1 l3 property estimation 2

Upload: mohit4physics

Post on 03-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 1 L3 Property Estimation 2

    1/26

    Product Design

    Property EstimationChapter 3

    Article on Phys. Property Estimation

    CHEN 4253

    Terry A. Ring

    University of Utah

  • 7/29/2019 1 L3 Property Estimation 2

    2/26

    Types of Properties

    Thermodynamic Properties

    Transport Proprieties

    Kinetic Properties

  • 7/29/2019 1 L3 Property Estimation 2

    3/26

  • 7/29/2019 1 L3 Property Estimation 2

    4/26

    Design Methods

    Physical Properties Group Contributions

    Thermo package in Process Simulator

    Process Simulation of Refrigeration cycle Condenser

    Vaporizer

    Pump

    Valve to flash liquid to vapor

  • 7/29/2019 1 L3 Property Estimation 2

    5/26

    Refrigerant Design

    Large negative Joule-Thompson Coefficient

    Large Enthalpy of Vaporization

    High Liquid Heat Capacity

    Low Pressure -Tboil below RT Vapor Pressure > 1.4 Bar to assure no air leaks

    High Pressure Compressor/Condensor

    Vapor Pressure < 14 Bar to keep compression ratioless than 10

  • 7/29/2019 1 L3 Property Estimation 2

    6/26

    Solubility Parameter Prediction

    Solubility Parameter Solubility of liquid in liquid Solubility of solid in liquid

    Solubility of polymer in liquid Group Contributions

    Three parameters

    Dispersive Polar Hydrogen Bonding

  • 7/29/2019 1 L3 Property Estimation 2

    7/26

    Flory-Huggins solution theory

    The result obtained by Flory[1] andHuggins[2] is

    The right-hand side is a function of the number ofmolesn1 andvolume fraction 1 ofsolvent (component 1 or a), the number ofmoles n2 and volume fraction 2 of polymer (component 2 or b),with the introduction of a parameterchi, , to take account of theenergy of interdispersing polymer and solvent molecules.

    Molar volume of polymer segment are Hildebrand solubility parameters, =((Hvap-RT)/Vmolar) =(d2 + p2 + h2), linkage to Hansen Solubility parameters

    http://en.wikipedia.org/wiki/Flory-Huggins_solution_theoryhttp://en.wikipedia.org/wiki/Flory-Huggins_solution_theoryhttp://en.wikipedia.org/wiki/Function_%28mathematics%29http://en.wikipedia.org/wiki/Mole_%28unit%29http://en.wikipedia.org/wiki/Solventhttp://en.wikipedia.org/wiki/Componenthttp://en.wikipedia.org/wiki/Chi_%28letter%29http://en.wikipedia.org/wiki/Energyhttp://en.wikipedia.org/wiki/Energyhttp://en.wikipedia.org/wiki/Chi_%28letter%29http://en.wikipedia.org/wiki/Componenthttp://en.wikipedia.org/wiki/Solventhttp://en.wikipedia.org/wiki/Mole_%28unit%29http://en.wikipedia.org/wiki/Function_%28mathematics%29http://en.wikipedia.org/wiki/Flory-Huggins_solution_theoryhttp://en.wikipedia.org/wiki/Flory-Huggins_solution_theory
  • 7/29/2019 1 L3 Property Estimation 2

    8/26

    Hansen Solubility Parameter

    Hansen Solubility Parameters were developed by Charles Hansen as a way of predicting if onematerial will dissolve in another and form a solution[1]. They are based on the idea that likedissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similarway.

    Specifically, each molecule is given three Hansen parameters, each generally measured in : The energy from dispersion bonds between molecules The energy from polar bonds between molecules The energy from hydrogen bonds between molecules

    These three parameters can be treated as co-ordinates for a point in three dimensions also knownas the Hansen space. The nearer two molecules are in this three dimensional space, the morelikely they are to dissolve into each other. To determine if the parameters of two molecules(usually a solvent and a polymer) are within range a value called interaction radius (R0) is given tothe substance being dissolved. This value determines the radius of the sphere in Hansen spaceand it's center is the three Hansen parameters. To calculate the distance (Ra) between Hansenparameters in Hansen space the following formula is used:

    Combining this with the interaction radius gives the relative energy difference (RED) of thesystem:

    RED < 1 the molecules are alike and will dissolve RED = 1 the system will partially dissolve RED > 1 the system will not dissolve

    See Articles Solvents_Data.pdf

    http://en.wikipedia.org/w/index.php?title=Charles_Hansen&action=edit&redlink=1http://en.wikipedia.org/wiki/Solubilityhttp://en.wikipedia.org/wiki/Solutionhttp://en.wikipedia.org/wiki/Solubility_parameterhttp://en.wikipedia.org/wiki/Van_der_Waals_forceshttp://en.wikipedia.org/wiki/Polar_bondshttp://en.wikipedia.org/wiki/Hydrogen_bondshttp://en.wikipedia.org/wiki/Hydrogen_bondshttp://en.wikipedia.org/wiki/Polar_bondshttp://en.wikipedia.org/wiki/Van_der_Waals_forceshttp://en.wikipedia.org/wiki/Solubility_parameterhttp://en.wikipedia.org/wiki/Solutionhttp://en.wikipedia.org/wiki/Solubilityhttp://en.wikipedia.org/w/index.php?title=Charles_Hansen&action=edit&redlink=1
  • 7/29/2019 1 L3 Property Estimation 2

    9/26

    Group Contribution Methods

    Group (bond) ContributionMethods ni=number of groups of type

    i in polymer repeat unit or

    molecule

    N= number of group types Ai=group contribution to

    property p{n}

    Mwi= Molecular weight ofgroup I, sometimes anothergroup contribution property

    d=exponent for property

    d

    N

    i

    ii

    N

    i

    ii

    nMw

    nAnp

    1

    1}{

  • 7/29/2019 1 L3 Property Estimation 2

    10/26

    Group Contribution Methods

    Polymer Glass Transition Temp.

    Polymer Molar Volume

    Polymer Density Polymer Water Absorption P. 66 of your book

  • 7/29/2019 1 L3 Property Estimation 2

    11/26

    Liquid Surface Tension/Wetting

    Group Contribution Method Contact AngleYoungs Equation cos = (SV- SL)/ LV Wetting when => 0

    Predicting Liquid surface tension LV=[LMw-1 (NiPi)]4 Pi=Parachor Value of group

    Surface tension in [dyne/cm] Density [gm/cm^3]

    Mw [gm/mole] Liquid Mixtures surface tension based upon mole

    fraction, Xi

    LV= LV_iXi

  • 7/29/2019 1 L3 Property Estimation 2

    12/26

    Parachor Values

    Tables from Ring, Fundamentals of Ceramic Powder

    Processing, Academci Press 1999.

    CH2=CH O CH3

    Groups PiC 3 4.8

    H to C 6 17.1

    O to ether 1 20

    Double Bond 1 23.2

    LV=[LMw-1(NiPi)]4

  • 7/29/2019 1 L3 Property Estimation 2

    13/26

    Select Surfactants for Dispersion

    Lower Surface tension of a liquid Detergency

    Hydrophilic-lipophilic Balance-HLB HLB = 7+ HiLi

    Stabilized Suspension HLB

    surfactant= HLB

    particle

    Tables from Ring, Fundamentals of Ceramic Powder Processing, Academic Press 1999.

  • 7/29/2019 1 L3 Property Estimation 2

    14/26

    Group Contributions - HLB

    Tables from Ring, Fundamentals of Ceramic Powder Processing, Academic Press 1999.

    TiO2

  • 7/29/2019 1 L3 Property Estimation 2

    15/26

    Drago E and C

    Used to predict the Heat of mixing, HAB Acid (A) Base (B) Interactions

    Good for non-polar solvents

    E = Electrostatic Contributions

    C = Covalent Contributions

    BABAAB CCEEH

  • 7/29/2019 1 L3 Property Estimation 2

    16/26

    Acids

  • 7/29/2019 1 L3 Property Estimation 2

    17/26

    Bases

    Can be predicted from Infrared or NMR peak shifts due to mixing

    See Wettability By John C. Berg

  • 7/29/2019 1 L3 Property Estimation 2

    18/26

    Wetting - Good Method

    Work of Adhesion between to materials,Wa

    AB= -(SV-SL)LV Energy toreplace solid-vaporand liquid-vapor interfaces with liquid-vapor interface.

    Predicted by

    Liquid

  • 7/29/2019 1 L3 Property Estimation 2

    19/26

    WettingFowkes (Drago) Method

    Work of Adhesion

    N = moles of interaction functional groups perunit area

    f = factor to convert enthalpy to work

  • 7/29/2019 1 L3 Property Estimation 2

    20/26

    Transport Properties

    Molecular Dynamics Calculations Intermolecular Forces

    Lennard-Jones Potentials between Atoms

    Location of Atoms in Molecule Molecules Free to move Monte Carlo Methods Statistical Analysis

    Molecular Structure Determined From Otimization

    Drug Molecule Binding DAB=2/t Gives Upper and Lower Bounds of Property

  • 7/29/2019 1 L3 Property Estimation 2

    21/26

    Drug/Enzyme Target Development

  • 7/29/2019 1 L3 Property Estimation 2

    22/26

    Bio Concentration

    BioConcentration factor=BCF

    log BCF = 0.76 log Kow-0.23 K

    ow=octanol/water partition factor

    Kow =Xo_w/Xw_o=(o_wMwo)/( w_oMww) Easily get this from a liquid-liquid Flash calc.

    Toxicity LC50=lethal concentration when 50% are dead

    log LC50= -0.87 log Kow - 0.11

    p. 73 of your book

  • 7/29/2019 1 L3 Property Estimation 2

    23/26

    Kinetic Parameter Prediction

    Flash Point Tf=0.683 Tboil-119K

    Explosive Potential depends upon theflash point

    Tboil from flash calc.

    p. 73 of your book

  • 7/29/2019 1 L3 Property Estimation 2

    24/26

    Many Desired Properties of a

    Product

    1) Determine list of desired properties 2) Use desired properties to determine

    Figure of Merit

    Grouping of Important Qualities for a productand/or its use.

    Minimized Deviations from Ideal PropertyValues

    Minimize (Ai-Adesired)2 for various properties, Ai,for product formulations. [p. 49]

    Often minimization is carried out with upper andlower bounds on specific properties or in

    comparison with competitors product

  • 7/29/2019 1 L3 Property Estimation 2

    25/26

    Minimization Problem

    x,y,z are property axes

    Minimize (Ai-Adesired)2

    With constraints of |A1-A1,desired| < 0.05 A1,desired |A2-A2,desired| < 0.1 A2,desired

  • 7/29/2019 1 L3 Property Estimation 2

    26/26

    Overview

    Property Estimation Use Thermo-package in Process Simulator

    Use Hansen solubility parameters

    Use Group Contribution Methods

    Use statistical mechanics