zong-liang yang the university of texas at austin

19
Zong-Liang Yang The University of Texas at Austin Introduction to Land Surface Introduction to Land Surface Modeling Modeling Prepared for the TCEQ Meeting May 24, 2006 www.geo.utexas.edu/climate

Upload: ronat

Post on 11-Jan-2016

51 views

Category:

Documents


2 download

DESCRIPTION

Introduction to Land Surface Modeling. Zong-Liang Yang The University of Texas at Austin. Prepared for the TCEQ Meeting May 24, 2006 www.geo.utexas.edu/climate. Why Land Surface Modeling?. An important component of the weather, climate or environmental system. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Zong-Liang Yang The University of Texas at Austin

Zong-Liang Yang

The University of Texas at Austin

Introduction to Land Surface Introduction to Land Surface ModelingModeling

Prepared for the TCEQ MeetingMay 24, 2006

www.geo.utexas.edu/climate

Page 2: Zong-Liang Yang The University of Texas at Austin

Why Land Surface Modeling?

• An important component of the weather, climate or environmental system.– exchanges of momentum,

energy, water vapor, CO2, VOC, and other trace gases between land surface and the overlying atmosphere

– states of land surface (e.g., soil moisture, soil temperature, canopy temperature, snow water equivalent)

– characteristics of land surface (e.g., roughness, albedo, emissivity, soil texture, vegetation type, cover extent, leaf area index, and seasonality)

• Critical for weather, climate, hydrological, and environmental forecasts. NCAR CLM Website

Page 3: Zong-Liang Yang The University of Texas at Austin

The Development of Climate models, Past, Present and Future

Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere

Land surfaceLand surfaceLand surfaceLand surfaceLand surface

Ocean & sea-ice Ocean & sea-ice Ocean & sea-ice Ocean & sea-ice

Sulphateaerosol

Sulphateaerosol

Sulphateaerosol

Non-sulphateaerosol

Non-sulphateaerosol

Carbon cycle Carbon cycle

Atmosphericchemistry

Ocean & sea-icemodel

Sulphurcycle model

Non-sulphateaerosols

Carboncycle model

Land carboncycle model

Ocean carboncycle model

Atmosphericchemistry

Atmosphericchemistry

Off-linemodeldevelopment

Strengthening coloursdenote improvementsin models

Mid 1950s Late 1960s Early 1980s Mid 1990s Present day Late 2000s?

John Houghton

Page 4: Zong-Liang Yang The University of Texas at Austin

Climate Change and Variability

P

E

Qs

Ss

Sg

Qg

Ig

Coupled Ocean-Atmosphere

Models

Hydrologic/Routing Models

Water Resources Applications

In Situ Data

Mesoscale Models

Air Quality Models

Soil-Vegetation-Atmosphere Transfer

Remote Sensing and GIS

Policy

Water Quality and Quantity

Air Quality

Integrated Environmental Modeling Framework

Page 5: Zong-Liang Yang The University of Texas at Austin

Tra

nsp

ort

atio

nT

ran

spo

rta

tion

Tra

nsp

ort

atio

nT

ran

spo

rta

tion

Fo

reca

st

Lea

d T

ime

Fo

reca

st

Lea

d T

ime

Warnings & Alert Warnings & Alert CoordinationCoordination

WatchesWatches

ForecastsForecasts

Threats Assessments

GuidanceGuidance

OutlookOutlookP

rote

ctio

n o

f P

rote

ctio

n o

f L

ife &

Pro

pe

rty

Life

& P

rop

ert

yP

rote

ctio

n o

f P

rote

ctio

n o

f L

ife &

Pro

pe

rty

Life

& P

rop

ert

y

Sp

ace

S

pa

ce

Op

era

tion

Op

era

tion

Sp

ace

S

pa

ce

Op

era

tion

Op

era

tion

Re

cre

atio

nR

ecr

ea

tion

Re

cre

atio

nR

ecr

ea

tion

Eco

syst

em

Eco

syst

em

Eco

syst

em

Eco

syst

em

Sta

te/L

oca

l S

tate

/Lo

cal

Pla

nn

ing

Pla

nn

ing

Sta

te/L

oca

l S

tate

/Lo

cal

Pla

nn

ing

Pla

nn

ing

En

viro

nm

en

tE

nvi

ron

me

nt

En

viro

nm

en

tE

nvi

ron

me

nt

Flo

od

Miti

ga

tion

F

loo

d M

itig

atio

n

& N

avi

ga

tion

& N

avi

ga

tion

Flo

od

Miti

ga

tion

F

loo

d M

itig

atio

n

& N

avi

ga

tion

& N

avi

ga

tion

Ag

ricu

lture

Ag

ricu

lture

Ag

ricu

lture

Ag

ricu

lture

Re

serv

oir

Re

serv

oir

Co

ntr

ol

Co

ntr

ol

Re

serv

oir

Re

serv

oir

Co

ntr

ol

Co

ntr

ol

En

erg

yE

ne

rgy

En

erg

yE

ne

rgy

Co

mm

erc

eC

om

me

rce

Co

mm

erc

eC

om

me

rce

Benefits

Hyd

rop

ow

er

Hyd

rop

ow

er

Hyd

rop

ow

er

Hyd

rop

ow

er

Fire

We

ath

er

Fire

We

ath

er

Fire

We

ath

er

Fire

We

ath

er

He

alth

He

alth

He

alth

He

alth

Forecast Forecast UncertaintyUncertaintyForecast Forecast UncertaintyUncertainty

MinutesMinutes

HoursHours

DaysDays

1 Week1 Week

2 Week2 Week

MonthsMonths

SeasonsSeasons

YearsYears

Initial Conditions

Boundary Conditions

Accurate Land Surface Modeling Is Critical for Seamless Suite of Forecasts

Paul Houser

Page 6: Zong-Liang Yang The University of Texas at Austin

Land-Atmosphere Coupling Strength

Koster et al. (2004), Science

Page 7: Zong-Liang Yang The University of Texas at Austin

What Are Land Surface Processes

Land surface processes function as– lower boundary

condition in Atmospheric Models

• Atmospheric Boundary Layer Simulation

• Climate Simulation• Numerical Weather

Prediction• 4-D Data Assimilation

– upper boundary condition in Hydrological Models

• Water Resources Estimation• Crop Water Use• Runoff Simulation

– interface for coupled Atmospheric / Hydrological / Ecological Models

Page 8: Zong-Liang Yang The University of Texas at Austin

Land Surface Models (LSMs)• Computer code describing land surface processes (also

called LSSs, LSPs, SVATs)– FORTRAN, C, … ...– Tens to thousands of lines

• There are a huge number of LSMs (100+ examples in literature)– many are just “research models’’, local-scale oriented, with

specific process emphasis– up to ~100 canopy, ~100 soil, ~100 snow, even ~100

atmosphere layers!

• LSMs in GCMs and Hydrological Models are less diverse– one dimensional, with 1-2 canopy, 1-10 soil, 1-10 snow layers– three general classes

• “Bucket” Models (no vegetation canopy)• “Micrometeorological” Models (detailed soil/snow/canopy

processes) + Greening• “Intermediate” Models (some soil/snow/canopy features)

Page 9: Zong-Liang Yang The University of Texas at Austin

Four Basic RequirementsFrequently-sampled (hourly or sub-hourly) weather

“forcing data” to “drive” LSMs• precipitation (rate; coverage, large-scale/convective)• radiation (shortwave, longwave)• temperature• wind components (u, v)• specific humidity• surface pressure

Initialization of state variables• soil moisture (liquid, frozen)• deep soil temperature

Specification of surface characteristics• vegetation cover percent and composition (ET, BVOC…)• soil type (soil moisture & hydrology)• topography (hydrology)• albedo (solar radiation & energy balance)• roughness (turbulence & momentum exchange)• root depth (water holding capacity & hydrology)

Validation of simulations of state variables and fluxes• soil moisture• sensible/latent heat fluxes• skin temperature

Page 10: Zong-Liang Yang The University of Texas at Austin

Best Known Examples

– “Biosphere-Atmosphere Transfer Scheme (BATS)”

– “Simple Biosphere Model (SiB)”– Community Land Model (CLM)– Noah

Page 11: Zong-Liang Yang The University of Texas at Austin

Community Land Model

Hydrology

Drainage

Canopy Water

Evaporation

Interception

SnowMelt

Sublimation

ThroughfallStemflow

Infiltration Surface Runoff

Evaporation

Transpiration

Precipitation

Soil Water

Redistribution

Ocean Lake

Snow

Soil Water

Ground Water

River Flow

Surface Runoff

Direct Solar

Radiation

Absorbed SolarRadiation

Diff

use

Sol

ar

Rad

iatio

n

Long

wav

e R

adia

tion

Reflected Solar Radiation

Em

itted

Lon

g-w

ave

Rad

iatio

n

Sen

sibl

e H

eat

Flu

x

Late

nt H

eat

Flu

x

ua0

Momentum FluxWind Speed

Soil Heat Flux

Heat Transfer

Pho

tosy

nthe

sis

Biogeophysics

NCAR CLM Website

Page 12: Zong-Liang Yang The University of Texas at Austin

Community Land Model Dynamic Vegetation

Vegetation Dynamics

0

0.3

-10 25 60Temperature (C)

g C

O2g

-1s

-1

Root

HeterotrophicRespiration

Ecosystem Carbon Balance

Growth Respiration

g C

O2g

-1s

-1

0 1 2

Foliage Nitrogen (%)

0 15 30

Temperature (C)

g C

O2g

-1s

-1

0 500 1000

Ambient CO2 (ppm)

Photosynthesis

0 -1 -2

Foliage Water Potential (MPa)

g C

O2g

-1s

-1

0 1500 3000

Vapor Pressure Deficit (Pa)

46

20

0 500 1000

PPFD (molm-2s-1)

46

20

46

20

Sapwood

0

0.01

-10 25 60Temperature (C)

g C

O2g

-1s

-1Foliage

0

0.5

-10 25 60Temperature (C)

g C

O2g

-1s

-1

0 15 30Temperature

(C)

Re

lativ

e R

ate

1

8

Soil Water (% saturation)

Re

lativ

e R

ate

0 1000

1

AutotrophicRespiration

Litterfall

NutrientUptake

NCAR CLM Website

Page 13: Zong-Liang Yang The University of Texas at Austin

Noah

NCEP Noah Website

Page 14: Zong-Liang Yang The University of Texas at Austin

Research Issues

• Obtaining and applying relevant “pure biome” data to test or calibrate LSMs

• Dealing with spatial/temporal heterogeneity• area-average parameters or tiling of land covers?• defining space-time structure of atmospheric inputs

• Making best use of remote sensing data for initialization, specification and validation

• Improving key processes• Snow/Frozen soil• Runoff generation/routing• “Greening” of LSMs (carbon balance and

vegetation dynamics)• Urban

Page 15: Zong-Liang Yang The University of Texas at Austin

CLM Subgrid Structure

Gridcell

Glacier Wetland Lake

Landunits

Columns

PFTs

UrbanVegetated

Soil Type 1

Keith Oleson

Page 16: Zong-Liang Yang The University of Texas at Austin

CLM Subgrid Structure

Gridcell

Glacier Wetland Lake

Landunits

Columns/PFTs

Vegetated

PerviousShaded WallRoof Sunlit Wall Impervious

Urban

Canyon Floor

Industrial

Medium Density

Suburban

Keith Oleson

Page 17: Zong-Liang Yang The University of Texas at Austin

Climate Science Program at UT-Austin

NOAA, Understanding and Simulation of the Effects of Vegetation on North American Monsoon Precipitation.

NASA/NOAA, Parameterization of Snow Cover Fraction in Climate and Weather Prediction Models.

EPA, Impacts of Climate Change and Land Cover Change on Biogenic Volatile

Organic Compounds (BVOCs) Emissions in Texas.

DHS, Regional Scale Flood Modeling for the San Antonio River Basin, 3-yr Graduate Fellowship to Marla Knebl.

NSF, Including Aquifer into the Community Land Model, 3-yr Graduate

Fellowship to Lindsey Gulden. [Groundwater and Runoff]

NASA, Using MODIS Data to Characterize Climate Model Land Surface Processes and the Impacts of Land Use/Cover Change on Surface Hydrological Processes.

www.geo.utexas.edu/climate

Page 18: Zong-Liang Yang The University of Texas at Austin

Climate Change and Variability

P

E

Qs

Ss

Sg

Qg

Ig

Coupled Ocean-Atmosphere

Models

Hydrologic/Routing Models

Water Resources Applications

In Situ Data

Mesoscale Models

Air Quality Models

Soil-Vegetation-Atmosphere Transfer

Remote Sensing and GIS

Policy

Water Quality and Quantity

Air Quality

Integrated Environmental Modeling Framework

Page 19: Zong-Liang Yang The University of Texas at Austin

Coupling Land Surface with Other Processes

NCAR CLM Website