientRF power for the structure

3 GHz2 1144.5 in module #1, 4.5 -3.5 in module #22 mm in module #1, 2.5 mm in the module #22.59 m11.3 MV/mbetween 7 and 7.75 MV/m-30°220 T/m<1.5 MW

Page 14: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

14

SolenoidLength 70 mm, diameter 44 mm

Laser-generated

proton source (with µlens)

SCDTL2590 mm17 mm 117 mm

Lattice structure using Side Coupled DTLs

Total lengthAverage electric fieldAcc. electric field, E0TMax PMQ gradient

2.59 m11.3 MV/m

7 - 7.75 MV/m220 T/m

C. Ronsivalle et al., Proceedings of IPAC’10, Kyoto, Japan

State of the art PHELIX Solenoid (8.6 T)

(PHELIX) (optimized)

K. Harres et al., Phys. Plasmas 17, 23107 (2010)

Page 15: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

15

Output of SCDTL

Beam Envelope Beam Energy

Shorter DTL

Page 16: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

16

Beam dynamics with space charge yield high output current

0

5

10

15

20

25

30

35

40

0 25 50 100 150 200 300 400 600 800 960Input current (mA)

mA

Total output current

Useful output current

Total output current (red) and useful output current (i.e. 0.6 MeV around maximum)(blue)

versus the input current

TSTEP, 3 105 macroparticles

Transmission (red points), output norm. emittance (blue points) versus the input current

Useful output current=13 mA, ~36 % of total

Page 17: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

17

Spectrum becomes even more monoenergetic using the SCDTL

0

0.2

0.4

0.6

0.8

1

6 7 8 9 10 11 12 13 14 15 16Energy (MeV)

drift length=10.4 cmdrift length=20.4 cm

Normalized energy spectrum for 100 mA input current and two different lengths of the leading drift.

P. Antici et al., PoP 18, 073103 (2011)We have a laser-driven proton beamline !

Page 18: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

18

Sensitivity study (typical for a beamline)

Case Input x (µm)

Input x’(mrad)

Input rms unnormalized emittance (mm-mrad)

Total output current (mA)

Useful output current (mA)

Output rms normalized emittance(Exn*Eyn)0.5(mm-mrad)

1234

204020 40

9 9 18 18

0.18 0.36 0.36 0.72

3764 30 47

13261020

0.2640.1970.2100.209

Study at the proton source

Page 19: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

19

P. Antici et al., J. Plasma Phys (in print)

Sensitivity study (typical for a beamline)

Study with the lattice structure

Combined (95 % acceptance)

50 runs, values uniformly distributed ±|Error amplitude|

Page 20: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

20

Thank you for your attention

Page 21: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

21

SolenoidLength 70 mm, diameter 44 mm

Laser-generated

proton source(with µlens)

SCDTL2590 mm17 mm 117 mm

State of the art PHELIX Solenoid (8.6 T)

(PHELIX) (optimized)

Page 22: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

22

Conclusions

• It is possible to couple laser-generated protons to a

high frequency LINAC in a compact acceleration

hybrid scheme.

• Conventional accelerator community could provide necessary

know-how and techniques to reach laser-driven beamlines

• A 10 Hz laser repetition rate corresponds to an

average proton current of 43-86 pA that could be

used to perform radiobiology experiments.

• A current between 13 and 26 mA can be captured

and accelerated up to 15.5 MeV in ~3 m.

Page 23: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

23

Beam shaping with conventional accelerators becomes more fashionable

M. Nishiuchi et al Phys Rev STAB 13 071304 (2010), 5% spread, 10%

efficiency

K. Harres et al J. Phys Conf. Series 244 022036 (2010)

F. Nürnberg et al., PAC 2009

A. Almomani et al., Proceeding IPAC (2010)

Focusing with Solenoids

Post-acc with modified DTL

Transport with 1 Hz

V. Bagnoud et al., APB (2009)

8 T solenoid

Page 24: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

24

Improvements using beam shaping with conventional accelerator devices

Injection studied using RF-cavity

S. Nakamura et al. Jap Jour. Appl. Phys. 46 L717 (2007)

M. Schollmeier et al., PRL 101, 055004 (2008)

Focalisation using Quadrupoles

Logan, Caparasso, Roth, Cowan, Ruhlet al. (LBNL-LLNL-GSI-GA)Logan, Caparasso, Roth, Cowan, Ruhlet al. (LBNL-LLNL-GSI-GA)

Logan, Caparasso, Roth, Cowan, Ruhl et al. (LBNL-LLNL-GSI-GA) (2000)

Combined accelerator

5 % spread

Page 25: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

25

The micro-lens offers (tunable) energy selection

Cylinder

Page 26: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

26

CPA 2

Debye sheath of hot electrons

(A) initial stage

Zone of quasi-neutral expansion

(B) expansionstage

Focusing fields are Debye sheath fields driven by the hot electrons

Page 27: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

27

Efficient reduction of the beam divergence (tunable)

without micro-lenswith micro-lens

numerical simulations

Pro

ton

beam

FW

HM

(m

m)

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70

Propagation distance (cm)

7.5 MeV with > 5 A collimated

Page 28: 1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle

28

Phase space in the structure

SCDTL Input SCDTL OutputLaser source

Δ E

nerg

y