dornsife.usc.edu · web viewthe p2y 1 r structure opens new opportunities to broaden the scope of...

13

Click here to load reader

Upload: nguyenanh

Post on 27-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: dornsife.usc.edu · Web viewThe P2Y 1 R structure opens new opportunities to broaden the scope of future GPCR drug discovery to target novel sites outside of the conventional GPCR

Embargoed by the journal Nature until March 30, 2015, 4PM (1600) London time / 11AM (1100) U.S. Eastern Time / March 31, 2015, 0AM (0000) Beijing time

New Molecular Structures Challenge Conventional Concepts of Drug Action at ReceptorsStructures of human P2Y1 receptor bring new excitement to GPCR research

SHANGHAI, CHINA – March 31, 2015 – A team of Chinese and US scientists has

determined the high-resolution atomic structure of a cell-surface receptor that plays a

critical role in thrombosis, or blood clot, formation. This research unexpectedly

discloses many new structural features, which challenge the conventional concepts of

drug action at G protein-coupled receptors (GPCRs) and open a new door for future

drug discovery.

In a paper published in Nature on March 30 London time, the researchers at Shanghai

Institute of Materia Medica (SIMM), Chinese Academy of Sciences, collaborating

with research groups from National Institutes of Health (NIH, U.S.), Bridge Institute

at University of Southern California (U.S.) and iHuman Institute of ShanghaiTech

University (China), provide a detailed molecular map of the human P2Y1 receptor

(P2Y1R), a GPCR, in complex with a nucleotide antagonist MRS2500 and a non-

nucleotide antagonist BPTU.

Human purinergic receptors P2Y1R and P2Y12R play a major physiological role in

adenosine 5′-diphosphate (ADP)-mediated platelet aggregation, an important

component of thrombosis, which can subsequently result in life-threatening diseases,

such as heart attack and stroke. While most of the available antithrombotic drugs act

on P2Y12R, P2Y1R has been suggested as a new promising antithrombotic drug target

and may offer a safety advantage over P2Y12R inhibitors in terms of reduced bleeding

liabilities. However, efforts to develop new drugs have been impeded by poor

understanding of receptor-ligand interaction.

“The P2Y1R structures help us understand how this receptor and different types of

experimental drugs interact at the molecular level, and could enable further

Page 2: dornsife.usc.edu · Web viewThe P2Y 1 R structure opens new opportunities to broaden the scope of future GPCR drug discovery to target novel sites outside of the conventional GPCR

exploration to design new and safer antithrombotic drugs with reduced adverse

effects,” said team leader Dr. Beili Wu, Professor of SIMM.

The new study provides many valuable insights into the structure of P2Y1R. One very

exciting finding is that the P2Y1R structures reveal two completely distinct ligand-

binding sites. The nucleotide ligand MRS2500 recognizes a binding site within the

transmembrane bundle of P2Y1R; however, it is different in shape and location from

the nucleotide-binding site in P2Y12R structure previously determined by the same

collaboration. Although recognized by the same endogenous ligand ADP, P2Y1R and

P2Y12R structures reveal very different features in binding their nucleotide ligands. “It

is amazing to observe that two GPCRs recognize the same ligand in such different

ways,” said Dr. Wu. “The finding highlights the diversity of signal recognition

mechanisms in GPCRs, and this is of great value to drug design for each receptor with

high selectivity.”

The most surprising finding of this research is that, instead of interacting within the

transmembrane bundle, the non-nucleotide ligand BPTU binds to a pocket on the

outer interface of the receptor that is embedded in the cell membrane. This is the first

structurally characterized selective and high affinity GPCR ligand located entirely

outside of the helical bundle, and it represents a new paradigm in ligand binding to

alter signaling in GPCRs. The P2Y1R structure opens new opportunities to broaden

the scope of future GPCR drug discovery to target novel sites outside of the

conventional GPCR ligand-binding pocket, which may greatly improve drug

selectivity and reduce side effects, and will thus facilitate the development of new

pharmaceuticals for treatment of many severe diseases.

“The new structures will allow drug designers to work more efficiently and with

greater precision to build new molecules to modulate the function of this receptor and

other closely related receptors, many of which have potential for treating cancer and

inflammation,” said Dr. Kenneth Jacobson, Chief of the Laboratory of Bioorganic

Page 3: dornsife.usc.edu · Web viewThe P2Y 1 R structure opens new opportunities to broaden the scope of future GPCR drug discovery to target novel sites outside of the conventional GPCR

Chemistry in the National Institute of Diabetes and Digestive and Kidney Diseases at

NIH. Jacobson coauthored the study and invented the antagonist MRS2500 that was

crystallized with P2Y1R.

In addition to Wu and Jacobson, the contributors to the study, “Two disparate ligand-

binding sites in the human P2Y1 receptor”, were lead author Dandan Zhang, Kaihua

Zhang, Jiang Wang, Cuiying Yi, Limin Ma, Wenru Zhang, Hong Liu, Hualiang Jiang

and Qiang Zhao, all of SIMM; Zhan-Guo Gao, Evgeny Kiselev, Steven Crane, and

Silvia Paoletta of NIH; Gye Won Han, Vadim Cherezov, Vsevolod Katritch and

Raymond Stevens of the Bridge Institute at the University of Southern California, and

Raymond Stevens from the iHuman Institute, ShanghaiTech University.

The study was funded in part by the National Basic Research Program of China

(grants 2012CB518000, 2014CB910400 and 2012CB910400), CAS Strategic Priority

Research Program (XDB08020300), the National Science Foundation of China

(grants 31422017, 31370729 and 91313000), the National Science and Technology

Major Project (2013ZX09507001), ShanghaiTech University, Shanghai Municipal

Government, the National Institutes of Health (grant Z01 DK031116-26), and the

National Institutes of Health Protein Structure Initiative (grant U54 GM094618). To

view the study, visit http://www.nature.com.

About Shanghai Institute of Materia Medica, Chinese Academy of Sciences

The Shanghai Institute of Materia Medica (SIMM) at the Chinese Academy of

Sciences emerged from the Institute of Materia Medica of the Peking Academy of

Sciences, founded in 1932. By combining basic and applied research in chemistry and

biological disciplines, SIMM carries out modern drug discovery. SIMM is also

involved in the discovery of new therapeutic targets and carries out comprehensive

pre-clinical evaluation of drug candidates, while also promoting commercialization,

thereby playing a key role in building China's drug innovation capabilities. For more

Page 4: dornsife.usc.edu · Web viewThe P2Y 1 R structure opens new opportunities to broaden the scope of future GPCR drug discovery to target novel sites outside of the conventional GPCR

information, visit http://www.simm.cas.cn.

About National Institutes of Health (NIH)

NIH, the U.S.’s medical research agency, includes 27 Institutes and Centers and is a

component of the U.S. Department of Health and Human Services. NIH is the primary

federal agency conducting and supporting basic, clinical and translational medical

research, and is investigating the causes, treatments and cures for both common and

rare diseases. For more information about NIH and its programs, visit www.nih.gov.

About University of Southern California

Founded in 1879, the University of Southern California is one of the world’s leading

private research universities. An anchor institution in Los Angeles, a global center for

arts, technology and international business, USC's diverse curricular offerings provide

extensive opportunities for interdisciplinary study, and collaboration with leading

researchers in highly advanced learning environments. With a strong tradition of

integrating liberal and professional education, USC fosters a vibrant culture of public

service and encourages students to cross academic as well as geographic boundaries

in their pursuit of knowledge.

About iHuman Institute at ShanghaiTech University

The iHuman Institute was founded in 2012 and is located on the campus of

ShanghaiTech University in Shanghai, China. The institute is focused on the study of

human cell signaling using a combination of state of the art integrative structural

biology, cell biology, chemistry, computational chemistry and biology. For more

information, see http://www.shanghaitech.edu.cn/en/en_iHuman_Overview.asp.

To request an interview with Dr. Beili Wu, please contact [email protected] .

To request an interview with Dr. Kenneth Jacobson, please contact

[email protected] . The opinions and conclusions are those of the authors of

the release and do not necessary reflect the official views of the NIH.

Page 5: dornsife.usc.edu · Web viewThe P2Y 1 R structure opens new opportunities to broaden the scope of future GPCR drug discovery to target novel sites outside of the conventional GPCR

Figure: The new Nature study reveals the structure of the human P2Y1 receptor,

which mediates thrombosis formation. The image shows that two different ligands

that inhibit platelet aggregation interact with P2Y1R by binding to two completely

distinct sites of the receptor. The receptor structure is shown as grey ribbon and

surface. The ligands MRS2500 and BPTU are shown as magenta and yellow spheres,

respectively. (Image courtesy of Yekaterina Kadyshevskaya of the Bridge Institute at

the University of Southern California.)