1 future circular collider study michael benedikt dt training seminar 7 may 2015 future circular...

39
1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully acknowledging input from FCC global design study team

Upload: jane-parrish

Post on 31-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

1Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

Future Circular Collider (FCC) Study

M. Benedikt, F. Zimmermanngratefully acknowledging input from

FCC global design study team

Page 2: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

2Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• Motivation & scope

• Parameters & challenges

• Study organization

• Summary

Outline

Page 3: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

3Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• European Strategy for Particle Physics 2013: “…to propose an ambitious post-LHC accelerator project….., CERN should undertake design studies for accelerator projects in a global context,…with emphasis on proton-proton and electron-positron high-energy frontier machines..…”

• US P5 recommendation 2014:”….A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window….”

• Goal: Conceptual Design Report by end 2018, in time for next European Strategy Update

FCC Study - Motivation and Goal

Page 4: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

4Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

Forming an international collaboration to study:

• pp-collider (FCC-hh) main emphasis, defining infrastructure requirements

• 80-100 km infrastructure in Geneva area

• e+e- collider (FCC-ee) as potential intermediate step

• p-e (FCC-he) option

~16 T 100 TeV pp in 100 km~20 T 100 TeV pp in 80 km

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Page 5: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

5Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

CepC/SppC study (CAS-IHEP), CepC CDR end of 2014, e+e- collisions ~2028; pp collisions ~2042

Qinhuangdao (秦皇岛)

50 km

70 km

easy access

300 km from Beijing

3 h by car

1 h by train

Yifang Wang

CepC, SppC

“Chinese Toscana”

Page 6: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

6Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

FCC-hh: 100 TeV pp collider as long-term goal defines infrastructure needs

FCC-ee: e+e- collider, potential intermediate stepFCC-he: integration aspects of pe collisions

Tunnel infrastructure in Geneva area, linked to CERN accelerator complexSite-specific, requested by European strategy

Push key technologies in dedicated R&D programmes e.g.16 Tesla magnets for 100 TeV pp in 100 kmSRF technologies and RF power sources

Scope: Accelerator & Infrastructure

Page 7: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

7Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

Elaborate and document- Physics opportunities- Discovery potentials

Experiment concepts for hh, ee and heMachine Detector Interface studiesConcepts for worldwide data services

Overall cost modelCost scenarios for collider optionsIncluding infrastructure and injectorsImplementation and governance models

Scope: Physics & Experiments

Page 8: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

8Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

A. Ball, M. Mangano W. Riegler

Hadron ColliderPhysics &

Experiments

A. Blondel,J. Ellis, C. Grojean,

P. Janot

Lepton ColliderPhysics &

Experiments

M. Klein,O. Bruning

ep Physics, Experiment, IP

Integration

B. Goddard

Hadron Injectors

D. Schulte,M. Syphers

Hadron Collider

Y. Papaphilippou

Lepton Injectors

F. Zimmermann,J. Wenninger,U. Wienands

Lepton Collider

L. Bottura,E. Jensen, L. Tavian

Accelerator Technologies R&D

P. Lebrun,P. Collier

Infrastructures & Operation

P. Lebrun,F. Sonnemann

Costing &Planning

M. BenediktF. Zimmermann

Study Lead

JM. Jimenez

SpecialTechnologies

Further enlargement of coordination group and study teams with international partners

FCC Study Coordination Group

Page 9: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

9Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

FCC hadron collider motivation: pushing the energy frontier

The name of the game of a hadron collider is energy reach

Cf. LHC: factor 3.5-4 in radius, factor 2 in field

factor 7-8 in energy

𝐸∝𝐵𝑑𝑖𝑝𝑜𝑙𝑒× 𝜌𝑏𝑒𝑛𝑑𝑖𝑛𝑔

Hadron collider: presently and for coming decades the only option for exploring energy scale at 10’s of TeV

Page 10: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

10Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

FCC-hh baseline parameters

parameter FCC-hh LHC

energy 100 TeV c.m. 14 TeV c.m.

dipole field 16 T 8.33 T

# IP 2 main, +2 4

normalized emittance 2.2 mm 3.75 mmluminosity/IPmain 5 x 1034 cm-2s-1 1 x 1034 cm-2s-1

energy/beam 8.4 GJ 0.39 GJ

synchr. rad. 28.4 W/m/apert.

0.17 W/m/apert.

bunch spacing 25 ns (5 ns) 25 ns

Preliminary, subject to evolution (several luminosity scenarios)

Page 11: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

11Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

Preliminary layout (different sizes under investigation)

Collider ring design (lattice/hardware design)

Site studies

Injector studies

Machine detector interface

Input for lepton option

Iterations needed

Preliminary layout

Page 12: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

12Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• 90 – 100 km fits geological situation well,

• LHC suitable as potential injector

Site study 93 km example

Page 13: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

13Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

13

• Increase critical current density• Obtain high quantities atrequired quality

• Material Processing• Reduce cost

• Develop 16T short models• Field quality and aperture• Optimum coil geometry• Manufacturing aspects• Cost optimisation

C o n d u c t o r R & D

Nb3Sn

M a g n e t D e s i g n

16 T

FCC-hh: Key Technology R&D - HFM

Page 14: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

14Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

only a quarter is shown

15-16 T: Nb-Ti & Nb3Sn 20 T: Nb-Ti & Nb3Sn & HTS

L. Rossi, E. Todesco, P. McIntyre“hybrid magnets”example block-coil layout

Key design issue: cost-optimized high-field dipole magnets

Arc magnet system will be the major cost factor for FCC-hh

Page 15: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

15Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

SC magnets for detectors

Need BL2 ~10 x ATLAS/CMS for 10% muon momentum resolution at 10-20 TeV. Solenoid: B=5T, Rin=5-6m, L=24m size is x2 CMS. Stored energy: ~ 50 GJ > 5000 m3 of Fe in return joke alternative: thin (twin) lower-B solenoid at larger R to capture return flux of main solenoid Forward dipole à la LHCb: B~10 Tm

Dipole

Field

F. Gianotti, H. Ten Kate

Page 16: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

16Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• Stored beam energy: 8 GJ/beam (0.4 GJ LHC) = 16 GJ total equivalent to an Airbus A380 (560 t) at full speed (850 km/h)

Collimation, beam loss control, radiation effects: very important Injection/dumping/beam transfer: very critical operations Magnet/machine protection: to be considered early on

FCC-hh: some design challenges

Page 17: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

17Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

High synchrotron

radiation load (SR) of protons @ 50 TeV:

~30 W/m/beam (@16 T) 5 MW total in arcs (LHC <0.2W/m)

• Beam screen to capture SR and “protect” cold mass• Power mostly cooled at beam screen temperature;• Only minor part going to magnets at 2 – 4 K

→ Optimisation of temperature, space, vacuum, impedance, e-cloud, etc.

Synchrotron radiation/beam screen

Page 18: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

18Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

P. Lebrun, L. Tavian

contributions: beam screen (BS) & cold bore (BS heat radiation)

At 1.9 K cm optimum BS temperature range: 50-100 K; But impedance increases with temperature instabilities

40-60 K favoured by vacuum & impedance considerations

100 MW refrigerator power on cryo plant

Cryo power for cooling of SR heat

Contributions to cryo load: • beam screen (BS) & • cold bore (BS heat radiation)

Page 19: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

19Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• Two parameter sets for two operation phases:

• Phase 1 (baseline): 5 x 1034 cm-2s-1 (peak),250 fb-1/year (averaged) 2500 fb-1 within 10 years (~HL LHC total luminosity)

• Phase 2 (ultimate): ~2.5 x 1035 cm-2s-1 (peak),1000 fb-1/year (averaged)

15,000 fb-1 within 15 years

• Yielding total luminosity O(20,000) fb-1 over ~25 years of operation

FCC-hh luminosity goals & phases

Page 20: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

20Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

phase 1: b*=1.1 m, DQtot=0.01, tta=5 h

phase 2: b*=0.3 m, DQtot=0.03, tta=4 h

for both phases:

beam current 0.5 A unchanged!

total synchrotron radiation power ~5 MW.

radiation damping: t~1 h

luminosity evolution over 24 h

Page 21: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

21Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

integrated luminosity / day

phase 1: b*=1.1 m, DQtot=0.01, tta=5 h phase 2: b*=0.3 m, DQtot=0.03, tta=4 h

Page 22: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

22Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• Name of the game here - luminosity: as many collisions as possible high beam current, small beam size.

• Energy reach of circular e+e- colliders is limited due to synchrotron radiation of charged particles on curved trajectory:

Lepton collider FCC-ee

DE ∝ (Ekin/m0)4/r

mprot = 2000 melectr

Page 23: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

23Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

Parameter FCC-ee LEP2

Energy/beam [GeV] 45 120 175 105

Bunches/beam 13000- 60000

500- 1400

51- 98 4

Beam current [mA] 1450 30 6.6 3

Luminosity/IP x 1034 cm-2s-1 21 - 280 5 - 11 1.5 - 2.6 0.0012

Energy loss/turn [GeV] 0.03 1.67 7.55 3.34

Synchrotron Power [MW] 100 22

RF Voltage [GV] 0.3-2.5 3.6-5.5 11 3.5

Dependency: crab-waiste vs. baseline optics and 2 vs. 4 IpsLarge number of bunches at Z and WW and H requires 2 rings.High luminosity means short beam lifetime (~ mins), requires continues injection.

Lepton collider FCC-ee parameters

Page 24: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

24Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

50 100 150 200 250 300 350 4001

10

100

1000

c.m. energy [GeV]

tota

l lu

min

osi

ty [1

03

4 c

m-2

s-1

]

Z W H tt

Baseline 2 IPBaseline 4 IP

Crab waist 2 IP

Crab waist 4 IP

FCC-ee luminosity vs energy

Page 25: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

25Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

FCC-ee: RF parameters and R&D

• Synchrotron radiation power: 50 MW per beam• Energy loss per turn: up to 7.5 GeV (at 175 GeV, t)• System dimension compared to LEP2:

• LEP2: 352 MHz, 3.5 GV voltage, 22 MW SR power (27 km)

• FCC-ee: 400 MHz, 12 GV voltage, 100 MW SR power (100 km)

• Main challenges: large variation of beam current• ~1 Ampere at Z working point, with very low energy loss

requiring only low RF voltage, impedance very important

• Very low beam current at top working point with large energy loss (6 – 7 GV/turn) requiring ~11 GV voltage.

Page 26: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

26Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

26

• Cavity R&D for large , high gradient, acceptable cryo power, operation at 4.5 K

• Multilayer additive manufacturing combining Cu and LTS materials

• High quality over large surfaces

• Push Klystrons far beyond 70% efficiency

• Increase power range ofsolid-state amplifiers

• High reliability for high multiplicity

Superconducting RF

BeyondNb

P o w e r C o n v e r s i o n

Efficiency

FCC-ee: Key Technology R&D - RF

Page 27: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

27Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

Beside the collider ring(s), a booster of the same size (same tunnel) must provide beams for top-up injection

• same RF voltage, but low power (~ MW)• top up frequency ~0.1 Hz• booster injection energy ~5-20 GeV• bypass around the experiments

injector complex for e+ and e- beams of 10-20 GeV• Super-KEKB injector ~ almost suitable

A. Blondel

FCC-ee top-up injector

Page 28: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

28Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

FCC-ee preliminary layout

C=100 km

Page 29: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

29Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

Constr. Physics LEP

Construction PhysicsProtoDesign LHC

Construction PhysicsDesign HL-LHC

PhysicsConstructionProtoDesign FCC

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

20 years

CERN Circular Colliders + FCC

Page 30: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

30Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

2014 2015 2016 2017 2018Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Explore options“weak interaction”

Report

Study plan, scope definition

FCC Week 2018 contents of CDR

CDR ready

FCC Week 2015: work towards baseline

conceptual study of baseline “strong interact.”

FCC Week 17 & ReviewCost model, LHC results study re-scoping?

Elaboration,consolidation

FCC Week 2016Progress review

Study time line towards CDR

Page 31: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

31Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

2014 2015 2016 2017 2018Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

CDR ready

FCC Week 2015: work towards baseline

conceptual study of baseline “strong interact.”

FCC Week 2016Progress review

• Converge on solid and agreed baseline scenarios• Launch technology R&D at international level• Assure coherence between study branches

Focus on Study-Phase 2

Page 32: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

32Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• A consortium of partners based on a

Memorandum Of Understanding (MoU)

• Working together on a

best effort basis

• Self governed

• Incremental & open to

academia and industry

• Specific contributions

detailed in Addendum

The FCC Collaboration

Page 33: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

33Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

Collaboration Status• 53 institutes• 19 countries• EC participation

FCC Global Collaboration

Page 34: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

34Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

FCC Collaboration Status

53 collaboration members & CERN as host institute , 1 May 2015ALBA/CELLS, Spain

Ankara U., Turkey

U Bern, Switzerland

BINP, Russia

CASE (SUNY/BNL), USA

CBPF, Brazil

CEA Grenoble, France

CEA Saclay, France

CIEMAT, Spain

CNRS, France

Cockcroft Institute, UK

U Colima, Mexico

CSIC/IFIC, Spain

TU Darmstadt, Germany

DESY, Germany

TU Dresden, Germany

Duke U, USA

EPFL, Switzerland

GWNU, Korea

U Geneva, Switzerland

Goethe U Frankfurt, Germany

GSI, Germany

Hellenic Open U, Greece

HEPHY, Austria

U Houston, USA

IFJ PAN Krakow, Poland

INFN, Italy

INP Minsk, Belarus

U Iowa, USA

IPM, Iran

UC Irvine, USA

Istanbul Aydin U., Turkey

JAI/Oxford, UK

JINR Dubna, Russia

FZ Jülich, Germany

KAIST, Korea

KEK, Japan

KIAS, Korea

King’s College London, UK

KIT Karlsruhe, Germany

Korea U Sejong, Korea

MEPhI, Russia

MIT, USA

NBI, Denmark

Northern Illinois U., USA

NC PHEP Minsk, Belarus

U. Liverpool, UK

PSI, Switzerland

Sapienza/Roma, Italy

UC Santa Barbara, USA

U Silesia, Poland

TU Tampere, Finland

Wroclaw UT, Poland

Page 35: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

35Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• Core aspects of hadron collider design: arc & IR optics design, 16 T magnet program, cryogenic beam vacuum system

• Recognition of FCC Study by European Commission

EC contributes with funding to FCC-hh study

EuroCirCol EU Horizon 2020 Grant

Page 36: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

First FCC WeekConference

Washington DC23-27 March 2015

http://cern.ch/fccw2015

++...

US; 35

CH/CERN; 29

DE; 6

CN; 5

UK; 5

IT; 3.5

FR; 3.1RU; 3.1

JP; 3ES; 1.8PL; 1.5 Other; 4

21 Countries128 Institutes220 presentations

Page 37: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

37Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• Freeze baselines parameters and concepts• Colliders, injectors and infrastructures

• Put Nb3Sn/16 T magnet program on solid feet

• Define and launch selected technology R&D

programmes

• Reinforce physics and detector simulations

• Pursue MDI and experiment studies

• Further enlarge the global FCC collaboration

• Launch EuroCirCol Design Study

Outlook 2015

Page 38: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

38Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

• There are strongly rising activities in energy-frontier circular colliders worldwide.

• The FCC collaboration is hosted by CERN and will conduct an international study for the design of Future Circular Colliders (FCC).

• FCC presents many challenging R&D requirements in SC magnets, SRF and many other technical areas.

• Global collaboration in physics, experiments and accelerators and the use of all synergies is essential to move forward.

Conclusions

Page 39: 1 Future Circular Collider Study Michael Benedikt DT Training Seminar 7 May 2015 Future Circular Collider (FCC) Study M. Benedikt, F. Zimmermann gratefully

39Future Circular Collider StudyMichael BenediktDT Training Seminar 7 May 2015

FCC Week 2016

Rome, 11-15 April 2016