yu-chiu chao, tjnaf optimizing orbit correction...

48
Optimizing Orbit Correction Configuration - Method and Applications Motivation The Method Generalized response matrices Mathematical recipes Performance criteria Configuration optimization Failure modes Critical elements Application to LHC Transfer Lines Extension of Method & Application Yu-Chiu Chao, TJNAF IWBS 12/04/2002

Upload: others

Post on 10-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Optimizing Orbit Correction Configuration - Method and Applications

• Motivation• The Method• Generalized response matrices• Mathematical recipes• Performance criteria• Configuration optimization• Failure modes• Critical elements• Application to LHC Transfer Lines• Extension of Method & Application

Yu-Chiu Chao, TJNAF

IWBS 12/04/2002

Page 2: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

MotivationOrbit Correction System Configuration� Optimizing performance and cost at design level, avoiding

unpleasant surprisessquandered operational resourcecostly retrofits

� Has been traditionally done through simulation - not desirable ‘‘or necessary.

Time-consuming (coverage of parameter space increases exponentialy as dimensionality)

o Comparative studies extremely so.

“Passively waiting for problems to happen”.

o Cannot cleanly detect structural problems, provide intuitive pictures and find optimal solutions.

Awkward to answer certain questions by simulation.

Page 3: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Typical questions (want fast and unambiguous answers)Are there blind spots, and how bad?

Are there singularities, and how bad?

What does a certain observed orbit say about orbit everywhere?

How well can an error distribution be corrected (inc. monitor errors)?

Do we have too many monitors or correctors?

Can the system handle a known tight spot?

What is the most critical monitor or corrector?

What causes a particular observed orbit problem?

Do the correctors have enough range?

What is the worst case (combination) at a given probability envelope?

o There should be a quantitative method to rigorously seek out problems, demonstrate viability and optimize performance.

Page 4: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Generalized Optimization Program

� Form probability distributions of design and operational errors in injection, alignment, field and monitor offsets

o Translate into distributions of their impact on various performance parameters at every location.

� Develop mathematical recipes for mapping, projection, intersection, tangency, extremum solutions

o Quantitative measures of performance.

� Systematically identify and correct structural defects.

� Use analytical performance criteria

o Unambiguous merit functions to improve configuration

→ Advantage over simulation.

� Other analytic evaluation/optimization methods

Page 5: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Components of the method

Generalized actuators & responders

Mathematical recipes

Secondary response matrices

Performance criteria

Configuration optimization methods

Analytical for structural improvements

Numerical for fine-tuning

Failure modes

Critical elements

Page 6: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

ALL REPRESENTATIVE

ELEMENTS

DESIGN & OPERATION

PARAMETERS

FIELD ERROR

INJ. ERROR

ALIGN. OFFSET

ALIGN. ROLL

MONITOR OFFSET

MONITOR RES.

CORR. ERROR

ELEMENT CONFIGURATION

OPTICS

ALL ERROR SOURCES

GENERALIZED MONITORS (ANGLE ….)

GENERALIZED CORRECTORS

(DIPOLE STRING, COMMON ELEM ….)

PERFORMANCE CRITERIA

& OPTIMIZATION

ERROR DISTRIBUTIONS

GENERALIZED RESPONSE MATRICES

(PRIMARY & SECONDARY)

Page 7: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

11 12 11 1

21 22 22 2

1 2

.

=

"%

# ## % % #"

m

m

n n nmn m

C C CR A

C C CR A

C C CR A

Generalized Actuators and Responders

Generalised Response

Matrix

(Generalised)Actuator

(Generalised)Responder

ResponseCoefficients

MCM AC: correctors, dipoles, dipole strings

RM: position & angle at monitors

M11,M12,M21,M22 and linear combinations

MEM AE: alignment type errors (injection, misalignment, field, ….)

RM: position & angle at monitors

M11,M12,M21,M22

MCA AC: correctors, dipoles, dipole strings

RA: position & angle at all representative elements

M11,M12,M21,M22 and linear combinations

MEA AE: alignment type errors (injection, misalignment, field, …)

RA: position & angle at all representative elements

M11,M12,M21,M22

MAM AA: angle at all representative elements

RM: position & angle at monitors

M12,M22

MMM AM: monitor offset error RM: apparent orbit error at monitor

δij

Extending the traditional set to Errors,Other orbit degrees of freedom (angle, path length, dispersion, momentum compaction, ……)Un-monitored locations

o Will build secondary matrices based on these primary matrices

Page 8: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Mathematical Recipes

Establish efficient, robust algorithms for mapping probability distributions between various vector spaces, projection, boundary, intersection, inscription, extremum etc..

Although all calculations look quadratic or of higher order, nonlinear optimization algorithm is not an option. They must be cast in linear form to be practical as dimensionality runs to 100’s or 1000’s.

‘s

Allowed calculations:� Matrix addition, multiplication, permutation, transpose, sub-matrices and direct sum;� Inversion of non-degenerate square matrices;� Matrix pseudo-inverse;� Null space vectors;� Eigenvalues and eigenvectors;� Singular value decomposition (SVD).�Efficient, robust recipe is critical!

Page 9: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Mathematical Recipes - continued

Null Space

Projection Operators¨ Critically or over-constrained response matrix MCM

¨ Under-constrained response matrix MCM

¨ Rank-deficient MCM

Orthonormal Transformation

Decomposition of Matrix into Orthogonal Parts

Projection of Ellipsoids

Properties of the Error DistributionNormalizing the EllipsoidProjection of Ellipsoids onto Lower and Higher Dimensions

¨ Under-constrained map (higher to lower dimension)¨ Critically-constrained map¨ Over-constrained map (lower to higher dimension)

Inverse Projection of Point(s) onto an Ellipsoid¨ Under-constrained map (higher to lower dimension)¨ Critically-constrained map¨ Over-constrained map (lower to higher dimension)

Tangent Points between an Ellipsoid and an Arbitrary Hyper-Plane

Extreme Values of Arbitrary Operators on a Constrained Surface

Hessian and the Curvature of an Ellipsoid

Page 10: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Mathematical Recipes - continued

Multi-Dimensional Gaussian DistributionProbability Density Distribution in Mapped SpaceProbability Density Distribution of Extrema and Length

¨ Distribution of Absolute Maximum:¨ Distribution of Length:¨ Cutoff on Distribution of Length:

Singularity Related Issues Singular Value Decomposition, Condition NumberGram DeterminantPrincipal AxesException Handling for Rank Deficiency and Near Singularity

Examples

Page 11: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

TE ET TE ’’ E ’ � �

Projection of ellipsoids onto lower and higher dimensions

Under-constrained map (higher to lower dimension)

Critically-constrained map

Over-constrained map (lower to higher dimension)

Under-Constrained:

Example: Projection of the error ellipsoid EE

by MEM (under-constrained) gives the footprint of errors on all monitors.

,

N r + 1 , N r + 2 ,.. . .N c ,

S S 0

.

EA AMA

E E Em nm ni i ik

N n u l l Ek m n k

n u l li

N

MN

x

w � ¦� w

� �T

Q

Q

E E

E EE

=P P

.EA A � �

500 1000 1500 2000 2500 3000

0.005

0.01

0.015

0.02

t i2 F _ e le m 0 _ e rrh _ B 2 C L _ C 2 K _ M S _ t e s t XM a x. p e r� a x is f u l l e rro r p ro j .

Equations defining point set on the ellipsoid projected onto the image boundary

Page 12: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Example: Projection of a normalized ellipsoid in the unobservable error subspace by

onto the all-element space RA (over-constrained) allows the determination of impact of unobservable error at all elements.

� �unobs

out �0

EMMEA EMM M M

E

Map ellipsoid into subspace spanned by image of M.

TE p -1 E p -1.E M E Mo � �

T

TMT TM M To �

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

t i2 F_ e le m 0 _ errh _ B 2 C L _ C 2 K _ M D _ te stXM a x . p er� a x is e rro r n u ll p ro j.

Projection of ellipsoids onto lower and higher dimensions

Over-Constrained:

Page 13: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Inverse Projection of Point(s) onto an Ellipsoid

Find the point(s) Z on the original ellipsoid mapped into a point X (e.g., the point with the longest length or the largest component along an axis) in the image.

Under-constrained map (higher to lower dimension)

Critically-constrained map

Over-constrained map (lower to higher dimension)

Example: Inverse-projection through

from a 3σ maximum orbit in the all-element

orbit space onto the combined

alignment+monitor error ellipsoid reveals

offending composition of errors.

UOEEMAM

1100 1200 1300 1400 1500 1600 1700

-0.000015

-0.00001

-5�10-6

5�10-6

0.00001

0.000015

ti2F_elem0_errv_B2CL2_C2K_MO_testYOrbit blowup for peak no.1

72MP

B

33MP

B

93MP

B

54MP

B

15MP

B

V52R

OC

V13R

OC

V73R

OC

V34R

OC

V94R

OC

Inj. P: 8.212351E�19Inj. A: �2.053088E�19Ext. A: �2.488002E�20

�†Z XM

� �� �ik k k

ki 1 2 Nr

M Z Y 0,

0,M Z Y , , .... .

x �

� � ¦

,

, i Nr +1, Nr + 2,....Nc.S 2 E Z 0

� � �

null

iiN Z

N M

N

Inverse Image onto an Ellipsoid fromUnder-Constrained Map

Worst case residual orbito What error combination caused it?

Page 14: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Tangent Points between an Ellipsoid and an Arbitrary Hyper-Plane

Example: Projection of the error ellipsoid EE onto the corrector space, via ,

is tangent to the hyper-cube defined

by corrector range at the maximally

correctable errors in units of global

error distribution σ.

resp † �0 EMCME CMM M

2 3 4 5 6 7-5

5

10

15

20

25

30

cngs_elem0_errh _Ndem_MDH_CD_testXCorrector range in units of projected sigma

H01R

OC

H

H61R

OC

H

H22R

OC

H

4D

RO

CH

661D

RO

CH

1H

B

2H

B

� �i 1 2 Np k 1 2 N

,

,

� r

¦

¦

k k iii

kki k

ik

, , .... , , , .... ,

X VM X P

P Mx̂

2 λ� i i=E X M

Tangent Points between an Ellipsoid and an Arbitrary Hyper-Plane

X

How many error V’s can each corrector handle?

Page 15: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Extreme Values of Arbitrary Operator 3 on a Constrained Surface

Examples of the operator 3:

Distance from origin:

Projection onto the null space of MEM:

Component along the i-th axis:

Component along the i-th axis inside null space of MEM:

Component along a vector V:

Component along a vector V in higher dimension:

,AEM

T� ii ˆˆ xxTA � � iiEM ˆˆ xx

T� 9 VT T� � � . 9 KV

Example: Maximum length of

, constrained by the image of ellipsoid in the un-observable error subspace, along each axis of the all-element space RA gives the 3σextent of impact of unobservable error at all locations.

� �unobs

out �0

EMMEA EMM M M

Extreme Values of Arbitrary Operators on a Constrained Surface

500 1000 1500 2000 2500 3000

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

ti2F_elem0_errh_B1C_C1_SS_testXMaximum1sigmaunderlying correctedorbitSimulation+G/vsAnalytic +R/ per�element

T T TY XY XΠ

ΠΠΠ

� � � � �X=Y

L

� �T

T

,λλ

� � �� �� �� -1

=; ( ;

=0( ;(

2L

2 2

Πw

� ¦¦ w ¦ � �

mkjk jmmikii jk jm

ijkm ijkmiT

m iji jmijm

x̂x̂

x̂ X

X XX

X

X

Π Πδ Π Π

Π Π

Page 16: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

N = 1, 10, 100 and 1000; abscissa: multiple of V N = 1, 10, 100 and 500; abscissa: multiple of length

Multi-Dimensional Gaussian DistributionProbability Density Distribution in Mapped Space

• Most algorithms are developed without assuming Gaussian distribution.• Much simpler mapping and inverse mapping properties are obtainable for Gaussian distributions.

Probability Density Distribution of Extrema and Length

1 2 3 4

0.25

0.5

0.75

1

1.25

1.5

2.5 5 7.5 10 12.5 15 17.5 20

0.2

0.4

0.6

0.8

1

Cutoff on Distribution of Length o Efficient algorithm developed

Singularity Related Issues

Singular Value Decomposition, Condition Number

Gram Determinant

Principal Axes

Exception Handling for Rank Deficiency and Near Singularity

Page 17: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

500 1000 1500 2000 2500 3000

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

ti2F_elem0_errh_B1C_C1_SS_testXMaximum 1 sigma underlying corrected orbitSimulation +G/ vs Analytic +R/ per�element

Comparison between analytic formula & simulation of 20000 runs

Page 18: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Observability and Impact of Unobservable Errors

Unobservable and observable effects at all elements

Alternative view with alignment and monitor errors on equal footing

� �

� �

unobs

out1

obs

in

,

.�

§ ·¨ ¸¨ ¸© ¹

�0

�0 0

EM

EM

MEA EMM

MEA EM MMM

M M

M M

� �

� �A M

DS-unobs

MMi j i=1,2,.... j=1,2,....N N

,

,

0, , ,Z

.

A �0 3

MA KM

EA MMA

MM

EM MMM

K

K M Z

Z

K M M

Corrector Response to Errors and Limit on Correcting Power

Error to corrector a la SVD

Assuming unlimited monitoring power

Correction of Monitored Orbit

Uncorrectable orbit at monitors and all-elements

Correctable orbit at monitors

Orbit error at all elements induced by monitor offsets

resp † . �0 EMCME CMM M

resp † . �0 EACAE CAM M

uncorr

uncorr

A

A

�0 3 �0 3

EMCM CM

EACA CA

M

M

corr .MMCM CM M �0 3

†ind � �0 CA MMMCA CMM M M

Assembling Secondary Response Matrices

Recipes are useful only if we can construct response matrices capturing various physical processes

Page 19: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Residue of Orbit Correction

Residue orbit after steering at all elements

Residue orbit after steering at monitors

resp †resid

resp †resid

,

.

� � � � �0 0 � � � � �0 0

EA CA EA CA EMCMA CM CM

EA CA EA CA EACAA CA CA

M M M M M M

M M M M M M

resp †resid . � � � � �0 0EM CM EM CM EMCMM CM CMM M M M M M

Implication on Errors and Correctors from Residual Orbit

� �

� �

M

E E M

E E M

E EC C M

rms-orb

11 1,N

,1 ,N N N

+1,1 ,+1N N N

+ ,1 + ,N N N N N

,

P P

P P .P P

P P

§ ·¨ ¸¨ ¸¨ ¸

§ ·¨ ¸¨ ¸¨ ¸ ¨ ¸¨ ¸ © ¹

¨ ¸¨ ¸¨ ¸¨ ¸© ¹

� � � �0 c

� c

EA CA MME CEC

EEM CM

C

M P M P M

PP M M P

"# % #

""

# % #"

MN

¨ Numbers of errors, monitors and correctors : NE, NM, and NC.

¨ M’EA & M’ EM not normalized to make all σ’s unity.

¨ Enhancement by to reflect use of RMSof residual orbit.

¨ Convert orbit to contributing error and scale down to proper error σ.

Assembling Secondary Response Matrices - continued

Page 20: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Actual Underlying Orbit Including Effects of Monitor Offset

Combined error actuator AEM of alignment-type and monitor errors

Underlying Orbit Error At monitors

Underlying Orbit Error At all elements

( )E M

TE E M M

1 1,... , ,...

N NA A A A= ⊕ =EM E M

A A A

( ) ( )UOE

,

.

= ⋅ ⋅ − ⋅ ⋅

= ⋅ − ⋅⊕

UM EM E MM M

CM CM

EM MM

EMM CM CM

R M A M AM M M

A

A

3 33 3

� � � �

A M

†UOE

UOE

MMi j i=1,2,.... j=1,2,....N N

,

,

0, , .Z

� � � � �

EA MM CA EM MMEMA CM

EMUAEMA

MM

M M Z M M M M

R M A

Z

Assembling Secondary Response Matrices - continued

Page 21: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Response Matrix

Domain Image Space

Physical Significance

AE RA Unobservable error

AM RA Effect of observed orbit

AEM RA Underlying orbit at all elem. under given monitor orbit

AE AC Corrector strength needed for error

AE AC Corrector strength needed (unlimited monitor power)

AE AE Uncorrectable error

AE AE Uncorrectable error (unlimited monitor power)

AM AM Correctable monitored orbit or monitor error

AE RA Monitor error induced orbit at all elements

AE RA Residual orbit at all elements after correction at monitors

AE RA Residual orbit at all elements (unlimited monitor power)

AE RM Residual orbit at monitors after correction

AM RA Effect implied by observed orbit on error and corrector

AEM RUM Real underlying orbit error at monitors

AEM RUA Real underlying orbit error at all elements

unobsMM

obsMM

DS-unobsM0

respCMEM

respCAEM

uncorrCMM

uncorrCAM

corrCMM

indMCAM

residCMAM

residCAAM

residCMMM

rms-orbECM

UOEEMMM

UOEEMAM

Summary of Secondary Response Matrices

Page 22: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Maximal orbit error in [m] implied by unit RMS of observed residual orbit along the beam line in [m]; dots: position of monitors.

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

ti2F_elem0_errh_B2CL_C2K_MD_testXMax. per�axis error null proj.

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

ti2F_elem0_errh_B2CL_C2K_MD_testXMax. per�axis orbit mapped proj.

Performance Criteria

Maximally unobservable orbit error at all elements in [m] along the beam line in [m]; dots: position of monitors

Page 23: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Performance Criteria - continued

Maximal orbit error (alternative view: equal probabilistic footing) in [m] along the beam line in [m]; dots: position of monitors.

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

ti2F_elem0_errh_B2CL_C2K_MD_testXQuadratic sum of null & mapped contributions

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

ti2F_elem0_errh_B2CL_C2K_MD_testXMax. per�axis orbit with combined error�monitorprobability

Maximal orbit error in [m] along the beam line in [m] (quadratic sum of previous two graphs scaled by 3σerror); dots: position of monitors.

Page 24: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Performance Criteria - continued

Projected 3σ error onto orbit spacein [m] along the beam line in [m]; dots: position of monitors

500 1000 1500 2000 2500 3000

0.005

0.01

0.015

0.02

ti2F_elem0_errh_B2CL_C2K_MS_testXMax. per�axis full error proj.

Page 25: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Performance Criteria - continued

Example of orbit pattern with very small singular values, with total magnitude normalised to 1, along the beam line in [m].→ Singular combination monitors only BPM offset itself.

0.5 1.5 2 2.5 3 3.5

0.00034

0.00036

0.00038

0.00042

0.00044

cngs_elem0_errv_NGH _MCHA _MS _testYSingular values corresp . to removed monitors :

60PB

771D

MPB

V

371D

MPB

V

4 6 8 10

-1

-0.75

-0.5

-0.25

0.25

0.5

cngs_elem0_errh_Ndem_MDH_MS_testXSingular orbit patternLeading contributors:HBPMD76 BP12 BP14 BP06

20PB

40PB

60PB

80PB

21PB

41PB

81PB

02PB

62PB

771D

MPB

H67

DMP

BH

Example of ordered removal of redundant monitors based on singular values.

Page 26: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Corrector strengths in [rad] when the global error magnitude corresponds to 3 σ, assuming unlimited monitoring power; green line: physical corrector limits.

2 3 4 5 6 7-5

5

10

15

20

25

30

cngs_elem0_errh_Ndem_MDH_CD_testXCorrector range in units of projected sigma

H01R

OC

H

H61R

OC

H

H22R

OC

H

4D

RO

CH

661D

RO

CH

1H

B

2H

B 5 10 15 20

0.0001

0.0002

0.0003

ti2F_elem0_errh_B2CL_C2K_CD_testXMax. corr. strength needed with unlimited monitoring p

H80R

OC

H41R

OC

H02R

OC

H62R

OC

H23R

OC

H83R

OC

H44R

OC

H05R

OC

H65R

OC

H26R

OC

H86R

OC

H47R

OC

H08R

OC

H68R

OC

H09R

OC

11D

RO

CH

116HL

DM

216HL

DM

1H

B2

HB

Correction range of correctors in [σ] of the global error distribution.

Performance Criteria - continued

Page 27: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Performance Criteria - continued

Uncorrectable orbit at all elementsin [m] along the beam line in [m].

4 6 8 10-0.0005

0.0005

0.001

0.0015

0.002

cngs_elem0_errh_NBH_MCH_CD_testXMax. per�BPM error null proj.

20PB

40PB

60PB

80PB

21PB

41PB

81PB

02PB

62PB

771D

MPB

H

500 1000 1500 2000 2500 3000

0.001

0.002

0.003

0.004

ti2F_elem0_errh_B2CL2_C2K_CS_testXMax. per�axis corrected orbit via monitor

Uncorrectable orbit at all monitors using existing monitor configuration.

Page 28: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Performance Criteria - continued

Quadratic sum of the two previous orbit envelopes in [m] along the beam line in [m]; dots: location of beam position monitors

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

ti2F_elem0_errh_B2CL2_C2K_CS_testXScaled per�axis from rms monitorresdual

500 1000 1500 2000 2500 3000

0.001

0.002

0.003

0.004

ti2F_elem0_errh_B2CL2_C2K_CS_testXQuad. sum of uncorr. orbit & rms monitorresdual

Orbit error implied by observed orbit at the monitors, scaled by 3σ error, in [m] along the beam line in [m]; dots: location of beam position monitors.

Page 29: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Performance Criteria - continued

Monitor offset induced orbit errorin [m] along the beam line in [m]; dots: location of beam position monitors.

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

0.003

ti2F_elem0_errh_B2CL_C2K_CD_testXMax. null space orbit with unlimited monitoring power

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

ti2F_elem0_errh_B2CL_C2K_CS_testXMax. per�axis monitorerror induced orbit

Uncorrectable orbit at all elements in [m], assuming unlimited monitoring power along the beam line in [m]; black→ Fundamental measure of corrector configuration

Page 30: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Performance Criteria - continued

Actual underlying orbit error after correction in [m] along the beam line in [m]; dots: location of beam position monitors.

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

0.003

ti2F_elem0_errh_B2CL_C2K_MO_testXMaximum underlying corrected orbit at all�elem.

Ext. A Max.: 0.000026

Includes all alignment-type errors and monitor errors→ Includes possibility of BPM lying

Page 31: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Performance Criteria - continued

Example of near degenerate corrector with total magnitude normalized to 1 along the beam line in [m].

4 6 8 10

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0.2

cngs_elem0_errh_NBH_MCHA_CS_testXSingular corrector pattern

H60R

OC

HH01

RO

CH

H21R

OC

HH61

RO

CH

H81R

OC

HH22

RO

CH

4D

RO

CH

661D

RO

CH

1H

B2

HB

4 6 8 10

0.2

0.4

0.6

0.8

cngs_elem0_errv_NGH _MCHA _CD _testYSorted new corrector proj . PA based , truncated

11H

B

05D

95D

T1B

T1B

T1B

411D

751D

21LTQ

21LTQ

Example of new correctors sorted by projection with principal axis of error ellipsoid mapped onto monitor space.

Corrector surplus→ Excessive correction

Corrector deficit

Page 32: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Studying Failure Modes →What caused a particular orbit peak, or corrector maxing out?→ Decomposing an offending peak into underlying error combination

1100 1200 1300 1400 1500 1600 1700

-0.000015

-0.00001

-5�10 -6

5�10 -6

0.00001

0.000015

ti2F_elem0_errv _B2CL2_C2K_M O_testYOrbit blo wup fo r peak no.1

72MP

B

33MP

B

93MP

B

54MP

B

15MP

B

V52R

OC

V13R

OC

V73R

OC

V34R

OC

V94R

OC

Inj. P: 8.212351E�19Inj. A: �2.053088E�19Ext . A: �2.488002E�20

green dot: BPM, cyan dot: initial orbit (/10, clipped), yellow dot: corrector, red line: underlying error after correction (/10), black bar: corrector, magenta bar: BPM offset (/10), red bar: dipole field kick (*10), greenbar: dipole roll kick (*10), blue bar: quad offset kick.

Page 33: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Configuration Optimization

Structural Defect Detection and Correction

Well-Established Recipes Based on Analytic Methods¨ Adding monitors by unobservable error-induced orbit¨ Adding correctors by uncorrectable residual orbit¨ Adding correctors by principal axes of error ellipsoid

mapped onto monitor space¨ Removing monitors by null space/SVD analysis¨ Removing correctors by null space/SVD analysis

Numerical Fine-TuningEffect of configuration parameter change may be algebraically intractable. e.g., Locations of correctors may have big impact on the orbit envelope, but interplay between competing factors prevents an analytic optimization.

→ Scanning of the parameter space with one analytic performance criterion as merit function.→ Fast: performance criteria are analytic.→ Unambiguous answers not possible with simulation.

Ability to improve on an existing configuration

Page 34: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Critical ElementsAgain relying on analytic performance criteria, impact of element failures can be efficiently

evaluated with unambiguous outcome.Elements can be ordered according to criticality, or their impact on the performance criteria

in various failure modes.Many identified failures can be fixed by the optimization recipes.

Missing monitor Large monitor offset

Missing corrector Large corrector scaling error

500 1000 1500 2000 2500 3000

0.002

0.004

0.006

ti2F_elem0_errv_B2CL2_C2K_CE_testYLeading underlying orbit with missing monitoratBPM95

2.5 5 7.5 10 12.5 15 17.5 20

-0.004

-0.002

0.002

0.004

0.006

0.008

0.01

ti2F_elem0_errv_B2CL2_C2K_CE_testYMax. underlying orbit caused by missing monitor

21316L

CPB

93516K

CPB

30MP

B90

MPB

51MP

B12

MPB

72MP

B33

MPB

93MP

B54

MPB

15MP

B75

MPB

36MP

B96

MPB

57MP

B18

MPB

78MP

B19

MPB

59MP

B4

QMP

B

2.5 5 7.5 10 12.5 15 17.5 20

-0.004

-0.002

0.002

0.004

0.006

0.008

0.01

ti2F_elem0_errv_B2CL2_C2K_CE_testYMax. underlying orbit caused by fixed offset

21316LCP

B93516

KCP

B30

MPB

90MP

B51

MPB

12MP

B72

MPB

33MP

B93

MPB

54MP

B15

MPB

75MP

B36

MPB

96MP

B57

MPB

18MP

B78

MPB

19MP

B59

MPB

4Q

MPB

2.5 5 7.5 10 12.5 15 17.5 20

-0.004

-0.002

0.002

0.004

0.006

0.008

0.01

ti2F_elem0_errv_B2CL2_C2K_CE_testYMax. underlying orbit caused by missing corrector

V10R

OC

V70R

OC

V31R

OC

V91R

OC

V52R

OC

V13R

OC

V73R

OC

V34R

OC

V94R

OC

V55R

OC

V16R

OC

V76R

OC

V37R

OC

V97R

OC

V58R

OC

V98R

OC

V19R

OC

V59R

OC

016V

AD

M316

VLD

M

2.5 5 7.5 10 12.5 15 17.5 20

-0.004

-0.002

0.002

0.004

0.006

0.008

0.01

ti2F_elem0_errv_B2CL2_C2K_CE_testYMax. underlying orbit caused by scale error

V10R

OC

V70R

OC

V31R

OC

V91R

OC

V52R

OC

V13R

OC

V73R

OC

V34R

OC

V94R

OC

V55R

OC

V16R

OC

V76R

OC

V37R

OC

V97R

OC

V58R

OC

V98R

OC

V19R

OC

V59R

OC

016V

AD

M316

VLD

M

Performance criterion used:Underlying corrected 3σ orbit for a particular missing monitor.

Page 35: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Application to LHC Transfer Lines Collaborators: V.Mertens, B. Goddard, M. Meddahi

Combined length of about 5.6 km using over 700 room-temperature magnets. Mainly periodic arcs with 90° per cell FODO lattice, 4 bending magnets per

half-cell, and a half-cell length of 30.3 meters. Combined number of periods ~90.Matching sections connecting transfer lines to SPS and to LHC

1 km

Challenges:• Maximal vertical trajectory excursion

allowed : r4.5 mm.• Cost optimization: All BPM’s are single-plane.

Evolution:•First study (1997) led to the adoption of “2-in-4” configuration, a one-to-one scheme.•Analytic method developed (2000), ideal for improving matching sections.•Allowed fast evaluation of scenarios in periodic sections, even discovered possibility for major improvement.

Configuration still in evolution

Page 36: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Development of Analytic Program

All design errors translated into probability distributions

All generalized response matrices constructed from MAD output and different combinations ofRepresentative set of elementsErrors

§ Injection (P & A)§ Dipole filed error§ Dipole roll§ Quad offset§ Monitor offset

Monitors§ Position (monitored & un-monitored)§ End angle

Correctors§ Regular corrector§ Dipoles (with length effect)§ Dipole strings

Various one-to-one schemes with different periodicity evaluated using analytical performance criteria.Evolution into the over-constrained regime in periodic sectionsOptimization recipes (analytical & numerical) applied in non-periodic sections to bring envelope

everywhere within spec.Cross-calibration with simulation.Close inspection of performance in localized areas – Numerical optimizationCritical elements in various failure modes

Page 37: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

5 10 15 20 25

-0.75

-0.5

-0.25

0.25

0.5

0.75

ti2E_elem5_errh3_Bcfg4M_Ccfg4_CS_testXSingularcorrector pattern

H70R

RO

CH90

RR

OC

H51R

RO

CH71

RR

OC

H32R

RO

CH52

RR

OC

H13R

RO

CH33

RR

OC

H93R

RO

CH14

RR

OC

H74R

RO

CH94

RR

OC

H55R

RO

CH75

RR

OC

H36R

RO

CH56

RR

OC

H17R

RO

CH37

RR

OC

H97R

RO

CH18

RR

OC

H38R

RO

CH58

RR

OC

H78R

RO

CH98

RR

OC

H19R

RO

C216

HLD

M516

BB

M226

BB

M

Slight corrector singularity observed in 2-in-4 scheme o May need corrector reduction

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

0.003

ti2E_elem5_errh3_BcfgBM_CcfgA_MO_testXMaximum underlyingcorrected orbit at all�elem.

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

0.003

ti2E_elem5_errh3_Bcfg4M_CcfgA_CS_testXMax. per�axis corrected orbit via monitor

(Display does not include monitor offset errors) (Display includes monitor offset errors)

Outcome:Corrector 1-in-3, Monitor 2-in-3More balanced and much smaller envelope.(And cheaper)

Immediate option for corrector reduction o 1-in-3

o Balance under-monitored locations against over-monitored ones

Even for the periodic lattice, improvements can happen

(although maybe not through simulation)

Page 38: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

MBIBH29314

MCIAH29004

MCIAH28604

MCIAH28004

MCIAH27404

MCIAH26804

MCIAH26204

MCIAH25604

MCIAH25004

MCIAH24404

MCIAH23804

MCIAH23204

MCIAH22604

MCIAH22004

MCIAH21404

MCIAH20804

MBB20150

MDLH610337

MDLH610206

MDLH610104

1

10

100

0 500 1000 1500 2000 2500 3000

3 σ

TI 2: 2-in-3 for monitors, 1-in-3 for correctors, horizontal plane

TI 2: 2-in-3 for monitors, 1-in-3 for correctors, horizontal plane

TI 2: 1-in-3 for monitors, 1-in-3 for correctors, horizontal plane

TI 2: 2-in-4 for monitors, 2-in-4 for correctors, horizontal plane

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

0.003

.

. :

Exit Angle Max 0.000026

500 1000 1500 2000 2500 3000

0.0005

0.001

0.0015

0.002

0.0025

0.003 .

Exit Angle Max 0.000026

500 1000 1500 2000 2500 3000

0.001

0.002

0.003

0.004

Exit Angle Max 0.000026

“Official” Scenarios

Page 39: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Disabled Monitor Fixed Monitor Offset of 3 mm Disabled Corrector Fixed Corrector Scale Error of 50 %

2-in-4 Monitor and Corrector (Horizontal)BPCL610211 9.65* BPMIH20404 7.10 MDLH610104 10.18¶ MDLH610206 8.99¶

BPCL610340 7.17* BPMIH28404 6.37 MDLH610206 6.96¶ MDLH610104 8.82¶

BPMIH29304 6.86* BPMIH25204 6.22 MCIAH21004 4.47 MDLH610337 4.37

BPMYBQ5L2 5.20‡ BPMIH22004 6.21 MCIAH28204 4.01 MCIAH28204 4.21

BPMIH29004 4.84 BPMIH25804 6.21 MCIAH25004 3.96 MCIAH25004 4.15

2-in-4 Monitor and Corrector (Vertical)BPMIV29504 6.40* BPCK610539 7.52 MDAV610013 17.65¶ MDAV610013 9.62¶

BPCL610312 4.63* BPMIV20504 6.45 MCIAV24904 4.14 MCIAV24904 4.32

BPMIV25304 3.46 BPMIV25104 6.37 MCIAV24304 4.10 MCIAV24304 4.28

BPMIV24504 3.45 BPMIV23704 6.30 MCIAV24104 4.09 MCIAV24104 4.27

BPMIV25904 3.45 BPMIV24504 6.30 MCIAV23504 4.07 MCIAV23504 4.26

2-in-3 Monitor, 1-in-3 Corrector (Horizontal)BPCL610340 105.61* BPCL610340 5.81 MDLH610104 10.18¶ MDLH610206 9.12¶

BPMYBQ5L2 10.53‡ BPMIH20204 4.49 MDLH610206 7.24¶ MDLH610104 8.94¶

BPCL610211 9.65* BPMIH28204 4.15 MCIAH21404 4.69 MDLH610337 4.88

BPMIH28804 5.84 BPMIH20404 4.12 MCIAH23804 3.94 MCIAH21404 4.14

BPMIH22804 4.59 BPMIH21204 4.08 MCIAH24404 3.91 MCIAH22604 4.01

2-in-3 Monitor, 1-in-3 Corrector (Vertical)BPCK610539 19.06* BPCK610539 7.74 MDAV610013 17.65¶ MDAV610013 9.81¶

BPMIV28704 11.74† BPCL610312 4.82 MCIAV21304 4.51 MDLV610304 5.04

BPMIV29504 6.14† BPMIV28104 4.02 MCIAV24304 4.08 MCIAV24304 4.17

BPCL610312 5.05* BPMIV20304 3.89 MCIAV24904 4.07 MCIAV23704 4.16

BPMIV24504 4.76 BPMIV21104 3.88 MCIAV23704 4.07 MCIAV23104 4.13

1-in-3 Monitor and Corrector (Horizontal)BPCL610211 9.65* BPMIH25804 7.51 MDLH610104 10.18¶ MDLH610206 9.86¶

BPCL610340 7.24* BPMIH21604 7.49 MDLH610206 6.97¶ MDLH610104 8.96¶

BPMYBQ5L2 7.11‡ BPMIH24604 7.48 MCIAH21404 5.56 MCIAH25604 5.44

BPMIH28204 5.76* BPMIH23404 7.48 MCIAH25604 5.30 MCIAH24404 5.43

BPMIH28804 5.60 BPMIH24004 7.48 MCIAH24404 5.30 MCIAH23804 5.43

1-in-3 Monitor and Corrector (Vertical)BPMIV29504 7.70* BPMIV20304 7.82 MDAV610013 18.35¶ MDAV610013 9.62¶

BPMIV23904 4.76* BPMIV25104 7.67 MCIAV21304 5.77 MCIAV24304 5.65

BPMIV24504 4.76* BPMIV23304 7.67 MCIAV24304 5.52 MCIAV24904 5.64

BPMIV25104 4.76 BPMIV24504 7.67 MCIAV24904 5.51 MCIAV23704 5.63

BPMIV22704 4.75 BPMIV23904 7.67 MCIAV23704 5.50 MCIAV23104 5.58

* Artefact caused by near singularity easily correctable by disabling correctors. See main text.† Artefact caused by phase anomaly, easily correctable by disabling correctors. See main text.‡ Artefact caused by loss of anchoring point downstream. See main text.¶ Artefact caused by insufficient leverage for correcting injection error. See main text.

Critical Elements

Page 40: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Extension of Method & Other Applications

Method:

Algorithmic improvementsGeneral formulation for periodic linesExtension to other types of systems

Multiple lines with common elementsFinite recirculationAcceleration, coupled lines, ……Closed orbit for storage ringsZero-th order configuration → Populate a beam line with initial orbit correction

configuration → least redundant while satisfying all performance specs.

Other Applications:

CNGS (CERN-Neutrino-to-Gran-Sasso, exit angle criterion)PS Booster Ejection (4-line extraction, 2-stage recombination)TT2-TT10 (PS to SPS)CLIC Test Facility EPA (5-turn recirculation, single injection)LCLS (half quads eliminated)CEBAF 12 GeV Upgrade

¨

Other

Page 41: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

10 20 30 40 50 60 70

0.001

0.002

0.003

0.004

0.005

0.006

0.007

BREject_MO_test_X Line BR3Maximumunderlyingcorrected orbit at all�elem.Ext. A Max.: 0.00061

10 20 30 40 50 60 70

0.002

0.004

0.006

0.008

BREject_MO_test_X Line BR4Maximumunderlyingcorrected orbit at all�elem.Ext. A Max.: 0.00064

10 20 30 40 50 60 70

0.002

0.004

0.006

0.008

BREject_MO_test_X Line BR1Maximumunderlyingcorrected orbit at all�elem.Ext. A Max.: 0.00064

10 20 30 40 50 60 70

0.002

0.004

0.006

0.008

BREject_MO_test_X Line BR2Maximumunderlyingcorrected orbit at all�elem.Ext. A Max.: 0.00064

2 3 4 5 6 7

0.5

1.5

2

2.5

3

BREject_CD_test_XCorrector range in units of projected sigma

1T

B.

01Z

HD

PT

B.

01Z

HD

PT

B.

02Z

HD

PT

B.

03Z

HD

2T

B.

01Z

HD

3T

B.

01Z

HD

4T

B.

01Z

HD

CERN PS Booster Multi-Line Extraction SystemInput from M. Lindroos, A. Jansson

Page 42: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

H 2H 4

H 6H 8

E HN 1

N OR T

H EX P

E RI M

E NT A

L AR E

A

T T8 1

T T8 2

B A8 0

T 2T 4

T 6

E H W 1

B A 4

ECX4

E C A 5

B A 3

T T2 0

B A 5

E CX 5

E C A 4

B A 2

TT 70

TT 10

T I 1 8

T I 1 2

S w i t c h y a r dT T 6 0

T C C 8

E H N 2

P 0 M 2

B A 7

N E U T R I N OP I T S

E C N 3

B A8 1

B A 1

B A 6

T 1

T 9

W E S T E X P E R I M E N T A L A R E A

TT2/TT10Additional Beam Instrumentation

2000-2001

Updated 7/7/984 6 8 10 12

20

40

60

80

100

newtt_elem0_errv_B1_C7_CD_testYCorrector range in units of projected sigma

V051001X

VD

MV505001

VID

MV305201

VID

MV307201

VID

M353T

VD

RO

CV

007101DI

QR

OC

V321T

VB

371TV

B301

AC

DM

201V

CD

MVI

BM

201VI

DM

200 400 600 800

0.001

0.002

0.003

0.004

0.005

0.006

tt10_elem0_errh_B0_CM_MO_testXMaximumunderlyingcorrectedorbit at all�elem.

Ext. AMax.: 0.000017

200 400 600 800

0.001

0.002

0.003

0.004

0.005

0.006

tt10_elem0_errv_B0_CM_MO_testYMaximumunderlyingcorrectedorbit at all�elem.

Ext. AMax.: 0.000017

200 400 600 800 1000

0.001

0.002

0.003

0.004

newtt_elem0_errh_B1_C4_MO_testXMaximumunderlyingcorrectedorbit at all�elem.

Ext. AMax.: 0.000017

200 400 600 800 1000

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

newtt_elem0_errv_B1_C7_MO _testYMaximum underlying corrected orbit at all�elem.

Ext. A Max.: 0.000017

4 6 8 10 12

50

100

150

200

250

300

newtt_elem0_errh_B1_C4_CD_testXCorrector range inunitsof projectedsigma

H404001HI

DM

H306201HI

DM

006101FIQ

RO

CH

002201FIQ

RO

CH

711ZH

B761Z

HB

723ZH

B273Z

HB

001HI

BM

001LA

M201

HLD

M201L

AM

811ISM

Location S-Coordinate (m) from TT2

Plane of Aperture Limitation

3σ orbit error envelope in the tight plane (mm)

MBIH100 304-306 Y 0.77-0.91

MAL1001 315-322 Y 1.66-1.92

MBIV100 342-349 X 0.53-0.69

MBIV102 882-888 X 1.40-1.40

MAL1029 1130-1136 Y 0.63-0.72

CERN PS-SPS Line (TT2-TT10) Upgrade –Improving an Existing SystemInput from G. Arduini, M. Giovanozzi

Page 43: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

CERN Neutrino to Gran Sasso ProjectInput from M. Meddahi

Steering method

Orbit / Exit angle envelopes (3V)

Number of BPM / CORR

Correction Range

Baseline scheme 1-to-1 X: ≤ 2.2 mm

2 peaks @ 3.1 mm

Target: <1 mm/0.05 mrad

Y: ≤ 2.3 mm2 peaks @ 3.2 mmTarget: <1 mm/0.08 mrad

10 / 10 10 / 10

All correctors can handle 3σ error except 1 horizontal & 1 vertical, both due to orbit error coming in from SPS.

Alternate scheme

Over-constrained X: ≤ 2.3 mm

1 peak @ 2.7 mm

Target: <1 mm/0.05 mrad

Y: ≤ 2.4 mm2 peaks @ 2.9 mmTarget: <1 mm/0.08 mrad

10 / 7 10 / 8

All correctors can handle 3σ error except 1 horizontal & 1 vertical, both due to orbit error coming in from SPS.

4 6 8 10

10

20

30

40

cngs_elem0_errv_NGH_MCHA_CD_testYCorrector range inunitsof projectedsigma

V10R

OC

V

V70R

OC

V

V90R

OC

V

V31R

OC

V

V51R

OC

V

V91R

OC

V

V12R

OC

V

V52R

OC

V

71D

RO

CV

H2H

DM

RO

CV

2 3 4 5 6 7

5

10

15

20

25

30

cngs_elem0_errh_NGH_MCH_CD_testXCorrector range inunitsof projectedsigma

H01R

OC

H

H61R

OC

H

H22R

OC

H

4D

RO

CH

661D

RO

CH

1H

B

2H

B

4 6 8

10

20

30

40

cngs_elem0_errv_NGH_MCH_CD_testYCorrector range inunitsof projectedsigma

V10R

OC

V

V70R

OC

V

V90R

OC

V

V31R

OC

V

V91R

OC

V

V52R

OC

V

71D

RO

CV

H2H

DM

RO

CV

4 6 8 10

5

10

15

20

25

30

35

cngs_elem0_errh_NGH_MCHA_CD_testXCorrector range inunitsof projectedsigma

H60R

OC

H

H01R

OC

H

H21R

OC

H

H61R

OC

H

H81R

OC

H

H22R

OC

H

4D

RO

CH

661D

RO

CH

1H

B

2H

B

200 400 600 800

0.0005

0.001

0.0015

0.002

0.0025

0.003

cngs_elem0_errv_NGH_MCHA_MO_testYMaximumunderlyingcorrectedorbit at all�elem.

Ext. AMax.: 0.000077

200 400 600 800

0.0005

0.001

0.0015

0.002

0.0025

cngs_elem0_errh_NGH_MCH_MO_testXMaximumunderlyingcorrected orbit at all�elem.

Ext. AMax.: 0.000046

200 400 600 800

0.0005

0.001

0.0015

0.002

0.0025

0.003

cngs_elem0_errv_NGH_MCH_MO_testYMaximumunderlyingcorrected orbit at all�elem.

Ext. AMax.: 0.000077

200 400 600 800

0.0005

0.001

0.0015

0.002

0.0025

0.003

cngs_elem0_errh_NGH_MCHA_MO_testXMaximumunderlyingcorrected orbit at all�elem.

Ext. AMax.: 0.000046

Page 44: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

JLAB CEBAF 12 GeV Upgrade

Page 45: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

CERN CLIC Test Facility EPA RingInput from F. Tecker, P. Royer; Under Study

Page 46: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

SLAC LCLS ProjectInput from P. Emma, M. Woodley ; Under Study

Page 47: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Conclusion

Complete program developed for evaluating orbit correction system performance, identifying defects and corrective measure.

Application to LHC transfer lines resulted in efficient and quantitative evaluation, as well as optimized configurations in 2 basic scenarios.

Method is being extended to different machine configurations, with current and future applications in mind.

What does this say about orbit stability?� It is complementary to the “bandwidth” side of the problem. Can’t avoid configuration-induced problems regardless of bandwidth of monitors & correctors� The probabilistic approach used here translates well into a time-based formulation of stability. 3 σ of error distribution over time → 3 σ of orbit jitter over time�

Page 48: Yu-Chiu Chao, TJNAF Optimizing Orbit Correction ...acc-web.spring8.or.jp/~oper/iwbs2002/pdf/4-P1.pdf · Generalized Optimization Program … Form probability distributions of design

Flow Chart of the Program

A self-contained Mathematica package has been developed, taking optics input from MAD, Optim, and BeamOptics

The package will be integrated into the BeamOptics environment and become a public-accessible program.

MonitorDeficit

MonitorSurplus

Correct.Deficit

Correct.Surplus

MonitorOffset

CriticalElement

SteerSimul.

DisplayDump

DisplayDump

DisplayDump

DisplayDump

DisplayDump

DisplayDump

DisplayDump

6

7

Zoom8

ExternalInput

1

Global RespMatrices

2

LINE 1

TemplateCreation

3/4

Resp. Mat.for Config.

5

ExternalInput

1

Global RespMatrices

2

LINE 2

TemplateCreation

3/4

Resp. Mat.for Config.

5

ExternalInput

1

Global RespMatrices

2

LINE 3

TemplateCreation

3/4

Resp. Mat.for Config.

5

ExternalInput

1

Global RespMatrices

2

LINE 4

TemplateCreation

3/4

Resp. Mat.for Config.

5

Template forCombined System

Processing Resp.Matrices forCombined System

Resp. Matrices forCombined System

A

MAD Input

BeamOpticsInput

MAD withCMD files

OPTIMInput

Processing intooptics, indexing,and inventory files

1

Elementselection

Errorselection

Monitorselection

Correctorselection

Elementtemplate

Errortemplate

Monitortemplate

Correctortemplate

Templategeneration

3 4

Processing intogeneralized globalresponse matrices

Processing intogeneralizedresponse matricesunder selectedconfiguration

2

Generalizedresponsematrices

5

MonitorDeficit

MonitorSurplus

Correct.Deficit

Correct.Surplus

MonitorOffset

CriticalElement

SteerSimul.

DisplayDump

DisplayDump

DisplayDump

DisplayDump

DisplayDump

DisplayDump

DisplayDump

6

7

ZoomConfigurationFine Tuning 89

ExternalInput

ProgramComponent

Flow Chart for Multi-Line Analysis