0001_j. electrochem. soc.-1964-threadgill-1408-11.pdf

Upload: m-anees-rehman

Post on 01-Jun-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 0001_J. Electrochem. Soc.-1964-Threadgill-1408-11.pdf

    1/4

    1408

    JO U RN A L O F T H E E L E CT RO CH E M I CA L SO CI E T Y

    December 1964

    C U B IC U C 2 + C ~ C + C U B IC G d C2

    T E T R A G O N A L

    UC2+C ~ ~ /

    A O O

    *C

    TETRAGONALUC2--~ ;A ~ \ / L ~ ~ / J \ \ \

    ~oo~ ~ / / / ~ ~ ~ \ ~ o o

    ( UO.glGdo.09)2C5+ (UO.12Gdo,8s) 2+ C

    1300 (; ISOTHER MAL SECTION

    Fig. S. P erspective draw ing of the h igh carbo n portion of the

    U Gd C tern ary system.

    position curve intersects the 1300~ isoth ermal plane

    (Fig. 5) the tie-triangles connect the phases (U0.91

    Gd0.09 2C3 t- cubic (U,Gd)C 2 + C. Fro m Fig. 2 it is

    seen that the cubic (Gd,U)C2 phase must also undergo

    a ternary eutectoid decomposition below 1300~

    Figure 5 shows a perspective view of the equil ibr iu m

    phases associated with the decomposition curve. The

    base represents the high carbon portion of the 1300~

    isothermal section of the U-Gd-C ternary.

    C o n c l u s i o n s

    From this study it was found that UC2 and GdC2

    form a continuous series of solid solutions above 1785~

    with the solid solution solidus and carbon eutectic

    temperatures decreasing in a regular manner f rom the

    UC2 boun dary to the GdCs boundary. Along the line

    which lies betw een UC2 (1785~ and appr oxi matel y

    (U0.sGd0.2)C2 (1510~ th ere is a tw o- ph as e re gi on

    that connects solid solution regions of tetragonal-

    (U,Gd)Cs and cubic-( U,Gd)C2. Below 1525~ there

    is a decomposition curve below which the UC2-GdC2

    solid solution is unstable. The decomposition curve

    progresses from the UC2 boun dary (1525~ to a com-

    po si ti on of (U0.1sGd0.ss)C2 at 1300~

    The tetragonal to cubic transformation curve of the

    UCs-GdC2 solid solution decreases as one moves from

    both boundaries indicating that

    AFM ->c

    is negative.

    Further , the course of the To curve may be used to

    make thermodynamic approximations on var ious prop-

    erties of the solid solution region.

    A c k n o w l e d g m e n t s

    The authors gratefully acknowledge the advice and

    support of Dr. Melvin G. Bowman during the course

    of this work. Acknowledgment is also made of the

    work of membe rs of Group CMB-1 of this Laborat ory

    for the chemical analyses and Mrs. M. J. Ulery for

    reading the x-ray diffraction patterns. Thanks are due

    to Willard G. Witteman and Charles Radosevich for

    assistance in obtaining the transformation curves.

    Without the ingenuity of Mr. George N. Rupert in de-

    signing and building the thermal analysis apparatus

    used, the work on the transformation temperatures

    could not have been performed. Finally, the help of

    Dr. Allen L. Bowman and Mr. Paul McWilliams is

    acknowledged for the programming and computing of

    the results obtained from Eq. [2].

    Manuscript received May 7, 1964. Work performed

    under the auspices of the United States Atomic Energy

    Commission.

    Any discussion of this paper will appear in a Discus-

    sion Secti on to be pub lis hed in the Ju ne 1965 JOURNAL.

    REFERENCES

    1. S. Langer, General Atomics Report, GA-4450, Sep-

    tember 5, 1963.

    2. W. G. Witteman and M. G. Bowman, To be pub-

    lished.

    3. F. Spedding, K. Gschneider, and A. Daane, J. Am.

    Chem. Soc. 80, 4499 (1958) .

    4. J.M. Leitnaker, M. G. Bowman, and P. W. Gilles,

    J. Chem. Phys. 36, 350 (1962).

    5. G. N. Rupert, Rev. Sci. Instr., 34, 1183 (1963).

    6. G. N. Rupert, To be published.

    7. O. H. Kriege, Los Alam os Scientific Laborat ory

    Report LA-2306, March 1959.

    8. J. B. Hess,

    Acta Cryst.

    4, 209 (1951).

    9. A. L. Bowman, W. G. Witteman, G. P. Arnold, and

    N. G. Nereson, To be published.

    10. Roger Chang, Acta Cryst. 14, 1097 (1961).

    11. Larr y Kauf man and Morris Cohen, Ther mod y-

    namics and Kinetics of Martensit ic Transforma-

    tions, in Prog ress in Metal Physic s, 7, 167,

    Pergamon Press, New York (1958).

    12. L. S. Levinson, J. Chem. Phys. 38, 2105 (1963).

    13. K. K. Kelley,

    Contribution to the data on theoretical

    metallurgy XIII , High-Temperature Heat Con-

    tent , Heat-Capacity, and Entropy Data for the

    Elements and Inorganic Compounds, Bullet in

    584 (1960).

    14. Max Hansen, Consti tution of Binary Alloys, p.

    387, McGraw-Hill Book Co., Inc., New York

    (1958).

    15. F. N. Rhines, Phas e Diagrams in Metallur gy, Their

    Devel opme nt and Applications, Chap. 14, Mc-

    Graw -Hil l Book Co., Inc., New York (1956).

    P r e p a r a tio n o f M e t a l l ic C a l c iu m b y E le c t ro l y s is o f

    C a lc i u m O x i d e D i s s o lv e d in M o l te n C a l c i u m C h l o r id e

    W . D . T h r e a d g i l l

    Depart ment of Chemical Engineering Vanderbilt University Nashville Tennessee

    ABSTRACT

    Metallic calcium was prepared by electrolysis of calcium oxide dissolved

    in molten calcium chlor ide in a modif ied moving cathode-type cell . For com-

    parison, control electrolyses of the chloride were made. Average cell voltage

    with the oxide -bearing electrolyte ranged up to 23% less than that with the

    chloride alone. The oxide content of the electrolyte decreased due to electrol-

    ysis, and tests showed that chlorine was not released at the anode. This appears

    to be the first demonstration that calcium oxide can be fed to a chloride elec-

    trolyte for calcium production.

    The first exp erime nts of record with a fused elec- commer cial prepa ratio n of man y metals. The processes

    trolyt e were made by Sir Hum phr ey Davy (1) in 1802. and equi pment used show wide var iatio n because of

    Subse quen t to his time, the electrolysis of fused salts depend ence on the specific characteristics of each

    has been used as a metho d for either the discovery or metal and its electrolyte.

    ) unless CC License in place (see abstract).ecsdl.org/site/terms_useaddress. Redistribution subject to ECS terms of use (see 193.205.210.45Downloaded on 2014-09-19 to IP 

    http://ecsdl.org/site/terms_usehttp://ecsdl.org/site/terms_usehttp://ecsdl.org/site/terms_usehttp://-/?-http://-/?-http://ecsdl.org/site/terms_usehttp://-/?-

  • 8/9/2019 0001_J. Electrochem. Soc.-1964-Threadgill-1408-11.pdf

    2/4

    Vol . 111 No . 12 PRE PA RA T I O N O F

    of the ear l ier investigations (2-8) concerned with

    the electrolytic production of calcium, probably the

    greatest advancement was made in 1904. At this time

    Rath enau (9) described a metho d of drawi ng out the

    calcium metal in the form of a rod attached to the

    cathode. The follo wing year Go odwin (10) describ ed a

    similar apparatus. Subsequent to this time, several in-

    vestigators (11-16) have made various changes and im-

    provements in the apparatus of Goodwin and Rath-

    enau

    The energy consumption of calcium is high compared

    to other products in the fused electrolyte industry.

    Mantell (17) gives the averag e energy consumption of

    calcium as 23 kw hr /l b as compared to 9 for alumin um,

    8 for magn esiu m (chloride process), and 5.2 for sodium.

    According to Mantell (18) , var iat ion in energy con-

    sumption for any one process is due to size of the cell,

    details of construction and insulation of the cell, and

    length of time the cell is operated before changes need

    to be made either in the electrolyte, the cell proper, or

    the electrical connections.

    Johnson (19) lists the factors which influence the

    decomposit ion voltage of the electrolyte as chemical

    composition, temperatu re, natu re of the electrodes, and

    their geometr ical disposit ion with respect to each

    other. Lorenz (20) and Broc kma n (21) summa rize the

    conditions affecting the curre nt y ield at the cathod e as

    temperature, distance between electrodes, current den-

    sity, secondary chemical reactions at the electrodes,

    and formation of metallic fog.

    Collection of the calcium metal produced is much

    more difficult than that of any other metal made com-

    mercially by fused salt electrolysis. Calcium metal

    floats on top of the bath, is active and soluble in the

    electrolyte, and cannot be protected by a film of the

    melt held over it by surface tension. If allowed to re-

    main in contact with the electrolyte for any length of

    time, it will be converted back to the chloride or the

    oxide due to the circulation of the bath which car-

    ries the dispersed metal into the gas producing area

    around the anode, or it will burn due to atmospheric

    oxygen. Consequently, it is necessary to use a con-

    tact cathode, that is, one that just touches the bath

    surface. The cathode is raised gradually as the metal

    is collected and a solid stick or carrot obtained.

    The decomposition voltage of calcium chloride is

    reported as 2.04-3.24v (14, 18, 22, 23) with the com-

    monly accepted value being 3.2v. Taking the value as

    3.2v, the voltag e efficiency calculated from the opera t-

    ing voltages reported by various investigators is 10.3-

    20%. German industr ial practice has been reported

    as 25v per cell (17), which represents a voltage effi-

    ciency of 12.8%.

    No information was found in the l i terature on the

    decomposit ion voltage of a calcium chlor ide-calcium

    oxide mixture.

    Investigations of calcium production by use of mixed

    electrolytes have generally been l imited to mixtures of

    the chloride and the fluoride. Johnson (14) and Frary

    (24) both ex perien ced difficulty with such an elec-

    trolyte due to its low melting point.

    A p p a r a t u s

    The modified movi ng cathode type cell used in this

    investigation is shown in Fig. 1. The container and

    anodes (not shown) were of graphite. The cathode

    consisted of a 1- in. diameter water-cooled aluminum

    bar with a removable 1-in. diameter iron tip. Tem-

    perature measurements were made with a bare

    chrome l-alum el thermocoupl e immersed in the elec-

    trolyte. A direct-current welding generator was used

    as the source of current.

    C e l l O p e r a t io n

    The electrolyte was brought to approx imately the

    desired operating temperature by external heating.

    The anode was immersed in the electrolyte and an arc

    struck between the cathode and the electrolyte in or-

    der to heat the t ip momentar i ly above the melt ing

    M E T L L I C C L C I U M

    1409

    F i g . 1 . E l e c t r o ly t ic c e l l a n o d e s n o t s h o w n )

    point of calcium metal. Without this heating, the metal

    would not wet the cathode surface except in spots.

    Adjustment of the cathode was then made to effect

    good operation.

    Generally, operation was unsteady for a period of

    5-10 rain at the start of electrolysis. Current and volt-

    age fluctuated, and the electrolyte temperature in-

    creas ed fro m 25 ~ to 50~

    During normal operation, the heating effect of the

    electrol yzing curren t was sufficient to keep the tem-

    perature fair ly constant (•176 The cathode was at

    the center of an ir regular br ight rosette with radial

    markings formed by currents of hot electrolyte moving

    away from it . Normal operation was maintained by

    raising or lowering the cathode in such a manner that

    this rosette was kept at approximately the same size

    and color. The calcium metal could be observed in a

    molten condit ion just underneath the bath surface and

    was drawn out in good solid form covered by a thin

    film of frozen electro lyte.

    When the electrolyte tempera ture arou nd the cathode

    was allowed to become too low by raising the cathode

    too slowly, metal was depos ited in a spongy form

    with branches of much t he same appearan ce as moss

    or fern. These branches were easily dislodged by con-

    vection currents. A low bath temperature required

    more rapid raising of the cathode in order to control

    the cathode temperature, and a smaller diameter car-

    rot resulted.

    When the electrolyte tempera ture around the cathode

    was allowed to become too high as a result of too

    rapid raising of the cathode, the protecting film of

    frozen ele ctrolyt e melte d and draine d off. A globule of

    molten metal formed underneath the cathode and

    s~metimes broke away due to the influence of convec-

    tion currents. When this occurred an arc was struck

    between the bath surface and the remaining st ick of

    metal thereby causing the metal to melt rapidly and

    to be lost or, in extreme cases, even to be ignited.

    If the electrolyte contained moisture, normal opera-

    tion was impossible to achieve at the start of electrol-

    ysis. No metal deposited on the cathode, and there was

    a continuous burning of gas at the cathode, such gas

    burn ing w ith a yello w flame. This beha vior has been

    explained by previous investigators as being due to

    electrolysis of the water contained in the electrolyte.

    Generally, the evolution of gas ceased after a few

    minutes ' operation and normal operating condit ions

    could then be effected.

    If the graphite powder which formed a scum on the

    bath surface was not removed occasionally and was

    allowed to come in contact with the molten metal ,

    flames at the cathode resulted, suggesting that pos-

    sibly the graphite was reacting with the metal . Occa-

    sionally, a f roth would also form depending on wheth er

    the electrolysis contained moisture.

    ) unless CC License in place (see abstract).ecsdl.org/site/terms_useaddress. Redistribution subject to ECS terms of use (see 193.205.210.45Downloaded on 2014-09-19 to IP 

    http://ecsdl.org/site/terms_usehttp://ecsdl.org/site/terms_usehttp://ecsdl.org/site/terms_usehttp://-/?-http://-/?-http://ecsdl.org/site/terms_usehttp://-/?-

  • 8/9/2019 0001_J. Electrochem. Soc.-1964-Threadgill-1408-11.pdf

    3/4

    1 4 1 0

    J O U R N A L O F T H E E L E C T R O C H E M I C A L S O C I E T Y

    December 1964

    C a t h o d e c u r r e n t d e n s i t y s e e m e d t o b e o f i m p o r t a n c e

    o n l y in s o f a r a s i t a f f e c te d t h e c a t h o d e t e m p e r a t u r e . I n

    t h i s r e s p e c t , F r a r y ( 13 ) c o n s i d e r e d t h e a l l o w a b l e a n d

    m o s t s a t i s f a c t o r y c a t h o d e c u r r e n t d e n s i t y t o b e a c o n -

    s t a n t f o r a n y p a r t i c u l a r c e l l a n d n o t o f t h e p r o c e s s

    i ts e lf . A n o d i c c u r r e n t d e n s i t y s e e m e d o f n o g r e a t i m -

    p o r t a n c e e x c e p t w i t h a n e l e c t r o l y t e o f c a l c i u m c h l o -

    r i d e a l o n e . I n t h i s c a s e , o c c u r r e n c e o f t h e s o - c a l l e d

    a n o d e e ff e c t w a s p r o m o t e d b y h i g h e r c u r r e n t d e n -

    s i t i e s .

    D u r i n g e l e c t r o ly s i s w i t h c a l c i u m a l o n e , t h e r e w a s

    v i g o r o u s e v o l u t i o n o f g a s a t t h e a n o d e . T h e s p a t t e r i n g

    o f e l e c t r o l y t e c a u s e d b y t h i s e s c a p i n g g a s w a s s u f f i c i e n t

    t o c o a t th e e x p o s e d p o r t i o n s o f t h e c e l l a n d p r o t e c t

    i t f r o m r a p i d a t t a c k b y t h e a t m o s p h e r e . A m u c h l e ss

    v i g o r o u s e v o l u t i o n o f g a s o c c u r r e d w i t h t h e o x i d e -

    b e a r i n g e l e c t r o ly t e . A n o d i c a t t a c k w a s l e ss w i t h t h e

    c h l o r i d e e l e c t r o l y t e a l o n e th a n w i t h t h e e l e c t r o l y t e

    c o n t a i n i n g o x id e . A s i n t h e a l u m i n u m i n d u s t r y ( 2 5 ) ,

    h i g h e r f u r n a c e t e m p e r a t u re s c a u s e d m o r e r a p i d c o n -

    s u m p t i o n o f t h e a n o d e .

    A t r o u b l e s o m e p h e n o m e n o n , k n o w n a s a n o d e e f fe c t,

    c a u s e d c o n c e r n a m o n g p r a c t i c a l l y a l l p e r s o n s w h o h a v e

    p r e p a r e d c a l c i u m b y e l e c tr o l y s is . T h i s p h e n o m e n o n

    m a n i f e s t s i t s e l f i n a s u d d e n i n t e r r u p t i o n o f n o r m a l

    o p e r a t i o n . T h e v o l t a g e i n c r e a s e s m a r k e d l y a n d t h e

    c u r r e n t d e c r e a s e s t o a l m o s t z e r o . A g a s f i lm is f o r m e d

    a r o u n d t h e a n o d e , a n d t h e e l e c t r o l y t e i s p r e v e n t e d

    f r o m w e t t i n g t h e a n o d e s u r f a c e . T h i s f i lm g l o w s w i t h

    a b l u i s h c o lo r , a n d t h e c u r r e n t s e e m s t o p a s s f r o m t h e

    a n o d e t o t h e e l e c t r o l y t e b y a s e r i e s o f s m a l l a r c s. T h e

    a n o d e i t s e lf s o on b e c o m e s r e d h o t. N u m e r o u s a t t e m p t s

    ( 13 , 20 , 2 6, 2 7 ) h a v e b e e n m a d e t o e x p l a i n t h i s p h e -

    n o m e n o n .

    I n t h e c o u r s e o f t h i s i n v e s t i g a t i o n , t h e a n o d e e f f ec t

    o c c u r r e d q u i t e r e a d i l y w i t h c a l c i u m c h l o r i d e a l o n e .

    T e m p e r a t u r e o f t h e b a t h s e e m e d t o h a v e n o e f f e c t o n

    i ts o c c u r r e n ce . T h e l a r g e r t h e a n o d e s u r f a c e e x p o s e d

    t o t h e e l e c t r o l y t e t h e m o r e d i f f ic u l t i t w a s t o i n d u c e

    t h e e f fe c t. T h e e f f e c t c o u l d b e e l i m i n a t e d t e m p o r a r i l y

    b y m o m e n t a r y i n t e r r u p t i o n o f c u r r e n t , r e d u c t i o n i n

    a p p l i e d v o l t a g e , o r m e c h a n i c a l s h a k i n g o f t h e a n o d e .

    N o d i f f i c u lt y w a s e x p e r i e n c e d w i t h a n o d e e f f e c t w h e n

    u s i n g t h e e l e c t r o l y t e c o n t a i n i n g o x i de . A s l o n g a s

    n o r m a l o p e r a t i o n h a d s t a r t e d , l a r g e c u r r e n t s w o u l d

    n o t c a u s e t h e e f f e c t t o a p p e a r . O n e r e f e r e n c e ( 2 7 ) w a s

    m a d e i n t h e l i t e r a t u r e t o t h e f a c t t h a t c a l c i u m o x i d e

    w o u l d i n h i b i t t h i s ef f ec t . T h i s w a s a t t r i b u t e d t o a

    c l e a n a n o d e s u r f a c e s in c e th e o x y g e n l i b e r a t e d c o m -

    b i n e s w i t h t h e c a r b o n a n d i t i s t h u s e t c h e d a n d a

    n e w s u r f a c e i s c o n t i n u a l l y b e i n g f o r m e d .

    R e s u l t s

    T a b l e I c o n t a i n s t h e r e s u l t s o f t h e e l e c t r o l y s i s o f

    e l e c t r o l y te s o f c a l c iu m c h l o r i d e a l o n e a n d c a l c i u m

    o x i d e in c a l c i u m c h l o r i d e . R u n s w e r e m a d e a t s e v e r a l

    t e m p e r a t u r e s a n d w i t h v a r i o u s c u r r e n t s i n t w o s iz e s

    o f c e ll s . O x i d e c o n c e n t r a t i o n s f r o m 0 .2 6 t o 2. 0 0 % b y

    w e i g h t w e r e u s e d i n t h e s e r u n s . T h e r u n s w e r e o f 2 0 -6 0

    r a i n d u r a t i o n .

    C a t h o d e c u r r e n t d e n s i t y c o u l d n o t b e c a lc u l a t e d

    a c c u r a t e l y b e c a u s e t h e c a r r o t d i a m e t e r d i d n o t r e -

    m a i n u n i f o r m t h r o u g h o u t t h e e le c t r o l y s is p e r io d . A p -

    p r o x i m a t e v a l u e s w e r e i n t h e r a n g e 2 0 0- 3 00 a m p / i n . 2.

    N u m e r o u s a d d i t io n a l r u n s w e r e m a d e w i t h o x i d e

    c o n c e n t r a t i o n s i n th e r a n g e o f 2 - 1 2 % . A l l t h e s e r u n s

    w e r e u n s u c c e s s f u l i n t h a t th e te m p e r a t u r e a r o u n d t h e

    c a t h o d e c o u l d n o t b e c o n t r o l l e d . T h e m e l t w a s s o f lu i d

    t h a t i t w a s i m p o s s i b l e t o k e e p a p r o t e c t i v e f i l m o f

    f r o z e n e l e c t r o l y t e o n t h e m e t a l a s it e m e r g e d f r o m t h e

    b a t h . W i t h o u t t h i s p r o t e c t i o n , t h e c a l c i u m w o u l d i g n i t e

    a n d b e l os t . F l a m e s c o n t i n u a l l y b u r n e d a r o u n d t h e

    c a t h o d e , a n d i t w a s n o t p o s s i b le t o e l i m i n a t e t h e m .

    I n a n a t te m p t t o e l i m i n a t e t h e e x c e s s i v e b u r n i n g

    a n d h i g h c o n v e c t i o n c u r r e n t s a r o u n d t h e c a th o d e , r u n s

    o f u p t o 2 h r i n d u r a t i o n w e r e m a d e w i t h l o w e l e c -

    t r o l y z i n g c u r r e n t s o f 2 5 -3 5 a m p a n d m a x i m u m c o o l in g

    w a t e r f lo w . W h i l e t h i s r e d u c e d t h e i n t e n s i t y o f t h e

    c o n v e c t i o n c u r r e n t s , t h e b u r n i n g w a s n o t e l i m i n a t e d ,

    T a b l e I E l e c tr o ly s i s d a t a

    CaCl~ electrolyte

    A vg

    A vg ce l l vo l t age

    Temp, Curre nt voltage, eff iciency,

    Cell s ize range, ~ range, amp v

    7 1/16 in. I.D. 774-899 90-130 16.6 19.26

    Two 3/4 in .

    d i a. a n o d e s

    7 1/16 in I.D. 800- 843 60-12 0 18 17.78

    One 3/4 in .

    dia. anode

    4 1/2 in. I.D. 816-857 75-110 17 18.82

    One 3/4 in .

    dia. anode

    CaO-CaCl~ electrolyte

    O x ide

    cone. Temp. Curre nt Avg cel l Decrease in

    range, range, range, voltage, avg cel l

    wt Cell s ize ~ amp v voltage,

    0.68-1.34 7 1/16 in. I.D. 774-828 50-60 13.7 17.46-23.9

    One 3/4 in.

    dia. anode

    0.67-1.90 4 1/2 in. I.D. 800-843 40-100 14.1 15.06-17.05

    One 3/4 in .

    dia. anode

    0.26-2.00 4 1/2 in. I.D. 788-843 45-85 15.3 No com par abl e

    One 1/2 in. data for CaCle

    dia. anode alone

    a n d o n l y i s o l a t e d p a r t i c l e s o f c a l c i u m c o u l d b e c o l -

    l e c t e d . C e l l v o l t a g e r a n g e d f r o m 1 01 /2 t o 1 8v , a n d c u r -

    r e n t r a n g e d f r o m 3 0 -9 0 a m p . T e m p e r a t u r e s w e r e i n

    t h e r a n g e 7 74 ~ 1 7 6 D a t a o n a n u m b e r o f t h e s e u n -

    s u c c e s s f u l r u n s m a y b e f o u n d i n re f . ( 2 8 ).

    N e x t , r u n s w e r e m a d e w i t h t h e c a t h o d e s h i e l d e d a s

    s u g g e s t e d b y K u n i t o m i ( 2 9 ) . B u r n i n g s ti ll p e r s i s t e d ,

    a n d t h e s h i e l d r e s u l t e d i n a h i g h e r t e m p e r a t u r e

    a r o u n d t h e c a t h o d e a n d a n i n c r e a s e i n c e l l v o l t a g e .

    O x i d e c o n c e n t r a t i o n s f r o m 2 t o 1 0 w e r e u s e d .

    S i n c e i t w a s o b s e r v e d t h a t o x i d e c o n c e n t r a t i o n s i n

    t h e n e i g h b o r h o o d o f 1 5 g a v e a m o r e v i s c o u s m e l t , t h e

    n e x t s t e p i n a n a t t e m p t t o e l i m i n a t e t h e a f o r e m e n -

    t i o n e d d i f f i c u l t y w a s t o e m p l o y a n e l e c t r o l y t e w i t h

    o x i d e c o n c e n t r a t i o n s i n t h i s r a n g e . I n g e n e r a l , c e l l

    v o l t a g e s w e r e s i g n i f i c a n t l y h i g h e r t h a n t h o s e o b t a i n e d

    w i t h o x i d e c o n c e n t r a t i o n s l e s s t h a n 2 . 0 . B u r n i n g

    a r o u n d t h e c a t h o d e a n d c o n v e c t i o n c u r r e n t s w e r e l e s s

    s e v e r e , b u t o n l y i s o l a t e d b r a n c h e s o f c a l c i u m c o u l d

    b e o b t a i n e d .

    I n a l l i n s t a n c e s , o p e r a t i o n w a s m o r e d i f f i c u l t w i t h

    t h e e l e c t r o l y t e c o n t a i n i n g o x i d e t h a n w i t h t h e c h l o -

    r i d e a l o n e . E x t r e m e c a r e w a s n e c e s s a r y i n c a t h o d e a d -

    j u s t m e n t t o c o n t r o l t e m p e r a t u r e a r o u n d t h e c a t h o d e .

    T h e c a l c i u m w o u l d i g n i t e q u i t e r e a d i l y w h e n t h e f i l m

    o f f r o z e n e l e c t r o l y t e d r a i n e d a w a y , a n d i t w a s p r a c -

    t i c a l l y i m p o s s i b l e t o e x t i n g u i s h i t a n d a g a i n e f f e c t

    n o r m a l o p e r a t i o n . F o r t h i s r e a s o n a n d t h e g r e a t e r

    t e n d e n c y t o w a r d s t r o n g e r c o n v e c t i o n c u r r e n t s , t h e u s e

    o f l o w e r e l e c t r o l y z i n g c u r r e n t s w a s n e c e s s a r y .

    T h e g a s e s e v o l v e d a t t h e a n o d e d u r i n g e l e c t r o l y s i s

    o f t h e c h l o r i d e - o x i d e e l e c t r o l y t e w e r e t e s t e d f o r c h l o -

    r i n e w i t h s t a r c h i o d i d e p a p e r . A f t e r s t e a d y o p e r a t i o n

    w a s a c h i e v e d , t h i s t e s t w a s n e g a t i v e .

    I n o r d e r t o v e r i f y t h e d e c r e a s e i n o x i d e c o n t e n t a s

    a r e s u l t o f e l e c t r o l y s i s , a m e l t o f k n o w n o x i d e c o n -

    c e n t r a t i o n w a s s u b j e c t e d t o e l e c t r o l y s i s . S a m p l e s o f

    t h e m e l t w e r e t a k e n a t i n t e r v a l s a n d a n a l y z e d f o r

    o x i d e c o n t e n t . I n a l l i n s t a n c e s , t h e o x i d e c o n c e n t r a t i o n

    d e c r e a s e d d u r i n g e l e c t r o l y s i s .

    Cat ciu ~ ch ~oride catciu~ S~uoride ca~cium oxide as

    electrolyte. I t w a s t h o u g h t p o s s i b l e t h a t a d d i t i o n o f

    t h e f l u or i d e t o t h e e l e c t r o l y t e m i g h t o v e r c o m e s o m e

    o f t h e o p e r a t i n g d i f f ic u l ti e s e x p e r i e n c e d w i t h t h e o x i d e -

    c h l o r i d e e l e c t r o l y te a n d , i n p a r t i c u l a r , p e r m i t o p e r a -

    t i o n w i t h h i g h o x i d e c o n c e n t r a t i o n s b y p o s s i b l y d e -

    c r e a s i n g t h e p a s t i n e s s o f t h e m e l t . H o w e v e r , p r e l i m -

    i n a r y r u n s w i t h t h i s e l e c t r o l y te i n a n e w a p p a r a t u s

    w e r e u n s u c c e s s f u l d u e t o o p e r a t i n g d i ff i cu l ti e s w i t h

    t h e p o w e r s o u r c e .

    ) unless CC License in place (see abstract).ecsdl.org/site/terms_useaddress. Redistribution subject to ECS terms of use (see 193.205.210.45Downloaded on 2014-09-19 to IP 

    http://ecsdl.org/site/terms_usehttp://ecsdl.org/site/terms_usehttp://ecsdl.org/site/terms_usehttp://-/?-http://-/?-http://ecsdl.org/site/terms_usehttp://-/?-

  • 8/9/2019 0001_J. Electrochem. Soc.-1964-Threadgill-1408-11.pdf

    4/4

    V o l . 1 1 1 , N o . 1 2

    P R E P R T I O N O F M E T L L I C C L C I U M

    4

    Conclus ions

    Carrots of metallic calcium may be obtained by

    electrolysis of an electrolyte of calcium oxide in cal-

    cium chloride containing up to 2% by weight of oxide.

    With concentrat ions between 2% and approximately

    14% oxide, the melt was so fluid that the metal carrot

    could not be protected with a film of frozen electrolyte

    as i t emerged from the melt , and severe burning re-

    sulted. Convection currents were also par t icular ly

    troublesome in this concentrat ion range.

    The most favorable temperature range for electro]-

    ysis of the o xide-bearin g electrolyte f rom the stand-

    point of ease of control and good carrot formation was

    788~176 The most favo rabl e oxide concent ration

    range from the same standpoint was 0.5-1%, with

    satisfactory operation being possible with concentra-

    tions up to 2%. Operation was more difficult with the

    oxide-bearing electrolyte than with chlor ide alone. No

    significant temperature effect on cell voltage was noted

    with either of the electrolytes. No advantage in cell

    voltage was noted in using oxide concentrat ions greater

    than 2% over that to be obtained with use of concen-

    trations less than 2%.

    Average cell voltage with the o xide-bearing elec-

    trolyte ranged up to 23.9% less than that with the

    chloride alone. The large cell and large anode sur-

    face area were advantageous in both lower average

    cell voltage and ease of operation and control.

    Anode effect presented no prob lem with the oxide-

    bearing electrolyte. This was probably due to the fact

    that a clean surface is continually maintained by the

    etching effect caused by combination of the liberated

    oxygen with the anode.

    This research presents the f irst known demonstra-

    tion that calcium oxide can be fed to a calcium chloride

    electrolyte for calcium production. This is contrary to

    literature claims that calcium oxide causes the elec-

    trolyte to become pasty. Such pastiness was not in

    evidence except at high oxide concentrat ions, approx-

    imately 14% and above.

    Manuscript received Nov. 5, 1963; revised manu-

    script received June 5, 1964.

    Any discussion of this paper will appear in a Discus-

    sion Sect ion to be pub lish ed in t he Ju ne 1965 JOURNAL.

    REFERENCES

    1. Humphrey Davy, P h i l . T r a n s . , 98, 1, 333, 343, 354

    (1808).

    2. Kurt Arndt, Z . E l e k t r o c h e m . , 8, 861 (1902).

    3. Wilh elm Borchers and Loren z Stockem, ib id . , 8 ,

    757 (1902).

    4. J. H. Goodwin, J . A m . C h e m . S o c . , 25, 873 (1903).

    5. A. Matthiessen, J. C h e m . S o c . L o n d o n , 8, 27 (1856).

    6. Henri Moissan, J . C h e m . S o c . , 74, Part 2, 578 (1898).

    7. Henri Moissan,

    i b i d . ,

    87, Part 2, 483 (1904).

    8. Bela von Lengyel, i b i d . , 76, Part 2, 218 (1899).

    9. W. Rathenau,

    Z . E t e k t r o c h e m . ,

    10, 508 (1904).

    10. J. H. Goodwin, J . A m . C h e m . S o c . , 27, 1403 (1905).

    11. P. H. Brace, T r a n s . A m . E l e c t r o c h e m . S o c . , 37, 465

    (1920).

    12. C h e m i c a l A b s t r a c t s , 3, 1948 (1909).

    13. F. C. Frary and W. L. Badger, T r a n s . A m . E l e c t r o -

    c he m. Soc . , 16 , 185 (1909).

    14. A. R. Johnson, ib id . , 18, 125 (1910).

    15. S. A. Tucker and J. B. Whitney, J . A m . C h e m . S o c . ,

    28, 84 (1906).

    16. Paul Wohler, J . C h e m . S o c . , 88, Part 2, 708 (1905).

    17. C. L. Mantell, Indus trial Electroche mistry , 3rd

    ed., p. 735, McGraw-Hill Book Co., New York

    (1950).

    18. C. L. Mantell and Charles Hardy, Calciu m Met-

    allur gy and Technology , p. 140, Reinho ld Pub-

    lishing Corp., (1945).

    19. A. R. Johnson, I n d . E n g . C h e m . , 2, 466 (1910).

    20. Richard Lorenz,

    T r a n s . A m . E l e c t r o c h e m . S o c ., 6 ,

    160 (1904).

    21. C. J. Brockman, ib id . , 47, 245 (1925).

    22. Paul Drossbach, Elek troch emie Geschm olzen er

    Salze, p. 27, Edward s Brothers, Inc., Ann Arb or

    (1943).

    23. R. E. Kirk, Editor, E n c y c l o p e d i a o ] C h e m i c a l T e c h -

    n o l o g y , 1, p. 459, The Interscience Encyclopedia,

    New York (1947).

    24. F. C. Frary, H. R. Bicknell, and C. A. Tronson,

    T r a n s . A m . E I e c t r o c h e m . S o c . , 18, 117 (1910).

    25. J. D. Edwar ds, F. C. Fra ry, and Zay Jeffries, The

    Aluminum Indust ry- -Aluminum and I t s Produc-

    tion, p. 80, McGr aw-H ill Book Co., New York

    (1930).

    26. H. H. Kellogg, T h i s J o u r n a l , 97, 133 (1950).

    27. C. S. Taylor, T r a n s . A m . E l e c t r o c h e m . S o c . , 47, 301

    (1925).

    28. W. D. Threadgill, Ph.D. Thesis, University of Mis-

    souri, 1954.

    29. Mino ru Kunit omi, J . C h e ~ n . S o c . J a p a n , Pure Chem-

    istry Section, 71, 212 (1950).

    El l ipsometr ic Invest iga t ion of the Opt ica l Proper t ies

    o f n o d ic O x id e F i lm s o n T a n t a lu m

    S K u m a g a i 1 a n d L Y o u n g

    D e p a r t m e n t o f E l e c tr i ca l E n g i n e e r in g , T h e U n i v e r s i t y o f B r i t i sh C o l u m b i a , V a n c o u v e r , B r i t is h C o l u m b i a

    ABSTRACT

    Tantalum surfaces were examined both immersed in the electrolyte and dry.

    The optical constants of the metal and of the oxide were obtaine d by com par-

    ing .experimental and theo retical ellip someter curves. It was found that the

    method of estimating the optical constants of the metal by neglecting.the effects

    of the oxide film already present before anodization leads to serious error.

    The el l ipsometr ic method gave results in agreement with those obtained using

    light polarized in the plane of incidence. The advantages of the method seem

    to l ie in the investigation of f i lms which are too thin or otherwise unsuitable

    for the spectrophotometr ic method, and for i n s i t u measurements.

    In the study of thin films and, in particular, of anodic

    oxide films (1), optical techniques are important be-

    cause they give accurate and absolute estimates of the

    thickness. The thickness is, of course, needed to cal-

    culate such quanti ties as field streng th and dielectric

    constant. Several nonoptical methods give quite sensi-

    t ive measurements of the thickness of anodic oxide

    ~Pres ent address: OKI Elect ric Company Tokyo Japan.

    films in indeterminate units, but it is very desirable to

    be able to determine the absolute thickness, if only to

    allow comparisons to be made between the oxides of

    different metals. Optical measurements may also be

    used to show whether the films are homogeneous and to

    detect var iat ions with formation condit ions in the na-

    ture of the film material.

    A complete measurement of the optical propert ies of

    an isotropic homogeneous f i lm would include the deter-

    ) unless CC License in place (see abstract).ecsdl.org/site/terms_useaddress. Redistribution subject to ECS terms of use (see 193.205.210.45Downloaded on 2014-09-19 to IP 

    http://ecsdl.org/site/terms_usehttp://ecsdl.org/site/terms_usehttp://ecsdl.org/site/terms_usehttp://-/?-http://-/?-http://ecsdl.org/site/terms_usehttp://-/?-