you can do the integration using mathematica type the

18
Problem 1 Griffiths 1.5 Ξ¨ , = βˆ’|| βˆ’ (a) 1= |Ξ¨| 2 ∞ βˆ’βˆž = ΨΨ βˆ— ∞ βˆ’βˆž = 2 βˆ’2|| ∞ βˆ’βˆž = 2 2 βˆ’2 ∞ 0 = 2 2 βˆ’2 βˆ’2 ∞ 0 = 2 β‡’ = (b) = |Ξ¨| 2 ∞ βˆ’βˆž = 2 βˆ’2 = 0 ∞ βˆ’βˆž ( ) 2 = 2 |Ξ¨| 2 ∞ βˆ’βˆž = 2 2 βˆ’2 = ∞ βˆ’βˆž 2 2 2 βˆ’2 ∞ 0 You can do the integration using Mathematica if you don’t want to do it by hand. Type the following line in Mathematica then β€œShift + Enter”: Integrate[^2 βˆ— Exp[βˆ’2 βˆ— βˆ— , , 0, Infinity You will get 1/4 3 So 2 = 2 2 4 3 = 2 4 3 = 1 2 2

Upload: others

Post on 25-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: You can do the integration using Mathematica Type the

Problem 1 Griffiths 1.5

Ξ¨ π‘₯, 𝑑 = π΄π‘’βˆ’πœ†|π‘₯|π‘’βˆ’π‘–πœ”π‘‘

(a) 1 = |Ξ¨|2𝑑π‘₯

∞

βˆ’βˆž

= Ξ¨Ξ¨βˆ—π‘‘π‘₯∞

βˆ’βˆž

= 𝐴2 π‘’βˆ’2πœ†|π‘₯|𝑑π‘₯∞

βˆ’βˆž

= 2𝐴2 π‘’βˆ’2πœ†π‘₯𝑑π‘₯∞

0

= 2𝐴2π‘’βˆ’2πœ†π‘₯

βˆ’2πœ† ∞0

=𝐴2

πœ† β‡’ 𝐴 = πœ†

(b) π‘₯ = π‘₯|Ξ¨|2𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2 π‘₯π‘’βˆ’2πœ† π‘₯ 𝑑π‘₯ = 0 ∞

βˆ’βˆž

(π‘œπ‘‘π‘‘ π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘›π‘‘)

π‘₯2 = π‘₯2|Ξ¨|2𝑑π‘₯∞

βˆ’βˆž

= 𝐴2 π‘₯2π‘’βˆ’2πœ† π‘₯ 𝑑π‘₯ = ∞

βˆ’βˆž

2𝐴2 π‘₯2π‘’βˆ’2πœ†π‘₯𝑑π‘₯∞

0

You can do the integration using Mathematica if you don’t want to do it by hand. Type the following line in Mathematica then β€œShift + Enter”:

Integrate[π‘₯^2 βˆ— Exp[βˆ’2 βˆ— πœ† βˆ— π‘₯ , π‘₯, 0, Infinity

You will get 1/4πœ†3

So π‘₯2 =

2𝐴2

4πœ†3 =2πœ†

4πœ†3 =1

2πœ†2

Page 2: You can do the integration using Mathematica Type the

(c) 𝜎2 = π‘₯2 βˆ’ π‘₯ 2 =

1

2πœ†2 β‡’ π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘Ÿπ‘‘ π‘‘π‘’π‘£π‘–π‘Žπ‘‘π‘–π‘œπ‘› 𝜎 =

1

2πœ†

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1.0

|Ξ¨|2

π‘₯ 𝜎 βˆ’πœŽ

This figure plots |Ξ¨|2 as a function of x for

Ξ» = 1. The two vertical lines shows the

positions of Οƒ =1

2and βˆ’Οƒ.

Probability outside the range (βˆ’Οƒ, 𝜎):

π‘ƒπ‘œπ‘’π‘‘ = |Ξ¨|2𝑑π‘₯βˆ’πœŽ

βˆ’βˆž

+ |Ξ¨|2𝑑π‘₯∞

𝜎

= 2𝐴2 π‘’βˆ’2πœ†π‘₯𝑑π‘₯∞

𝜎

=2𝐴2

βˆ’2πœ†π‘’βˆ’2πœ†π‘₯

∞𝜎

= π‘’βˆ’ 2 = 0.2431

Page 3: You can do the integration using Mathematica Type the

Problem 2

(a) 𝐻 =𝑝2

2π‘š+

1

2π‘šπœ”2π‘₯2

(b) πœ‘0 π‘₯ = 𝐴 expβˆ’π‘šπœ”π‘₯2

2ℏ

1 = |πœ‘0|2𝑑π‘₯∞

βˆ’βˆž

= 𝐴2 expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2πœ‹β„

π‘šπœ” β‡’ 𝐴 =

π‘šπœ”

πœ‹β„

1/4

(c) πœ‘1 π‘₯ = 𝐡 + 𝐢π‘₯ expβˆ’π‘šπœ”π‘₯2

2ℏ

Orthogonality condition:

0 = πœ‘0 πœ‘1 = πœ‘0βˆ—πœ‘1𝑑π‘₯

∞

βˆ’βˆž

= 𝐴(𝐡 + 𝐢π‘₯)expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐴𝐡 expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐴𝐢 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

= π΄π΅πœ‹β„

π‘šπœ” β‡’ 𝐡 = 0

Page 4: You can do the integration using Mathematica Type the

Normalization condition:

1 = πœ‘1 πœ‘1 = |πœ‘1|2𝑑π‘₯∞

βˆ’βˆž

= 𝐢2 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐢2πœ‹

2

ℏ

π‘šπœ”

3/2

β‡’ 𝐢 =π‘šπœ”

πœ‹β„

1/4 2π‘šπœ”

ℏ

πœ‘2 π‘₯ = 𝐷 + 𝐸π‘₯ + 𝐹π‘₯2 expβˆ’π‘šπœ”π‘₯2

2ℏ

Orthogonality conditions: πœ‘0 πœ‘2 = 0 & πœ‘1 πœ‘2 = 0

0 = πœ‘0 πœ‘2 = πœ‘0βˆ—πœ‘2𝑑π‘₯

∞

βˆ’βˆž

= 𝐴(𝐷 + 𝐸π‘₯ + 𝐹π‘₯2)expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐴𝐷 expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐴𝐸 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐴𝐹 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

= π΄π·πœ‹β„

π‘šπœ”+ 𝐴𝐹

πœ‹

2

ℏ

π‘šπœ”

3/2

β‡’ 𝐹 = βˆ’2π·π‘šπœ”

ℏ

Page 5: You can do the integration using Mathematica Type the

0 = πœ‘1 πœ‘2 = πœ‘1βˆ—πœ‘2𝑑π‘₯

∞

βˆ’βˆž

= 𝐢π‘₯(𝐷 + 𝐸π‘₯ + 𝐹π‘₯2)expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐢𝐷 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐢𝐸 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐢𝐹 π‘₯3expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0 = 0

= πΆπΈπœ‹

2

ℏ

π‘šπœ”

3/2

β‡’ 𝐸 = 0

Normalization condition:

1 = πœ‘2 πœ‘2 = |πœ‘2|2𝑑π‘₯∞

βˆ’βˆž

= (𝐷 + 𝐹π‘₯2)2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐷2 expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 2𝐷𝐹 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐹2 π‘₯4expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐷2πœ‹β„

π‘šπœ”+ 2𝐷𝐹

πœ‹

2

ℏ

π‘šπœ”

3/2

+ 𝐹23 πœ‹

4

ℏ

π‘šπœ”

5/2

π‘…π‘’π‘π‘Žπ‘™π‘™ 𝐹 = βˆ’2π·π‘šπœ”

ℏ

= 2𝐷2πœ‹β„

π‘šπœ” ⟹ 𝐷 =

1

2

π‘šπœ”

πœ‹β„

14 and 𝐹 = βˆ’

2

πœ‹1/4

π‘šπœ”

ℏ

5/4

Page 6: You can do the integration using Mathematica Type the

(d) πœ‘1 π‘₯ = 𝐢π‘₯expβˆ’π‘šπœ”π‘₯2

2ℏ with 𝐢 =

π‘šπœ”

πœ‹β„

1/4 2π‘šπœ”

ℏ

𝐻 =𝑝2

2π‘š+

1

2π‘šπœ”2π‘₯2 = βˆ’

ℏ2

2π‘š

πœ•2

πœ•π‘₯2 +1

2π‘šπœ”2π‘₯2

π»πœ‘1 π‘₯ = βˆ’β„2

2π‘š

πœ•2

πœ•π‘₯2 +1

2π‘šπœ”2π‘₯2 𝐢π‘₯exp

βˆ’π‘šπœ”π‘₯2

2ℏ

= βˆ’β„2

2π‘š

πœ•2

πœ•π‘₯2 𝐢π‘₯expβˆ’π‘šπœ”π‘₯2

2ℏ+

1

2π‘šπœ”2π‘₯2𝐢π‘₯exp

βˆ’π‘šπœ”π‘₯2

2ℏ

= βˆ’β„2

2π‘šβˆ’

3π‘šπœ”

ℏπ‘₯ +

π‘š2πœ”2

ℏ2 π‘₯3 𝐢expβˆ’π‘šπœ”π‘₯2

2ℏ

+1

2π‘šπœ”2π‘₯3𝐢exp

βˆ’π‘šπœ”π‘₯2

2ℏ

=3β„πœ”

2𝐢π‘₯exp

βˆ’π‘šπœ”π‘₯2

2ℏ

=3β„πœ”

2πœ‘1 π‘₯ ⟹ 𝐸1 =

3β„πœ”

2

Page 7: You can do the integration using Mathematica Type the

Problem 3

π‘Ž+ =1

2β„π‘šπœ”(βˆ’π‘–π‘ + π‘šπœ”π‘₯) π‘Žβˆ’ =

1

2β„π‘šπœ”(+𝑖𝑝 + π‘šπœ”π‘₯)

π‘Žβˆ’, π‘Ž+ =1

2β„π‘šπœ”[𝑖𝑝 + π‘šπœ”π‘₯, βˆ’π‘–π‘ + π‘šπœ”π‘₯ =

1

2β„π‘šπœ”{π‘–π‘šπœ” 𝑝, π‘₯ βˆ’ π‘–π‘šπœ”[π‘₯, 𝑝 }

=1

2β„π‘šπœ”{π‘–π‘šπœ”(βˆ’π‘–β„) βˆ’ π‘–π‘šπœ”(𝑖ℏ)} = 1

β„πœ” π‘Ž+π‘Žβˆ’ +1

2= β„πœ”

1

2β„π‘šπœ”βˆ’π‘–π‘ + π‘šπœ”π‘₯ 𝑖𝑝 + π‘šπœ”π‘₯ +

1

2

=1

2π‘šπ‘2 + π‘–π‘šπœ”π‘₯𝑝 βˆ’ π‘–π‘šπœ”π‘π‘₯ + π‘š2πœ”2π‘₯2 +

1

2β„πœ”

=1

2π‘šπ‘2 + π‘–π‘šπœ”[π‘₯, 𝑝 + π‘š2πœ”2π‘₯2 +

1

2β„πœ”

=1

2π‘šπ‘2 βˆ’ β„π‘šπœ” + π‘š2πœ”2π‘₯2 +

1

2β„πœ”

=𝑝2

2π‘š+

1

2π‘šπœ”2π‘₯2 = 𝐻

Page 8: You can do the integration using Mathematica Type the

𝐻 π‘Ž+πœ‘π‘› = β„πœ” π‘Ž+π‘Žβˆ’ +1

2π‘Ž+πœ‘π‘› = β„πœ”(π‘Ž+π‘Žβˆ’π‘Ž+ + 1/2π‘Ž+) πœ‘π‘›

= β„πœ”π‘Ž+ π‘Žβˆ’π‘Ž+ +1

2πœ‘π‘› = β„πœ”π‘Ž+ π‘Ž+π‘Žβˆ’ + 1 +

1

2πœ‘π‘›

= π‘Ž+ 𝐻 + β„πœ” πœ‘π‘› = π‘Ž+ 𝐸 + β„πœ” πœ‘π‘› = 𝐸 + β„πœ” π‘Ž+πœ‘π‘›

Therefore π‘Ž+πœ‘π‘› is an eigenstate of H with energy 𝐸 + β„πœ” . But it may not be

normalized. It is related to the normalized eigenstate πœ‘π‘›+1 up to a coefficient:

π‘Ž+πœ‘π‘› = πΆπœ‘π‘›+1

1 = πœ‘π‘›+1 πœ‘π‘›+1 =1

|𝐢|2π‘Ž+πœ‘π‘› π‘Ž+πœ‘π‘› =

1

|𝐢|2πœ‘π‘› π‘Žβˆ’π‘Ž+πœ‘π‘›

=1

|𝐢|2πœ‘π‘› (π‘Ž+π‘Žβˆ’ + 1)πœ‘π‘› =

1

|𝐢|2πœ‘π‘› (𝐻/β„πœ” + 1/2)πœ‘π‘› =

1

𝐢 2 (𝑛 + 1)

⟹ 𝐢 = 𝑛 + 1 and π‘Ž+πœ‘π‘› = 𝑛 + 1 πœ‘π‘›+1 Similarly π‘Žβˆ’πœ‘π‘› = 𝑛 πœ‘π‘›βˆ’1

π»πœ‘π‘› = β„πœ” π‘Ž+π‘Žβˆ’ +1

2πœ‘π‘› = β„πœ” π‘Ž+π‘Žβˆ’πœ‘π‘› +

1

2πœ‘π‘› = β„πœ” π‘Ž+ 𝑛 πœ‘π‘›βˆ’1 +

1

2πœ‘π‘›

= β„πœ” 𝑛 π‘›πœ‘π‘› +1

2πœ‘π‘› = β„πœ” 𝑛 +

1

2πœ‘π‘›

Page 9: You can do the integration using Mathematica Type the

Problem 4

πœ‘0 π‘₯ = 𝐴 expβˆ’π‘šπœ”π‘₯2

2ℏ Ground state: 𝐴 =

π‘šπœ”

πœ‹β„

1/4

with

π‘₯ = πœ‘0βˆ— π‘₯ π‘₯πœ‘0 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

π‘₯2 = πœ‘0βˆ— π‘₯ π‘₯2πœ‘0 π‘₯ 𝑑π‘₯𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2πœ‹

2

ℏ

π‘šπœ”

3/2

=ℏ

2π‘šπœ”

𝜎π‘₯ = π‘₯2 βˆ’ π‘₯ 2 =ℏ

2π‘šπœ”

𝑝 = πœ‘0βˆ— π‘₯ βˆ’π‘–β„

πœ•

πœ•π‘₯πœ‘0 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2 expβˆ’π‘šπœ”π‘₯2

2β„π‘–π‘šπœ” π‘₯exp

βˆ’π‘šπœ”π‘₯2

2ℏ𝑑π‘₯

∞

βˆ’βˆž

= π‘–π‘šπœ”π΄2 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

𝑝2 = πœ‘0βˆ— π‘₯ βˆ’β„2

πœ•2

πœ•π‘₯2 πœ‘0 π‘₯ 𝑑π‘₯∞

βˆ’βˆž

Page 10: You can do the integration using Mathematica Type the

= βˆ’π΄2 ℏ2 expβˆ’π‘šπœ”π‘₯2

2ℏ

π‘š2πœ”2

ℏ2 π‘₯2 βˆ’π‘šπœ”

ℏexp

βˆ’π‘šπœ”π‘₯2

2ℏ𝑑π‘₯

∞

βˆ’βˆž

= βˆ’π΄2 π‘š2πœ”2 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐴2β„π‘šπœ” expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= βˆ’π΄2 π‘š2πœ”2πœ‹

2

ℏ

π‘šπœ”

3/2

+ 𝐴2β„π‘šπœ”πœ‹β„

π‘šπœ”=

1

2β„π‘šπœ”

πœŽπ‘ = 𝑝2 βˆ’ 𝑝 2 =1

2β„π‘šπœ”

𝜎π‘₯πœŽπ‘ =ℏ

2π‘šπœ”

1

2β„π‘šπœ” =

ℏ

2 Minimum uncertainty

Page 11: You can do the integration using Mathematica Type the

1st excited state:

πœ‘1 π‘₯ = 𝐢π‘₯expβˆ’π‘šπœ”π‘₯2

2ℏ with 𝐢 =

2

πœ‹1/4

π‘šπœ”

ℏ

3/4

π‘₯ = πœ‘1βˆ— π‘₯ π‘₯πœ‘1 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐢2 π‘₯3expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

π‘₯2 = πœ‘1βˆ— π‘₯ π‘₯2πœ‘1 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐢2 π‘₯4expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐢23 πœ‹

4

ℏ

π‘šπœ”

5/2

=3ℏ

2π‘šπœ”

𝜎π‘₯ = π‘₯2 βˆ’ π‘₯ 2 =3ℏ

2π‘šπœ”

𝑝 = πœ‘1βˆ— π‘₯ βˆ’π‘–β„

πœ•

πœ•π‘₯πœ‘1 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= βˆ’π‘–β„πΆ2 π‘₯ 1 βˆ’π‘šπœ”

ℏπ‘₯2 exp

βˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

Page 12: You can do the integration using Mathematica Type the

𝑝2 = πœ‘1βˆ— π‘₯ βˆ’β„2

πœ•2

πœ•π‘₯2 πœ‘1 π‘₯ 𝑑π‘₯∞

βˆ’βˆž

= βˆ’πΆ2 ℏ2 π‘š2πœ”2

ℏ2 π‘₯4 βˆ’3π‘šπœ”

ℏπ‘₯2 exp

βˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= βˆ’πΆ2 π‘š2πœ”2 π‘₯4expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 3𝐢2β„π‘šπœ” π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= βˆ’3

2β„π‘šπœ” + 3β„π‘šπœ” =

3

2β„π‘šπœ”

πœŽπ‘ = 𝑝2 βˆ’ 𝑝 2 =3

2β„π‘šπœ”

𝜎π‘₯πœŽπ‘ =3ℏ

2π‘šπœ”

3

2β„π‘šπœ” =

3ℏ

2>

ℏ

2

Page 13: You can do the integration using Mathematica Type the

Problem 4: operator approach: MUCH simpler!

π‘₯ =ℏ

2π‘šπœ”(π‘Ž+ + π‘Žβˆ’) 𝑝 = 𝑖

β„π‘šπœ”

2(π‘Ž+ βˆ’ π‘Žβˆ’)

𝑛 π‘₯ 𝑛 =ℏ

2π‘šπœ”π‘› π‘Ž+ + π‘Žβˆ’ 𝑛 = 0

𝑛 π‘₯2 𝑛 =ℏ

2π‘šπœ”π‘› π‘Ž+π‘Ž+ + π‘Ž+π‘Žβˆ’ + π‘Žβˆ’π‘Ž+ + π‘Žβˆ’π‘Žβˆ’ 𝑛 =

ℏ

π‘šπœ”π‘› + 1/2

𝑛 𝑝 𝑛 = π‘–β„π‘šπœ”

2𝑛 π‘Ž+ βˆ’ π‘Žβˆ’ 𝑛 = 0

𝑛 𝑝2 𝑛 = βˆ’β„π‘šπœ”

2𝑛 π‘Ž+π‘Ž+ βˆ’ π‘Ž+π‘Žβˆ’ βˆ’ π‘Žβˆ’π‘Ž+ + π‘Žβˆ’π‘Žβˆ’ 𝑛 = β„π‘šπœ” 𝑛 + 1/2

Ground state: 𝜎π‘₯πœŽπ‘ =ℏ

2π‘šπœ”

1

2β„π‘šπœ” =

ℏ

2

𝜎π‘₯πœŽπ‘ =3ℏ

2π‘šπœ”

3

2β„π‘šπœ” =

3ℏ

2 1st excited state:

Page 14: You can do the integration using Mathematica Type the

Problem 5

(a) Probability to be in the ground state =

| πœ‘1(π‘₯) πœ“π΄(π‘₯, 𝑑 = 0) |2 = πœ‘1(π‘₯)1

2πœ‘1 π‘₯ +

1

2πœ‘2 π‘₯

2

=1

2

(b) πœ“π΄ π‘₯, 𝑑 =

1

2πœ‘1 π‘₯ π‘’βˆ’π‘–πΈ1𝑑/ℏ +

1

2πœ‘2 π‘₯ π‘’βˆ’π‘–πΈ2𝑑/ℏ

For a 1D infinite square well 𝐸𝑛 =𝑛2πœ‹2ℏ2

2π‘šπ‘Ž2 , 𝐸1 =πœ‹2ℏ2

2π‘šπ‘Ž2 , 𝐸2 =2πœ‹2ℏ2

π‘šπ‘Ž2 ,

πœ“π΄ π‘₯, 𝑑 =1

2πœ‘1 π‘₯ exp βˆ’

π‘–πœ‹2ℏ𝑑

2π‘šπ‘Ž2 +1

2πœ‘2 π‘₯ exp βˆ’

𝑖2πœ‹2ℏ𝑑

π‘šπ‘Ž2

(c) Density distribution at 𝑑 = 0 is:

|πœ“π΄ π‘₯, 𝑑 = 0 |2 = πœ“π΄βˆ— π‘₯, 𝑑 = 0 πœ“π΄ π‘₯, 𝑑 = 0

=1

2πœ‘1

βˆ— π‘₯ +1

2πœ‘2

βˆ— π‘₯1

2πœ‘1 π‘₯ +

1

2πœ‘2 π‘₯

Page 15: You can do the integration using Mathematica Type the

=1

2|πœ‘1|2 + |πœ‘2|2 + 2πœ‘1πœ‘2 since πœ‘1 & πœ‘2 are real

|πœ“π΄ π‘₯, 𝑑 |2 = πœ“π΄βˆ— π‘₯, 𝑑 πœ“π΄ π‘₯, 𝑑

=1

2πœ‘1

βˆ— π‘₯ 𝑒𝑖𝐸1𝑑/ℏ +1

2πœ‘2

βˆ— π‘₯ 𝑒𝑖𝐸2𝑑/ℏ1

2πœ‘1 π‘₯ π‘’βˆ’π‘–πΈ1𝑑/ℏ +

1

2πœ‘2 π‘₯ π‘’βˆ’π‘–πΈ2𝑑/ℏ

=1

2|πœ‘1|2 + |πœ‘2|2 + πœ‘1

βˆ—πœ‘2π‘’βˆ’π‘–(𝐸2βˆ’πΈ1)𝑑/ℏ+πœ‘1πœ‘2βˆ—π‘’π‘–(𝐸2βˆ’πΈ1)𝑑/ℏ

=1

2|πœ‘1|2 + |πœ‘2|2 + 2πœ‘1πœ‘2cos ((𝐸2βˆ’πΈ1)𝑑/ℏ)

Therefore |πœ“π΄ π‘₯, 𝑑 |2 = |πœ“π΄ π‘₯, 𝑑 = 0 |2 when cos ((𝐸2βˆ’πΈ1)𝑑/ℏ) = 1

Or (𝐸2βˆ’πΈ1)𝑑/ℏ = 2πœ‹, 4πœ‹, 6πœ‹, …

𝑑 = 2π‘›πœ‹β„/(𝐸2βˆ’πΈ1) = 2π‘›πœ‹β„/2πœ‹2ℏ2

π‘šπ‘Ž2 βˆ’πœ‹2ℏ2

2π‘šπ‘Ž2 =4π‘›π‘šπ‘Ž2

3πœ‹β„ where 𝑛 = 1,2,3, …

The smallest 𝑑1 =4π‘šπ‘Ž2

3πœ‹β„

Page 16: You can do the integration using Mathematica Type the

(d)

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

t=0 t=0.1*t1 t=0.2*t1 t=0.3*t1

t=0.4*t1 t=0.5*t1 t=0.6*t1 t=0.7*t1

t=0.8*t1 t=0.9*t1 t=t1

Page 17: You can do the integration using Mathematica Type the

(e)

πœ“π΅ π‘₯, 𝑑 =1

2πœ‘1 π‘₯ π‘’βˆ’π‘–πΈ1𝑑/ℏ βˆ’

1

2πœ‘2 π‘₯ π‘’βˆ’π‘–πΈ2𝑑/ℏ

Density distribution at 𝑑 = 0 is:

|πœ“π΅ π‘₯, 𝑑 = 0 |2 = πœ“π΅βˆ— π‘₯, 𝑑 = 0 πœ“π΅ π‘₯, 𝑑 = 0

=1

2πœ‘1

βˆ— π‘₯ βˆ’1

2πœ‘2

βˆ— π‘₯1

2πœ‘1 π‘₯ βˆ’

1

2πœ‘2 π‘₯

=1

2|πœ‘1|2 + |πœ‘2|2 βˆ’ 2πœ‘1πœ‘2 since πœ‘1 & πœ‘2 are real

|πœ“π΅ π‘₯, 𝑑 |2 = πœ“π΅βˆ— π‘₯, 𝑑 πœ“π΅ π‘₯, 𝑑

=1

2πœ‘1

βˆ— π‘₯ 𝑒𝑖𝐸1𝑑/ℏ βˆ’1

2πœ‘2

βˆ— π‘₯ 𝑒𝑖𝐸2𝑑/ℏ1

2πœ‘1 π‘₯ π‘’βˆ’π‘–πΈ1𝑑/ℏ βˆ’

1

2πœ‘2 π‘₯ π‘’βˆ’π‘–πΈ2𝑑/ℏ

=1

2|πœ‘1|2 + |πœ‘2|2 βˆ’ πœ‘1

βˆ—πœ‘2π‘’βˆ’π‘–(𝐸2βˆ’πΈ1)𝑑/β„βˆ’πœ‘1πœ‘2βˆ—π‘’π‘–(𝐸2βˆ’πΈ1)𝑑/ℏ

=1

2|πœ‘1|2 + |πœ‘2|2 βˆ’ 2πœ‘1πœ‘2cos ((𝐸2βˆ’πΈ1)𝑑/ℏ)

𝑑1 𝑖𝑠 π‘‘β„Žπ‘’ π‘ π‘Žπ‘šπ‘’ π‘Žπ‘  π‘‘β„Žπ‘’ π‘π‘Ÿπ‘’π‘£π‘–π‘œπ‘’π‘  π‘π‘Žπ‘ π‘’

Page 18: You can do the integration using Mathematica Type the

(f)

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

πœ“π΄

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

πœ“π΅

0 a a 0

0.3a 0.7a

The two initial states can be determined by measuring the position of the particle:

If the measured value of x is around 0.3a then the initial state is πœ“π΄;

If the measured value of x is around 0.7a then the initial state is πœ“π΅.