$1 per w photo voltaic systems

Upload: ahmadzack

Post on 08-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    1/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 1|P a g e

    $1/WPhotovoltaicSystemsWhitePapertoExplore

    AGrandChallengeforElectricityfromSolar

    DISCLAIMER: Thepurpose of thispaper is tofacilitate discussion amongparticipants in the

    $1/WSystems:AGrandChallengeforElectricityfromSolarWorkshop,tobeheldonAugust

    1011,2010inWashington,DC. Thispaperdoesnotrepresent,reflect,orendorseanexisting,

    planned, orproposedpolicy of the U.S. Government, including but not limited to the U.S.

    Department of Energy. The U.S. Department of Energy does not guarantee the accuracy,

    relevance,timeliness,orcompletenessofinformationherein,anddoesnotendorseanysources

    usedtoobtainthisinformation. Assuch,thispaperisnotsubjecttotheInformationQualityAct

    andimplementingregulationsandguidelines.

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    2/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 2|P a g e

    I. IntroductionAkeyplankoftheObamaAdministrationsEnergyPolicyistoputthecountryonapathtoreduceGreen

    HouseGas(GHG)Emissionsby80%by2050. Solarenergytechnologyhasthepotentialtoplayamajor

    roleinachievingthisgoalbuttodatehasbeenlimitedbyhighcosts.

    TheU.S.DepartmentofEnergy(DOE)estimatesthata$1/wattinstalledphotovoltaicsolarenergy

    systemequivalentto56cents/kWhwouldmakesolarwithoutadditionalsubsidiescompetitivewith

    thewholesalerateofelectricity,nearlyeverywhereintheUS. Asolarenergysystempricedat$1/Watt

    wouldunlockthepotentialofthesuntoprovidelowcost,cleanlimitlesselectricitytotheU.S.andthe

    restoftheworld,atthesamecostofcoalbasedgeneration. Atthisprice,solargeneratedelectricity

    combinedwithaffordablestoragetechnologiescouldthenmeetallconventionalelectricityenergy

    needs,providingsolarenergypotentially24hoursaday. Meetingthischallengewouldresultina

    revolutionintheworldsgenerationanduseofenergy.

    Withthecurrentrateofprogress,thecostofautilitysizedphotovoltaic(PV)systemislikelytoreach

    $2.20/wattby2016,and$2.50/wattand$3.50/watt,forcommercialscaleandresidentialscalesystems

    respectively. Reductionssignificantlybeyondthatinthenextfourtoeightyearsareunlikelyabsent

    dramaticallynewideasandsignificantinvestment.

    PreliminaryDOEanalysisonrequiredcomponentcoststoreacha$1/wattinstalledPVsystemimplies

    thefollowingbreakdown: 50cents/wattforthemodule,40cents/wattforthebalanceofsystemand

    installation,and10cents/wattforthepowerelectronics. Privateinvestmentisunlikelytobringabout

    thetypesofambitiousadvancesrequiredtomeetthesegoalsasthecapitalmarkethasfocusedfunding

    onshortertermcommercializationgoalsandinternationalmarketswithattractivegovernmentsupport

    andhighelectricityrates.

    ThiswhitepaperwasdevelopedbyDOEstafftostimulateadialogueabouttechnologypathwaysto

    achieve$1/watt.Thepapercontainsinitialideasonhowtoachievesignificantreductioninthecostof

    modules,powerelectronicsandbalanceofsystem/installation. Forexample,analysissuggeststhat

    moduleswith25%efficiency,powerelectronicswithdoubletheratedlifetime,andsimplerandquicker

    PVinstallationmethodsareallrequired.

    II. TheTechnicalChallengeInstalledPVarraypricesforutilityscalesystemswere$8/wattin2004andbidsbelow$3.50/wattare

    expectedbytheendof2010ifnotsooner. Residentialandcommercialpricesareover$6/wattsince

    theyaremuchsmallerinscaleandincurmuchlargerinstallationpricesandretailmarkups. With

    currentmarkettrendsandcostreductionopportunities,utilityscalesystemcostsareexpectedtoreach

    $2.20/wattby2016ifnonewprogramislaunched. The$1/wattgoalwillrequireamajorchangeinthe

    rateofinnovation. (SeeTable1.)

    Reachingthegoalwillrequiredramaticimprovementsinatleastthreeareas(eachisdiscussedin

    greaterdetailinAppendicesEandF):

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    3/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 3|P a g e

    InstalledSystemPrice($/W)

    2010 2016 $1/Watt

    Module 1.70$ 1.05$ 0.50$

    BOS/Installation 1.48$ 0.97$ 0.40$

    PowerElectronics 0.22$ 0.18$ 0.10$

    3.40$ 2.20$ 1.00$

    CostofEnergy($/kwh)

    2010 2016 $1/Watt

    Module 0.063$ 0.037$ 0.018$

    BOS/Installation 0.055$ 0.034$ 0.014$

    PowerElectronics 0.008$ 0.006$ 0.004$

    O&M 0.013$ 0.009$ 0.003$

    0.139$ 0.086$ 0.038$

    Table1:Potentialutilityscalesystemcostbreakdowntoreach$1/watt

    (notecapacityfactorsassumedare26%in2010and28%in2016)

    Arrays: Higharrayefficiencyisessentialbothforreducingarraycostsandcuttingthearea(andthuscost)ofinstalledarrays. Fortunately,therearetechnologypathwaysthatmightachieve

    thisgoal. Itisexpected,however,thatthemostpromisingislikelytobeonethatdoesnot

    requireglassandcanbedepositedinexpensivelyonathinmetalorpolymersubstrate.

    Reachingthegoalwillrequirefindingwaysto(a)designmanufacturablecellscapableof

    achievingefficiencies

    demonstratedinlaboratories

    and(b)makinguseofthekinds

    ofrolltorollproduction

    devicesorotherapproaches

    thatgreatlysimplify

    manufacturingprocesses.

    PowerElectronics:ConvertingtheDCoutputof

    arraysintohighqualityACat

    usefulvoltagesrequires

    equipmentthataddsbothto

    initialinstalledcostandto

    maintenancecostssince

    currentdesignsoftenfailafter

    10years. Buildingonongoing

    powerelectronicsworkatDOE,

    atleasttwopromising

    approachescouldbepursued:

    (a)radicalredesignofcurrentlargeinverterunitsanduseofinnovativecomponents,and(b)

    designingmodularinvertersthatcouldbecheaplymassproducedandattachedtoeachmodule.

    Installation:Thecostofmountingandwiringarraysandtheassociatedequipmentisabouthalfthecostoftodayssystems. Twoapproacheswillbepursuedtoachievethedramaticcost

    reductionsrequired:(a)installingarraysinfieldsonlightweightframeswithequipmentthathas

    thesophisticationofagriculturalcombinescapableofcoveringhundredsofacresaday,and(b)

    findingwaysofbuildingPVarraysintobuildingcomponentssuchasroofingsothatthe

    incrementalinstallationcostcouldbeverylow. Arraysthatfollowthesunaresomewhatmore

    expensivethaninstallationsthatdontmovebutcanproducemoreelectricityperyearperwatt

    ofinstalledPVandcanproducemoreenergylateinthedaywhenmanyutilitiesneedmost

    power. Trackingisusuallyalsoneededforunitsthatconcentratesunlightonhighefficiency

    cells. Concentratingsystemsaddtocostsbutcanreducetheareaandcostofthephotovoltaic

    devices.

    Whileeachoftheseareascouldbepursuedasaseparatetask,thesuccessoftheprojectdependson

    ensuringthateachoftheprogramsunderstandsthechallengesfacedbyotherareas. Arraysshould,for

    example,bemassproducedforeasyinstallation.

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    4/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 4|P a g e

    III. OtherRequirementsAnumberofotherobjectiveswillneedtobemetinordertomakea$1/wattsystemcommercially

    viableandscalabletomeetlongtermenergyneeds. Inordertorepresentasignificantadvancement

    fromexistingindustrytrendsandmakeasignificantimpactonAdministrationGreenhouseemission

    goals,the$1/wattgoalshouldbedemonstratedby2017. Thetargetcouldbedemonstratedbyfull

    systemsorincrementaltoexistingsystemcosts,suchasforPVsystemsintegratedwithinnewroofing

    systems. Toensurelargevolumescalability,the$1/wattsystemshouldbebasedonearthabundant

    materialsandcapableoffullrecycling. Finally,the$1/wattsystemshouldmeetallapplicablesafetyand

    environmentalstandards.

    $1/wattinstalledby2017:DefiningtheObjective

    By2017: Demonstrationofallkeycomponentsandinstallationmethodsinsystemsatleast5MWinsizeandinitialproductionordersforequipmentcapableofdelivering$1/watt

    installedsystemsin2017

    Includesallcomponents,equipmentandinstallationprocessestoproducegridcompatibleelectricity

    Targetcouldbemetwithsystemsinstalledonthegroundoronbuildings Earthabundantmaterials Recyclablecomponents Meetsallapplicablesafetyandenvironmentalstandards

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    5/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 5|P a g e

    Appendices

    AppendixA: PotentialImpactsof$1/watttoU.S.ElectricitySystem

    AppendixB: BusinessasusualandthechallengeoftheUSelectricitymarket

    AppendixC: CostGoalsoftheCurrentDOEprogramand$1/WGoalforutilityscalesystems

    AppendixD: ManagementAlternatives

    AppendixE: PotentialPathwaystoCostReduction

    AppendixF: ChallengesforCostReductioninArrayProduction

    AppendixG: PreliminaryanalysisofEfficiency,Cost,andReliabilityBarriers

    AppendixH: TheneedforGovernmentfunding

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    6/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 6|P a g e

    AppendixA:PotentialImpactsof$1/watttoU.S.ElectricitySystem

    PreliminaryNRELanalysisconductedwithReEDS1andSolarDS2suggeststhatifthe$1/wattgoalis

    reachedby20203,morethan100GWofPVcouldbeinstalledcumulatively,representingabout5%of

    thenationselectricgenerationcapacity.4 By2030,installedcapacitycouldgrowto389GW

    representing14%ofU.S. generationcapacity.

    Ifthesecapacityadditionsarerealized,utilitysystemswillneedtoadjusttheirgenerationmix

    andoperationstoadapttolargeramountsofsolarenergygeneration. Theanalysisindicates

    thatif14%ofautilitysenergycomesfromsolar,theseadjustmentscouldberelativelysmall,

    onlyminimalamountsofnewtransmissionandstoragewouldberequired. Thetotalamount

    ofnaturalgaspoweredintermittentandpeakingcapacitywouldfall,butahigherfractionof

    thisequipmentwouldneedtobemaintainedas"spinningreserve. Inexpensivestoragewould

    cutoverallcosts.AttheselevelsofPVadoption,consumerpricesofelectricitycouldbe2%lowerin2030ifthe

    $1/wattgoalismet. Further,by2030CO2emissionsfromthepowersectorcouldbereduced

    by

    approximately

    213

    MMT

    CO2

    annually

    and

    the

    growth

    of

    CO2

    emissions

    from

    the

    sector

    couldbecutinhalfby2030.

    1NRELsRenewableEnergyDeploymentSystem(ReEDS)isalinearcapacityexpansionmodelthatoptimizestheregional

    expansionofelectricgenerationandtransmissioncapacitywithin356regionsofrenewableresourcedatawhilespecifically

    addressingthevariablenatureofsomerenewableresources.http://www.nrel.gov/analysis/reeds/2NRELsSolarDeploymentSystem(SolarDS)isamarketpenetrationmodelforcommercialandresidentialrooftopPV,which

    takesasinputregionalelectricityprices,financialincentives,regionalsolarresourcequality,androoftopavailability. Denholm,

    P.,Drury,E.,andMargolis,R.,2009, TheSolarDeploymentSystem(SolarDS)Model:DocumentationandSampleResults,

    NREL/TP61245832.3TheReferenceCaseusespreliminarytechnologycostandperformanceassumptionsbeingdevelopedforanother EEREstudy

    andassumesa30%ITCforsolarthrough2016duetoARRAandthentheITCexpiresafter2016thathasnotyetbeenpeer

    reviewed. The$1/Watt2020CaseusesthesametechnologyandpolicyassumptionsastheReferenceCase,butthecostofPV

    rampsdownto$1/Wattby2020forutilityscaleandcommercialapplications.Forresidentialapplications,PVisavailablein

    2020at$1/Wattfornewconstructionwithroofresurfacingmodeledbya5%houserebuildrateandretrofitsata40%cost

    penalty(or$1.40/Watt).Forbothcases,ReEDSandSolarDSwereruntogetherinaniterativefashion. Thefossilandnuclear

    numbersreflectpreliminaryestimatesbyanengineeringconsultingfirmandhavenotbeenreviewedbyDOE. Theyarebeing

    usedhereasplaceholdersonly,toallowtheexplorationofthepotentialimpactof$1/WinstalledPVscenariosforthisstudy.4Theseresultsarepreliminary,notpeerreviewedorvettedforcitationorquotation.Properstudyofthisissuewouldrequire

    additionalReEDS/SolarDSanalysistoprovideamorerobustunderstandingofthepotentialimpactofreachingthiscostgoalon

    theU.S.electricitysystem.

    2030Results ReferenceCase $1/WattnoITCpost2016

    %GenerationofPV 1% 14%

    CumulativeInstalled

    Capacity(GW)

    40GW 389GW,

    232GWUtilityscale,157GWDistributed

    NationalAverage

    ElectricityPrice

    10.45cents/kWh 10.23cents/kWh

    AnnualCO2emissions

    fromthePowerSector

    2,408MMTCO2 2,194MMTCO2

    Table2:Potentialim actontheU.S.electricit s stemin2030fromthede lo mentofa 1 WPVs stemb 2020

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    7/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 7|P a g e

    Figure1:GeographicDiversityofPVDeployment

    Figure1showsthatwiththe$1/Wattsystemssolarelectricitycouldbecostcompetitivewithother

    formsofgenerationinalmosteverystateinthecountryby2030.

    SummaryResultsfromReEDSandSolarDSCasesInstalled

    Capacity

    2010 2030 2050

    (GW) Reference $1/WCase Reference $1/WCase Reference $1/WCase

    SolarPV .3 .3 40 389 83 592

    Wind 35 35 49 38 118 70

    Storage 21 21 23 24 24 30

    NG 389 389 516 412 635 567

    Coal 308 308 302 303 355 301

    Nuclear 100 100 96 96 57 57Table3:InstalledCapacityinReferenceand$1/WattCases

    TheresultsfromtheReferencecaseandthe$1/WattcasearepresentedinTables3and4andarenot

    anofficialDOEperspectiveonthefuture,butpossibleoutcomesbasedononesetoftechnologycost

    andperformanceprojectionsandotheraspectsoftheReEDSandSolarDSmodels,withparametersas

    suppliedbyanexternalengineeringconsultingfirm,whichhavenotbeenpeerreviewednorreviewed

    byDOE. Thesevaluesfornuclear,fossil,andrenewabletechnologiesarebeingusedhereas

    placeholdersonly,toallowtheexplorationofthepotentialimpactof$1/WinstalledPVscenariosfor

    thisstudy.Marketpenetrationlevelsofdifferenttechnologiescanbeattributedtoanumberoffactors

    includingprojectionsoncostandperformance.

    Generation 2010 2030 2050

    (TWh) Reference $1/WCase Reference $1/WCase Reference $1/WCaseSolarPV 0.4 0.4 60.5 654 128 986

    Wind 115 115 170 129 427 250

    NG 767 767 1025 675 1313 1188

    Coal 1886 1886 2235 2138 2629 2129

    Nuclear 790 790 757 757 448 448Table4:ElectricityGenerationinReferenceand$1/WattCases

    >30

    20 30

    10 20

    5 101 5

    0.1 1

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    8/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 8|P a g e

    AppendixB: BusinessasusualandthechallengeoftheUSelectricitymarket

    Figure2belowhighlightsthecurrentstateoftheartforthetwoleadingphotovoltaictechnologies,

    waferbasedsiliconandthinfilmCdTe. ThecostsarebasedonsystemsinstalledinPhoenix,AZanddoes

    notincludefederal,state,orutilityincentives.

    Figure2:ComparisonofcurrentandprojectedSolarPVcosts(Phoenix,AZ)toUSwholesaleelectricityrates(wholesalerates

    ofleadingsolarenergyadoptedcountriesincludedforreferencetoUSratesonly)

    TheUSandothercountriesnationalaveragewholesaleelectricityratesarerepresentedbybandson

    Figure2(Source:EIA). Theindustryiscurrentlyfocusedonthosemarketswithhighelectricitypricesand

    highsubsidies. SincePVisalreadyattractiveinthoseregions,manufacturersarefocusedonservicing

    thoseopportunitiesthroughincrementalimprovementsthatincreasetheirprofitabilityandmarket

    share. Reaching$1/WisachallenginggoalthatismoreimportantfortheUSthansomeofthoseother

    countries. Projectionsforcostreductionsfortheleadingsiliconandcadmiumtelluridetechnologies

    suggeststhatutilityscalesystems,whilealreadyattractiveinotherregionsoftheworld,willnotbe

    broadlycompetitivewiththeUSaveragewholesalerateofelectricitywithoutsubsidiesby2016.6,7,8,9

    Thecostreductionsneededareunlikelytobeachievedwithtechnologiesnowinwidespread

    production. AnalysisshowningreaterdetailinAppendixFsuggeststhatcurrentcrystallinesiliconand

    cadmiumtelluridetechnologiesarereachingthelimitsofwhatcanbeachievedthroughincremental

    improvementofcurrentproductionmethods. Dramaticallynewideasarerequired.

    6AppendixC

    7AppendixE

    8AppendixF

    9FirstSolarAnalystInvestorMeeting,LasVegas,June24,2009

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    $0.25 $0.75 $1.25 $1.75 $2.25 $2.75

    LCOE(centsperkWh)

    NonModuleCosts($perWp)

    UnsubsidizedUtility

    Scale

    Solar

    PV

    Energy

    CostsMinimumSustainableModulePrice,MedianTechnologyEfficiency

    Phoeniz,AZ;FixedPower(20MW)GroundMount

    CdTeToday(2010),

    $0.98/Wp,10.8%

    CdTeProjected(2014),

    $0.68/Wp,14.4%

    cSiToday(2010),

    $1.70/Wp,

    14.4%

    cSiProjected(2016),

    $1.05/Wp,17.4%

    2015ProjectedUSUtility WholesaleElectricityPrice

    Ja an Wholesale Electrict Price

    GermanWholesaleElectricityPrice

    ItalyWholesaleElectricityPrice

    DollarperWattGoal

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    9/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 9|P a g e

    AppendixC: CostGoalsoftheCurrentDOEprogramand$1/WGoalforutilityscalesystems(Figure3

    &5)

    Figure3:CostGoalsoftheCurrentDOEProgram(2016)vs.$1/WGoal(2017)forcSiutilityscalesystems

    $8

    $1.70

    $1.05$0.50

    $0.22

    $0.18

    $0.10

    $1.48

    $0.97

    $0.40

    $

    $1

    $2

    $3

    $4

    $5

    $6

    $7

    $8

    $9

    2004 2010(Est.) 2016(CurrentGoal) 2017($1/WGoal)

    InstalledSystem

    Cost($/W)

    BOS/Installation

    Inverter

    PVModule

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    10/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 10|P a g e

    Table5:$1/WGoalofUtilityScaleSystemsbasedoncSi

    ComponentCost($/W)

    2010

    (Est.)

    2016

    (Current

    Goal)

    2017

    ($1/W

    Goal)

    PVModule 1.70$ 1.05$ 0.50$Semiconductor 0.54$

    RawMaterials(Sifeedstock,sawslurry,sawwire) 0.36$

    Utilities,Maintainence,Labor 0.04$

    Equipment,Tooling,Building,CostofCapital 0.06$

    Manufacturer'sMargin 0.08$

    Cell 0.45$

    RawMaterials(eg.metallization, SiNx,dopants,chemicals) 0.18$

    Utilities,Maintainence,Labor 0.04$

    Equipment,Tooling,Building,CostofCapital 0.04$

    Manufacturer'sMargin 0.20$

    Module 0.70$

    RawMaterials(eg.Glass,EVA,metalframe,jbox) 0.26$

    Utilities,Maintainence,Labor 0.01$

    Equipment,Tooling,Building,CostofCapital 0.01$

    Shipping 0.08$

    Manufacturer'sMargin 0.34$

    RetailMargin $

    Inverter 0.22$ 0.18$ 0.10$

    Magnetics 0.03$

    Manufacture 0.05$

    BoardandElectronics(Capacitors) 0.07$

    Enclosure 0.04$

    Power

    Electronics 0.03$

    BOS/Installation 1.48$ 0.97$ 0.40$

    MountingandRackingHardware 0.25$

    Wiring 0.14$

    Other 0.17$

    Permits 0.01$

    SystemDesign,Management,Marketing 0.15$

    InstallerOverheadandOther 0.19$

    InstallationLabor 0.38$

    Total 3.40$ 2.20$ 1.00$

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    11/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 11|P a g e

    AppendixD: ManagementAlternatives

    Severaldifferentresearchmodelsshouldbeconsidered. Theseinclude:

    1. SEMATECH: TheSEMATECHresearchconsortiumwasconceivedin1986outofaconcernthattheUnitedStateswasabouttolosetheentiresemiconductormanufacturingindustry

    totheJapanese. JointlyfundedbytheDefenseAdvancedResearchProjectsAgency

    (DARPA)andindustry,itreportedtoaboardwithonegovernmentmember. The

    consortiumwonacompetitivesolicitation. IthadaClass1cleanroomoperatingin32

    weeksandattractedthebestpeopleintheindustry. Itdevelopeddetailedroadmaps

    showingwhatneededtobedonetoproducenextgenerationCMOSsemiconductorsand

    focusedresearchonchallengesthecorporatemembersshared. Governmentfunding,and

    governmentboardmembership,endedin1995,andtheorganizationcontinuesasan

    independentorganization.

    a. Advantages: Theorganizationensuresthatthetopicschosenarecloselyalignedtotherealneedsofindustry. Itcouldoperateflexiblyandquicklywithoutfederalred

    tape.

    b. Disadvantages: Theorganizationwasabletoidentifyanumberofcriticalareas(suchasmanufacturingequipment)whichwereneededbyallmembersbutwere

    notpartofthebusinesseslinesofthememberswhichrevolvedaroundthedetails

    ofchipdesignnotmaterialsormanufacturingtechnology. Thismeantthatthey

    couldsharetheintellectualproperty. ConversationswithPV manufacturershave

    raisedconcernsthatthismodelmaybedifficulttoapplytothearrayindustrysince

    materialsandmanufacturingdetailsareatthecoreoftheirintellectualproperty.

    2. SkunkWorks: TheLockheedAdvancedDevelopmentProjects(akaSkunkWorks)puttogether

    a

    team

    that

    crafted

    some

    of

    the

    most

    amazing

    aircraft

    ever

    built

    including

    the

    U

    2andtheSR71anddiditinrecordtime. TheSkunkWorksteamdesignedandbuilta

    prototypeoftheXP80,oneofthefirstturbojets,inonly143daysandplayedamajorrolein

    theKoreanWar.

    a. Advantages: Allowsahighlycreativeteamtoaddresscomplexapplieddesignandfabricationproblemswithfewconstraints.

    b. Disadvantages: Thismodelmaynotworkwithoutanexclusiverelationshipwithanindividualcorporation. Italsoreliesonextraordinaryleadership. Thecreativityfor

    whichtheorganizationwasfamousbegantodissipatewhenleadershipchanged.

    TheinfamousF22aircraftwasdevelopedbythesameorganization.

    3. HUBs: HUBshavetheabilitytopulltogetheradiverseresearchteamandformtightallianceswithindustrypartnersensuringactivemovementofideasoutandproblemsin.

    a. Advantages: Modeliswellestablishedandcouldbesetupquicklyb. Disadvantages: TheHUBsarewelldesignedtoaddressarangeofindividual

    researchproblemsbutarenotmanagedaroundtightroadmapsaimedatmeeting

    hardprice/performancetargetsbyadatecertain. Itmightbepossibletochange

    this.

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    12/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 12|P a g e

    4. GeneralGroves: TheManhattanprojectsucceededbecauseofcreative,butveryhierarchical,management,ledbyLt.Gen.LeslieGroves. Someofthenationsmostcreative

    scientistswereallowedroomforcreativity,buttightlyfocusedonthepracticalproblemsat

    hand.

    a. Advantages: Withtherightmanagementitcanbuildcreativealliancesbetweenscientificresearchandthedesignofpracticaldevices.

    b. Disadvantages: Theprojectdidnotneedtodevelopcommercialproductsorconcernitselfwithintellectualpropertyorsimilarissues. Itwasabletoavoidmost

    ofthelimitationsthatcreatedelaysinfederalprocurementandhiring. Anditwas

    extraordinarilyexpensivesincethefederalgovernmentpickeduptheentirebill.

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    13/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 13|P a g e

    AppendixE: PotentialPathwaystoCostReduction

    Atoplevelanalysisoffirstestimatepotentialsystemandcomponentperformancerequirementsand

    characteristicsofa$1/WsystemissummarizedinTable6. Oneofthegreatestopportunitiesforcost

    reductionliesinmoduleandsystemefficiencyenhancements. Efficiencyadvancesreducenotonlythe

    PVmodulecostbutalsomuchoftheBalanceofSystems(BOS)andfixedsystemcosts. Forexample,if

    modulesweretwiceasefficient,withthesamelaborandmountinghardware,twicethepowercanbe

    obtained,

    thereby

    reducing

    the

    BOS

    cost.

    AnalysisofthemanufacturingandinstallationcostsofPVsystemsrevealsseveralpathwaystoachieve

    the50cents/wattmodulecosttargetthatisconsistentwitha$1/watttotalinstalledsystemcost. The

    primaryrequirementsarethatmoduleefficiencyneedstobe25%orgreaterandproductlifetimeneeds

    toexceed30years.10 MeaningfulBOScostreductionisnotpossiblewithoutraisingmoduleefficiency.

    Productlifetimeneedstobelongenoughtoamortizetheinstallationanddisposalcosts.11

    A. LowCostArraysThegoalistobuildanarrayatacostwhichmakesapriceof50centsperwattfeasible,whileachieving

    efficiency

    greater

    than

    25%

    and

    a

    lifetime

    of

    at

    least

    30

    years

    with

    minimal

    maintenance.

    The

    modules

    mustbebuiltattremendousvolumewhichrequiresthattheybebasedonearthabundantmaterial.

    Andtheymustberecyclable. Thelowcostsuggeststhattheyalmostcertainlywillnotusetraditional

    thickglassorsignificantamountsofpurifiedsiliconthatcontributesignificantlytotodaysarraycosts.

    10AppendixF

    11NonModuleCostSensitivitytoEfficiency,DOE$1/WWorkshopPhotovoltaic(PV)IndustryPrimer,July2010.

    Characteristic ValueorQualifier

    Module

    Efficiency >25%

    Substrate Lowercostandweightthanglass

    Reliability 30yearsorcanbereplacedwithminimumlabor

    Materials Earthabundant, nontoxicorestablished

    recyclingplan.

    BOS/Installation

    Labor Canbedonewithnonspecializedlabor

    Process Lightweight(easeofhandling,nospecial

    equipment)

    Assembly Snaptogethermechanicalandelectrical

    PowerElectronics

    Efficiency >95%,improvedmodulepeak

    powermanagement

    Reliability 30years

    Assembly Integrationofwiring,componentstominimize

    electricalconnectionsTable6:SuccessCharacteristics

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    14/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 14|P a g e

    Devicescapableofmeetingthegoal:

    AsshowninFigure4,commercialcellsoperatefarbelowtheoreticalpotentialefficienciesandwell

    belowefficienciesdemonstratedinthelaboratory.12,13 Duetothecompoundedsystemcostbenefits

    associatedwithefficiencygains,closingthesegapsiscritical.

    Wafersiliconisamaturetechnologyandefficienciesofcommercialcellsareapproachingtheoretical

    limits. Thinfilmapproachescanreach25%orhighermoduleefficiencyoninexpensivesubstrateswith

    potentiallyscalableandcosteffectivedepositionmethodologies,butsincetheyarecomparativelynew,

    thegapseparatingtheoreticalfromproductionarraysisquitelarge. Cadmiumtelluridearraysarein

    largescaleproductionbuthaveonlyachieved11%moduleefficienciesinproduction;and17%in

    laboratorydevices. Thereisalsoconcernthatthecostofreclaiming,andrecyclingcadmiumcontaining

    PVmoduleswillescalateinthefuture.14 ThinfilmCIGS,whichalsocurrentlycontainsverysmall

    12http://www.tfp.ethz.ch/Lectures/pv/thinfilm.pdf

    13http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=APPLAB00009500001616330

    2000001&idtype=cvips&prog=normal&doi=10.1063/1.3243986&bypassSSO=1 14

    http://seekingalpha.com/tag/transcripts?source=headtabs

    Figure4:Gapsinefficiencybetweenbestlaboratoryresultsandtheoreticallimitsandbetweenproductionandbest

    laboratoryresultsprovideopportunitiesforimprovement. (TheoreticalbasedonShockleyQueisserlimitandbandgapof

    semiconductor. NRELverifiedbestcellefficiency)

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    15/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 15|P a g e

    amountsofcadmiumsulfide,hasevengreateropportunityforefficiencyimprovementwith10%to11%

    inproductionandmorethan20%inthelab. ThefuturecostofCIGSmodulesandthistechnologys

    abilitytocontributetoverylargescalePVpowermarketsdependsupontheavailabilityofindiumand

    gallium. CZTS,amaterialsystemverysimilartothinfilmCIGSbutwithindiumandgalliumreplacedby

    moreearthabundantzincandtin,providesarelativelynewopportunityforatransformationalchange

    ofthePVmarketinsupportofreaching50cents/wattmodulecosts.

    Organicphotovoltaic(OPV)anddyesensitizedcell(DSC)deviceshavereceivedsignificantinterestas

    promisingpathstoveryinexpensivesolarmodules. Tobecommerciallyviable,thesetechnologiesmust

    solvesignificantissueswithefficiencyaswellaslifetime. Significantbreakthroughsintheseareasare

    stillneeded.

    ConcentratedPV(CPV)takesadifferentapproachtoconventionalflatmodulesbyleveragingadvanced

    opticalsystemstoshiftthecostbalanceofcellmanufacturingtomodulemanufacturing. Higher

    efficiencyCPVdevicesaswellasinnovativesystemsapproachestoCPVmoduleassemblycouldincrease

    thetypical25%orlowerefficientmodulescurrentlyproducedtogreaterthan35%moduleefficiencyif

    thesemiconductordevicecanexceed50%efficiency. Advancesinopticaldesign,manufacturingand

    assemblywouldalsoberequired. Analternativeapproachistoapplyliftoffprocesstothehigh

    efficiencyIII/VcellsusedinCPVmodules. Theseprocesseshavethepotentialtosignificantlyreducethe

    costsofIII/Vcellsandmakethemavailableforunconcentratedflatplateorflexiblemodules.

    Whiletheuncertaintiesaremuchhigher,itispossiblethatinexpensivearrayswithefficienciesmuch

    higherthanthoseshowninFigure4canbebuiltusingadvancedmultijunctionthinfilmsformanyIII/V

    andII/VIsystemsthroughbandgapengineeringsuchastandemjunctionstructuresonthinfilm

    materials(Ex:InSbonthinfilmCdTe,orGaPonthinfilmSi). Suchinnovationswouldrequire

    breakthroughsintunneljunctionformationoverlargeareasacrosspotentiallyhighlylatticemismatched

    polycrystallineinterfaces.Perhapsrecentadvancesinthermoelectricdevicescouldmakeitviablefor

    photovoltaicdevicesinaconcentratingsystem.

    ModuleProduction

    Technology:

    Lowproductioncostsare

    clearlyessentialtomeetthe

    pricegoals. Thiswill

    requiredramatic

    innovationsthatcancut

    bothcapitalandlaborcosts

    inarraymanufacture.

    BasedonDOEanalysis,cellsproducedbelow50centsperwattwouldlikelymean10centsperwattfor

    capitaldepreciation,23centsperwattformaterials,and6centsperwattforlabor.

    2010 2016Proj

    Cost Cost Cost($ /W) Cost($/m2)

    Capital $0.24 $0.20 $0.10 $28

    Materials $1.11 $0.49 $0.23 $68

    Labor $0.27 $0.12 $0.06 $17

    Margin $0.79 $0.24 $0.11

    TotalModule $1.70 $1.05 $0.50

    $1/WTarget

    Table7:DetailedcostbreakdownforcSiPVmodule($/m2valuesassume29%

    efficiency

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    16/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 16|P a g e

    Capitalcosts:Assumingasevenyeardepreciationperiod,initialcapitalcostswillneedtobeonthe

    orderof70cents/watt. Thisisapproximately50%lowerthanthecostsoftodaysstateoftheartthin

    filmPVfacilities.

    Materialcosts: ifweassumeanextremelyambitiousmoduleefficiencyof29% thelimitofwafered

    siliconreachingamaterialscostof23cents/wattwouldbeequivalenttoanareacostof$68/m2

    . Even

    atthishighefficiency,currentcommoditymaterialssuchcoverglass,substratesandbacksheets,silicon,

    silver,aluminumframingcouldconsumetheentirebudgetwithlittlecurrentpotentialforcost

    reduction(Figure6showsagraphicaldepictionoftheseandothermaterials). Atcurrentcosts,glass

    withTransparentConductingOxides(TCO)andantireflectioncoatingmighttakeupasmuchas16%

    to25%ofthistotal,indicatingtheneedforcheapersubstratesandbettercoatingtechnology. Frames

    andotherstructuralpartsmighttake

    upasmuchas25%ofthetotal

    indicatingtheneedforframeless,

    possiblyflexiblemoduletechnology.15

    Productioncostscanbereduced

    sharplywithprocessinnovations

    includinglowcosthighlyscalable

    approachessuchasdepositiononlow

    costnonwoventextilesorrolltoroll

    filmprocessing(Figure6).

    Innovationsinanumberofareas

    couldsharplycutproductioncostsfor

    advancedmoduledesignsincluding:

    Lowcostorvirtualsinglecrystalenablingsubstratesreducingwasteassociatedwithsawingwafers,therebyreducingmaterialsusage(gramsperwatt)byafactorof2ormore

    Ultrathinwafersthatnotonlyenablegreatermaterialutilization,butalsoinherentlyimprovecertainlossmechanisms(ie.bulkrecombinationlosses);optimizewaferthickness

    Lowstresstabbingtechniques,suchasprepatternedbacksheetsthatnotonlyenablethestringingofultrathincellsintomodulesbutmayalsoenablesemiflexibleroofinglaminates,

    greatlyreducingdeploymentcosts.

    Defectengineeringandadeeperscientificunderstandingoftheroleofimpuritiesandstructuraldefectsaswellaswaystomakethemelectricallyinactivecanimprovetheefficiencyofsolar

    cells

    FlexiblePVsolutionsthatenableinnovativeBIPVandfielddeploymentapproachesthatcouldsignificantlyreduceBOScosts.PVmodulesthatserveadualpurposeasabuildingfacade,or

    roofingmembranefurtherreduceinstallationcosts.

    15NRELAnalysismemo,SolarManufacturingCostModels,AlanGoodrich,April29,2010.

    Figure5:SiliconPVmodulecontainsmanycommoditizedraw

    materialsincludingsilicon,glass,andaluminum. Thechallengewill

    betoreducethecostsorutilizationofthesematerialswhile

    improvingmoduleefficiency.(Graphicsource:Hisco)

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    17/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 17|P a g e

    Inexpensiveandhighperformance(conductivity,transmissivity;absorption)TCOsordesignsthateliminatetheneedforvacuumprocessingofTCOsentirelyreducestheseriesresistanceof

    PVmodules.

    AtomicbarriersthatcanprovidebettermoistureimpermeabilitytothePVdevicethanglass,therebyincreasingreliabilityandfunctionalmodulelifetime.

    HighgrowthrateepitaxyofGroupIV,III/V,andII/VIsemiconductorsonlowcostsubstrates.VeryhighfrequencyplasmadepositionorotherprocesseshasthepotentialtoincreasePV

    depositionrateandreduceequipmentcostby10Xwhilemaintaininglargeareauniformityand

    materialqualitythroughnew approachestosourceandprocessdesign.

    Breakthroughapproachestodepositionfromatmosphericpressureliquidprocessingcouldsignificantlyincreasethroughputandlowerdepositioncosts

    Plasmonicsandnanowirethinfilmscanenhancelighttrapping

    Combinatorialapproachestomaterialsdiscoveryandcharacterizationaswellas

    deviceoptimizationcangreatlyspeed

    upthedevelopmentofnew

    technologiesandallowefficiencyto

    approachtheoreticallimits. APV

    MaterialsGenomeProjectcouldenable

    researcherstorapidlyscreencandidate

    PVabsorbersystemsandlinktheoretical

    understandingPVmaterialswith

    experimentalconfirmationofmaterialproperties.

    Figure6:RolltoRollcontinuousprocessingcansignificantlyreducemanufacturingcostshasithasdoneinanumberof

    otherindustries

    Figure7:Highlyautomatedagricultureequipment

    revolutionizedharvestingofcrops.http://www.businessweek.com/magazine/content/08_22/b4086

    072681496.htm?chan=search

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    18/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 18|P a g e

    B. BalanceofSystemandSystemInstallationTheBOSandinstallationcostsincludeforexample:mountingandrackinghardware,installeroverhead,

    permitsfees,landpreparation,andinstallationlabor. This

    currentlyaddsabout$1.48/watttothecostofaninstalled

    system. The$1/wattgoalrequiresareductiontoabout

    $0.44/watt(Table1). Itwillprobablybenecessarytocut

    installationlaborcoststoapproximately5cents/wattand

    mountingandrackinghardwaremustreducetoabout20

    cents/watt. Thiswillrequirefundamentallynew

    approaches.

    Asabenchmark,amodern20MWutilitysolarplantcovers

    approximately150acres. Theinstallationtakesacrewof

    100peoplesixmonthstoinstallcompletely.16 Laboralone

    adds10centsto15cents/watt. Twoprincipalstrategiesfor

    reducinginstallationcostswillbein

    competition: (1)reducingthecostofinstalling

    hugearraysinopenfields,and(2)

    incorporatingthearraysintobuilding

    componentsthatcouldsubstituteforstandard

    roofingmaterials.

    FieldInstallations:

    Modernagricultureuseshighlyproductive

    machinescalledcombinesthatcanprocess

    (reaping,binding,andthreshing)200acresaday,as

    showninFigure7. Thesemachinesofferamodelof

    whatcouldbepossibleemployinginnovative

    roboticapproachestoPVfieldinstallation.

    LimitedautomationforPVinstallationisalreadyin

    existencewherecurrentlysomePVinstallations

    machinesdrivepostsintotheground,asshownin

    Figure8,butthisdeviceisdesignedonlytoputtens

    ofthousandsofpostsintheground. Muchgreater

    16Quote:DataprovidedbyaninstallerforcSiarraydeployedwith1axistracking.

    Figure8:Lowlevelsofautomationforsolar

    fieldinstallationsarejustbeginningtobe

    developed. http://www.philadelphiasolar.eu/philadelphia_solar_gallery.html

    Figure9:PlasticcoveringastrawberryfielddemonstratingthepotentialofrollingoutPV.

    http://photosbygarth.com/sampleslg/050115_202p_9584lg.jpg

    Figure10:Solarrooftilesdemonstratingthepotential

    forlargeautomatedsnaptogetherPV.

    http://www.reuk.co.uk/OtherImages/solartiles.jpg

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    19/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 19|P a g e

    costreductionscouldbeachievedusingadevicethatcombined1)postdigging;2)rackhardware

    installation;3)modulemountingand4)electricalconnection.

    Inadditiontoautomatedinstallation,innovativearraydesignscanleadtomajorcostreductions. These

    include:

    RollingOutPV(i.e.,PVonaflexiblesubstrate,similartohowplasticisrolledacrossfarmfieldsforfumigation,Figure9).

    ContinuousPV(i.e.,modulesthatcannearlycontinuouslybedeployedanalogoustopavingcrewsthatdrivedowntheroadremovingpavementandinstallingfreshpavementinacontinual

    process)

    BuildingInstallations:

    Installationcostscanalsobecutsharplyifthephotovoltaicarrayscanbeinstalledasabuildingmaterial.

    Arraysintegratedintoroofingmaterialscouldcombineweatherproofingwithelectricgeneration. The

    incrementalcostofinstallingthearrayscouldbequitesmallandlittleornoadditionalstructuralsupport

    wouldberequired. Thesystemswouldbeeasiesttodesignfornewconstruction,butitispossiblethat

    thedevicescouldbeintegratedinmembranesorotherequipmentusedtoreplaceworncommercial

    roofing. OnesuchconceptisshowninFigure10usingmodulesthatrapidlyinterconnectanddisplace

    thecostsofcurrentroofingmaterialsandlabor.

    Centraltoeachoftheseproposedinstallationcostreductionstrategiesistheneedtoreducethe

    amountofspecializedlaborthatisrequired. Thefollowingsectionsproposemethodsforintegrating

    intothemodulethepowerelectronicsandothersystemcomponents,therebysignificantlydecreasing

    PVinstallationlabor.17

    C.

    Power

    electronics

    Thepowerelectronicsspecificallytheinverteristheinterface

    betweenthemoduleandthegridconvertingthedirectcurrent

    outputofthearraysintothehighvoltagealternatingcurrent

    neededformostpowerapplications. Itcurrentlyaddsabout22

    cents/watttosolarinstallationsandthismustbecuttoabout8

    cents/watttomeetthegoal.18 Thecostandperformanceofthe

    invertermaynotbeadominantportionofthetotalinstalled

    systemscostbutitisasignificantportionandneedstobe

    addressedinordertoachieve$1/watt. Today,thepower

    electronics(1)arethedominantpointoffailurefortheinstalled

    systemandareamajorcomponentofmaintenance,(2)are

    17Electricalcomponentinstallationlaborcanaccountforasmuch78%ofthemanhoursrequiredforautilityscale

    system. Thenationalaverage(source:RSMeans,2010)burdenedelectricianrateis$72.85/hour. PVhardware

    installedbygeneralorroofingcontractorswouldprovideasavingsofupto19%.18

    Dataprovidedbyananonymoussystemsinstaller.

    Capacitor

    Type

    FailureRate

    (%/1000h)

    Electrolytic 0.2

    Tantalum 0.1

    Paper 0.05

    Ceramic 0.025

    Table8:ApproximateReliabilityof

    capacitortypes

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    20/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 20|P a g e

    responsibleforalossofapproximately4%ofalloftheelectricitygenerated,and(3)addcomplexityand

    costtowiringandinstallation. Megawattscaleinvertersweighinexcessof10,000pounds,andoccupy

    morethan500cubicfeetofspace.

    Currentgenerationinvertersareonlyexpectedtolastabout10to15years,

    requiringatleastonereplacementduringananticipatedlifetimeof30years

    orlongerforaPVarray. Thislimitedlifemeansthattheinverters

    contributiontoalevelizedcostofelectricityishigherthantheoriginal

    installedcost. Onereasonforlimitedlifetimeistheuseofelectrolytic

    capacitorswhichhavefailureratesthatare10timesgreaterthanthatof

    lowerenergydensitythinfilmcapacitors(seeTable8,Figure11). Itis

    projectedthatcurrentcostreductionsintheinverterwillbeachieved

    throughadvancedcircuitarchitecturethatavoidstheneedforelectrolytic

    capacitors;however,thisaloneisnotsufficienttopermitlargescale

    deployment. Besidescost,inverterperformanceandfunctionalitywill

    becomeanincreasinglyimportantfactorwithhigherlevelsofpenetrationofrenewableelectricityon

    thegrid. BettercommunicationsandfunctionalitywillrequireradicallydifferentarchitectureforPV

    powerelectronics.

    Approachestomajorimprovementsinpowerelectronicsfallintotwocategories:(1)majorredesignsof

    existinglargescaleinverters,and(2)developingsmallunitsthatcanbemassproducedandattachedto

    individualmodules.

    Majorredesignsofexistinglargescaleinverters:

    ExistingMWscaleinvertersemployhighvoltagesiliconswitchesandlargemagnetictransformers. The

    highvoltagesonthetransmissionsideoftheinverteraremanagedthroughacombinationoflarge60Hz

    transformersandstackedsiliconswitches. Advancedhighvoltage,highfrequencyswitchcomponents,

    lowlossmagneticmaterials,andnovelcircuitarchitectureshavethepotentialtosignificantlyreducethe

    sizeandcostofMWscaleinverterswhilesimultaneouslyincreasingtheoverallefficiency.

    Forexample,widebandgapsemiconductorssuchasSiChavethepotentialtoswitchat13kVwith

    frequenciesashighas50kHz. Thehighervoltagereducesthepackagingcostandcomplexityofthe

    system. Thehigherswitchingfrequenciesdramaticallyreducethesizeandcostofthetransformer

    becauseforfixedimpedance,theinductancescalesinverselywiththeswitchingfrequency. Advanced

    magneticmaterials,suchasnanocrystallinecompositeswithlowelectricalconductivityandlow

    hysteresis,canenableswitchingfrequenciesthatare1001000timeshigherthanemployedtoday.

    Scalingtheswitchingfrequencyfrom60Hzto50kHzcanallowthecoretransformertoscalefrom8,000

    lbs.tolessthan100lbs.

    Powerelectronicsattachedtomodules:

    Electroniccomponentsandcircuitarchitecturesthatcanbeembeddedinthemoduleframewouldallow

    maximumpowerpointtrackingtooccuratthemoduleorsubmodulelevel. Theresultingmodules

    wouldbemoretoleranttopartialshading(allowingforpotentiallydenserinstallations)andcould1)

    Figure11:Exampleofa

    failedelectrolytic

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    21/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 21|P a g e

    routepoweraroundsuboptimalmodulesorcells(improvingsystemavailabilityandmitigating

    reliabilityofindividualcells),and2)directlyproduceACvoltages(simplifyingresidentialinstallation

    whileincreasingthesafetyandreliability).

    Onepossibleapproachwouldbetocreatemoduleintegrated

    powerelectronicswhereadvancedsemiconductorswouldneed

    tobeintegratedwithbeyondstateoftheartmagneticand

    dielectricmaterialstorealizelowcost,smallformfactor,batch

    manufacturedpowerconvertersthatcouldpotentiallybe

    installedoneachmodule(Figure12). Theseelectronicswould

    requireadvancedsemiconductormaterialsthatcouldwithstand

    hightemperatures(100Cbackskintemperatures)andmaintain

    highfrequencyswitching.

    Thesameapproachofhigherinternalswitchingfrequencythat

    wasdiscussedforutilityscaleinverterscouldalsobeappliedto

    moduleintegratedpowerelectronics. Suchanarchitecture

    wouldpermitmodulestobeeasilyconnectedandimprovethe

    overallenergyefficiencyofthesystembyallowingeachmicroinvertertofrequencymatcheach

    module.

    Figure12:Microconvertersoneach

    modulepromotebettercommunication

    andfunctionalityamongstmodules.

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    22/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 22|P a g e

    AppendixF: ChallengesforCostReductioninArrayProduction

    SolarPVtechnologieshave,todatemadesignificantprogressreducingthecostofmodulesbuta

    detailedanalysisofthefutureofcrystallineSiliconandCadmiumTelluridecellssuggestthattheyare

    unlikelytomeetthetargetpricesgiventechnologiesdrivingcurrentlearningcurves. Thefigurebelow

    showsthatcrystallinesiliconmodulepricescouldreacharound73centsperwattpricesiftheyareable

    toachieve80%ofthetheoreticallimitofsinglecells(29%)andifwaferthicknesscanbereducedto80

    microns(theyareabout180micronsthicktoday).

    CadmiumTelluridemoduleshaveachievedsharppricereductionsandareonapathofcontinuouscost

    reductiondriveninpartbycontinuousimprovementsinefficiency. Currentcellshaveanefficiencyof

    approximately11%butefficienciesof17%havebeenachievedinthelaboratoryandtheoretical

    efficiencies

    are

    approximately

    29%.

    The

    experience

    of

    the

    past

    few

    years

    suggests,

    however,

    that

    efficienciesabove11%areextremelydifficulttoachieveinpracticeandtherateofefficiencyincreases

    hasslowedconsiderablyinrecentyears. Makingtheoptimisticassumptionthatefficienciescanreach

    14%whilethecostofproducingaunitofarrayareadeclinesby26%,arraypriceswouldstillbearound

    63centsperwatt.

    Neartheoreticallimits:~24%efficientcells;low

    ($32/kg)siliconprice,80micronkerflesswafers

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    23/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 23|P a g e

    Figure13QuarterlyreportedmoduleefficienciesfortheleadingCdTemanufacturerFirstSolarsuggeststhatsignificant

    innovationisrequiredtocontinuetoadvancethetechnology.

    Figure14:GlobalsolarPVmodulepricetrend:siliconwaferbasedandCdTe,historicandshorttermforecast19

    19Sources:Mints,Navigant;BloombergNEF;FirstSolarEarningsReports;NRELinternalsiliconPVcostmodel

    Costreductionnecessarytoachieve

    $0.52/Wcost($0.63/Wprice)at

    14%efficiencyrequiresa26%

    reductioninmanufacturingcosts

    whileincreasingefficiencyby32%

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    24/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 24|P a g e

    Nevertheless,pastperformanceisnotnecessarilyanindicatoroffutureprogress. Thetrendofmodule

    pricesdepictsthecompositeimpactofseveralcomplicatedfactors,includingforexample:

    manufacturingefficiencies,economiesofscale,andinnovation.20 Asthesetechnologiesmature,the

    contributionofmanufacturingefficienciesandeconomiesofscaletofurthercostreductionswill

    diminish. Theimportanceofcontinuedandimpactfulinnovationswillbecomecriticaltomaintaining

    thehistorictrend.

    ForcSi,withoutnewmoduleencapsulationmaterials,costswillreachanaturalasymptotedefinedby

    thecostofcommoditymaterialslikeglass(asymptote,orlowerlimitofcurrentcSimodulecosts

    depictedinFigure14bybluedashedline).

    ForCdTe,theleadingthinfilmtechnology,furthercostreductionwillrequirehigheraveragemodule

    efficiency,expectedtoreachover14%by2014basedonaroadmapprovidedbyFirstSolar. Whilethe

    pathwaytothisgoalisknownandinvolvestechnicalinnovations,implementingtheseinnovationsina

    highvolumeproductionscenariowillbechallenging. Greaterchallengesexisttoincreasethis

    technologysefficiencybeyond14%,suchasimprovingthelifetimeoftheabsorberlayer. Itisgenerally

    believedthatinordertoimprovethequalityoftheabsorber,thegrainsizewillneedtobeincreased.

    Onewaytoaccomplishthisistoslowdownthedepositionprocess,butthishastheundesirableeffect

    ofincreasingthecost. Innovationinmaterialstechnologyisrequiredtoeliminatethistradeoff.

    Ifweassumeabreakdownbetweencapital,materials,andlaborfollowingtheproportionsprojectedfor

    atypicalcSimodulein2016,giveninTable7,thenthis48centswillbecomposedof9cents/wattfor

    capitaldepreciation,22cents/wattformaterials,and5cents/wattforlabor. Thisbreakdownprovides

    furtherillustrationofthechallengestoreach$1/watttotalsystems. Forexample,assumingaseven

    yeardepreciationperiod,initialcapitalcostswillneedtobeontheorderof63cents/watt,

    approximately50%betterthanFirstSolarsand25%to33%ofcurrentwaferedsilicon.

    Formaterials,ifweassumeanextremelyambitiousmoduleefficiencyof29% theShockleyQueisser

    limitofwaferedsiliconthe22cents/wattwouldbeequivalenttoanareacostof$65/m2. Evenatthis

    highefficiency,currentcommoditymaterialssuchcoverglass,substratesandbacksheets,silicon,silver,

    aluminumframingcouldexceedthesystemsbudgetformodulecost. Atcurrentcosts,glasswithaTCO

    andantireflectioncoating

    mightspecificallytakeupas

    muchas16%to25%ofthis

    total,indicatingtheneedfor

    cheapersubstratesand

    coatingtechnology. Frames

    andotherstructuralparts

    mighttakeupasmuchas

    25%ofthetotalindicating

    20GregoryF.Nemet,Beyondthelearningcurve:factorsinfluencingcostreductionsinphotovoltaics,Energyand

    Policy34(2006)3218323,August2005

    2010Es t. 2016Proj

    Cost Cost Cost($/W) Cost($/m2)

    Capital $0.20 $0.20 $0.09 $27

    Materials $0.79 $0.49 $0.22 $65

    Labor $0.09 $0.12 $0.05 $16

    Margin $0.62 $0.24 $0.11$1.70 $1.05 $0.48

    $1/WTarget

    Table9:DetailedcostbreakdownforcSiPVmodule($1/WTargetassumes29%

    efficiency)

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    25/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 25|P a g e

    theneedforframeless,possiblyflexiblemoduletechnology. Goingtowardflexibleorotherlightweight

    structuralmoduleapproachescouldalsosignificantlyreduceshippingcosts,currently8centsto10

    cents/watt.21

    Table9assumessignificant

    potentialcostreduction

    throughproductionmodels

    thatcondensethesupply

    chain. Waferedsilicon

    modulescurrentlyhaveas

    manyasfourdifferentsteps

    inthesupplychain

    (polysiliconprocessing,wafering,cellproduction,andmoduleassembly),eachextractingaseparate

    marginwhichaddscosttothefinalproduct. Whiletherehasbeensomeattemptsatintegration(mostly

    throughcombiningpolysiliconprocessingand/orcombiningwaferingandcellandmoduleproduction)

    therehasalsobeencountertrendstowarddisaggregation. Movingtowardthinfilmtechnologiesthat

    areinherentlymoreintegratedwouldsignificantlyreducemargins. FirstSolarforinstancebringsin

    basicmaterialssuchasglass,depositiongases,andothermaterialsinoneoftheirfactoriesandships

    outfinishedmodulesfromtheotherend. Thereiscurrentlynoanalogousproductionfacilityfor

    waferedsilicon. Movingtheindustrytowardthinfilmtechnologieswouldalsocountercurrent

    competitiveadvantagesofChinesewaferedsiliconmanufacturersandpotentiallycreatemore

    opportunitiesforU.S.exports.22

    SimilaranalysiscouldbedonetolookatthechallengeswiththeBalanceofSystems(BoS)and

    Installationcostcomponents. ReferringtoTable10,installationlaborandoverheadtoinstallthe

    $1/watt

    system

    would

    be

    approximately

    19

    cents/watt.

    For

    large

    utility

    systems,

    only

    one

    fifth

    of

    the

    laborisformechanicalinstallationwiththemajoritybeingforelectricalconnections. Thisindicatesthat

    thereexistsanopportunitytoreduceinstalledcoststhroughefficientcomponentdesign. Forexample,

    microinvertorsintegratedintoeachmodulemightbedevelopedtoexploitnewinnovativeconnection

    schemesthatreduceelectricalinstallationlaborcosts. Otherpathsforcostreductionmightinclude

    havinglargerpanels,potentiallyinstalledasrollsofflexiblematerial,withmanyoftheelectrical

    connectionsintegrated.

    21NRELAnalysisinternalmemo,SolarManufacturingCostModels,AlanGoodrich,April29,2010.

    22Asia:65%siliconwaferglobalmarketshare;CompanyproductioncapacitiesSiliconforSolarCell,RTS

    Corporation,September2009

    2010 2016Proj

    Cost Cost Cost($/W) Cost($/m2)

    Mounting,Wiring,Other $0.87 $0.38 $0.17 $50

    InstallationLabor,OH,othe $1.10 $0.41 $0.19 $54

    Permitting,Design,Mgt $0.23 $0.18 $0.08 $24

    $2.20 $0.97 $0.44

    $1/WTarget

    Table10:DetailedcostbreakdownforBOS/Installation($1/WTargetvalues

    assumes29%efficiency)

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    26/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 26|P a g e

    AppendixG:PreliminaryanalysisofEfficiency,Cost,andReliabilityBarriers(Table11)

    FollowingtheexampleoftheSematechroadmap,theabovetable,dividesproblemsintofour

    categories:

    Manufacturablesolutionsexistandarebeingoptimized

    Manufacturablesolutionsareknown

    Interimsolutionsareknown

    ManufacturablesolutionsareNOTknown

    ForCPV,targetis 35%Module,currently

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    27/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    $1/WattWhitePaper 27|P a g e

    AppendixH: TheneedforGovernmentfunding

    Venturecapitalandotherprivatecapitalsourceshavefueledsignificantgrowthinthedevelopmentand

    manufacturingofPVandothersolartechnologiesoverthelast5years,asshowninFigure15. These

    investmentsfocusedlargelyontechnologiesthatcouldbecommercializedin2to4years,inorderto

    respondtogovernmentincentiveprograms. Thistrendhaspeaked,however,and,asshownfor2009,

    overallVCandprivateequitycapitalinvestmentsinsolararedecreasing. Thisisduetothecurrent

    economicconditionswhichhavelimitedopportunitiesforprivatecapitalsourcestoexittheir

    investmentsthroughpublicmarkets,alsoshowninFigure15. Thedevelopmentofsolartechnologiesis

    capitalintensiveandmanyprivatecapitalsourcesarefocusedonseeingtheirexistinginvestments

    throughtomaturityratherthanconsideringnewinvestments. Theseandotherfactorshavetherefore

    limitedtheavailablepoolofprivatecapitaltoinvestinthenextgenerationofsolartechnologies.

    ThecurrentenvironmentthereforeprovidesaneedandanopportunityforFederalR&Dfundingtofilla

    gapinthesolartechnologyinvestmentpipeline. TheFederalgovernmenthasplayedthisrolebeforein

    launchingthecurrentsolartechnologyindustryaswellasothernewindustriesinelectronicsand

    biotechnology.

    Inadditiontoaddressingtheadministrationsenergyandenvironmentalgoals,aninvestmentbythe

    Federalgovernmentthattargetstheutilizationofthecountrysextensiveresearchandmanufacturing

    infrastructurewillcontributesignificantlytowardsexportandeconomicgrowthinitiatives. Itis

    Figure15: USCapitalInvestmentsinSolarEnergy

    $0

    $500

    $1,000

    $1,500

    $2,000

    $2,500

    $3,000

    2000 2001 2002 2003 2004 2005 2006 2007 2008 2009TotalU.S

    .Investment(MillionsNominal$)

    Year

    Solar Public Equity Activity

    VC & PE Investments

    TotalInvestmentIncrease

    33%CAGR 20002009

    36%CAGR 20002005

    30%CAGR 20052009

    U.S. Capital Investments in Solar Energy

  • 8/7/2019 $1 Per W Photo Voltaic Systems

    28/28

    U.S.DepartmentofEnergy

    AdvancedResearchProjectsAgencyEnergy EnergyEfficiencyandRenewableEnergy

    estimatedthatby2012,andassumingstandardsolarPVcosttargetsandglobaldemandprojections

    exportopportunitiesthroughoutthesolarPVsupplychainwillexceed$18.0billion.23

    Othercountries,includingChinaandMalaysiahavemadearenewedcommitmenttotheirnationssolar

    PVindustry,attractingglobalmanufacturers,includingcompanieswhosetechnologieswere,insome

    cases,atleastpartiallydevelopedatUSinstitutions.

    23NRELanalysismemoinsupportofthePresidentsNationalExportInitiative,SOLARENERGYTECHNOLOGIES:

    USExportOpportunities,May2010