010.141 fourier series, integrals, and transforms … · 2018. 1. 30. · fourier series,...

49
010.141 FOURIER SERIES, INTEGRALS, AND TRANSFORMS MODULE 3 ADVANCED ENGINEERING MATHEMATICS

Upload: others

Post on 26-Jan-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • 010.141

    FOURIER SERIES, INTEGRALS, AND TRANSFORMS

    MODULE 3

    ADVANCED ENGINEERING MATHEMATICS

  • 2B.D. Youn2010 Engineering Mathematics II Module 2

    Fourier Series, Integrals, and Transform

    Ø Fourier series: Infinite series designed to represent general periodic functions in terms of simple ones (e.g., sines and cosines).

    Ø Fourier series is more general than Taylor series because many discontinuous periodic functions of practical interest can be developed in Fourier series.

    Ø Fourier integrals and Fourier Transforms extend the ideas and techniques of Fourier series to non-periodic functions and have basic applications to PDEs.

  • 3B.D. Youn2010 Engineering Mathematics II Module 2

    PERIODIC FUNCTIONS

    Ø A periodic function is a function such that f(x + p) = f(x) where p is a period.

    Ø The smallest period is called a fundamental period.

  • 4B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER SERIES

    Assume that f(x) is periodic with period 2p and is integrable over a period.

    f(x) can be represented by a trigonometric series:

    i.e., the series converges and has sum f(x)

    ( ) ( )f x = a + a cos nx + b sin nx0 n nn = 1

    ¥

    å

  • 5B.D. Youn2010 Engineering Mathematics II Module 2

    Euler Formulas

    Fourier coefficients

    a0, an, bn are the Fourier coefficients.

    The corresponding series is the Fourier series

    ( )

    ( )

    ( )

    01

    2

    1 cos

    1 sin

    n

    n

    a = f x dx

    a = f x nx dx

    b = f x nx dx

    p

    p

    p

    p

    p

    p

    p

    p

    p

    -

    -

    -

    ×

    ×

    ò

    ò

    ò

    TRIGONOMETRIC SERIES WITH A PERIOD OF 2p

  • 6B.D. Youn2010 Engineering Mathematics II Module 2

    ( )f x = k, < x < 0

    k, < x < - -ì

    íî

    pp0

    Example: Rectangular wave

    FOURIER SERIES (cont)

    ( ) [ ]

    0

    00

    n

    1 1a = k dx+ dx 02 2

    1 1a = cos x dx= 0 =0

    k

    f x n

    p

    p

    p

    p

    p p

    p p

    -

    -

    - =ò ò

    ò

    Fourier Coefficients( )

    ( )

    ( )

    n

    0

    0

    0

    0

    1b = sin x dx

    1 1= sin x dx + sin x dx

    s nx cos nx= n n

    4k= 1 1 1 1 = odd n

    f x n

    k n k n

    k co

    k for nn

    p

    p

    p

    p

    p

    p

    p

    p p

    p

    p p

    -

    -

    -

    -

    æ öé ù é ù+ -ç ÷ê ú ê úç ÷ë û ë ûè ø

    + + +

    ò

    ò ò

  • 7B.D. Youn2010 Engineering Mathematics II Module 2

    EXAMPLE 1: RECTANGULAR WAVE

    ( )

    ( )

    ( ) ( )

    0 n nn = 1 n = 1

    2n+1n = 0

    n = 0

    x =a + a cos cos

    = sin 2 1

    4 sin 2 12 1

    4 1 1sinx+ sin 3 sin 52 1+1 5

    f nx b nx

    b n x

    k n xn

    k x x

    p

    p

    ¥ ¥

    ¥

    ¥

    +

    +

    = ++

    æ ö= + +ç ÷×è ø

    å å

    å

    å

    L

    Fourier series:

  • 8B.D. Youn2010 Engineering Mathematics II Module 2

    ORTHOGONALITY OF SINE, COSINE FUNCTIONS

    Two functions fm and fn of the same form are orthogonal if ò fm fn dx = 0 for all m ¹ n and ò fm fn dx = a for all m = n.

    ( )

    ( )

    2

    2

    cos mx cos nx dx 0 for all m n

    cos nx dx 0 for all m n

    sin mx sin nx dx 0 for all m n

    sin nx dx 0 for all m n

    cos mx sin nx dx

    p

    p

    p

    p

    p

    p

    p

    p

    p

    p

    -

    -

    -

    -

    -

    = ¹ ±

    ¹ =

    = ¹

    ¹ =

    ò

    ò

    ò

    ò

    ò 0 for all m n= =

  • 9B.D. Youn2010 Engineering Mathematics II Module 2

    CONVERGENCE AND SUM OF FOURIER SERIES

  • 10B.D. Youn2010 Engineering Mathematics II Module 2

    CONVERGENCE AND SUM OF FOURIER SERIES

    Proof: For continuous f(x) with continuous first and second orderderivatives.

    ( )

    ( )

    ( )

    n

    0

    1a cos nx dx

    f sin nx1 1 sin nxdx dx

    f sin nx1 1 'sin nx dx

    1 'sin nx dx

    f x

    xf

    n n

    xf

    n n

    fn

    p

    p

    p p

    p p

    p p

    pp

    p

    p

    p

    p p

    p p

    p

    -

    - -

    --

    -

    =

    ¢æ ö

    ¢= -ç ÷è ø

    = -

    = -

    ò

    ò ò

    ò

    ò

    1442443

  • 11B.D. Youn2010 Engineering Mathematics II Module 2

    Repeating the process:

    Since f" is continuous on [– π, π ]

    CONVERGENCE AND SUM OF FOURIER SERIES (cont)

    ( ) dx nxcosx"fn1a 2n ò

    p

    p-p-=

    ( )

    ( )

    22n

    22n

    nM2

    nM2a

    dxMn1dx nxcosx"f

    n1a

    Mx"f

    =pp

    <

    p<

    p=

    <

    òòp

    p-

    p

    p-

  • 12B.D. Youn2010 Engineering Mathematics II Module 2

    Similarly for

    Hence

    which converges. (see Page 670)

    CONVERGENCE AND SUM OF FOURIER SERIES (cont)

    2n nM2b <

    ( ) ÷øö

    çèæ +++++++< L22220 3

    131

    21

    2111M2axf

  • 13B.D. Youn2010 Engineering Mathematics II Module 2

    FUNCTIONS OF ANY PERIODP = 2L

  • 14B.D. Youn2010 Engineering Mathematics II Module 2

    FUNCTIONS OF ANY PERIOD (cont)P = 2L

    ( )

    ( ) ( ) ( )

    ( ) ( ) ( )òòò

    òòò

    åå

    --

    p

    p-

    --

    p

    p-

    ¥

    =

    ¥

    =

    =p

    p=

    p=

    p=

    pp

    =p

    =

    ++=

    p=

    L

    L

    L

    L0

    L

    L

    L

    Ln

    1 n n

    1 n n0

    dxxf L21 dx

    Lxf

    21 dvvg

    21 a

    dxL

    xncosxf L1 dx

    L

    Lxncosxf 1 dv nvcosvg 1 a

    nvsinb nvcosa a vg

    Lxv

    Proof: Result obtained easily through change of scale.

    Same for a0, bn

  • 15B.D. Youn2010 Engineering Mathematics II Module 2

    ANY INTERVAL (a, a + P)P = PERIOD = 2L

    ( )

    ( )

    ( )

    ( ) dx P

    x2nsinxf P2 b

    dx P

    x2ncosxf P2 a

    dxxf P1 a

    Px2ninsb

    Px2ncosa a xf

    P a

    an

    P a

    an

    P a

    a0

    1 n nn0

    p=

    p=

    =

    ÷øö

    çèæ p+

    p+=

    ò

    ò

    ò

    å

    +

    +

    +

    ¥

    =

    a a + P

  • 16B.D. Youn2010 Engineering Mathematics II Module 2

    EXAMPLE OF APPLICATION

    Find the Fourier series of the function

    Solution:

    ( )ïî

    ïí

    ì

  • 17B.D. Youn2010 Engineering Mathematics II Module 2

    EXAMPLE OF APPLICATION (cont)

    3ncos

    nncos12 b

    3nins

    nncos12 a

    0 a

    3ncos

    37nsco

    3ncos ncos

    34ncos

    3nins

    37nsin

    3nins ncos

    34nsin

    n

    n

    0

    p÷øö

    çèæ

    pp-

    =

    p÷øö

    çèæ

    pp-

    -=

    =

    p=

    ppp=

    p

    p=

    ppp=

    p

    x-3 71 4

    f(x)

  • 18B.D. Youn2010 Engineering Mathematics II Module 2

    EVEN AND ODD FUNCTIONS

    Examples: x4, cos x

    f(x) is an even function of x, if f(-x) = f(x). For example, f(x) = x sin(x), then

    f(- x) = - x sin (- x) = f(x)

    and so we can conclude that x sin (x) is an even function.

  • 19B.D. Youn2010 Engineering Mathematics II Module 2

    Properties

    1. If g(x) is an even function

    2. If h(x) is an odd function

    3. The product of an even and odd function is odd

    EVEN AND ODD FUNCTIONS

    ( ) ( )

    ( ) 0dx xh

    dx xg2dx xg

    L

    L

    L

    0

    L

    L

    =

    =

    ò

    òò

    -

    -

  • 20B.D. Youn2010 Engineering Mathematics II Module 2

    EVEN AND ODD FUNCTIONS

  • 21B.D. Youn2010 Engineering Mathematics II Module 2

    EVEN AND ODD FUNCTIONS

  • 22B.D. Youn2010 Engineering Mathematics II Module 2

    SUM

  • 23B.D. Youn2010 Engineering Mathematics II Module 2

    SUM

  • 24B.D. Youn2010 Engineering Mathematics II Module 2

    SUM

  • 25B.D. Youn2010 Engineering Mathematics II Module 2

    SUM

  • 26B.D. Youn2010 Engineering Mathematics II Module 2

    Forced Oscillations

  • 27B.D. Youn2010 Engineering Mathematics II Module 2

    Forced Oscillations

  • 28B.D. Youn2010 Engineering Mathematics II Module 2

    Forced Oscillations

  • 29B.D. Youn2010 Engineering Mathematics II Module 2

    Forced Oscillations

  • 30B.D. Youn2010 Engineering Mathematics II Module 2

    Forced Oscillations

  • 31B.D. Youn2010 Engineering Mathematics II Module 2

    Consider a function f(x), periodic of period 2π. Consider an approximation of f(x),

    The total square error of F

    is minimum when F's coefficients are the Fourier coefficients.

    APPROXIMATION BYTRIGONOMETRIC POLYNOMIALS

    ( ) 0n 1

    ( ) x cos sinN

    n nf x F A A nx B nx=

    » = + +å

    ( )òp

    p-

    -= dxFf E 2

    Read Page 503 to see the derivation procedure of Eq. (6)

  • 32B.D. Youn2010 Engineering Mathematics II Module 2

    PARSEVAL'S THEOREM

    ( ) ( )2 2 2 20n 1

    12 n na a b f x dxp

    pp

    ¥

    = -

    + + £å ò

    The square error, call it E*, is

    Where an, bn are the Fourier coefficients of f.

  • 33B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER INTEGRALS

    Since many problems involve functions that are nonperiodic and are ofinterest on the whole x-axis, we ask what can be done to extend the methodof Fourier series to such functions. This idea will lead to “Fourier integrals.”

  • 34B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER INTEGRALS

  • 35B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER INTEGRALS

  • 36B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER COSINE AND SINE INTEGRALS

  • 37B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER COSINE AND SINE INTEGRALS

  • 38B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER COSINE AND SINE INTEGRALS

    ( ) ( ) ( )0

    f x cos sin dA x B xw w w w w¥é ù= +ë ûò

    ( )

    ( )

    ( )

    01

    2

    1 cos

    1 sin

    n

    n

    a = f x dx

    a = f x nx dx

    b = f x nx dx

    p

    p

    p

    p

    p

    p

    p

    p

    p

    -

    -

    -

    ×

    ×

    ò

    ò

    ò

    ( ) ( )f x = a + a cos nx + b sin nx0 n nn = 1

    ¥

    å

    ( ) ( ) ( )

    ( ) ( ) ( )

    1 cos d

    1 sin d

    A f v v v

    B f v v v

    w wp

    w wp

    ¥

    ¥

    =

    =

    ò

    ò

  • 39B.D. Youn2010 Engineering Mathematics II Module 2

    EXISTENCE

    If f(x) is piecewise continuous in every finite interval and has a right hand and left hand derivative at every point and if

    exists, then f(x) can be represented by the Fourier integral.

    Where f(x) is discontinuous, the F.I. equals the average of the left-hand and right-hand limit of f(x).

    ( ) ( )òò ¥®¥-® +b

    0 b

    0

    a a

    dxxf limdxxf lim

  • 40B.D. Youn2010 Engineering Mathematics II Module 2

    For an even or odd function the F.I. becomes much simpler.

    If f(x) is even

    If f(x) is odd

    ( ) ( )

    ( ) ( ) ( )

    ( ) ( )

    ( ) ( ) ( ) integral sineFourier dω ωx sinωB xf

    dv ωvsin vfπ2 ωB

    integral cosineFourier dω ωx cosωA xf

    dv ωv cos vfπ2 ωA

    0

    0

    ò

    ò

    ò

    ò

    ¥

    ¥

    ¥-

    ¥

    ¥

    ¥-

    =

    =

    =

    =

    FOURIER COSINE AND SINE INTEGRALS

  • 41B.D. Youn2010 Engineering Mathematics II Module 2

    EXAMPLE

    Consider

    Evaluate the Fourier cosine integral A(w) and sine integral B(w).

    ( ) 0 k 0, x e xf kx >>= -

    Integration by parts gives

    For Fourier cosine integral,

    Fourier cosine integral is

  • 42B.D. Youn2010 Engineering Mathematics II Module 2

    EXAMPLE

    Integration by parts gives

    For Fourier sine integral,

    Fourier sine integral is

    Laplace integrals

  • 43B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER SINE AND COSINE TRANSFORMS

    For an even function, the Fourier integral is the Fourier cosine integral

    ( ) ( ) ( ) ( ) ( ) ( ) ˆπ2 dv ωv cos vf

    π2 ωAdω ωx cosωA xf

    0

    wcf=== òò¥

    ¥-

    ¥

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    ( ).ˆ of transformcosineFourier inverse theis

    . of transformcosineFourier theas defined is ˆ

    dωx cos ˆπ2 dωx cos ˆ

    π2 xf

    dv ωv cos vfπ2 dv ωv cos vf

    π2

    2π ωA

    2π ˆ

    00

    00

    c

    c

    cc

    c

    ff

    ff

    ff

    f

    w

    wwww

    w

    òò

    òò¥¥

    ¥¥

    ==

    ===

    Then

  • 44B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER SINE AND COSINE TRANSFORMS (cont)

    Similarly for odd function

    ( ) ( )

    ( ) ( ) dωx sin f̂π2 xf T sine F Inverse

    dxωx sin xfπ2 f̂ T sine F

    0c

    0c

    ò

    ò

    ¥

    ¥

    ww=®

    =w®

  • 45B.D. Youn2010 Engineering Mathematics II Module 2

    NOTATION AND PROPERTIES

    { } { }{ } { }

    { } { } { }{ } { } { }

    ( ){ } { } ( )

    ( ){ } { }

    { } { } ( )

    { } { } ( )0fω π2fω f(6)

    0f π2fω f(5)

    fω xf(4)

    0f π2fω xf(3)

    gb fa bgaf(2)gb fa bgaf(1)

    ˆ , ˆ

    ˆ ,ˆ

    s2

    s

    c2

    c

    cs

    sc

    sss

    ccc

    s1

    sc1

    c

    sscc

    ¢+-=¢¢

    ¢--=¢¢

    -=¢

    -=¢

    +=++=+

    ==

    ==--

    FF

    FF

    FF

    FF

    FF

    FF

    FFFFFF

    ffff

    ffff

  • 46B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER TRANSFORM

    ( ) ( ) ( )[ ]

    ( ) ( )4444 34444 21

    w

    ¥

    ¥-

    ¥

    ¥

    ¥-

    ¥

    òò

    òò

    w-wwp

    =

    ww+wwwp

    =

    in Even

    0

    0

    vdx vcos vfd1

    vdxsinvsin vfxcosvcos vfd1 xf

    ( ) ( ) ( )[ ]

    ( ) ( )

    ( ) ( )ò

    ò

    ò

    ¥

    ¥-

    ¥

    ¥-

    ¥

    =w

    =w

    +=

    vd ωvsin vfπ1 B

    vd ωv cos vfπ1 A

    dx ωxsin ωBωx cosωAxf0

    The F.I. is:

    Replacing

  • 47B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER TRANSFORM

    ( ) ( ) ( )

    ( ) ( ) ( ) lvd v xsinvfd21 xf

    vd v xcosvfd21 xf

    in odd4444 34444 21

    w

    ¥

    ¥-

    ¥

    ¥-

    ¥

    ¥-

    ¥

    ¥-

    òò

    òò

    -wwp

    =

    -wwp

    =

    Now,

    ( ) ( ) ( )

    ( ) ( ) IntegralFourier Complex dve vfd21

    dω GiωF21 xf

    vxiωòò

    ò

    ¥

    ¥-

    ¥-

    ¥

    ¥-

    wp

    =

    w+p

    =

  • 48B.D. Youn2010 Engineering Mathematics II Module 2

    FOURIER TRANSFORM (cont)

    ( ) ( )

    ( )

    ( ) ( ) wwp

    =

    pw

    p=

    ò

    òò

    ¥

    ¥-

    ºw

    ¥

    ¥-

    ¥-

    de f̂21 xf

    dve vf21de

    21 xf

    xiω

    f of TransformFourier f̂

    viωxiω

    444 3444 21

  • 49B.D. Youn2010 Engineering Mathematics II Module 2

    NOTATION AND PROPERTIES

    { } { } { }{ } { }

    { } { }{ } { } { }g f2 gf

    fω f

    fiω f

    gb fa bgaf

    2

    FFF

    FFF

    +p=*

    -=¢¢

    +=+

    FF

    FF