zirconium hydride precipitation and dissolution kinetics in ......zirconium / zirconium hydride...

36
Zirconium hydride precipitation and dissolution kinetics in zirconium alloys E. Lacroix 1,2 , P.-C. Simon 2 , A. T. Motta 2 and J. D. Almer 3 1 1 : Framatome, Lynchburg, VA, USA 2 : Pennsylvania State University, PA, USA 3 : Argonne National Laboratory, Lemont, IL, USA 19 th International Symposium on Zirconium in the Nuclear Industry Manchester, UK, May 22 nd , 2019

Upload: others

Post on 26-Jan-2021

8 views

Category:

Documents


1 download

TRANSCRIPT

  • Zirconium hydride precipitation and dissolutionkinetics in zirconium alloys

    E. Lacroix1,2, P.-C. Simon2, A. T. Motta2 and J. D. Almer3

    1

    1: Framatome, Lynchburg, VA, USA2: Pennsylvania State University, PA, USA3: Argonne National Laboratory, Lemont, IL, USA

    19th International Symposium on Zirconium in the Nuclear Industry

    Manchester, UK, May 22nd, 2019

  • • Background

    • Experiments

    • Model development

    • Conclusions

    Outline

    2

    – Hydride hysteresis understanding

    – How can hydrogen behavior be studied?

    – How can we incorporate the experimental

    data obtained to create the HNGD model

  • Background:Hydride hysteresis understanding

    3

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Zirconium / zirconium hydride hysteresis

    4

    0

    50

    100

    150

    200

    250

    0 50 100 150 200 250 300 350 400 450

    Hyd

    roge

    n c

    on

    ten

    t in

    so

    lid s

    olu

    tio

    n (

    wt.

    pp

    m)

    Temperature (°C)

    Hydride precipitation behavior by region

    TSSD

    TSSP

    Precipitation

    Dissolution

    if hydrides are present

    PrecipitationHydride nucleation and growth

    E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials, 509 (2018) 162-167.

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • z

    5

    Terminal solid solubility for precipitation and dissolution

    E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials, 509 (2018) 162-167.

    603 wt.ppm

    400 wt.ppm

    541 wt.ppm

  • z

    6

    hydrides

    Dissolved Hydrogen

    Dissolution Temperature

    E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials, 509 (2018) 162-167.

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • 7

    Dissolved hydrogen

    Precipitation Temperature

    hydrides

    E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials, 509 (2018) 162-167.

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • How was the hydride

    behavior studied?

    8

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Experimental Setup at Beamline 1 at APS

    Load Frame

    Clam shell

    furnaceSample

    9

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • z

    Diffraction patterns

    10

    Peak intensityPeak position

    Peak width

    volume fractionStress

    Size of the crystal size

    Integration of diffraction data

    Raw data

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Differential Scanning Calorimetry(DSC)

    CoolingSystem

    Heating system and sample holder

    11

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Nucleation and Dissolution

    kinetics measurement using

    Synchrotron X-ray diffraction

    12

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Nucleation and Dissolution kinetics:hypothesis

    13

    • First order kinetics in the form:

    𝑑𝐶𝑆𝑆𝑑𝑡

    = −𝐾 ⋅ 𝐶𝑆𝑆 − 𝐶𝑒𝑞

    • Differentiating:

    𝐾 = −Δ𝐶𝑆𝑆

    (𝐶𝑆𝑆−𝐶𝑒𝑞)Δ𝑡

    • K is the kinetic constant, following an Arrhenius law:

    𝐾 = 𝐾0 ⋅ exp −𝐸𝑝𝑘𝐵𝑇

    𝐶𝑆𝑆 is the hydrogen content in solid solution (wt.ppm)𝐶𝑒𝑞 is the hydrogen content in solid solution at equilibrium (wt.ppm)

    𝐾0 is the pre-exponential factor (𝑠−1)𝐸𝑝 is the activation energy of the process (eV/atom)

    𝑘𝐵 is the Boltzmann constant𝑇 is the temperature (K)

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Studying hydrogen behavior in Zr

    14

    • I: 𝑇𝑆𝑆P, 𝑇𝑆𝑆𝐷 (dynamic)

    • II: 𝑇𝑆𝑆D (equilibrium)

    • III: Dissolution rateNucleation rate

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

    𝐾 = −Δ𝐶𝑆𝑆

    (𝐶𝑆𝑆−𝐶𝑒𝑞)Δ𝑡

  • Studying hydrogen behavior in Zr

    15

    • Nucleation Kinetics

    •𝑑𝐶𝑆𝑆

    𝑑𝑡= −𝐾𝑁(𝐶𝑆𝑆 − 𝑇𝑆𝑆𝑃)

    • 𝐾𝑁 =−Δ𝐶𝑆𝑆

    Δ𝑡 𝐶𝑆𝑆−𝑇𝑆𝑆𝑃

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Studying hydrogen behavior in Zr

    16

    • Dissolution Kinetics

    •𝑑𝐶𝑆𝑆

    𝑑𝑡= −𝐾𝐷(𝐶𝑆𝑆 − 𝑇𝑆𝑆𝐷)

    • 𝐾𝐷 =−Δ𝐶𝑆𝑆

    Δ𝑡 𝐶𝑆𝑆−𝑇𝑆𝑆𝐷

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Growth kinetics measurement

    using DSC

    17

    Conclu

    sio

    ns

    Model

    Experim

    ents

    Backgro

    und

  • Differential Scanning Calorimetry

    18

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

    350 ℃320 ℃305 ℃300 ℃290 ℃280 ℃

    𝑥(𝑡) =Δ𝐻 𝑡

    Δ𝐻𝑡𝑜𝑡=

    𝐶𝑃𝑃(𝑡)

    𝐶0 − 𝑇𝑆𝑆𝐷(𝑡)

    𝑥 = 1 − exp − 𝐾𝐺𝑡𝑝

    Growth Kinetics Parameter

    Depends on the growth

    regime

    𝐾𝐺 = 𝐾𝐺0 ⋅ exp −

    𝐸𝐺𝑘𝐵𝑇

    Avrami Parameter

    Dimensionality of the growth.

    • 2.5 for platelets

    • 3 for spheres, 1 for

    needles

    ASTM standard E2070

  • 19

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

    Differential Scanning Calorimetry

    99%(𝑥, 𝑡)

    (𝑥, 𝑡)

    (𝑥, 𝑡)

    ASTM standard E2070

  • 20

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

    Time Temperature Transformation diagram

    Tem

    per

    atu

    re

    Time to reach 99% of reaction

    Diffusion reaction, 𝐾𝐺𝑅

    Phase transformation reaction, 𝐾𝐺𝐷

    𝑇𝑑

    1

    𝐾=

    1

    𝐾𝐺𝐷 +

    1

    𝐾𝐺𝑅

  • 21

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    undExperiment repeated to obtain TTT

  • Model development

    22

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

  • 23

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

    Model Summary

    0

    50

    100

    150

    200

    250

    0 50 100 150 200 250 300 350 400 450

    Hyd

    roge

    n c

    on

    ten

    t in

    so

    lid s

    olu

    tio

    n (

    wt.

    pp

    m)

    Temperature (°C)

    Hydride precipitation behavior by region

    TSSD

    TSSP

    Dissolution

    if hydrides are present

    Hydride nucleation and growth

    𝑥 = exp −𝐾𝐷𝑡

    Nucleation: 𝑥 = 1 − exp(−KNt)

    Growth: 𝑥 = 1 − exp − 𝐾𝐺𝑡𝑝

  • 24

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

    Model Results

  • 25

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

    Synchrotron Experiment Simulation

    E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials, 509 (2018) 162-167.

  • z Hold time: 41 days

    26

    157⁰C 454⁰C

    1”

    64 wt.ppm of Hydrogen

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

    A. Sawatzky, Hydrogen in Zircaloy-2: its distribution and heat of transport, Journal of Nuclear Materials 2 (1960) 321{328.

  • Conclusions

    ▪ Synchrotron X-ray diffraction was successfully used to

    measure nucleation, and dissolution kinetics of hydrides.

    ▪ DSC was successfully used to measure hydride growth

    kinetics and to obtain a Time-Temperature-Transformation

    diagram for hydride precipitation.

    ▪ A hydrogen precipitation and dissolution model was created

    based on a new approach and showed good agreement with

    experimental data.

    27

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

  • Acknowledgement

    ▪ DOE-NEUP

    ▪ Argonne National Laboratory

    ▪ Penn State Nanofab

    ▪ Penn State MCL

    28

  • Questions

  • Furnace

    Roughing Pump

    Diffusion Pump

    Gas tankControl Volume

    Vacuum chamber

    1. Remove oxide from sample using an acid solution

    2. Deposit Nickel to prevent further oxidation

    3. Introduce hydrogen using gaseous charging method

    30

    Introducing Hydrogen in the zirconium metal

    Conclu

    sio

    ns

    Model

    Experim

    ent

    Backgro

    und

  • sugar

    1. T0 = Room temperature (RT)

    2. T1 > Room temperature → less solid sugar in the water→ more dissolved sugar

    3. T2 > T1 → Dissolution Temperature→ Only dissolved sugar

    4. T3 < T2 → Precipitation Temperature→ first occurrence of solid sugar

    5. T3 hold → Growth of sugar crystals

    6. T4 = Room temperatureT

    time

    T1

    T2 T3

    32

    T4

  • z

    33

    157⁰C 454⁰C

    1”

    64 wt.ppm of Hydrogen

  • Differential Scanning Calorimetry

    34

    • Low temperature to measure only diffusion-driven process

    •1

    𝐾𝐺=

    1

    𝐾𝐺𝐷 +

    1

    𝐾𝐺𝑅

    • High temperature was implemented using free energy curves

  • z

    35

    Terminal solid solubility for precipitation and dissolution

    E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials, 509 (2018) 162-167.

    603 wt.ppm

    400 wt.ppm

    541 wt.ppm

    ✓ Show that hydrogen continues to precipitate

    below TSSP

  • z

    36

    Terminal solid solubility measurement using DSC

    300

    Temp

    H content

    TDTP

    K. Une and S. Ishimoto, “Dissolution and precipitation behavior of hydrides in Zircaloy-2 and high Fe Zircaloy,” Journal of Nuclear

    Materials, vol. 322, pp. 66–72, 2003.

    K. Colas, A. Motta, D. M.R., and J. Almer, “Mechanisms of hydride reorientation in Zircaloy-4 studied in situ,” Zirconium in the Nuclear Industry: 17th International Symposium, vol. ASTM STP 1543, pp. 1107–1137, 2014.

    TSSPTSSD

    0

    100

    200

    300

    400

    500

    600

    100 200 300 400 500 600

    CS

    S(w

    t.p

    pm

    )

    Temperature (°C)

    TSSP (APS) [5]

    TSSD (APS) [5]

    TSSP (DSC) [3]

    TSSD (DSC) [3]

    ✓ Show that the TSSP is the nucleation temperature

  • Studying hydrogen behavior in Zr

    37

    • Sample A: 0 MPa• Sample B: 200 MPa