1 classicalscalingeffects 131ahrenkiel.sdsmt.edu/courses/fall2019/nano702/lectures/1...introduction...

17
Introduction Many of the forces familiar from the study of classical physics have varied scaling with size, and as a consequence, forces which dominate at macroscopic length scales may become relatively less (or more) important as the size of objects are scaled down. This notion, and the fundamental limits on miniaturization of man‐made machines, are the major themes explored in Feynman's lecture, “There's plenty of room at the bottom". "You must not fool yourself – and you are the easiest person to fool." Richard Feynman pdf available at http://calteches.library.caltech.edu/1976/

Upload: others

Post on 24-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

IntroductionMany of the forces familiar from the study of classical physics have varied scaling with size, and as a consequence, forces which dominate at macroscopic length scales may become relatively less (or more) important as the size of objects are scaled down. This notion, and the fundamental limits on miniaturization of man‐made machines, are the major themes explored in Feynman's lecture, “There's plenty of room at the bottom".

"You must not fool yourself – and you are theeasiest person to fool." Richard Feynman

pdf available at http://calteches.library.caltech.edu/1976/

Page 2: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Classical scaling examples

• Scaling of Mechanical SystemsScaling of a simple harmonic oscillatorScaling of the oscillations of a Beam

• Scaling of electrical circuitsScaling of an RLC CircuitNano‐rlectro‐mechanical machines (NEMS)

• Scaling of Thermal PropertiesHeating/cooling rate of a nano‐sized object

• Scaling of Fluid MechanicsScaling of a nano‐particle undergoing Brownian motionMotor proteins

• S.

w w w

h h

Scale all dimensions bya factor α (α<1)

h

w

Page 3: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Scaling of a simple, harmonic oscillatorConsider a simple harmonic oscillator, which could represent any object that exhibits a vibrational resonance:

Newton’s force law, no damping

F ma kx mx

Solution: 0sinx t A t

20 0sin 0m k A t

0mx kx

0 k m →

Natural frequency:

m V Mass:

F LYA L

Elasticity: YAF L kx

L

2A A k k

Natural frequency generally increases as size decreases

Young’s modulus

3m V m 3V V

L L YAF L k xL

Scale all dimensions by a factor α

00 k m

Scaled:

Scaled:

Page 4: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Example: Aluminum

80 1.6 10 rad sk m 0 1599 rad sk m

690 N mYAkL

21 mmA

1 cmL

31000 cmV

2.7 kgm V

32.7 g cm 69 GPaY

00 254 Hz

2f

510

0.1 mL

2100 nmA

31 mV

69 N mYAkL

2.7 fgm V

00 25.4 MHz

2f

L

A

V

Page 5: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Scaling of the oscillations of a beamSuppose a sound wave traveling at speed v is generated by the free oscillation of a beam:

The wavelength of any sustained resonance will be 2LN

where N is a positive integer.

The speed, wavelength, and frequency are related by v f

The frequency scales with the length of the beam as ff

The lowest (fundamental) frequency has N=1. The first harmonic has N=2, etc. 

In other words, the pitch of the resonating beam varies inversely with length.

L

2NvfL

Scale only the beam length: L L

Page 6: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Scaling of an LC circuitNow let us examine an LC circuit. How does the resonance frequency of such a circuit scale?

Inductance:

The resonance frequency is given by

0I I C LThe current I satisfies the differential equation:

The solution is: 0sinI t A t

20 01 sin 0C A t L

0

1C

L

0 AC

t

L L

2A A t t

Scaled:

00

0 AC

t

C C Capacitance:

20

ANL

L

0

1C

L

Scaled: 20

ANL

L2A A

L L

Page 7: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Nano‐electro‐mechanical systems (NEMS)Nano‐scale circuits can be expected to operate at higher frequencies. Nano‐electro‐mechanical systems (NEMs) can have resonant frequencies in the ~100 MHz to the GHz range.

Note: The characteristic time for charging/dischargingthe capacitor in an RLC circuit is given by:

RC

2A A L L

Resistance scales as:LRA

Resistance: LRA

R R

R C Thus, charging times are invariant with length scale.

C C Capacitance scales as:

Page 8: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Heating and cooling of a nanoparticleConsider a spherical object of radius r and specific heat Cv in a thermal reservoir with temperature difference ΔT

Rate of heat transfer through nanoparticle surface: T

dQ k A Tdt

Total amount of heat exchanged to reach equilibrium: VQ C m T

V

dQ d TC mdt dt

1T

V

k Ad TR T Tdt C m

T

V

k AR T

C m

2A A 3m m

1R R

Cooling rate:

Scaled:

Faster cooling for smaller‐sized particles:

Page 9: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Terminal velocity in a fluid

Net gravitational force:

RgF

dragF

drag 6F Rv

Consider the terminal velocity of a sphere in a viscous fluid falling earth’s gravity.

fluidgF m m g m g

For large objects, the drag force is approximately dragF Av

3fluid

43

m V R

24A R

tAv m g

drag gF FNet force is zero at terminal velocity

3t

m g gv RA

t tv v Scaled: R R

For smaller objects in a fluid with viscosity η, the drag force with laminar flow is given by Stoke’s lawAt terminal velocity:

226 9t

m g gv RR

6 tRv m g

2t tv v Scaled: R R

Page 10: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Example: Au spheres in waterAu: 319.3 g cm 31.0 g cm

51.8 10 Pa s

1 Pa s 10 P (poise) Note:

water:

226 9t

m g gv RR

29.8 m sg

1 mmR

510

10 nmR

Page 11: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Thermal and diffusive motion2

B

1 12 2

m v k T1 22 B

th

k Tv v

m

m V Mass: 3m V m 3V V Scaled:

3 2th thv v Thermal velocity (speed) increases as particle size decreases.

Equipartition theorem (1‐D):

For a system of many particles, we need to consider diffusion by thermal motion. 

C Jt x

CConcentration:

DDiffusion coefficient:

JFlux:Continuity equation:

CJ Dx

Fick’s Law:

2

2

C CDt x

Diffusion equation:Combine

Page 12: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Diffusion‐I

2, e ,ikx

xC x t dx C x t

Consider the concentration as the probability density for the position of one particle in a large ensemble:

,0C x x

,C x t

The particle starts from a known position: Take the Fourier transform:

2

22

, 4 ,C x t k C x tx

,0 1C x x

, ,C x t C x tt t

2

2

, ,C x t C x tDt x

2, 4 ,C x t k D C x tt

2, exp 4C x t A k Dt

2, exp 4C x t k Dt

21 2 2 4, exp 4 e eikx k Dt

kC x t k Dt dk

2 21, exp

42xC x t

DtDt

Inverse Fourier transform:

Fourier transform of 2nd derivative:We need to solve: Partial differentiation allows:

Combine: Integrate over time:

Initial condition:

Page 13: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Diffusion‐II

We need the diffusion coefficient to estimate this.

For a collection of particles in a viscous medium:

drift diffusionJ J J

drift tJ v C diffusion

CJ Dx

drag exttv

F F

At terminal velocity: exttv F

16 R

If drag 6 tF Rv Total flux:

mobility

Zero net force:

,C x t

x

0t

w tWidth of the probability distribution:

4w t Dt

Page 14: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Diffusion‐III

0 e E x kTC x C

BD k T

Assume a thermal distribution:

extE x F x With a uniform force applied (e.g., gravity):

drift ext ext 0 e E x kTJ F C x F C

extdiffusion 0 e E x kTD FC xJ D C

x kT

drift diffusion 0J J J

B24

3k Tt

w t DtR

Einstein relation

We can relate diffusion coefficient to mobility by assuming near‐equilibrium conditions.

B

6k T

DR

In this case:

higher energy

lower energy

gF

Page 15: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Diffusion‐IVCompare drift vs. diffusion:

B23k Tt

w tR

229t

gd t v t R t

When does distance drifted exceed distance diffused?:

d t w t

t

w ttv

2 2 5

272t

w kTv g R

5

Smaller particles remain suspended longer

//drift

//diffusion

B3

3k Tw

g R

...and diffuse farther

Page 16: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Example: Au spheres in water

Bth

k Tv

m1) Thermal velocity:

Au spheres: 319.3 g cm

1 mmR

0.0259 eVBk T Thermal energy (300 K):

7.2 nm sthv

510

10 nmR

0.23 m sthv

2 2 5

272

kTg R

2) Diffusion time:

2

3H O 1.0 g cm

211.0 10 s 41.0 10 s 2.7 h

B3

3k Tw

g R

3) Diffusion length: 0.02 fmw 2.2 mmw

Page 17: 1 ClassicalScalingEffects 131ahrenkiel.sdsmt.edu/courses/Fall2019/NANO702/lectures/1...Introduction Many of the forces familiar from the study of classical physics have varied scaling

Motor proteins

One such nano‐machine in living cells is a motor protein, driven by chemical energy and functioning in the aqueous environment of a cell. An example would be the motor protein kinesin, which can move a lipid raft many times its own mass along a microtubule, apparently oblivious to the forces of gravity.

kinesin

lipid raft

microtubule