zeus o u t l i n e · hall ouest (hera-b) hall est (hermes) rayonnement synchrotron hall sud (zeus)...

22
Heavy flavour production at HERA Uri Karshon Weizmann Institute of Science, ISRAEL On behalf of the H1 and ZEUS Collaborations PHOTON-2015 Conference Budker Institute of Nuclear Physics, Novosibirsk, Russia 15-19 June, 2015 ZEUS OUTLINE Introduction and experimental set-up Theory of heavy quark production D ∗± photoproduction at 3 center-of-mass energies Charm fragmentation fractions in photoproduction D ± production in deep inelastic scattering HERA charm data combination in DIS Combination of D ∗± differential cross sections in DIS Beauty production in DIS Summary

Upload: others

Post on 21-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Heavy flavour production at HERA

    Uri KarshonWeizmann Institute of Science, ISRAEL

    On behalf of the H1 and ZEUS Collaborations

    PHOTON-2015 Conference

    Budker Institute of Nuclear Physics,

    Novosibirsk, Russia

    15-19 June, 2015

    ZEUS

    O U T L I N E

    • Introduction and experimental set-up• Theory of heavy quark production• D∗± photoproduction at 3 center-of-mass energies• Charm fragmentation fractions in photoproduction• D± production in deep inelastic scattering• HERA charm data combination in DIS• Combination of D∗± differential cross sections in DIS• Beauty production in DIS• Summary

  • Introduction and experimental set-up

    e+ (k')e+ (k)

    proton (P)g (xgP)

    γ* (q)c

    c_

    W2

    e±(k) + p(P ) → e±(k′) + X ; s = (P + k)2

    Photon virtuality: Q2 = −q2 = −(k − k‘)2

    Bjorken x: x = Q2

    2q·P ; Inelasticity: y =q·Pk·P

    Q2 = sxy; W = γ∗p CM energy

    Photoproduction (PHP): Q2 ≃ 0 GeV 2 (e± undetected)Deep Inelastic Scattering (DIS): Q2 > 1 or 5 GeV 2 (e± detected)

    BGF: Dominant process for c,b production in DIS

    Direct probe of gluon density in proton; Sensitivity to c,b quark masses

    HERA

    PETRA

    DORIS

    HASYLAB

    DESY

    Halle NORD (H1)Hall NORTH (H1)

    Halle OST (HERMES)Hall EAST (HERMES)

    Halle SÜD (ZEUS)Hall SOUTH (ZEUS)

    Halle WEST (HERA-B)Hall WEST (HERA-B)

    Elektronen / PositronenElectrons / Positrons

    ProtonenProtons

    SynchrotronstrahlungSynchrotron Radiation

    Hall nord (H1)

    Hall ouest (HERA-B)

    Hall est (HERMES)

    Rayonnement Synchrotron

    Hall sud (ZEUS)

    Electrons / Positons

    Protons

    HERA: unique e±p collider with E(e±, p) = 27.6, 820/920 GeV

    2 main experiments: H1, ZEUS

    2 run periods: HERA I, HERA II

    1995-2000 2003-2007√

    s 318 (300) 318 GeV

    L 1.5 · 1031 7 · 1031 cm−2 s−1

    Lint 126 373 pb−1

    HERA II data taken ≈ half e+p and half e−pIn 2007 two short runs at lower p energies: Ep = 575 GeV; Ep = 460 GeV

    Heavy Flavour production at HERA U. Karshon 2

  • Theory of heavy quark production

    Several QCD NLO schemes for heavy quark (Q=c or b) production:

    1)Massive scheme: Q2 ≈ m2Q Fixed flavour number scheme (FFNS)• 3 active flavours in proton; Q-quark not considered as parton in p• c or b produced perturbatively in hard scattering (see p.2)• Mass effects correctly included• Spoiled by large logs of Q2/m2Q, pt/mQ...

    2)Massless scheme: Q2 >> m2QZero-mass variable flavour number scheme (ZM-VFNS)

    • c or b treated as massless parton• Resummation of large logarithms of Q2/m2Q• ⇒ c or b density added as 4th flavour like the light quarks

    At intermediate Q2 the 2 schemes should be merged

    3) General-mass variable flavour number scheme (GM-VFNS)

    • Equivalent to FFNS for Q2 ≤ m2Q and to ZM-VFNS for Q2 > m2Q• Interpolation in between (various schemes interpolate differently)• Used in parton density function (PDF) fits (useful at LHC)

    Heavy Flavour production at HERA U. Karshon 3

  • D∗± photoproduction at 3 CM energies

    Clear D∗± signals seen in M(K−π+π+s ) − M(K−π+) distributionsat 3 different CM energies:

    √s = 318, 251, 225 GeV

    in the kinematic region: 1.9 < pD∗

    T < 20 GeV ; |ηD∗| < 1.6 ;

    Q2 < 1 GeV2 ; 0.167 < y < 0.802

    JHEP 10 (2014) 003

    HER: L = 144 pb−1 MER: L = 6.3 pb−1 LER: L = 13.4 pb−1

    ) (GeV)π)-M(KsππM(K0.14 0.145 0.15 0.155 0.16 0.165 0.17

    Ent

    ries

    0

    1000

    2000

    3000

    4000

    5000

    6000

    ZEUS

    sπ π K →D* = 318 GeV)s (-1ZEUS 144 pb

    Wrong-sign combinations

    Signal region

    Background fit (correct-sign)

    Background fit (wrong-sign)

    ZEUS

    ) (GeV)π)-M(KsππM(K0.14 0.145 0.15 0.155 0.16 0.165 0.17

    Ent

    ries

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240ZEUS

    sπ π K →D* = 251 GeV)s (-1ZEUS 6.3 pb

    Wrong-sign combinations

    Signal region

    Background fit (correct-sign)

    Background fit (wrong-sign)

    ZEUS

    ) (GeV)π)-M(KsππM(K0.14 0.145 0.15 0.155 0.16 0.165 0.17

    Ent

    ries

    0

    50

    100

    150

    200

    250

    300

    350

    400

    ZEUS

    sπ π K →D* = 225 GeV)s (-1ZEUS 13.4 pb

    Wrong-sign combinations

    Signal region

    Background fit (correct-sign)

    Background fit (wrong-sign)

    ZEUS

    N(D∗) = 12256 ± 191 N(D∗) = 417 ± 37 N(D∗) = 859 ± 49

    Background estimated by fitting simultaneously correct- and wrong-sign

    distributions in the range ∆M < 0.168 GeV

    Heavy Flavour production at HERA U. Karshon 4

  • D∗± photoproduction at 3 CM energies

    Visible D∗ PHP cross sections obtained from: σvis(D∗) =Ndata(D∗)A·BR·L

    BR = B(D∗ → D0π) · B(D0 → Kπ) = 0.0263; A = acceptanceRatio of visible cross sections: Rσ =

    σiσHER

    ; i = HER, MER, LER

    yields higher precision of E-dependence of cross section

    since some syst. uncertainties in data and theory cancel

    Data compared to FFNS NLO predictions:

    (GeV)s240 260 280 300 320

    σR

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2ZEUS

    0.167 < y < 0.802 < 20 GeV D*

    T1.9 < p

    | < 1.6D*η|

    2 < 1 GeV2Q

    =〉W〈136 GeV 152 GeV

    192 GeV

    D* X→ZEUS ep

    NLO QCD

    Total syst. uncertainty ≈ 5% in datafew % in theory

    < W > = mean W from generated MC

    MER/LER cross sections similar

    HER cross section higher

    Cross sections increase with increasing ep CM energy

    This increase is predicted by NLO QCD

    Heavy Flavour production at HERA U. Karshon 5

  • Charm fragmentation fractions in PHP

    Fragmentation fractions of c-quarks into charm hadrons:

    Probability of c quark to hadronise into a given charm hadron

    f(c → charm hadron) = σ(charm hadron)/σ(total charm production)

    • Needed to go from partonic QCD to hadronic cross sections• No QCD predictions; crucial to compare pQCD with measurements• Are they the same for c-quarks produced in e+e−, ep, pp collisions ?• Test fragmentation universality by measuring all of them

    Measurements performed in PHP regime: Q2 < 1 GeV2

    Charm hadrons reconstructed in the range:

    pT > 3.8 GeV, |η| < 1.6, 130 < W < 300 GeV

    Charm hadrons measured: D0 → K−π+, D+ → K−π+π+D∗+ → D0π+s → K−π+π+sD+s → φπ+, Λ+c → K−pπ+

    σtot = σeq(D0) + σeq(D+) + σ(D+s ) + 1.14 σ(Λ

    +c )

    Full HERA II data: 372 pb−1 JHEP 09 (2013) 058

    Heavy Flavour production at HERA U. Karshon 6

  • Charm fragmentation fractions in PHP

    Silicon-strip detector used for charm vertices

    ⇒ Clear charm hadron signals for all channals

    Cha

    rm fr

    agm

    enta

    tion

    frac

    tions

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    ZEUSHERA II

    ZEUSHERA I

    ep DIS

    ZEUSHERA I

    ep DIS

    H1

    -e+e

    )0 D→f (c )+ D→f (c )+ D*→f (c

    )s D→f (c )cΛ →f (c

    Charm fragmentation fractions:

    Results (left column) in good

    agreement with previous results:

    ZEUS PHP, ZEUS DIS, H1 DIS, e−e−

    Precision of charm f.f. competitive with combined e+e− LEP results

    Fragmentation fractions of c-quarks independent of production

    Support hypothesis of universality of heavy-quark fragmentation

    Universality supported also by new LHC pp data (ALICE + LHCb)

    Heavy Flavour production at HERA U. Karshon 7

  • D± production in DIS

    )2 (GeV2Q10 210 310

    )2 (

    nb/G

    eV2

    /dQ

    σd

    -410

    -310

    -210

    -110

    1-1 354 pb+ZEUS D

    -1 133.6 pb+ZEUS DHVQDIS

    ZEUS

    y 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    /dy

    (nb)

    σd

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    -1 354 pb+ZEUS D

    HVQDIS

    ZEUS

    ) (GeV)ππM(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

    Com

    bina

    tions

    / 10

    MeV

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    ZEUS

    -1 354 pb+ZEUS D

    + backgroundmodGauss

    ) (GeV)+(DT

    p2 3 4 5 6 7 8 9 10

    ) (n

    b/G

    eV)

    +(D

    T/d

    pσd

    -210

    -110

    1

    -1 354 pb+ZEUS D-1 133.6 pb+ZEUS D

    HVQDIS

    ZEUS

    ) +(Dη-1.5 -1 -0.5 0 0.5 1 1.5

    ) (n

    b)+

    (Dη/dσd

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    -1 354 pb+ZEUS D-1 133.6 pb+ZEUS D

    HVQDIS

    ZEUS

    Full HERA II data: 354 pb−1

    JHEP 05 (2013) 023

    Clean D+ signal

    N(D+) = 8356 ± 198

    D+ differential cross sections

    w.r.t Q2, y, pT (D+), η(D+)

    in kinematic region

    5 < Q2 < 1000 GeV2,

    1.5 < pT (D+) < 15 GeV,

    |η(D+)| < 1.6,0.02 < y < 0.7

    NLO QCD predictions based on FFNS describe data well

    up to Q2 ≈ 1000 GeV2

    Similar agreement for double differential cross sections

    dσ/dy for different Q2 ranges

    Heavy Flavour production at HERA U. Karshon 8

  • D± production in DIS

    0

    0.2

    0.4

    0

    0.2

    0.4

    10-4

    10-3

    10-2

    0

    0.2

    0.4

    10-4

    10-3

    10-2

    ZEUS

    F2 c

    c

    Q2 = 6.5 GeV2 Q2 = 20.4 GeV2

    Q2 = 35 GeV2 Q2 = 60 GeV2

    xQ2 = 200 GeV2

    x

    ZEUS D+ 354 pb -1

    ZEUS D* 81.9 pb -1

    HERAPDF1.5

    ZEUS-S PDF

    Charm contribution to proton structure function:

    Express double differential cross section as:

    d2σcc̄

    dxdQ2= 2πα

    2

    xQ4[(1 + (1 − y)2)F cc̄2 − y2F cc̄L ]

    F cc̄2 , Fcc̄L are charm contributions to

    proton structure functions F2 and FL

    dσ/dy for different Q2 bins used

    to extract F cc̄2 at reference points

    xi, Q2i for each bin i using

    F cc̄2,meas(xi, Q2i ) = σi,meas

    F cc̄2,theo(xi,Q2i )

    σi,theo

    F2,theo and σi,theo calculated at NLO in FFNS with HVQDIS program

    D± results compared to previous ZEUS D∗ results and to predictions of GM-VFNS

    based on HERAPDF1.5 parton densities and of FFNS based on ZEUS-S PDF

    HERAPDF1.5 uses HERA ep data to provide NLO predictions

    compatible with other PDF groups

    The NLO calculations describe new precise data wellHeavy Flavour production at HERA U. Karshon 9

  • HERA charm data combination in DIS

    Combined 9 data sets of D∗, D+, D0, µ and liftime tag data

    with 155 H1 and ZEUS cross section measurements

    from various HERA I and HERA II analyses EPJ C73 (2013) 2311

    Charm reduced cross section, σcc̄red, obtained in kinematic range:

    2.5 < Q2 < 2000 GeV2; 3 · 10−5 < x < 5 · 10−2d2σcc̄

    dxdQ2= 2πα

    2

    xQ4[(1 + (1 − y)2)σcc̄red]

    Q2=18 GeV2

    HERA

    H1 and ZEUS

    H1 VTX

    H1 D* HERA-II

    H1 D* HERA-I

    ZEUS c → µ X

    ZEUS D* 98-00

    ZEUS D* 96-97

    ZEUS D0

    ZEUS D+

    x

    σ red cc_

    10-3 10-20

    0.2

    0.4

    0.6 Reduced cross sections σcc̄red

    as function of x for fixed Q2 values:

    Example for Q2 = 18 GeV2

    Combined results - filled circles

    Correlated systematics fully taken into account

    Combined results uncertainty ≈ factor 2better than each most precise data set

    in the combination

    Heavy Flavour production at HERA U. Karshon 10

  • HERA charm data combination in DIS

    How well does the mixed massive-massless scheme GM-VFNS work?

    Reduced cross sections σcc̄red as function of x for fixed Q2 values

    -4 -3 -20

    0.2

    2=2.5 GeV2Q

    -4 -3 -20

    0.2

    2= 5 GeV2Q

    -4 -3 -20

    0.2

    2= 7 GeV2Q

    -4 -3 -20

    0.52=12 GeV2Q

    -4 -3 -20

    0.52=18 GeV2Q

    -4 -3 -20

    0.52=32 GeV2Q

    -30

    0.52=60 GeV2Q

    -30

    0.52=120 GeV2Q

    -30

    0.52=200 GeV2Q

    -4 -3 -20

    0.52=350 GeV2Q

    -4 -3 -20

    0.52=650 GeV2Q

    -4 -3 -20

    0.52=2000 GeV2Q

    redc

    c σ

    0

    0.2

    0

    0.5

    0

    0.5

    0

    0.5

    -410 -310 -210 -410 -310 -210x

    -410 -310 -210

    HERA HERAPDF1.5

    H1 and ZEUS Combined inclusive DIS data (HERA I+II)

    compared to NLO predictions based

    on HERAPDF1.5 extracted in

    RT standard scheme

    Lines are predictions with Mc = 1.4 GeV

    Mc = effective (not physical)

    mass parameter in GM-VFNS

    Large theory uncertainty

    dominated by Mc variation

    Within uncertainties NLO GM-VFNS

    describe data well

    Heavy Flavour production at HERA U. Karshon 11

  • HERA charm data combination in DIS

    Combined NLO analysis with σcc̄red and inclusive DIS cross sections

    in kinematic range: W > 15 GeV, x < 0.65, Q2 > 3.5 GeV2

    For each HFL scheme, PDF fits performed with 1.2 < Mc < 1.8 GeV

    χ2 values vs. Mc from PDF

    fits for various HFL schemes

    VFNS predictions for σcc̄red with

    Mc = 1.4 GeV (up) and Mc = Moptc (down)

    [GeV] cM1.2 1.4 1.6 1.8

    ) c (

    M2 χ

    600

    650

    700

    750

    RT standardRT optimisedACOT-full

    χS-ACOT-ZM-VFNS

    optC M

    H1 and ZEUS

    Charm + HERA-I inclusive

    Minimal χ2 values observed for

    each scheme at different Moptc

    Data described much better

    with Moptc than with fixed Mc

    Predictions of all schemes are

    very similar for Q2 ≥ 5 GeV2Heavy Flavour production at HERA U. Karshon 12

  • HERA charm data combination in DIS

    Implications on NLO predictions for W, Z production at LHC

    W +, W −, Z0 cross section predictions for LHC at√

    s = 7 TeV

    Calculated for each scheme for 1.2 < Mc < 1.8 GeV in 0.1 GeV steps

    [GeV]cM1.2 1.4 1.6 1.8

    [nb]

    +Wσ

    54

    56

    58

    60

    62

    64

    optC M

    RT standard RT optimised

    ACOT-fullχ S-ACOT-

    ZM-VFNS

    = 7 TeVs

    Charm + HERA-I inclusive

    H1 and ZEUS

    [GeV]cM1.2 1.4 1.6 1.8

    [nb]

    -Wσ

    38

    40

    42

    44

    optC M

    RT standard RT optimised

    ACOT-fullχ S-ACOT-

    ZM-VFNS

    = 7 TeVs

    Charm + HERA-I inclusive

    H1 and ZEUS

    [GeV]cM1.2 1.4 1.6 1.8

    [nb]

    27

    28

    29

    30

    31

    32optC M

    RT standard RT optimised

    ACOT-fullχ S-ACOT-

    ZM-VFNS

    = 7 TeVs

    Charm + HERA-I inclusive

    H1 and ZEUS

    All cross sections rise monotonically with Mc

    Significant spread of ≈ 6% between predictions for any fixed McReduces to ≈ 1.4 − 2% when taking Moptc for each scheme

    Heavy Flavour production at HERA U. Karshon 13

  • HERA charm data combination in DIS

    Combined charm data vs. ABM FFNS prediction: Uses instead

    of pole mass the running mass definition in MS scheme

    0

    0.2

    0

    0.5

    0

    0.5

    0

    0.5

    σ red cc_

    H1 and ZEUSQ2=2.5 GeV2 Q2=5 GeV2 Q2=7 GeV2

    Q2=12 GeV2 Q2=18 GeV2 Q2=32 GeV2

    Q2=60 GeV2 Q2=120 GeV2 Q2=200 GeV2

    Q2=350 GeV2

    10-4 10-3 10-2

    Q2=650 GeV2

    10-4 10-3 10-2

    Q2=2000 GeV2

    HERA

    ABM09NNLO MS

    ABM09NLO MS

    10-4 10-3 10-2

    x

    Data well described in full kinematic region

    Similar NLO/NNLO predictions

    Less sensitivity to higher order corrections)

    mc(mc) extraction in MS scheme:

    Same minimisation procedure as for VFNS

    ) [GeV]c

    (mcm1 1.2 1.4 1.6

    2 χ

    620

    640

    660

    680

    700

    FF (ABM)

    H1 and ZEUS

    Charm + HERA-I inclusive

    0.05 GeV±)=1.26 c

    (mcm

    mc(mc) = 1.26 ± 0.05exp. ± 0.03mod.±0.02param. ± 0.02αs GeV

    Uncertainties are experimental,

    model, parametrisation and αs

    Consistent with PDG: 1.275 ± 0.025 GeV

    Heavy Flavour production at HERA U. Karshon 14

  • HERA charm data combination in DIS

    Measurement of running mc

    [GeV]µ1 10

    ) [G

    eV]

    c(m c

    m

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    H1 and ZEUS preliminary

    HERA (prel.)PDG with uncertainty

    [GeV]µ1 10

    ) [G

    eV]

    µ( cm

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    H1 and ZEUS preliminary

    HERA (prel.)

    PDG with evolved uncertainty

    Extract mc(mc) separately for

    6 different kinematic ranges in

    µ =√

    < Q2 > +4mc(mc)2

    < Q2 > is the logarithmic average Q2

    of the subset

    Red points at scale mc and bands are

    PDG average

    mc(mc) translated to mc(µ) by:

    mc(µ) = mc(mc)(αs(µ)

    π )β−10

    (αs(mc)

    π )β−10

    β0 = 9/4 for Nf = 3

    Data consistent with expected QCD running

    First measurement of mc(µ) from combined

    HERA charm reduced cross section data

    Important consistency check, similar to running mb at LEP

    EPJ C55 (2008) 525

    Heavy Flavour production at HERA U. Karshon 15

  • Combination of D∗± differential cross sections in DIS

    Combined H1+ZEUS D∗+ visible differential cross sections w.r.t pD∗

    T , ηD∗

    hep-ex 1503.06042; JHEP to be published

    (D

    *) (

    nb/G

    eV)

    T/d

    pσd

    -410

    -310

    -210

    -110

    1

    (D*) (GeV)T

    p2 3 4 5 6 7 8 9 10 20

    ratio

    to H

    ER

    A

    0.8

    1

    1.2

    2 < 1000 GeV25 < Q0.02 < y < 0.7

    (D*) > 1.5 GeVT

    p(D*)| < 1.5η|

    HERAH1ZEUS

    X H1 and ZEUS± eD*→ ep

    (D*)η-1.5 -1 -0.5 0 0.5 1 1.5

    (D

    *) (

    nb)

    η/dσd

    0

    1

    2

    2 < 1000 GeV25 < Q0.02 < y < 0.7

    (D*) > 1.5 GeVT

    p(D*)| < 1.5η|

    HERAH1ZEUS

    X H1 and ZEUS± eD*→ ep

    Correlations in systematic uncertainties fully taken into account

    Impressive reduction of uncertainties in the combined results

    Precision of combined data ≈ 5% in large fraction of phase spaceSimilar results and precision obtained for dσ/dQ2 and dσ/dy

    Heavy Flavour production at HERA U. Karshon 16

  • Combination of D∗± differential cross sections in DIS

    Differential cross sections compared to NLO predictions: HVQDIS

    HVQDIS setup for ep → cc̄X → D∗X uses some arbitrary variable definitione.g. µr = µf =

    Q2 + 4m2c ; mpolec = 1.5 GeV

    Try to change parameters such that normalisation and shapes of all

    differential cross sections describe the data well

    Found this to happen with µr = 0.5√

    Q2 + 4m2c ; mpolec = 1.4 GeV

    and with some softening of the fragmantation function used

    (Kartvelishvili et al.)

    All other parameters left at default values

    The value of mpolec = 1.4 GeV was also found to describe better

    the data in the study of σcc̄red (p.14)

    ”NLO QCD customised” shown as red dots in the following plots

    This is NOT a prediction, but may hint at which direction theory can be improved

    Heavy Flavour production at HERA U. Karshon 17

  • Combination of D∗± differential cross sections in DIS

    HERA D∗+ differential cross sections w.r.t pD∗

    T , ηD∗, Q2, y vs. theory (HVQDIS)

    Negligible theoretical uncertainties in data points, since no extrapolation

    (D

    *) (

    nb/G

    eV)

    T/d

    pσd

    -410

    -310

    -210

    -110

    1

    (D*) (GeV)T

    p2 3 4 5 6 7 8 9 10 20

    ratio

    to H

    ER

    A

    0.6

    0.8

    1

    1.2

    HERA-IINLO QCDNLO QCD customised

    ± D*→NLO QCD b

    2 < 1000 GeV25 < Q0.02 < y < 0.7

    (D*) > 1.5 GeVT

    p(D*)| < 1.5η|

    X H1 and ZEUS± eD*→ ep

    (D*)η-1.5 -1 -0.5 0 0.5 1 1.5

    (D

    *) (

    nb)

    η/dσd

    0

    1

    2

    HERA-IINLO QCDNLO QCD customised

    ± D*→NLO QCD b

    2 < 1000 GeV25 < Q0.02 < y < 0.7

    (D*) > 1.5 GeVT

    p(D*)| < 1.5η|

    X H1 and ZEUS± eD*→ ep

    )2 (

    nb/G

    eV2

    /dQ

    σd

    -510

    -410

    -310

    -210

    -110

    1

    )2 (GeV2Q10 210 310

    ratio

    to H

    ER

    A

    0.6

    0.8

    1

    1.2

    1.4

    HERA-IINLO QCDNLO QCD customised

    ± D*→NLO QCD b

    2 < 1000 GeV25 < Q0.02 < y < 0.7

    (D*) > 1.5 GeVT

    p(D*)| < 1.5η|

    X H1 and ZEUS± eD*→ ep

    y0.1 0.2 0.3 0.4 0.5 0.6 0.7

    /dy

    (nb)

    σd

    0

    10

    20

    HERA-IINLO QCDNLO QCD customised

    ± D*→NLO QCD b

    2 < 1000 GeV25 < Q0.02 < y < 0.7

    (D*) > 1.5 GeVT

    p(D*)| < 1.5η|

    X H1 and ZEUS± eD*→ ep

    Combined data reach

    precision of ≈ 5%

    NLO describe data

    within large uncertainties

    (≈ 10 − 30%)

    NLO customised describe

    data very well

    NNLO calculations and

    improved fragmentation

    models may help

    Similar conclusions for

    D∗ double-differential

    cross sections in Q2, y

    Heavy Flavour production at HERA U. Karshon 18

  • Beauty production in DIS

    (GeV)jetTE

    5 10 15 20 25 30 35 40

    Ent

    ries

    1

    10

    210

    310

    (GeV)jetTE

    5 10 15 20 25 30 35 40

    Ent

    ries

    1

    10

    210

    310

    jetη-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    Ent

    ries

    0

    100

    200

    300

    400

    500

    jetη-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    Ent

    ries

    0

    100

    200

    300

    400

    500

    )2/GeV2(Q10

    log0.5 1 1.5 2 2.5 3

    Ent

    ries

    0

    50

    100

    150

    )2/GeV2(Q10

    log0.5 1 1.5 2 2.5 3

    Ent

    ries

    0

    50

    100

    150

    x10

    log-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

    Ent

    ries

    0

    100

    200

    300

    x10

    log-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

    Ent

    ries

    0

    100

    200

    300

    ZEUS < 6 GeV, |S|>8vtx2 < m

    -1ZEUS 354 pbMonte CarloLFCharmBeauty

    )2 (GeV2Q10 210 310

    )2 (

    pb /

    GeV

    2 /

    dQσd

    -210

    -110

    1

    10

    210

    -1ZEUS 354 pbhad C×HVQDIS+ZEUS-S

    had C×HVQDIS+ABKM Rapgap x 1.49

    ZEUS

    e jet X→X b e b→ep

    )2 (GeV2Q10 210 310D

    ata

    / HV

    QD

    IS

    0.5

    1

    1.5

    2

    ′ ′ ′

    x

    -410 -310 -210 -110

    / dx

    (pb

    )σd

    310

    410

    510

    610

    710-1ZEUS 354 pb

    had C×HVQDIS+ZEUS-S had C×HVQDIS+ABKM

    Rapgap x 1.49

    ZEUS

    e jet X→X b e b→ep

    x

    -410 -310 -210 -110Dat

    a / H

    VQ

    DIS

    0.5

    1

    1.5

    2

    ′ ′ ′

    JHEP 09 (2014) 127

    Beauty cross section at HERA

    much smaller than charm

    With a micro-vertex detector at HERA II,

    lifetime information can be used

    EjetT , ηjet, Q2, x distributions of sec. vertices

    for b-enriched sample with 2 < mvtx < 6 GeV

    and |S| = |d/δd| > 8 d=decay length

    Differential cross sections for

    inclusive jet production in b-events

    as function of Q2 and x

    Good description of the data by the

    NLO FFNS HVQDIS prediction

    Heavy Flavour production at HERA U. Karshon 19

  • Beauty production in DIS

    )2 (GeV2Q10 210 310

    + 0

    .03

    ib

    b 2F

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    0.22 -1ZEUS vtx 354 pb-1ZEUS e 363 pb-1 114 pbµZEUS

    -1+vtx 126 pbµZEUS -1H1 vtx 246 pb

    HERAPDF 1.5

    ABKM NNLO

    MSTW08 NLO

    MSTW08 NNLO

    CTEQ6.6 NLO

    JR09

    x=0.032 i=0

    x=0.013 i=1

    x=0.005 i=2

    x=0.002 i=3

    x=0.0013 i=4

    x=0.0005 i=5

    x=0.0002 i=6

    x=0.00013 i=7

    -30

    0.005

    0.01

    0.015

    0.02

    -30

    0.005

    0.01

    0.015

    0.02

    -30

    0.005

    0.01

    0.015

    0.02

    -30

    0.02

    0.04

    -30

    0.02

    0.04

    -30

    0.02

    0.04

    -30

    0.01

    0.02

    0.03

    x -410 -310 -210

    x -410 -310 -210

    x -410 -310 -210

    bb rσ

    0

    0.005

    0.01

    0.015

    0.02

    0

    0.02

    0.04

    0

    0.01

    0.02

    0.03-1ZEUS 354 pb

    =4.07 GeV (best fit)b

    QCD fit, m

    =3.93 GeVb

    QCD fit, m

    =4.21 GeVb

    QCD fit, m

    ZEUS2 = 6.5 GeV2Q 2 = 12 GeV2Q 2 = 25 GeV2Q

    2 = 30 GeV2Q 2 = 80 GeV2Q 2 = 160 GeV2Q

    2 = 600 GeV2Q

    Left: Structure function F bb̄2 as function of Q2 for fixed x values in good agreement

    with FFNS and GM-VFNS NLO and NNLO predictions

    Right: Reduced b cross section σbb̄r as function of x for fixed Q2 values used

    to determine b-quark mass in a QCD fit as done for the c-quark mass

    Lines are results with mb = 4.07 (best fit), 3.93 and 4.21 GeV

    Sensitivity to mb comes mostly from low Q2

    Heavy Flavour production at HERA U. Karshon 20

  • Beauty production in DIS

    ) (GeV)b

    (mbm3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

    2 χ

    586

    588

    590

    592

    594

    596

    598

    600ZEUS

    Inclusive DIS + beauty QCD fit

    mb(mb) = 4.07 ± 0.14(fit)+0.01−0.07(mod.)+0.05−0.00(param.)+0.08−0.05(theo.) GeVPDG: 4.18 ± 0.03 GeV from lattice QCD + time-like processes

    Extraction of mb(mb) from NLO FFNS fit

    using MS scheme

    Uncertainties are from fit, model,

    PDF parametrisation and theory

    mb(mb) translated, as for mc(mc),

    to mb(µ) with µ = 2mb and compared

    to PDG and LEP results

    Mass running is consistent with QCD

    Heavy Flavour production at HERA U. Karshon 21

  • Summary• H1 and ZEUS still providing new charm(ing) and beauty(full) results

    with full HERA data ⇒ tighter constraints on QCD• σ(D∗) in PHP vs. ep CM energy measured for the first time at HERA.

    The D∗ cross sections increase with√

    s as predicted by NLO QCD

    • New precise charm fragmentation fractions measurements in PHP competitivewith e+e− collisions; support fragmentation universality

    • New DIS charm measurements and HERA charm data combinationprovide constraints on PDFs and on QCD heavy quark calculations

    • Most HERA DIS charm data were combined:Consistent data sets extracted using different methods; reduced uncertainties

    Data are well described by FFNS and GM-VFNS QCD predictions

    Optimal Mc parameter for different VFNS improves predictions of σW,Z at LHC

    Running charm mass in MS FFNS: mc(mc) = 1.26± 0.06 GeV agree with PDGFirst measurement of the charm-mass running at HERA

    • Combination of D∗ visible cross sections:Negligible theory uncertainties (no extrapolation)

    Challenge to theory and fragmentation models

    • New precise b-jet measurement + lifetime tag in DIS using secondary vertices:Data well described by NLO QCD

    b mass measured in MS scheme: mb(mb) = 4.07 ± 0.17 GeV agree with PDGb mass running consistent with QCD

    Heavy Flavour production at HERA U. Karshon 22