yang-baxter maps and integrability - king's college london · 2010-01-11 · v.g. drinfeld on...

61
Yang-Baxter maps and integrability Alexander Veselov, Loughborough University, UK Complement to the lectures at UK-Japan Winter School, Manchester 2010

Upload: others

Post on 25-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Yang-Baxter maps and integrability

Alexander Veselov, Loughborough University, UK

Complement to the lectures at UK-Japan Winter School, Manchester 2010

Page 2: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

E.K. Sklyanin Classical limits of SU(2)-invariant solutions of the Yang-Baxterequation. J. Soviet Math. 40 (1988), no. 1, 93–107.

V.G. Drinfeld On some unsolved problems in quantum group theory. In”Quantum groups” (Leningrad, 1990), Lecture Notes in Math., 1510, Springer,1992, 1-8.

Dynamical point of view:

A.P. Veselov Yang-Baxter maps and integrable dynamics. Physics Letters A,314 (2003), 214-221.

Page 3: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

E.K. Sklyanin Classical limits of SU(2)-invariant solutions of the Yang-Baxterequation. J. Soviet Math. 40 (1988), no. 1, 93–107.

V.G. Drinfeld On some unsolved problems in quantum group theory. In”Quantum groups” (Leningrad, 1990), Lecture Notes in Math., 1510, Springer,1992, 1-8.

Dynamical point of view:

A.P. Veselov Yang-Baxter maps and integrable dynamics. Physics Letters A,314 (2003), 214-221.

Page 4: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

E.K. Sklyanin Classical limits of SU(2)-invariant solutions of the Yang-Baxterequation. J. Soviet Math. 40 (1988), no. 1, 93–107.

V.G. Drinfeld On some unsolved problems in quantum group theory. In”Quantum groups” (Leningrad, 1990), Lecture Notes in Math., 1510, Springer,1992, 1-8.

Dynamical point of view:

A.P. Veselov Yang-Baxter maps and integrable dynamics. Physics Letters A,314 (2003), 214-221.

Page 5: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

E.K. Sklyanin Classical limits of SU(2)-invariant solutions of the Yang-Baxterequation. J. Soviet Math. 40 (1988), no. 1, 93–107.

V.G. Drinfeld On some unsolved problems in quantum group theory. In”Quantum groups” (Leningrad, 1990), Lecture Notes in Math., 1510, Springer,1992, 1-8.

Dynamical point of view:

A.P. Veselov Yang-Baxter maps and integrable dynamics. Physics Letters A,314 (2003), 214-221.

Page 6: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

E.K. Sklyanin Classical limits of SU(2)-invariant solutions of the Yang-Baxterequation. J. Soviet Math. 40 (1988), no. 1, 93–107.

V.G. Drinfeld On some unsolved problems in quantum group theory. In”Quantum groups” (Leningrad, 1990), Lecture Notes in Math., 1510, Springer,1992, 1-8.

Dynamical point of view:

A.P. Veselov Yang-Baxter maps and integrable dynamics. Physics Letters A,314 (2003), 214-221.

Page 7: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

History

C.N. Yang (1967), R.J. Baxter (1972):

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

E.K. Sklyanin Classical limits of SU(2)-invariant solutions of the Yang-Baxterequation. J. Soviet Math. 40 (1988), no. 1, 93–107.

V.G. Drinfeld On some unsolved problems in quantum group theory. In”Quantum groups” (Leningrad, 1990), Lecture Notes in Math., 1510, Springer,1992, 1-8.

Dynamical point of view:

A.P. Veselov Yang-Baxter maps and integrable dynamics. Physics Letters A,314 (2003), 214-221.

Page 8: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

R12R13R23 = R23R13R12

where R : V ⊗ V → V ⊗ V is a linear operator

1

2

3

1

2

3

=

Figure: Yang-Baxter relation

Important consequence: Transfer-matrices T (λ) = tr0R0n . . . R01 commute:

T (λ)T (µ) = T (µ)T (λ).

Page 9: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

R12R13R23 = R23R13R12

where R : V ⊗ V → V ⊗ V is a linear operator

1

2

3

1

2

3

=

Figure: Yang-Baxter relation

Important consequence: Transfer-matrices T (λ) = tr0R0n . . . R01 commute:

T (λ)T (µ) = T (µ)T (λ).

Page 10: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

R12R13R23 = R23R13R12

where R : V ⊗ V → V ⊗ V is a linear operator

1

2

3

1

2

3

=

Figure: Yang-Baxter relation

Important consequence: Transfer-matrices T (λ) = tr0R0n . . . R01 commute:

T (λ)T (µ) = T (µ)T (λ).

Page 11: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

R12R13R23 = R23R13R12

where R : V ⊗ V → V ⊗ V is a linear operator

1

2

3

1

2

3

=

Figure: Yang-Baxter relation

Important consequence: Transfer-matrices T (λ) = tr0R0n . . . R01 commute:

T (λ)T (µ) = T (µ)T (λ).

Page 12: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

R12R13R23 = R23R13R12

where R : V ⊗ V → V ⊗ V is a linear operator

1

2

3

1

2

3

=

Figure: Yang-Baxter relation

Important consequence: Transfer-matrices T (λ) = tr0R0n . . . R01 commute:

T (λ)T (µ) = T (µ)T (λ).

Page 13: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Yang-Baxter maps (= Set-theoretical solutions of YBE)

Let X be any set and R be a map:

R : X × X → X × X .

The map R is called Yang-Baxter map if it satisfies the Yang-Baxter relation

R12R13R23 = R23R13R12.

The reversible Yang-Baxter maps additionally satisfy the relation

R21R = Id .

=1

2

1

2

Figure: Reversibility

Page 14: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Yang-Baxter maps (= Set-theoretical solutions of YBE)

Let X be any set and R be a map:

R : X × X → X × X .

The map R is called Yang-Baxter map if it satisfies the Yang-Baxter relation

R12R13R23 = R23R13R12.

The reversible Yang-Baxter maps additionally satisfy the relation

R21R = Id .

=1

2

1

2

Figure: Reversibility

Page 15: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Yang-Baxter maps (= Set-theoretical solutions of YBE)

Let X be any set and R be a map:

R : X × X → X × X .

The map R is called Yang-Baxter map if it satisfies the Yang-Baxter relation

R12R13R23 = R23R13R12.

The reversible Yang-Baxter maps additionally satisfy the relation

R21R = Id .

=1

2

1

2

Figure: Reversibility

Page 16: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Yang-Baxter maps (= Set-theoretical solutions of YBE)

Let X be any set and R be a map:

R : X × X → X × X .

The map R is called Yang-Baxter map if it satisfies the Yang-Baxter relation

R12R13R23 = R23R13R12.

The reversible Yang-Baxter maps additionally satisfy the relation

R21R = Id .

=1

2

1

2

Figure: Reversibility

Page 17: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Parameter-dependent Yang-Baxter maps

One can consider also the parameter-dependent Yang-Baxter maps R(λ, µ)with λ, µ from some parameter set Λ, satisfying

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) = R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2)

and reversibility condition

R21(µ, λ)R(λ, µ) = Id .

Although this case can be considered as a particular case of the previous one byintroducing X = X × Λ and R(x , λ; y , µ) = R(λ, µ)(x , y) it is often convenientto keep the parameter separately.

Page 18: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Parameter-dependent Yang-Baxter maps

One can consider also the parameter-dependent Yang-Baxter maps R(λ, µ)with λ, µ from some parameter set Λ, satisfying

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) = R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2)

and reversibility condition

R21(µ, λ)R(λ, µ) = Id .

Although this case can be considered as a particular case of the previous one byintroducing X = X × Λ and R(x , λ; y , µ) = R(λ, µ)(x , y) it is often convenientto keep the parameter separately.

Page 19: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Example 1: Interaction of matrix solitons

Matrix KdV equation

Ut + 3UUx + 3UxU + Uxxx = 0

has the soliton solution of the form

U = 2λ2P sech2(λx − 4λ3t),

where ”polarisation” P must be a projector: P2 = P.

The change of polarisations P after the soliton interaction is non-trivial:

L1 = (I +2λ2

λ1 − λ2P2)L1,

L2 = (I +2λ1

λ2 − λ1P1)L2,

where L is the image of P (Goncharenko, AV (2003)).

Tsuchida (2004), Ablowitz, Prinari, Trubatch (2004): vector NLS equation

Page 20: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Example 1: Interaction of matrix solitons

Matrix KdV equation

Ut + 3UUx + 3UxU + Uxxx = 0

has the soliton solution of the form

U = 2λ2P sech2(λx − 4λ3t),

where ”polarisation” P must be a projector: P2 = P.

The change of polarisations P after the soliton interaction is non-trivial:

L1 = (I +2λ2

λ1 − λ2P2)L1,

L2 = (I +2λ1

λ2 − λ1P1)L2,

where L is the image of P (Goncharenko, AV (2003)).

Tsuchida (2004), Ablowitz, Prinari, Trubatch (2004): vector NLS equation

Page 21: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Example 2: KdV and Adler map

Darboux transformation

L = − d2

dx2+ u(x) = A∗A→ L1 = AA∗.

A =d

dx− f (x), A = − d

dx− f (x).

A.B.Shabat, A.V. (1993): periodic dressing chain

(fi + fi+1)′ = f 2

i − f 2i+1 + αi , i = 1, . . . , 2m + 1.

V. Adler (1993): symmetry of dressing chain

f1 = f2 −β1 − β2

f1 + f2

f2 = f1 −β2 − β1

f1 + f2

Page 22: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Example 2: KdV and Adler map

Darboux transformation

L = − d2

dx2+ u(x) = A∗A→ L1 = AA∗.

A =d

dx− f (x), A = − d

dx− f (x).

A.B.Shabat, A.V. (1993): periodic dressing chain

(fi + fi+1)′ = f 2

i − f 2i+1 + αi , i = 1, . . . , 2m + 1.

V. Adler (1993): symmetry of dressing chain

f1 = f2 −β1 − β2

f1 + f2

f2 = f1 −β2 − β1

f1 + f2

Page 23: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Example 2: KdV and Adler map

Darboux transformation

L = − d2

dx2+ u(x) = A∗A→ L1 = AA∗.

A =d

dx− f (x), A = − d

dx− f (x).

A.B.Shabat, A.V. (1993): periodic dressing chain

(fi + fi+1)′ = f 2

i − f 2i+1 + αi , i = 1, . . . , 2m + 1.

V. Adler (1993): symmetry of dressing chain

f1 = f2 −β1 − β2

f1 + f2

f2 = f1 −β2 − β1

f1 + f2

Page 24: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Geometric realisation: Recuttings of polygon

12

3

4

5

Page 25: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Geometric realisation: Recuttings of polygon

1 2

3

4

5

Page 26: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Geometric realisation: Recuttings of polygon

12

3

4

5

Page 27: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Geometric realisation: Recuttings of polygon

1

2

3

4

5

Page 28: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Geometric realisation: Recuttings of polygon

12

3

4

5

Page 29: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Geometric realisation: Recuttings of polygon

1 2

3

4

5

Page 30: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Geometric realisation: Recuttings of polygon

12

3

4

5

Page 31: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Transfer dynamics

Define the transfer maps

T(n)i : X n → X n, i = 1, . . . , n

byT

(n)i = Rii+n−1Rii+n−2 . . . Rii+1,

where the indices are considered modulo n. In particularT

(n)1 = R1nR1n−1 . . . R12.

For any reversible Yang-Baxter map R the transfer maps T(n)i commute with

each other:T

(n)i T

(n)j = T

(n)j T

(n)i

and satisfy the propertyT

(n)1 T

(n)2 . . . T (n)

n = Id .

Conversely, if T(n)i satisfy these properties then R is a reversible YB map.

Page 32: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Transfer dynamics

Define the transfer maps

T(n)i : X n → X n, i = 1, . . . , n

byT

(n)i = Rii+n−1Rii+n−2 . . . Rii+1,

where the indices are considered modulo n. In particularT

(n)1 = R1nR1n−1 . . . R12.

For any reversible Yang-Baxter map R the transfer maps T(n)i commute with

each other:T

(n)i T

(n)j = T

(n)j T

(n)i

and satisfy the propertyT

(n)1 T

(n)2 . . . T (n)

n = Id .

Conversely, if T(n)i satisfy these properties then R is a reversible YB map.

Page 33: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Commutativity of the transfer maps

=

i + 1 i

i - 1

j - 1j

j + 1

i i - 1i + 1

j + 1j

j - 1

Figure: Commutativity of the transfer maps

Page 34: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Recutting of polygons: dynamics

Page 35: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Some other initial data

Page 36: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Some other initial data

Page 37: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Lax matrices and matrix factorisations

Matrix A(x , λ, ζ) with spectral parameter ζ ∈ C is called Lax matrix of themap R if it satisfies the relation

A(x , λ; ζ)A(y , µ; ζ) = A(y , µ; ζ)A(x , λ; ζ),

whenever (x , y) = R(λ, µ)(x , y).

Define monodromy matrix

M = A(xn, λn, ζ)A(xn−1, λn−1, ζ) . . . A(x1, λ1, ζ).

The transfer maps T(n)i preserve the spectrum of M for all ζ. The coefficients

of the characteristic polynomial

χ = det(M(x , λ, ζ)− µI )

are the integrals of the transfer-dynamics.

Page 38: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Lax matrices and matrix factorisations

Matrix A(x , λ, ζ) with spectral parameter ζ ∈ C is called Lax matrix of themap R if it satisfies the relation

A(x , λ; ζ)A(y , µ; ζ) = A(y , µ; ζ)A(x , λ; ζ),

whenever (x , y) = R(λ, µ)(x , y).

Define monodromy matrix

M = A(xn, λn, ζ)A(xn−1, λn−1, ζ) . . . A(x1, λ1, ζ).

The transfer maps T(n)i preserve the spectrum of M for all ζ. The coefficients

of the characteristic polynomial

χ = det(M(x , λ, ζ)− µI )

are the integrals of the transfer-dynamics.

Page 39: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Lax matrix from Yang-Baxter map

Suris, AV (2003):Suppose that the Yang-Baxter map R(λ, µ) has the following special form:

x = B(y , µ, λ)[x ], y = A(x , λ, µ)[y ]

for some action of GL(N) on X . Then both A(x , λ, ζ) and BT(x , λ, ζ) are Laxmatrices for R.

""

""

""

""

""

""b

bb

bb

bb

bb

bbb

z

y

x

y1

x2 z1

z12

y13

x23 ""

""

""

""

""

""b

bb

bb

bb

bb

bbb

z

y

x

y3

z2 x3

z12

y13

x23

=

Indeed, LHS gives z12 = A(y1, µ, ν)A(x2, λ, ν)[z], while the RHS givesz12 = A(x , λ, ν)A(y , µ, ν)[z].

Page 40: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Lax matrix from Yang-Baxter map

Suris, AV (2003):Suppose that the Yang-Baxter map R(λ, µ) has the following special form:

x = B(y , µ, λ)[x ], y = A(x , λ, µ)[y ]

for some action of GL(N) on X . Then both A(x , λ, ζ) and BT(x , λ, ζ) are Laxmatrices for R.

""

""

""

""

""

""b

bb

bb

bb

bb

bbb

z

y

x

y1

x2 z1

z12

y13

x23 ""

""

""

""

""

""b

bb

bb

bb

bb

bbb

z

y

x

y3

z2 x3

z12

y13

x23

=

Indeed, LHS gives z12 = A(y1, µ, ν)A(x2, λ, ν)[z], while the RHS givesz12 = A(x , λ, ν)A(y , µ, ν)[z].

Page 41: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Example: Lax matrix for Adler map

For Adler map

x = y − λ− µ

x + y

y = x − µ− λ

x + y

we can write

y = x − µ− λ

x + y=

x2 + xy − (µ− λ)

x + y= A(x , λ, µ)[y ],

so we come to the Lax matrix

A =“ x x2 + λ− ζ

1 x

”,

(which was actually known from the theory of the dressing chain).

Page 42: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Close relative: integrable discrete equations

Bianchi (1880s):

Superposition of Backlund transformations:

v −→ v1

↓ ↓v2 −→ v12

Bianchi’s important observation was the results of these commutingtransformations satisfy an algebraic relation.

In KdV case the Darboux transformations satisfy

(v12 − v)(v1 − v2) = β1 − β2,

which is the discrete KdV equation.

Page 43: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Close relative: integrable discrete equations

Bianchi (1880s):

Superposition of Backlund transformations:

v −→ v1

↓ ↓v2 −→ v12

Bianchi’s important observation was the results of these commutingtransformations satisfy an algebraic relation.

In KdV case the Darboux transformations satisfy

(v12 − v)(v1 − v2) = β1 − β2,

which is the discrete KdV equation.

Page 44: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Close relative: integrable discrete equations

Bianchi (1880s):

Superposition of Backlund transformations:

v −→ v1

↓ ↓v2 −→ v12

Bianchi’s important observation was the results of these commutingtransformations satisfy an algebraic relation.

In KdV case the Darboux transformations satisfy

(v12 − v)(v1 − v2) = β1 − β2,

which is the discrete KdV equation.

Page 45: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Discrete integrability: 3D consistency condition

Bianchi (1880s), Tsarev (1990s), Doliwa and Santini (1997), Bobenko andSuris, Nijhoff (2001): 3D consistency as the definition of integrability.

Page 46: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Yang-Baxter versus 3D consistency condition

"""

"""

AA

AAK

@@

@@@I

HHHY

R13R23

R12

xy

z

x23y13

z12x2

y1

z1=

"""

"""

"""

"""

AA

AAK

@@

@@@I

HHHY

R13

R23

R12

xy

z

x23y13

z12

x3

y3

z2

Figure: “Cubic” representation of the Yang–Baxter relation

Page 47: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

From IDE to YBM

Papageorgiou, Tongas, AV (2006): symmetry approach

Discrete KdV equation

(v12 − v)(v1 − v2) = β1 − β2

is invariant under the translation v → v + const.

The invariants

x1 = v1 − v , x2 = v1,2 − v1, y1 = v1,2 − v2, y2 = v2 − v ,

satisfy the relationx1 + x2 = y1 + y2

and the equation itself:

(x1 + x2)(x1 − y2) = β1 − β2.

This leads to the following YB map

y1 = x2 +β1 − β2

x1 + x2, y2 = x1 −

α1 − β2

x1 + x2,

which is nothing else but the Adler map.

Page 48: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

From IDE to YBM

Papageorgiou, Tongas, AV (2006): symmetry approach

Discrete KdV equation

(v12 − v)(v1 − v2) = β1 − β2

is invariant under the translation v → v + const.

The invariants

x1 = v1 − v , x2 = v1,2 − v1, y1 = v1,2 − v2, y2 = v2 − v ,

satisfy the relationx1 + x2 = y1 + y2

and the equation itself:

(x1 + x2)(x1 − y2) = β1 − β2.

This leads to the following YB map

y1 = x2 +β1 − β2

x1 + x2, y2 = x1 −

α1 − β2

x1 + x2,

which is nothing else but the Adler map.

Page 49: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

From IDE to YBM

Papageorgiou, Tongas, AV (2006): symmetry approach

Discrete KdV equation

(v12 − v)(v1 − v2) = β1 − β2

is invariant under the translation v → v + const.

The invariants

x1 = v1 − v , x2 = v1,2 − v1, y1 = v1,2 − v2, y2 = v2 − v ,

satisfy the relationx1 + x2 = y1 + y2

and the equation itself:

(x1 + x2)(x1 − y2) = β1 − β2.

This leads to the following YB map

y1 = x2 +β1 − β2

x1 + x2, y2 = x1 −

α1 − β2

x1 + x2,

which is nothing else but the Adler map.

Page 50: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Hamiltonian structures: Poisson Lie groups

Weinstein and Xu (1992), Reshetikhin, AV (2005)

Suppose that X can be embedded as a symplectic leaf in a Poisson Lie groupG : φλ : X → G and define the correspondence R(λ, µ) : X × X → X × X bythe relation

φλ(x)φµ(y) = φµ(y)φλ(x).

Define the symplectic structure Ω(N) on X (N) as

Ω(N) = ωλ1 ⊕ ωλ2 ⊕ ...⊕ ωλN .

Then R(λ, µ) is a reversible Yang-Baxter Poisson correspondence and transferdynamics is Poisson with respect to Ω(N).

Page 51: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Hamiltonian structures: Poisson Lie groups

Weinstein and Xu (1992), Reshetikhin, AV (2005)

Suppose that X can be embedded as a symplectic leaf in a Poisson Lie groupG : φλ : X → G and define the correspondence R(λ, µ) : X × X → X × X bythe relation

φλ(x)φµ(y) = φµ(y)φλ(x).

Define the symplectic structure Ω(N) on X (N) as

Ω(N) = ωλ1 ⊕ ωλ2 ⊕ ...⊕ ωλN .

Then R(λ, µ) is a reversible Yang-Baxter Poisson correspondence and transferdynamics is Poisson with respect to Ω(N).

Page 52: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Other relations: ”box-ball” systems, geometric crystals

Hatayama, Hikami, Inoue, Kuniba, Noumi, Okado, Takagi, Tokihiro,Yamada (2000-): Takahashi-Satsuma ”box-ball” systems and Kashiwara’scrystal theory

Berenstein, Kazhdan (2000), Etingof (2001): geometric crystals

Yang-Baxter map:

R : X × X → X × X , X = Cn

xj = xjPj

Pj−1, yj = yj

Pj−1

Pj, j = 1, . . . , n,

where

Pj =nX

a=1

a−1Yk=1

xj+k

nYk=a+1

yj+k

!.

with the subscripts j + k taken modulo n.

Page 53: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Classification

Adler, Bobenko, Suris (2004):

Quadrirational case, X = CP1

u = αyP, v = βxP, P =(1− β)x + β − α + (α− 1)y

β(1− α)x + (α− β)yx + α(β − 1)y, (1)

u =y

αP, v =

x

βP, P =

αx − βy + β − α

x − y, (2)

u =y

αP, v =

x

βP, P =

αx − βy

x − y, (3)

u = yP, v = xP, P = 1 +β − α

x − y, (4)

u = y + P, v = x + P, P =α− β

x − y, (5)

Page 54: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Geometric interpretation

X

Y

V

U

Figure: A quadrirational map on a pair of conics

Page 55: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Yang-Baxter property = Geometric theorem

X

Y

Z

X2

Y1

X3

Z1

Y3

Z2

X23

Z12

Y31

Konopelchenko, Schief (2001): Menelaus’ theorem, Clifford configurationsand discrete KP hierarchy.

Page 56: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Yang-Baxter property = Geometric theorem

X

Y

Z

X2

Y1

X3

Z1

Y3

Z2

X23

Z12

Y31

Konopelchenko, Schief (2001): Menelaus’ theorem, Clifford configurationsand discrete KP hierarchy.

Page 57: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Additional H-families

Papageorgiou, Suris, Tongas, V (2009):

u = yQ−1, v = xQ, Q =(1− β)xy + (β − α)y + β(α− 1)

(1− α)xy + (α− β)x + α(β − 1), (6)

u = yQ−1, v = xQ, Q =α + (β − α)y − βxy

β + (α− β)x − αxy, (7)

u =y

αQ, v =

x

βQ, Q =

αx + βy

x + y, (8)

u = yQ−1, v = xQ, Q =αxy + 1

βxy + 1, (9)

u = y − P, v = x + P, P =α− β

x + y. (10)

The last map is the Adler map.

Page 58: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Some open questions

I Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)

I Soliton interaction ⇒ Integrable hierarchy

Adler map ⇒ KdV hierarchy: S.P. Novikov (1974), Shabat, AV (1993)

I Alternative transfer-dynamics

Papageorgiou, AV: transfer KdV correspondences

I Discrete hierarchies and tropicalization

Kakei, Nimmo, Willox (2008)Inoue, Takenawa (2008): tropical algebraic geometry

Page 59: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Some open questions

I Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)

I Soliton interaction ⇒ Integrable hierarchy

Adler map ⇒ KdV hierarchy: S.P. Novikov (1974), Shabat, AV (1993)

I Alternative transfer-dynamics

Papageorgiou, AV: transfer KdV correspondences

I Discrete hierarchies and tropicalization

Kakei, Nimmo, Willox (2008)Inoue, Takenawa (2008): tropical algebraic geometry

Page 60: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Some open questions

I Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)

I Soliton interaction ⇒ Integrable hierarchy

Adler map ⇒ KdV hierarchy: S.P. Novikov (1974), Shabat, AV (1993)

I Alternative transfer-dynamics

Papageorgiou, AV: transfer KdV correspondences

I Discrete hierarchies and tropicalization

Kakei, Nimmo, Willox (2008)Inoue, Takenawa (2008): tropical algebraic geometry

Page 61: Yang-Baxter maps and integrability - King's College London · 2010-01-11 · V.G. Drinfeld On some unsolved problems in quantum group theory. In ”Quantum groups” (Leningrad, 1990),

Some open questions

I Classification

Adler, Bobenko, Suris (2004), (2009), PSTV (2009)

I Soliton interaction ⇒ Integrable hierarchy

Adler map ⇒ KdV hierarchy: S.P. Novikov (1974), Shabat, AV (1993)

I Alternative transfer-dynamics

Papageorgiou, AV: transfer KdV correspondences

I Discrete hierarchies and tropicalization

Kakei, Nimmo, Willox (2008)Inoue, Takenawa (2008): tropical algebraic geometry