Борисенко В.Е., Воробьева А.И. Наноэлектроника (Часть 3)

91
Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Кафедра микроэлектроники В.Е. Борисенко, А.И. Воробьева, Е.А. Уткина НАНОЭЛЕКТРОНИКА Учебное пособие для студентов специальностей 41 01 02 «Микро- и наноэлектронные технологии и системы», 41 01 03 «Квантовые информационные системы» дневной формы обучения В 3-х частях Часть 3 ПЕРЕНОС НОСИТЕЛЕЙ ЗАРЯДА В НИЗКОРАЗМЕРНЫХ СТРУКТУРАХ Минск 2004

Upload: belyi2014

Post on 25-Nov-2015

104 views

Category:

Documents


18 download

TRANSCRIPT

  • .. , .. , ..

    41 01 02 - ,

    41 01 03

    3-

    3

    2004

  • 621.382(075.8) 32.852 73 82

    : ,

    - ..

    .. : . . . 41 01 02 - -

    , 41 01 03 - . 3 . . 3: / .. , .. , .. . .:, 2004. 88 .: .

    ISBN 985-444-721-9 (.3)

    - , .

    621. 382(075.8) 32.852 73

    1: .. -

    . 3 . .1: . .:, 2001. 48 .: .

    2: .., .. : . . . . 3 . .2: . .:, 2003. 76 c.:.

    ISBN 985-444-721-9 (.3) .., ..,

    .., 2004 ISBN 985-444-308-6 , 2004

    82

  • 1. - 1.1 ......4 1.2 - .....7 1.3 ....10 1.4 .....12 1.5 ...17

    2. - 2.1 ..24 2.2 31 2.3 ...46 2.4 ....49

    3. - 3.1. .55 3.2. - 61 3.3. .66 3.4. 73 3.5. .....77

  • ,

    () -. , . , - , , . - , . , , , . - , , , (, ), - ( ), - , , , , - .

    . , - , , - .

    , - , . - .

    , - , . XX - () - - . - - .

    , .

  • 1.

    , . , , -. , - , - , . - , , - , - . , - - , .

    - - . , .

    1.1.

    , . , -. - . , - , -. .

    , = Aexp(i). ,

    W = 1 + 22 = A12 + A22 + 4A1*A2cos(1 2). (1.1)

    , (1 2). - - - , , . -, , -

  • . -, - , . , , - .

    - (Aharonov Bohm effect). , , . 1.1. , - , - , , . , , - , . , .

    . 1.1.

    . - , . , - , . , , - , , - . , . = 2(/0), 0 = h/e - (h , e ). , .

  • , 0, , . (-) , -. , . , -, , . - , ( ) .

    , . . 1.2 - .

    . 1.2.

    (),

    . . 0 /2 = h/2e. . , .

    magnetic field

    multiwall nanotube

    electric current

    i

    Magnetic

    , ()

    , -, - -, - -

    , -

    field (Tesla)

  • . , . .1.3 - ( ), - . - . - , , , , . - , , . , ( A), , ( B). - , - B-. - . - e2/h, . (universal conductance fluctuations). - .

    . 1.3.

    , ,

    , , - . , .

    1.2. -

    , , . -. , - -

  • , . , - . - - . , . , . [1, 2] - [3, 4].

    (Landauer Buttiker formal-ism) . , , , -. - . 1.4, , - i .

    . 1.4. , - -, i -

    i. , i- ,

    Ii = 2evi(dni/dE)i. (1.2)

    e ; vi ; dni/dE - ; i =I o, o . 2 . , ,

    dni/dE = 1/hvi, (1.3)

    h .

    , , i-,

    i

    Ijj

    Ii

  • Ii = (2e/h)i. (1.4)

    . , - Ri . , i- , , , - Tij j- i- . i-

    =ij

    jijiii TRheI ])1[(2 . (1.5)

    , -

    , Ni ,

    =ij

    jijiiii TRNheI ])[(2 . (1.6)

    , i = eVi, Vi , i- . , . , m n , :

    == iN

    mn mnijTijT

    iN

    mn mniRiR ,,, .

    (1.7)

    Ri m, n. Tij. m n.

    , i- , , , -

    =+ ji iNijTiR . (1.8)

    (1.6) -

    . . . , -

  • , . , , , .

    , , , kBT - . , - , .

    - . - . . - , S- (- ) . , , , , . , , , . , . , -. , , , .

    1.3.

    -

    . , , .

    , , . 1.5,, 1 4, - 2 3.

  • . 1.5. ()

    , ()

    , , - , . , I2 = I3 = 0 I1 = I4, () R14,23 = (V2 V3)/I1. - k l, m n,

    Rmn,kl = (h/e2)[TkmTln TknTlm]/D, (1.9) D , Ri Tij. - m., n, k, l, -, .

    - .

    , , , . - , , -, . , , , , - . , , - . 2 3, , 3 , 2. , (1.9),

  • R14,23 = (h/e2)[T21T34 - T24T31]/D. (1.10)

    , T24 T31 - , T21 T34 - . - - , . -, , - ( 1) - ( 3), 90 ( 4). , T24T31 > T21T34 .

    - . - (. 1.5,).

    , - - ( ) - , - , , .

    1.4.

    (Hall effect)

    XIX . - . , - - , . 1.6. - , - , . ( ), . V, I , R = V/I. - R, , -. VH, - , . - RH = VH/I.

  • . 1.6.

    RH = B/(en), B ,

    e , n ( ) . , . , R - , . 1.7,. , - .

    , - , - , , - . - (. 1.7,) - (). (quantum Hall effect). ( ) . 1980 . - [5]. , , -, RH = h/(ie2), h , i . (integer quantum Hall effect). . h/e2, - , .

    currentI

    voltagedropV

    HallvoltageVH

  • .1.7. () ()

    , , - i , , 1/3, 2/3, 2/5, 3/5 . . [6]. i = p/q, p q , q . - (fractional quantum Hall effect).

    RH , - R . , - . R . , - . - , .

  • . 1.8. , ,

    () ()

    , , , . c = eB/m, , m . , - -. (Landau levels). Ei = (i + )c i = 1, 2, -, , , -, . 1.8,. c. - . , - kBT

  • (extended states). - , , . (localized states) - . , , , ( . 1.8,). , - , . . - . - (mobility edge). - , (edge states), - . , , , .

    , , EF. EF - , , . -, , , - - . , - . , .

    , - , (filling factor). RH = h/(ie2) = (h/e)/(ie) - 0 = h/e e - i. , , . i - , , - . , i - , e2/h.

  • - . , - , - . - . - " " -, , , . - , , . 1/3, , -, . , , , - , , - . , , . - . - , , .

    - - , , , [7], . - , - . , . , . [1-8], (- ).

    1.5.

    , , -. - . - - , . .

  • -

    . - , , - . - , , , (quantum interference transistor). - . - , - .

    , , (1989) (1989). , . - . 1.9,. ( ), - . () - . , - , , () , - , 50 . - , .

    , ( ), - , L - , .1.9,.

    , ( ), . , - (), . 100% (.1.9,) . , - .

    (1984). , - , , , L, . 1.10. , , , -

  • . , .

    .1.9. , ()

    () ()

    L

    VG

    GATE (Port

    DRAIN (Port 2)

    SOURCE (Port 1)

    ) )

    Con

    duct

    ance

    (Nor

    mal

    ized

    to e

    2 /h)

    2,0 1,5 1,0 0,5 0,0

    0,00 1,25 2,50 3,75 5,00 L (Normalized to wavelengths)

    4,0 3,0 2,0 1,0 0,0

    0 5 10 15 20 L ( Normalized to the wavelengths of the lowest transverse mode)

    Con

    duct

    ance

    (Nor

    mal

    ized

    to e

    2 /h)

  • .1.10.

    , , 2, - . , - - , (kF kF)L=2n, kF L n . - , 100 % - .

    (1990) , -. : kFL=2n, kF .

    , . - . GaAs 105 /, ( ) - 100 10-12 . , , - , RC- . - , , - .

    , - . , - . - -

    Gate

    I L Drain Source

  • 70 100 . . , - -. , . - - .

    GaAs/AlGaAs 10 . - , - , . - , , , , . , , - . - , , , . , , .

    ( ) - (.1.11). , , , , , , p1sin1 = p2sin2. , - kF , kF = (2n)1/2, , :

    sin1/sin2. = (2/1)1/2. (1.11) .

  • .1.11.

    () ()

    - . (1990). , , -, . 1.12. - , , - , , - , , . - -, , - .

    . , . ( ) , - (), . - ( - ) - , . , , .

    n1 n2

    12

    n1 n2

    Conduction Band Edge

    Fermi Level

    Heterojunction Surface

    Gate Metal

  • .1.12.

    (-

    ), - , - . , , - . , -, .

    [8], ( ).

    Electron Collectors A B C

    10 m

    Refractive Prism

    Electron Emitter

  • 2.

    . , - - , . - , .

    2.1.

    , . , - , , , -. - . - , .

    , , - , - . . 2.1.

    . -. . - -. , . . - .

    , - +e/2 ( ) e/2 ( ), . - - . (Coulomb blockade).

  • elec tron

    c onductor conductordielec tric

    tunneling

    . 2.1. [9]

    . . [9, 10]. (19851986 .) - (single-electronics). - .

    - , . 2.2,. - Ct -

  • Rt, - . Ce . - - , :

    E = e2/2C eV, (2.1) C = t + Ce. , E 0, , |Vt| = e/2C. e2/2C (Coulomb gap).

    . 2.2. () - ()

    . 2.2,. - . - Rt. - e/2C f = I/e, I .

    - . - kBT

  • 10-16 , , - . , , , - , , Rt > h/e2. - , . - , .

    , - . 2.3.

    . 2.3. , () ()

    -

    . - , - . , , CL CR. C, CL CR. , - , - . - , -, , .

    , -. .

    CC

    LC

    R

    ELECTRODE

    RELECTRODE

    L

    Central island(quantum dot)

    Tunneljunctions v

    Ce

    C RL t L

    C RR t R

  • , . [8].

    , -, . - = I L = I R = eVo, . 2.4,. , - I, e/C. - , e/C - .

    . 2.4. () -

    () ,

    , , Vo - Vo < e/2C. - - (I V) .

    - , - . e2/2C. - .

    0 (EF). eVo -, , , .

    E = 1/2[(e/C + Vo)2C Vo2C]. (2.2)

    -e/2C e/2C

    I

    V

  • , , - eCR/C. ,

    V C(e/2C + Vo)/CR. (2.3)

    - - . C CR >> CL . 2.4,. , Vo = 0 -, .

    . - , -, (. 2.5).

    . 2.5. -

    ,

    (Coulomb stair-

    case). . - , .

    , - , . , .

    , -, - . , -, . , - . - , , - . ,

  • , , -. , - -. , - .

    , - , . - , . - , .

    , .

    , - , 0 , - (Rt >> h/e2). , -. ( ) . , , - , - . - - - , . , - , . . - , . - (co-tunneling) - (macroscopic quantum tunneling). - , - , , , - , .

    (elastic) (inelastic) . .

  • .

    VEEe

    hI )11(

    8 2122

    21 += , (2.4)

    1 2 ; ; E1 , ; E2 , .

    - . - (e2/2C).

    , , - , . - - . :

    VeVTkEEe

    hI B ])2

    ()[()11(6

    222

    212

    21

    ++= . (2.5)

    - -. . - , - , I ~ V3. -- . . , , . - , , . , , , -. - .

    2.2.

    , , , , . , -

  • . .

    (single-electron transistor) - , , . .2.6. : , .

    . 2.6. () ()

    . 2.7.

    . 2.7. , () ()

    Gate

    Source Drain

    tunneling junction

    Rd, Cd

    Rs, Cs

    Vd,s

    Vs

    Vd

    Vg,s

    Vg

    Cg

    quantum dot

    CgVg+CdVd Cd

    dSg

    gg VCC

    VC +Cg+CS CdCg+Cd

    CS

  • ,2

    12

    1

    +

    ggd

    dggd

    VCeneC

    VVCeneC

    (2.6)

    +++ dgggsVVCene

    CC 21 .

    21

    + gg

    d

    VCeneC

    (2.7)

    .2.8, Vd Vg, (2.6) (2.7).

    . 2.8. Vd

    : Ids

    , . () ( .2.8,, . , , , , , , , .2.8, ,

    0 1 2 0 1

    1,0,1 2,1,0

    0 1,0 2,1

    -1 1 2 Vg

    Vd

    -e/2Cg e/2Cg 3e/2Cg 5e/2Cg Vg

    Ids

    Vg=0

    Ids

    A

    )

    0

    Vg (); Vg () Ids Vds ()

    - . , - , . , , . Vds, -

    Vds

  • , /2g, - . . - 1 , - . , , - . - -. Ids Vg ne/Cg + e/2Cg ( Ids), .2.8,. Ids Vg . Ids Vds . - Ids Vds . 2.8, : e/2Cg. , , - Vds~0, Vg=0, -. , . - +1. [10]

    (, +1) = [ ] ,/)1,(exp1)1,(1

    2 TknnFnnF

    Re Bt ++

    (2.8)

    F(n, n+1) , -, Rt . - s (, +1), - d (, +1). - 1 +1.

    =dt

    dpn tot(n+1, n)pn+1 + tot(n-1, n)pn-1 [ tot(n, n+1) + tot(n, n1)]pn, (2.9)

    tot(n, n+1)= s(n, n+1)+ d(n, n+1). (2.10)

  • ,1=+=n np (2.11)

    I

    = npeI [s(n, n+1)- d(n, n+1)]. (2.12)

    - ( ) , -.

    - . - . , , , . , -, ( ) ( ).

    . , - , . - .

    - , - .

    - . (single-electron trap) [11, 12] .2.9,. - , U, , -, .

    . , .

    = (/0)1/2, (2.13)

  • 0 , - ( ). , * - . -

    Wmax (e2/2C)min (M, N/4), (2.14)

    N .

    .2.9,. - (U = U+) - , . (N M), . , , - . , - U- < U+ ( .2.9,). - n(U) - , - (.2.9,).

    - -.

    Ec/kBT, -, N. - .

    12 ( ) - .

    - - , - (single-electron turnstile) .2.10,.

    * ,

    .

  • .2.9. (), - () ()

    source island trapping gate array island

    Q(t)

    U

    -e

    -e

    W(i)

    UU+

    U=0

    i0 1 2 3 4

    n

    n=2

    n=1

    n=0U- 0 U+ U

  • .2.10. () (); -,

    ()

    - 1990 . [12]. V = 0 , : ( ) U . - U. V 0 , U , - , U . , .

    , (sin-gle-electron pump), .2.10, [13]. - Ui(t), , (.2.10,), . ,

    U(t)

    +V/2

    -V/2

    gate

    source

    U1(t) U2(t) U3(t) U4(t) U5(t)

    drain

    U(t)

    i 1

    5

    23

    45

    t 0

  • . , . - .

    - , , f = I/e. .2.11,. - R : Rs>>R>>RQ. .2.11, .

    , - V Vt = e/2C, , I > 0,1e/RC.

    , , - . , , , - . -, , , , - , V > kBT/e, - ( , , ).

    - () . , - , - , (~1 ) - (

  • .2.11. () ()

    , .2.11, (DC current stan-dard). - f. - n - , , , I = nef. - , .

    (2 + 2)- , I/I 10-3. , -, .

    tunnel junction (C,R)

    resistor (RS)

    I(t) V

    Q (t)

    Q(t)

    +e/2

    -e/2

    t=e/

    t

  • ( ) - - , - - . , - -, , .

    , - 10-12 ~10, - 10-16.

    1,510-8, - - , - - ( ). , , .

    , , 10-10 ( ) , .

    - ( - ), -. f - - , 1/RC.

    , , - . - . - , (I = ef ~ ). , - , - .

    . , , - , - , - .

    - (N > 1) - (temperature standards) [14, 15].

  • , - - (|V| < Vt) V = NRI + const |V| >> Vt. Ec/kB, Ec = e2/C, : G dI/dV Gn 1/NR. - V = 0 - G/Gn Ec/6kBT , V = 5,44 NkBT/e.

    , - , - . -, , , - . (~ 1%) , , . (, -, ) .

    , , - .

    - . - (voltage state logics) (charge state logics).

    [16]. , , , , , . - , , - 1 0.

    (. .2.8,) , -, . , -.

    - .2.12 [17]. - , . - , -

  • - . 1 .

    , - . - 10-4e/RC. - 10-7 .

    - . - . .

    1987 . [18]. - - , . , , -. , - .

    - , - (single-electron transistor parametron) [19, 20].

    , (.2.13,). , .

    - , .2.13,. - Ec . , . , - . , - . Es - . - W(t), , , Es . - Es . -, -

  • , , .

    A+B

    +VDD

    A

    B

    AB

    -VDD

    +VDD

    A A

    -VDD

    +VDD

    A

    B

    -VDD

    A

    A

    A

    B

    B

    B

  • .2.12.

    .2.13. () ()

    middleisland

    rightisland

    left island

    ES (signal field)

    EC(t) (clock field)

    -e

    -e

    ECEt

    W(t) -e

  • - - . .

    -, . , 10 .

    -, - - , h/e2 (25,8 ).

    -, , () . - , - , , - .

    -, - - . . , , - .

    .

    2.3.

    , - -. , -, . - (resonant tunneling). - -, .

  • - . . [21]. , - - . .2.14.

    . 2.14. -

    - -

    GaAs-AlGaAs. - GaAs, - GaAlAs. - --, Si-CaF2, Si-SiO2.

    E F E1

    E F V

    E F

    V

    2E1/e

    E F

    E F

    E F

    E 1

  • . a , E1 = 22/(2m*a2). , (EF) . , - , , .

    V - , - . , . - E1 , . - , . E1 . , . - . - , - V = 2E1/e.

    E1 - . . , - (negative differential resistance) . -, , - .

    - . , , - z. - m*. k , - xy. z , . - . . T(Ez) Ez -. x- y- Ex,y = (2/2m*)(kx2 + ky2). E = Ex,y + Ez .

  • - :

    = 003 ))]('()()[(4 zzzyx kEEfEfETdkdkdkeI

    h , (2.15)

    f(E) f(E') - - . [f(E) - f(E')] , . - E' E E' = E + eV, V - .

    -. , - . - , , -- . , , - - - - - .

    2.4.

    -, , , (1012 ) [22-24].

    - (resonant tunneling diode RTD) , - , , . - , - - . , - - . 2.15.

  • . 2.15. - (), - (), - - ()

    - -

    I(V) C(V), , Rs. I(V) C(V) , Rs , . C(V) . , . - , . - . , I(V) C(V) .

    - - , . : - (peak current density) (peak voltage) - , (valley current density), (peak-to-valley ratio).

    . , , , - .

    - ( ), . . -

    I

    C Depletion

    V

    V

    C(V) I(V)

    RS

  • , . , -, , .

    , ( ), , . , , . , , GaAs AlAs - 1 - 4 . , - . - - - , .2.16.

    . 2.16. GaAs-

    AlAs - : ;

    (PVR)

    - - . , - , : -, , , .

    RC-. -, - . - - .

    4 6 8 10 12 14 16 Barrier Thickness (ML)

    Experiment Theory 10

    5 104 103

    102 101

    J(A

    /cm

    2 )

    103

    102

    101

    100

    PVR

    2 4 6 8 10 12 14 16 Barrier Thickness (ML)

    Experiment Resonant Tunneling Theory

  • , , - . - tlife, . 0

    tlife = h/0 , (2.16)

    h , 0 , - .

    0 -. , - . . - - 0,1 . - .

    - , - , RsC(V). , .2.15,.

    - - ( ). p-n . -- - . , -- 6,8 105 /2 1,5 10-7 [23]. , , - C/Jp, 0,22 /. , - . , , 10 /. - , - , . , , - ( - ). , -- , . , - , - - p-n-.

  • - - (resonant tunneling transistor) .

    - , .2.17. , - , - (. . 2.15,).

    .2.17.

    -

    - -

    , . - (resonant tunneling bipolar transistor) - - (resonant tunneling hot electron transistor) [24-26].

    - - - , . - , - - . - .

    , - - (gated resonant tunneling diodes). p-n- . .2.18 . -, , , - , p-n-, .

    Emitter

    n+-InGaAsGate 1 Gate 2

    n--GaAs

    n--GaAs

    n+-GaAs

    S.I. GaAs sub.

    p+-region p+-regionCollector

    i-AlAs 1.5 nm i-GaAs 5 nm i-AlAs 1.5 nm

  • .2.18. - GaAs-AlAs , .

    -

    - -, , - . - -, (monostable-bistable transition logic elements MOBILEs) [26].

    - , [27]. . . 2.19 .

    . 2.19. ,

    I

    I

    I

    Vp 2Vp

    Vbias

    Vbias

    Vbias

    S2 S1 S2S1

    S

    S

    S

    PE

    PE

    PE

    S

    Voltage Voltage

    Vbias

    Vout

  • (.2.19,), - , (2Vp). - , S1 S2 (.2.19,), 2Vp. . , - ( - ) S1 ( ). - , - (.2.19,) . - Vbias .

    , , , , , . - [28].

    3. C-

    , - - , - , - (spintronics). . - XX - - - -. , , -, , , . -, , , .

    C , . (magnetore-sistance), - , . - R/R0 , R - , R0 . - , -

  • . - , . cc - - . , . 3.1. , - , - . - (giant magnetoresistance effect). , , . - (current-in-plane CIP) - (current perpendicular -to-plane CPP). - . 3.1. - , - . , - , , , . , , , - . .

    low current high current

    low resistancehigh resistance

  • .3.1. : ; , . , - ( ), - . - . Fe-Cr- -Cu- . - 100 - . - . ( ) ( ), . - (oscillatory exchange coupling). . - , - - . - . , , - , - , ( ).

    high resistance

    low current

    EF

    low resistance

    high current

    EF

  • .3.2. - : ; , . - , - , . - . - , , . . 3.2 . - (), - , , . - , . , - - . , , - . , , , , , . 10 . , . . , - , . . - , . , , (spin valve). , - , - .

  • , , , - . - 1% . , -, , - . , , , -, - , , (Ni80Fe20). , . , - ( -). , - , , () - . - . , , ( ) . - 104 /. - - . - , . - - 105 /, . - . - - , , - , -. - . c (pseudo-spin valve). , ,

    , -

    .

  • -, . , , , -. -, , . - , . , . - 510 % 800 8000 /. - - , . - , . -, , . - [29] , - , . , -, - , . , , . , - -. - , , rI = 22 f ls f. (3.1)

    - (, , ) - : = 2 f[1 ] = 2 f[1 + ], (3.2)

  • f - lsf - . - lsf . df dn, df dn , lsf, -

    ),(/1),(/1

    1),(apprappr

    appr++

    = , (3.3)

    p ,

    [ ] ndnfdfpr 2)(12)( )( ++=+ , (3.4)

    2/)()()( )(

    ++=+ prprapr . (3.5)

    n , -. , , ,

    2)2()()()( MbrMfdfapRpRapR +=

    . (3.6)

    - - - rb -, , r = 2rb[1 ] r = 2 rb[1 + ]. (3.7)

    - - , - - , . 3.2. - - , , -

  • . - . -, , . - , . - , , - (tunneling magnetoresistance effect). , . - , CoCr, CoFe - , , Al2O3, MgO, Ta2O5, . - , - . -, , , -. - . - .3.3, CoFe-Al2O3-Co-, -, CoFe-. - , : + - . , , , - ( ). , - . - , ( ). - , - .

  • .3.3. . . , - ( , , - , , . .). , , . . . - . - , , - . , . - - - [30], -, , . - , - . , , , ,

    21

    21

    12

    PPPP

    RRR

    RR

    ap

    pap

    +== . (3.8)

    0

    Mag

    neto

    resi

    stan

    ce (%

    )

    Magnetic field (Oe)0-600 -400 600-200 400200

    0

    0

    2.5

    5.0

    10.0

    7.5

    0.060.12

    -0.50-0.25

    CoFe/Al O /Cojunction

    2 3

    CoFe film

    Co film

  • Rp Rap - ; P1 P2 - . - . 3.4 - CoFe-Al2O3-Co-.

    .3.4. CoFe-Al2O3-Co

    -, 0 . . - - , - . -, : - , ( -), . - , , . - . , 2023 %, - Al2O3- . [31, 32] , . , - GT(T), - , ,

    Mag

    neto

    resi

    stan

    ce (

    %)

    5

    Bias (V)

    00

    10

    15

    20

    1 2 3 4 5 6

    4.2 K77 K295 K

  • GS(T). , , G = GT(T)[1 + P1P2cos] + GS(T), (3.9)

    P1 P2 -; . , P1 = P2 = P(T), - , ( = 0), G = GT(T)[1 + P(T)2cos] + GS(T), (3.10)

    , , - ( = 180), G = GT(T)[1 P(T)2cos] + GS(T). (3.11)

    , -,

    )sin(0 CTCTGGT =

    , (3.12)

    G0 T = 0 K C = 1,387x106d/U1/2, (1/2/K), , d U. - . P(T) = P0(1 BT3/2), (3.13)

    P0 T = 0 K, - B - , . , B , . , - -, , , - - : GS(T) = ST, (3.14)

  • S , . - , - . 4/3, - -. - - . 3.5. - (1 BT3/2). - . - , , , , - - . - , , - , , , .

    .3.5. () - ()

    3.3.

    . - , - , - . , - -, - -, -, , - . , - -

    0.7

    100 200 300 400

    0.8

    0.9

    1.0

    100

    0.1

    0.2

    200 300Temperature (K) Temperature (K)

    GT

    G(

    )/(7

    7 K

    )

    GG

    S/

    Co/Al O /Co/NiO2 3

    Co/Al O /Ni Fe2 3 80 20Co/Al O /Co/NiO2 3

  • , - .

    - .

    . - gBB B, g- 2, .

    AIIBVI . ZnMnSe ZnBeMnSe . . - AIIBVI , - . n- n-ZnSe -. - - . 20 . 100 %- .

    AIIIBV. , Ga1-xMnxAs -. , - , n- . -, - ( < 1 ) - - , - .

    (- ) . , g- - . - , .

    - - - . - , (Rashba effect) [33, 34]. -

  • . , , , - -.

    , . - . - :

    Hso = ( ) zk ys , (3.15) - ; z - ; k . - s - Esurf.

    , - Hso . -

    .

    ( )2 2 y k z2

    k

    sm= + h (3.16)

    ,

    ,

    kmkkE s= 2)(

    22h . (3.17)

    ,

    k = 0 - k, s - , - .

    , -, . -- - k, - - k, - . - , (Shubnikov-de Haas effect), .

  • - s, c [35]

    GaAs

    InAs

    2D- 2,5x10-10 9,0x10-10 2D- 6,0x10-10

    - InAs- GaAs - () g- - , .

    - , , , - , , kz ~ /dz, dz . , - k

  • , , , . , - .

    , -, - . . - , , - , - . , , - -. -, . -, -, , , -. - . . - , - , .

    -, - ZnSe, -. - , . , . , . , -, , . - - , , , GaAs. , -- , BeTe-ZnMnSe-BeTe. BeTe ZnMnSe - GaAs. ZnMnSe- ZnBeMnSe-- AlGaAs 8090 % . . , , -

  • ZnSe . - .

    , - - . , - , - -. , , -, - - -.

    -

    - . , - . , - -, .

    , -. , , , , , . - (Bir-AronovPikus mechanism). . p- . - - (Elliot -Yafet mechanism), - - , - . , -.

    , - IIIV, (Dyakonov Perel mechanism). - - - , IIIV. , , GaAs . , - - (100)- , . , -

  • IIIV . , , -, , . , . , GaAs - (110) - - , 2 -. , (100)- . ( ) - ZnSe- ZnCdSe- -. - - - , - - .

    , - - . , - - , , .

    - . - . , , - - AlGaAs-GaAs-AlGaAs- - , .

    GaAs- . 3.6.

  • .3.6. AlGaAs-GaAs-AlGaAs- ZnBeMnSe

    ZnBeMnSe - . GaAs AlGaAs- . - ( , ) ZnBeMnSe. - ZnBeMnSe-n-AlGaAs - i-GaAs- . , p-AlGaAs- , .

    GaAs - ( ), - - , - . - GaAs- , - (mj = + 1/2) - (mj = 1/2) (mj = + 3/2 mj = 3/2) (mj = + 1/2 mj = 1/2) . - --, --, .

    , , - mj 1. -- (mj = 1/2) , mj 1/2 3/2, , -

    ZnBeMnSespin aligner

    n-AlGaAs i-GaAs p-AlGaAs

    +3/2-3/2

    -1/2 +1/2

    +1/2-1/2 mj

    mj+1/2-1/2

    -3/2

    +3/2

    -1/2+1/2

    mj

    mj

    h

    33 1 1

    h

  • mj 1/2 +1/2. , , . - , , - , . Popt - - P

    Pnnnn

    nnnn

    nnnnoptP 5,02

    133

    33=

    +=

    +++++=

    . (3.18)

    Popt = 50 % -

    100 %. , -

    - . , - -. . - . , , .

    3.4.

    , -. . . 3.7.

    .3.7.

    (0 10 K)

    (, Cu, Au, Al) , - . (, Pb, Nb) - , - Tc. , , , Fe, Co, Ni, ,

    Temperature

    Res

    ista

    nce Kondo rise

    super-conductivity

    Tc TK

  • (Kondo effect) [36]. , . TK, , (Kondo temperature).

    , .. (1961), - (. 3.8). - , - E0 . , , , , . , , . - , - . -, U. - E0 (.3.8,). - h/E0. - , - (.3.8,) (.3.8,). - , - . .

    initial state

    E0

    U

    final statevirtual state

    Density of states

    Ene

    rgy

    E

    k TB K

  • .3.8.

    -

    . , -, - (Kondo resonance). - , - (Kondo state), , . . - - , , -, . , , - (Kondo clouds). - , . , .

    - -. , . - . -

    = AT5 BlnT + C, (3.19) A, B, C , , - , .

    EUUEEEUTK

    )(exp

    200 += , (3.20)

    E , (.3.8,).

    . 1 100 K.

    - R R0 - R/R0 = f(T/TK). , 1/2, f(T/TK). , - , U, E0 E.

  • -

    , - , . - . , - , - . . . , , , , -, , s = 1/2.

    - - --, - . - . 3.9,. - , - , . E - . , .

    .3.9. () ()

    , , - .

    - . . . .

    , - . - ,

    dot

    outcomegate

    incomegate

    gate

    electrondrain

    electronsource

    n = even

    n+1

    n+2

    n+3

    n+4

    Gate voltage

    Con

    duct

    ance

    (/

    )e

    h2

    0

    2

    1

    T = 1 K

    T = 25 mK

  • . , . , - . . 3.9, - , -, . , . , . - , .

    -, - T/TK. 2e2/h. , , , - . - .

    , , .

    3.5.

    - . - . - . , -. - . - , - , - , - , . -, .

    , - -, , - IBM 1997 . , - , - (),

  • 10 100 . , , - . , . , , , -. , - , . - .

    .3.10.

    .3.10. ,

    , -, -

    () - ( ) .

    - , . - . , . - , . , - , , , - , - . 25 .

    , -, , -, .

    magneticdomain

    readhead

    Iin Iout

    S

    NN

    S

  • . 3.11. , , - , - , -. , - . -, -. , - , , - , . (xy) , . , - , , -, , - . . , , -.

    .3.11. ,

    , . , , - , , -, -. , , -, - , , . 90. -.

    bit line

    sense line

    world line

  • . - . , - . , - , - . , , , .

    -

    - - . 3.12. , . . - , , , - . - 30 %.

    .3.12. ,

    -

    , - . -, , ( - , - ). , - , , - ( ), , , -

  • . . , - . , , . , , , - . -. -.

    , - , , -. . . , , - , - , .

    -

    - , . . 3.13 - [37, 38]. - , n- , -. - , .

    n-Si emitter

    NiFeAu

    AuCo

    Pt

    +

    +_

    _ e-

    e-

    e-

    e-

    e-e-

    emitter collectorspin-valvebase

    VebVbc

    E

    EFn-Si

    collector

    Ie

    Ic

  • .3.13. () () -

    Si-Pt-, Si-Au- NiFe-Au-Co--

    , n- , - . - - , .

    - , , NiFe Co, , (u). NiFe Co - - . - . - . -, Pt Au . , . Si-Pt , . , . -, Si-Au, 0,1 Si-Pt-, . - , - .

    . - ( I0), - -. Si-Pt- , , . , 0,5 1 -. , - , , -. , . , - . , - . , , Ic , -. - - .

  • , , , - -.

    - , - ( magnetocurrent), , () ,

    apcI

    apcI

    pcIMC = , (3.21)

    p - .

    - , - . . 3.14. - . - . , (22 ) NiFe (5 ) , NiFe . - . , 300 % 500 % 77 K. , . - .

    .3.14. -

    -

    , , . - , - . , , , , . , -

    Col

    lect

    or c

    urre

    nt (

    arb.

    uni

    ts)

    Magnetic field (Oe)0-40 -20 4020

    0

    12

    8

    4

  • , , - . - , , .

    - - ( ). - , , .

    , , - - . - .

  • 1. Bttiker M. Four-terminal phase-coherent conductance // Phys. Rev. Lett. 1986. 57(14). . 1761-1764.

    2. Bttiker . Symmetry of electrical conduction // IBM J. Res. Develop. 1988. 32(3). . 317-334.

    3. Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction // IBM J. Res. Dev. 1957. 1(6). . 223-231.

    4. Landauer R. Electrical resistance of disordered one-dimensional lattice // Phil. Mag. 1970. 21(172). . 863-867.

    5. Klitzing von K., Dorda G., Pepper M. New method for high-accuracy determi-nation of the fine-structure constant based on quantized Hall resistance // Phys. Rev. Lett. 1980. 45(6). . 494-497.

    6. Tsui D.C., Strmer H.L., Gossard A.C. Two-dimensional magnetotransport in the extreme quantum limit // Phys. Rev. Lett. 1982. 48(22). . 1559-1562.

    7. Laughlin R.B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations // Phys. Rev. Lett. 1983. 50(18). . 1395-1398.

    8. Likharev .., Claeson . Single electronics // Scientific American. 1992. 6. . 50-55.

    9. Thornton T.J. Mesoscopic devices // Rep. Prog. Phys. 1994. 57. . 311-364. 10. Averin D.V. and Likharev K.K. Mesoscopic Phenomena in Solids. Elsevier, Am-sterdam, 1991.

    11. Fulton T.A., Gammel P.L. Determination of Coulomb-blockade resistances and observation of the tunneling of single electrons in small-tunnel-junction circuit // Phys. Rev. Lett. 1991. 67. . 3148-3151.

    12. Geerling L.J., Anderegg V.G. Frequency-locked tumstile device for single electrons // Phys. Rev. Lett. 1990. 64. . 2691-2694. 13. Pother H., Lafarge P. Single electron pump fabrication with ultrasmall normal tunnel junctions // Physica B. 1991. Vol. 169. P. 1574-1598.

    14. Pekola J.K., Hirvi K.P. Thermometry by arrays of tunnel junction // Phys. Rev. Lett. 1994. Vol. 64. . 2903-2906. 15. Hirvi K.P., Paalanen M.A. et.al. Numerical investigation of one-dimensional tun-nel junction arrays at temperatures above the Coulomb blockade regime // J. Appl. Phys. 1996. Vol. 80. P. 256-263.

    16. Asahi N., Akazawa M. et. al. // IEEE Trans. Electron Devices. 1997. 44. . 1109.

    17. Likharev K.K. Single-Electron Devices and Their Applications // Proceedings of the IEEE. 1999. Vol.87. 4. . 606-632.

  • 18. Likharev K.K. Possible logic circuits based on the correlated single-electron tun-neling in ultrasmall junctions // Ext. Abstr. Int. Superconductivity Electronics Conf. (ISEC97). 1987. P. 128-131. 19. Likharev K.K. and Korotkov A.N. Single-electron parametron: Reversible com-putation in a discrete state system // Science. 1996. Vol. 273. P.763-765. 20. Korotkov A.N and Likharev K.K. Single-electron parametron-based logic // J. Appl. Phys. 1999. Vol. 84. P. 6114-6126. 21. Bohm D. Quantum Theory. Prentice Hall, Englewood Cliffs. NJ, 1951. . 283. 22. Brown E.R., Soderstrom J.R. et. al. // Appl. Phys. Lett. 1991. Vol. 58. P. 2291. 23. Shimuzu N., Nagatsuma T. et. al. // Electron Lett. 1995. Vol. 31. P. 1695. 24. Capasso F., Sen S. et. al. Physic of Quantum Electron Devices. Springer-Verlag, Berlin, 1990. 25. Yokoyama N., Muto S., Ohnishi H., Imamura K. Physic of Quantum Electron Devices. Springer-Verlag, Berlin, 1990. 26. Maezawa K., Akeyoshi T., Mizutani T. // IEEE Trans. Electron Devices. 1994. Vol. 41. P. 148. 27. Maezawa K. and Mizutani T. // Jpn. J. Appl. Phys. 1994. Vol. 32. P. L42. 28. Shen J., Tehrani S., Goronkin H., Kramer G., Tsui R. // IEEE Electron Device Lett. 1996. Vol. 17. P. 94.

    29. Valet T., Fert A. Theory of the perpendicular magnetoresistance in magnetic multilayers // Phys. Rev. 1993. B 48(10). P. 7099-7113.

    30. Julliere M. Tunneling between ferromagnetic films // Phys. Lett A. 1975. Vol. 54(3). P. 225-226.

    31. Shang C.H., Nowak J., Jansen R., Moodera J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions // Phys. Rev. 1998. B 58(6). P. R2917-R2920.

    32. Hagler T., Kinder R., Bayreuther G. Temperature dependence of tunnel mag-netoresistance // J. Appl. Phys. 2001. 89(11). P. 7570-7572.

    33. E.. // . 1960. 2(6). P. 1224-1238.

    34. Bychkov Y.A., Rashba E.I. Oscillatory effects and the magnetic susceptibility of carriers in the inversion layers // J. Phys. 1984. C 17(33). P. 6039-6045.

    35. Luo J., Munekata H., Fang F., Stiles P.J. Effects of inversion asymmetry on electron energy band structures in GaSb/InAs:GaSb quantum wells // Phys. Rev. 1990. B 41(11). P. 7685-7693.

    36. Kondo J. Resonance minimum in dilute magnetic alloys // Prog. Theor. Phys. 1964. 32(1). P. 37-49.

    37. Monsma D.J., Lodder J.C., Popma T.J., Dieny B. Perpendicular hot electron spin-valve effect in a new magnetic field sensor: the spin-valve transistor // Phys. Rev. Lett. 1995. 74(26). P. 5260-5263.

    38. Anil Kumar P.S., Lodder J.C. // J. Appl. Phys. 2000. 33 (22). P. 2911-2920.

  • 1. Davies J.H. The Physics of Low-Dimensional Semiconductors: An Introduction. Cambridge University Press, Cambridge, 1998. 2. Ferry D.K., Goodnick S.M. Transport in Nanostructures. Cambridge University Press, Cambridge, 1997. 3. Haug H., Jauho A.P. Quantum Kinetics in Transport and Optics of Semiconduc-tors. Springer, Berlin, 1998. 4. Datta S. Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge, 1995. 5. Laughlin R. B. Nobel Lecture: Fractional quantization // Rev. Mod. Phys. 1999. 71(4). . 863-874. 6. Stormer .L. Nobel Lecture: The fractional quantum Hall effect // Rev. Mod. Phys. 1999. 71(4). . 875-889. 7. Tsui D.C. Nobel Lecture: Interplay of disorder and interaction in two-dimensional electron gas in intense magnetic fields // Rev. Mod. Phys. 1999. 71(4). . 891-895. 8. Thornton T.J., Mesoscopic devices // Rep. Prog. Phys. 1994. 57. P. 311-364. 9. Averin D.V. and Likharev K.K. Mesoscopic Phenomena in Solids. Elsevier, Am-sterdam, 1991. 10. Bohm D. Quantum Theory. Prentice Hall, Englewood Cliffs. NJ. 1951. . 283. 11. Yokoyama N., Muto S., Ohnishi H., Imamura K. Physic of Quantum Electron Devices. Springer-Verlag, Berlin, 1990. 12. Tarucha S. et.al. in Physics and Application of Semiconductor Quantum Struc-ture, T. Yao, ed., IOP Publishing Co., Bristol, 2001. 13. Likharev K. Single-Electron Devices and Their Application. Proceeding of the IEEE. 1999. Vol. 87. 4. P. 606-632. 14. Twardowski A. Diluted Magnetic Semiconductors. World Scientific, Singapore, 1996. 15. Prinz G.A. Magnetoelectronics // Science 1998. Vol. 282 (5394). P. 1660-1663. 16. Kouwenhoven L., Glazman L. Revival of the Kondo effect // Physics World. 2001. Vol. 14(1). P. 33-38. 17. Daughton J.M., Pohm A.V., Fayfield R.T., Smith C.H. Applications of spin de-pendent transport materials // J. Phys. D: Appl. Phys. 1999. Vol. 32(22). P. R169R177. 18. Jansen R.O., Erve .J. van't, Kim S.D., Vlutters R., Anil Kumar P.S., Lodder J.C. The spin-valve transistor // J. Phys. D: Appl. Phys. 2000. Vol. 33(22). P. 2911-2920. 19. Moodera J.S., Kinder L.R. Ferromagnetic-insulator-ferromagnetic tunneling: spin-dependent tunneling and large magnetoresistance in trilayer junctions // Appl. Phys. 1996. 79 (8). P. 4724-4729. 20. .., .., .. :

  • . . : , 2000. 21. Handbook of Nano-technology. Brushan Editor, Springer, 2004. 22. Nanoelectronics and Information Technology (Advanced Electronic Materials and Novel Devices), Edited by Prof. Dr. I. R. Waser. Aachen, Germany, Wiley-VCH, 2003.

  • . 2004, . 83

    , ,

    41 01 02 - , 41 01 03

    3-

    3

    .. .. .. 10.12.2004. 6084 1/16. . . . . . . 5,35. .-. . 5,1. 150 . 366.

    :

    02330/0056964 01.04.2004. 02330/0133108 30.04.2004.

    220013, , . , 6