y toward a mathematical theory of environmental …

400
UCEL-51837 y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL MONITORING: THE INFREQUENT SAMPLING PROBLEM Kenneth D. Pimentel (Ph. D. Thesis) June 1975 Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48 I I I B LAWRENCE I H 3 UVERMORE K s i LABORATORY OWrwijyric^c:-'.'/

Upload: others

Post on 01-May-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …

UCEL-51837

y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL MONITORING THE INFREQUENT SAMPLING PROBLEM

Kenneth D Pimentel (Ph D Thesis)

June 1975

Prepared for US Energy Research amp Development Administration under contract No W-7405-Eng-48

I I I B LAWRENCE I H 3 UVERMORE K s i LABORATORY

bull OWrwijyric^c-

Cy

NOTICE This report was rcpared asan account or work sponsored by the United States Government Neither the United States nor the United States Energy Research laquoV Development Administration nor any of their employees nor any or their contractors subcontractors or their employees makes any warranty express or implied or assumes any legal [lability or responsibility for the accuracy completeness or usefulness of any information apparatus product or process disclosed or represents thst Its use would not infringe privately-owned rights

Printed in the United States of America Available from

National Technical Information Service U S Department of Commerce

I 5285 Port Royal Road Springfield Virginia 22151

P r i c e Printed Copy $ Microfiche $225

Pages 1-50

51-150 151-325 326-500 501-1000

NTIS Selling Pr i ce

bull $400 $545 $760

$1060 $1360

HOTICE

copy t o

- f t

a i l - i gf

LAWRENCE UVEPIORE LABORATORY UnmsityotCaHorr^VmmmCalifarigtW550

UCFSL-51837

TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL MONIYOPING

THE INFREQUENT SAMPLING PROBLEM Kenneth D I lcnetitel

(Ph D T h e s i s )

Ms da te June 1975

then cinplorm miklaquo

tubibi oi iltipraquoiuibiLigt fu urriilnnof inraquo ciai-

prooia disdoird tu rrpiri

TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL MONITORING

THE INFREQUENT SAMPLING PROBLEM

Kenneth D Pimentel University of California Lawrence Livermore Laboratory

Livermore California

ABSTRACT

An environmental monitor is taken to be a system which generates estimates of environmental pollutant levels throughout an emironmental region for all times within a time interval of interest from measureshyment data taken only at discrete times and only at discrete locations in that region This study addresses the following optimal environshyment monitoring problem determine the optimal monitoring program mdash the numbers and types of measurement devices the locations where they are deployed and the timing of those measurements mdashwhich minimizes the total cost of taking measurements while maintaining the error in the pollutant estimate below some bound throughout the time interval of interest

Diffusive pollutant transport in distributed environmental systems is treated with the method of separation of variables to obtain a set of stochastic first-order ordinary differential state equations for the process Techniques of optimal estimation theory are applied to this set of state equations yielding a set of matrix estimation error co-variance equations whjse solutions are used in accuracy measures for the resulting estimates in the synthesis of optimal monitors

ii

The main results are associated with the infrequent sampling probshylem If the estimation error constraints imposeJ upon the monitor are sufficiently lax the solution for the optimal monitoring program results in relatively long times between required measurements This leads to drastic simplifications in the solutions of the problems of optimally designing and sequencing the measurements where only certain terms in the solutions of the estimation equations are found to effect the reshysponse for large time This dominance of certain asymptotic terms is seen as a potential area for future application in more complex environ-bullintal pollutant transport problems

Owing to the ease in their interpretation numerical applications for one-dimensional diffusive systems are included to illustrate the main results though all the results are shown to generalize to the three-dimensional case Considerable use of graphical computer output is made which clearly exhibits the features of the infrequent sampling problem An extensive list of references in areas relevant to the optishymal monitoring problem completes this report

TABLE OF CONTENTS

Page

TITLE PAGE i ABSTRACT ii ACKNOWLEDGMENTS viii DEDICATION xii LIST OF CONCLUSIONS xiii NOMENCLATURE xiv CHAPTER 1 INTRODUCTION 1

CHAPTER BACKGROUND AND PROBLEM STATEMENT 7 21 Background 7 22 Problem Statement 1

CHAPTER 3 NORMAL MODE MODELS FOR DIFFUSIVE SYSTEMS 19 31 Separation of Variables for the Diffusion

Equation 23 32 One-Dimensional Diffusion 25

321 No-Flow Boundary Conditions 26 322 Fixed Boundary Conditions 33

33 Two-Dimensional Diffusion 35 34 Three-Dimensional Diffusion 40

CHAPTER 4 MODEL DISCRETIZATION AND APPLIED OPTIMAL ESTIshyMATION 42

41 Discretization of the System Model 43 4 1 1 The Systen Model Equations 43

412 The System Disturbance Stat is t ics 46 42 Optimal Estimation - The Kalman F i l t e r 47

421 Optimal Estimation 4 7

2 2 Summary of F i l t e r A l go r i t hm SO

CHAPTER 5 OPTIMAL DESIGN AND MANAGEMENT OF MONITORING

SYSTEMS 52

51 Monitoring and the Kalman F i l t e r 5 2

52 One-Dimensional Piffusion with No-Flow Boundary Conditions 5 6

iv

CHAPTER 5 (Continued) 53 The Design Problem for a Bound on the Error

in the State Estimate 57 531 The Infrequent Sampling Problem 57 532 The Effect of a priori Statistics 66 533 Fixed Number of Samplers at Ech

Heasurment and Fixed Error Limit 70 534 Variable Number of Samplers 73 535 Analytical Measurement Optimization 74 536 Numerical Measurement Position Optishy

mization 77 537 Numerical Measurement Quality Optishy

mization 82 54 The Design Problem for a Bound on the Error

in the Output Estimate 84 541 The Minimax Problem 84 542 Determination of the Position of Maxishy

mum Variance in the Output Estimate 94 55 Diffusive Systems Including Scavenging 98

551 The Infrequent Sampling Problem 100 5 6 One-Dimensional Diffusion with Fixed Boundshy

ary Conditions 105 57 Extension to Monitoring Problems in Three

Dimensions Systems with Emission Boundshyary Conditions 112

58 The Managemeit Problem 122 581 Optimality in the Scalar Case 123 582 Extension to the Vector Case mdashArbishy

trary Sampling Program 132 583 Extension to the Vector Case - Infreshy

quent Sampling Program 133 5E4 Suggestion of a Heuristic Proof for

the Vactor Case 136 59 Extension to Systems in Noncartesian Coordishy

nates General Result for the Infrequent Sampling Problem 138

CHAPTER 6 NUMERICAL EXPERIMENTS 142 61 Problems in One-Dimensional Diffusion with No-

Flow Boundary Conditions 143 62 Problems with Bound on State Estimation Error 157

621 Asymptotic Response of State Estishymation Error 157

v

CHAPTER 6 (Continued) 622 Optintality of Measurement Locations 176 623 Comparison of Performance Criteria 176 624 Effect of Instrument Accuracy 178

63 Problems with Bound on Output Estimation Error 180 631 Asymptotic Responses of Output Estishy

mation Error 188 632 The Effect of a priori Statistics 192 633 Problems with a Fixed Number of Samplers

and Constant Error Bound i99 634 The Effect of Level of Estimation Error

Bound upon the Optimal Monitoring Probshylem 209

635 Examples of Various Levels of Bound upon Output Error 210

636 The Effect of Time-Varying Error Bound upon the Optimal Measurement Design 218

637 The Effect of Time-Varyir^ Disturbance and Measurement Statistics upon the Optishymal Monitoring Design and Management Problems 223

638 Variable ruirher of samplers 227 639 Sensitivity o Results for the Infrequent

Sampling Problem to Model Dimensiorslity 231 6310 Problems Including Pollutant Scavenging 249 6311 Problems with Multiple Sources 257

64 Optimality in the Management Problem 265 CHAPTER 7 SUMMARY AND RECOMMENDED EXTENSIONS OF THE MAIN

RESULTS 268 71 Summary 268 72 Recommended Extensions 270

APPENDIX A DISCRETIZATION OF THE STATE EQUATION 276 APPENDIX B DISCRETIZATION OF THE STATE DISTURBANCE

STATISTICS 278 APPENDIX C STATE AND ERROR COVARIANCE PREDICTION WITHOUT

MEASUREMENTS 285

Vi

APPENDIX D ANALYTICAL MEASUREMENT OPTIMIZATION 289 Dl Minimize Estimate Error 289 D2 Minimize Estimation Error and Estimation

Cost 295 D3 Results 237

APPENDIX E NUMERICAL MEASUREMENT QUALITY OPTIMIZATION 299 APPENDIX F DESCRIPTION AND LISTING OF PROGRAM KALMAN 303 APPENDIX G DESCRIPTIONS AND LISTINGS OF POSTPROCESSOR

PROGRAMS 343 Gl Program CONTOUR 345 G2 Program POFT 348 G3 Program PELEM 35^ G4 Program SIGMAT 356 G5 Program MAXTIME 360 G6 Program POSTPLT 362 G7 Program POSTFP 363 G8 Program POSTSP 364

REFERENCES 365

vii

ACKNOWLEDGMENTS

Many people in a variety of situations have contributed to my doctorial program Academicians colleagues fellow employees and supervisors and members of my family To all of these and more go my gratitude and sincerest good feelings

To John Brewer who started it all for me in automatic controls as an undergrad at Davis this stuff sure beats gear design To the Faculty at Berkeley thank you all Yasundo Takahashi tried to teach me what a state vector was just when I thought I had it he added noise and everything got stochastic To Robert Steidel who helped with my Masters and introduced me to that Lab out there in Livermore To Joseph Frisch who got me the job in the Controls ab and the TAship thanks so much To Dan Mote and Bob Donalu^on out there in eigenspacemdash it finally sank in To Charles Desoer and William Kahan for the clarity which came through their rigor

To the Faculty at the Davis Campus which somehow when I got back was no longer the University Farm my gratitude Dean Karnopp cleaned up my head about systems with one causal stroke Walt Loscutoff not only conveniently graduated from Berkeley so I could have his TAship but he also conveniently went to Davis where I could watch him on TV and have him hulp with my orals

To Charles Beadle and Mont Hubbard who helped with the manuscript thank you for your many hours which might have been more amusingly spent I truly appreciate your help

And then full circle back to John Brewer who has been a continual source of fascination inspiration perspiration frustration and

yiii

resuscitation you are a thesis advisor and friend par exoellenae Your patience understanding and nurturing have not all gone for naught Thank you so very much as I look forward to a long continuing potentially mellower relationship

Howard McCue by far deserves the most thanks of all my colleagues He sat through more baloney poked holes in more theories but learned more about computers from me than anybody else And look where it got you Howard sure do love those computers dont you Thanks too tc Larry Carlson Steve Johnson and Frank Melsheimer for making those days at Berkeley what they were And special thanks to Jerry Alcone for findshying it in his heart to graduate so I could have his office you still owe me a handball it the back too Alcone And at Davis thanks to Steva Moore and Jeff Young who sewed the seeds for a lot of what came from this study

Thanks to the many at Lawrence Livermore Laboratory who have seen fit to employ me while finishing my education Wally Decker and Walt Arnold as Department Heads in Mechanical Engineering have supprted me far beyond what I ever expected I sincerely intend to pay back in my career at the Lab Gene Broadman as Division Leader has helped in ways which mark M m as one of the best in my book John Ruminer and Jerry Goudreau were just the kinds of supervisors we needed great ones

And then there was is and ever shall be Gerry Wright He put up with me put me down got put down and got fed up Hope he forgives Howard and I someday for going back for his Masters Sincerely thank you for all your help Ger all of it for its always been considerable

1x

To Chuck Mi l le r Nort Croft Al Cassell and Gail Dennis did you hear

the one about t h i s Portagee who finished school I knew you hadnt

And f i na l l y to Mildred Rundquist She is no secretary no t yp is t

no c le r ica l type She is a typographical ar t is t - -pure and simple The

i s j s and ks are hers The equations are a l l hers Even some of the

figures are hers And with a l l that my respect appreciation and f r iendshy

ship w i l l always be hers Thanks M i l

To the people of th is country through the United States Energy Research

and Development Administration thank you for your support To the people

of the State of California through the University of Cal i fornia and the

Lawrence Livermore Laboratory my gratitude extends Thank you a l l for

making th is research possible

To Dr Justin Simon a special f r iend in a special way thank you

for your encouragement your kicks i n the mdash your understanding and the

lack of i t Yob now and I know how important a l l this was for me to do

You are the best at what you do and I or we may s t i l l r i p o f f your leaded

glass some day

To my parents who thought i t never could be done i t s done Thank

you for everything you gave me

To ray mother- and father- in- law youve always been there and that s

always counted Your encouragement is ever appreciated I know what f i n i sh shy

ing th is means to you and Im proud that Im able to give i t

The approach of the conclusion of my doctoral studies has prompted a

wide variety of responses from those closest to me From my daughter

Jennifer whos almost f i ve I missed you today From my son John

x

whos almost three Daddy don go wurk anymotmdashstay home now

And from my wife Janet who alone knows how old she rea l ly i s I

dont believe i t Thank you Hunny for always being there and yes

i t is done Now whered you want that pool

DEDICATION

for Jyp PhD

LIST OF CONCLUSIONS

Page

Conclusion I 60 II 64 III 64 IIIA 78 IV 69 V 69 VI 71 VIA 71 VIB 218 VIC 224 VID 224 VII 73 VIII 84 IX 90 X 90 XI 92 XII 94 XIII 105 XIV 112 XV 121 XVI 127 XVII 132 XVIII 1 4 1 XIX 247

Conjecture A 137 B 140 C 230

xU

NOMENCLATURE

Symbol Description

A ( t ) A Continuous-time dynamic system matrix

B ( t ) B Continuous-time deterministic input d is t r ibut ion

matrix

C( t ) C Continuous-time measurement matrix

Cbdquo Discrete-time time-varying measurement matrix at

bullbull time t K

cpound The optimal measurement matrix at time t

C(zK) Measurement matrix as a function of the vector z K of measurement positions at time t bdquo

C Generalized modal capacitance D( t ) D Continuous-time stochastic disturbance d i s t r i shy

bution matrix

pound bull bull Unit matrix with ( i j ) t h element equal to one

~ J and a l l other elements zero

F Pollutant mixing ra t io

G K + Kalman gain matrix at time t R +

I Ident i ty matrix

J Performance cr i te r ion

J(t) First monitor performance criterion estimation error in optimal state estimate at time t

Jbdquo(ct) Second monitor performance criterion value of pollutant concentration estimation error at that point c in the medium where it is a maximum at time t~

K Diffusion coef f ic ient discrete-time index f ina l

value of a discrete-time summation index

L 2L Length of a one-dimensional di f fusive medium

M n Covariance matrix for i n i t i a l state

Symbol Description

N Final value of a discrete-time summation index

P Region in space over which pollutant transport problem is defined

Pbdquo Corrected state estimation error covariance ma-~K t r i x at time t conditioned upon a l l past measureshyments including the measurement at time t

1 P K + 1 Predicted state estimation error covariance matrix

at time t^ +-| conditioned upon a l l past measurements up to ard including the measurement at time t K

v -K+N^-K Predicted state estimation error covariance matrix

at t i ire t K + f j conditioned upon a l l past measurements up to and including the last measurement at time t( and a function of the measurement matrix at timt t bdquo

p ( t ) P Continuous-time state estimation error covariance

matrix

R Generalized modal resistance T Discrete-time integration step-size T r F i rs t monitoring error constraint maximum allow-

able error in the estimate of the monitor state vector

Tr Ppound + N(zj) j Predicted value of the trace of the state estima-l ~ N - t ion error covariance matrix at time t |^ + N condishy

tioned upon a l l past measurements up to and includshying the optimal measurement at zjlt at time t K

V( t ) V Continuous-time measurement error covariance matrix

W(t) W Continuous-time state disturbance covariance matrix

X A matrix used in derivations

Y A matrix used in derivations

c Scalar measurement coefficient used in optimal management problem derivations

c(c) c Readout vector mapping modal states into pollutant concentration at point pound in space

Symbol Description

e Base of natural logarithms (= 271828 ) surshy

face emissivity coeff ic ient

e T Exponential of the matrix [AT]

e Unit vector with i th element equal to one and a l l other elements zero

e (z) Eigenfunction associated with the nth eigenvalue

evaluated at position z

f Stochastic pollutant source term in the transport equations

g Deterministic pol lutant source term in the transshy

port equations

h Emission boundary condit io coeff ic ient

i Vector or matrix element index

j Vector or matrix element index m The dimension of the noise-corrupted measurement

measurement error and measurement position vectors y R y K and z K

j u Mean value of i n i t i a l state

n Discrete-time summation index

n The dimension of the^state and optimal state e s t i shymate vectors x K and x K

p Scalar state estimation variance used in optimal management- iroblem derivations

p The dimension of the deterministic input vector a(t)

r The dimension of the stochastic state disturbance vector w(t)

t Continuous value of time t K The Kth discrete value of time i Convolution of deterministic input vector over the

time interval EtKt|+j

xv 1

Symbol Description u(t) y Continuous-tine deterministic Input vector v K Discrete-time measurement error vector at time tj y(t) v Continuous-time measurement error vector -K+l Convolution of the stochastic disturbance vector

over the time interval [ t K t K + 1 ] w(t) w Continuous-time stochastic disturbance vector x Derivative with respect to time of the state

vector x x K Discrete-time state vector at time t K

xpound Corrected value of the optimal state estimate at time t|lt conditioned upon all past measurements inshycluding the measurement at time t x[ Predicted value of the optimal state estimate at time t K +i conditioned upon all past measurements up to and Including the measurement at time tbdquo x(t) x Continuous-time state vector x(t) x Optimal estimate of continuous-time state vector vbdquo Discrete-time noise-corrupted measurement vector bull at time t K

y(t) y Continuous-time noise-corrupted measurement vecshytor

z Position in a one-dimensional diffusive medium z Position of maximum error (variance) in the estishymate of the pollutant concentration over all values of 7 In a one-cffmenslonal medium zbdquo Discrete-time measurement position vector at time

zj Vector of optimal measurement positions at time t K

z Vector of deterministic input point source loca-~u tlons

xvll

Symbol Description Vector of stochastic disturbance point source loca-

w tions

0 o Zero matrix or vector

a Pollutant scavenging parameter r K + 1 r Time-invariant discrete-time stochastic disturbance distribution convolution matrix for the fixed time step T = (t K + 1 - t K) A K Amount of correction to scalar state estimation varshyiance for a measurement at time t K used in the opshytimal management problem derivations ATr Amount of correction to the trace of the state estishymation error covariance matrix for a measurement at time t|( used in the optimal management problem derishyvations S(t-x) Dirac delta function Kj Kronecker delta function

e A convergence criterion 5 Position coordinate vector for a point in a region

P in a diffusive medium n An intermediate transformation variable 0 A matrix used in certain derivations Eigenvalue or separation constant u Terms involved in determination of eigenvalues for

n emission boundary conditions pound(t) 5 Pollutant concentration at point z in space at

time t (Ct) Optimal estimate of pollutant concentration at

point c In space at time t 4bdquo(z) 5i Discrete-time pollutant concentration at point z

K and time tbdquo

xvlli

Symbol Description

I ( z ) L Optimal estimate of discrete-time pollutant corcen-K t ra t ion at point z and time t

5 (z) I n i t i a l pollutant concentration as a function of bull0

ulim

posit ion z in the medium

= 314159

p A convergenc measure

a 2 ( c t ) Variance in the optimal continuous-time estimate of pol lutant concentration at point z in space at time t

ol(z) Variance in the optimal discrote-time estimate of the pollutant concentration at point z and time h

0 ^ J M ( Z I ^ Z ) Predicted value of the variance at time t K + N in the K N ~ K discrete-time estimate of the pol lut ion concentrashy

t ion at point z conditioned upon measurements up to and including the last measurement with posit ion vector z K at time t K

deg K + N ~ K Z Predicted value of the maximum value over a l l values of z of the variance in the pollutant concentration at time t K + r j conditioned upon a l l past measurements up to and including the optimal measurements at zj at time t K

oK(zJz) Corrected value of the maximum value over all values of z of the variance in the pollutant concentration at time t K conditioned upon all past measurements including the optimal measurements at z at time t K

o Second monitoring error constraint maximum allowshyable error in the estimate of the pollutant concenshytration anywhere in the medium Time used in certain definitions and derivations

An intermediate matrix used in various derivations Scalar measurement error variance used in optimal management problem derivations

xix

Symbol Description

C i gt Time-invariant state t rans i t ion matrix for the ~- ~ f ixed time step T 5 ( t K + 1 - t K )

( t K + t bdquo ) Time-varying state t rans i t ion matrix between times t K and t K + 1

X A matrix used in certain derivations

C + i t I Time-invariant discrete-time deterministic input d is t r ibu t ion convoution matrix for the f ixed time step T = ( t K + t K )

g bdquo + a Discrete-time convolution of the continuous-time state disturbance covariance matrix W(t) over the interval L i t K + - | J

a The discrete-time matrix convolution of the matrix N g K + where N terms in the series are included

a The l i m i t of the discrete-time matrix convolution SS pound2 as N approaches i n f i n i t y with i t s (1 l)-element

to zero

ltD Scalar state disturbance variance used in optimal management problem derivations

- Approximately equals = Identically equals or is defined as gt Greater than raquo Much greater than

lt Less than lt Less than or equal to lt Proport^irtf to or goes like Approaches or goes to - raquo Implies or infers

d [ - ] Total d i f fe ren t ia l operator

g r [ bull ] [ bull ] Derivative with respect to time of the variable in brackets

Symbol Description _3_ 3c

_i 3C

a

diag [bull]

EL-]

min

min max Z K Z

Partial differentiation of a variable with respect to the scalar c Partial differentiation of a variable with respect to the vector c

Partial differentiation of a variable with respect to the matrix C A vector whose elements are the diagonal elements of the matrix enclosed in brackets Expectation operator for a random variable vector or matrix Limiting operation as N approaches infinity Maximum over all scalar values of z Minimum over all vector values of z K

Simultaneous minimum over all vector values z K and maximum over all scalar values z

n=l Tr[-]

bullh

n-l

N r j

Summation from 1 to N over all values of the index n

Trace operator of the matrix enclosed in brackets The 1th_ element of the vector enclosed in bracket [a]^ 1s also denoted a The (ij)th element of the matrix enclosed in brackets [A] 1s also denoted A ^ Transpose operation for a vector or matrix Inverse operation for matrices

A matrix with (ll)-e1ement equal to u and all other elements zero

A matrix with (ll)-element equal to zero and all other elements equal to the elements of the matrix A

xxl

Symbol Description

6 o -cj

A diagonal matrix

p gt 0 The matrix pound i s posit ive def in i t i ve

ltbull I n f i n i t y

CHAPTER 1 INTRODUCTION 1

The problem of the optimal monitoring of pollutants in environshymental systems concerns the minimum cost estimation of pollutant levels throughout a region while maintaining the errors in the estimates within a given bound The optimal monitor synthesis problem considered in this thesis logically separates into the two monitoring subproblems of optimal design and optimal management Optimal monitoring system design includes the specification of a model for the physical system the choice of measured variables measurement devices and their spatial distribution in the medium The optimal management problem concerns finding the best sequencing of measurements in time to result in the minimum cost sampling program The optimal monitor is then defined as that solution of the design and management problems together which results in the minimum cost measurement program necessary to maintain the error in the pollutant estimate below a given bound over the time interval of interest

This is a departure from most studies in the optimization of systems with cost for observation in that use is not made of a comshybiner performance criterion which typically consists of the time integral of a weighted combination of measurement cost and estimation error Insteid in this study advantage is takrn of the separation of the design and management problems whose two solutions separately determine the characteristics of the measurements at the required sample times and the timing of those measurements themselves Thus estimation error is not minimized but rather bounded in a

2

fashion which corresponds with actual applications where legal limits are placed upon allowable errors in the pollutant level estimates in environmental monitors It 1s bounded In such a manner that the minimum total number of samples is necessary over some time Interval resulting in the minimum cost monitoring program

The separation of the monitoring design and maiagement problems was proposed by Brewer and Moore [24] Moore [95] has considered application of such corcspts to the area of aquatic ecosystems where the Extended Kalman Filter 1s applied to the highly nonlinear equashytions of the dynamics of population growth of aquatic constituents This thesis instead concentrates upon strictly linear processes in the hope that the mathematical simplifications possible there may be extendable to the nonlinear case in future studies In the optimal estimation of the state vector of a linear discrete-time stochastic system the Kalman Filter [66] provides a particularly elegant computational solution The two equations for prediction and correction of the associated state estimation error covariance matrix have been conjectured by Brewer and Moore [24j as containing the key to the solution of the management problem it is shown here that they indeed do lead to a problem structure which results In the optimal solution of not only the management problem but to that of the design problem as well

Owing to the anticipated complexities of the optimizations assoshyciated with the various parts of the monitoring problem advantage 1s taken of the simplicity of the separation of variables technique in the theory of linear partial differential equations In obtaining orshydinary differential equation models for distributed systems (see Berg

3

and McGregor I18J) In reducing the resulting state spaces for such normal mode models to spaces of finite dimension the quantitative methods recently developed by Young I131J 1n atmospheric modeling greatly extend the area of applicability of such analytical techniques In particular nonhomogeneous anisotropic media may be handled by the spatial discretization of the medium Into component subregions over which constant average values for system parameters are sufficiently accurate Component coupling by the use of pseudo-sources to make up for differences in the normal mode submodels is the key factor given by Voung which allows for the simple approximation of the dynamic reshysponse of large varied distributed environmental systems The existshyence of these techniques underlies the studies 1n this thesis in their extension to large scale practical problems in environmental monitoring

With the use of a finite-dimensional normal mode state model the resultant continuous-time state equations are discretized in time for use in the Kalman Filter The natura of the Kalman Filter is now well known 1n its applications in the aerospace field Recent applishycations in more diverse areas (see for example the special issue 1n IEEE [62]) have established It as a powerful tool of broad scope 1n the field of system estimation Its numerical advantages over other optimal estimation techniques (well documented 1n Gelb [44]) make it the logical choice for use in environmental monitoring systems where processes of Interest may dictate the use of huge models to obtain desired levels of spatial arid temporal resolution in the results

4

The main results of this thesis concern the special class of monishytor addressed In the infrequent sampling problem This case is charshyacterized by high levels of allowable pollutant estimation error which result in relatively long periods between required sample times These long times between samples allow the transient terms involved in the growth of the uncertainty in the pollutant estimates to reach steady-state values so that only asymptotic solutions of the estimation error covariance equations need be considered in the design and management problems This drastically simplifies the solution of the monitoring problem for the case of infrequent sampling

Applications of the theory developed here are seen to arise in any environmental or other dispersive system where the dynamics of the disshypersal of the pollutant or variable involved is dominated by diffusion and where convective transport can be ignored This rules out its use in air quality monitoring systems on a regional basis where convection typically dominates diffusion in pollutant transport by a ratio of 301 [76] However as developed by others cited in Young 1131] models of pollutant transport on a global scale are often based upon diffusion as the dominant mechanism of dispersal In fact examples in Young indishycate that the normal mode modeling techniques mentioned earlier can be successfully applied to global atmospheric modeling where only diffusion is included as the dispersion mechanism

An interesting extension of the results of this thesis might be to a study involving assessment of the climatic impact of flying a fleet of SSTs upon the protective ozone layer in the atmosphere (see for exampls Mac Cracken et al [80]) In such an application knowing where and when to best sample atmosphere pollutant levels could greatly

5

facilitate validation of numerical atmospheric models in initial applishycations and greatly reduce long-range monitoring costs upon implementashytion of such a program

Groundwater systems seem to be a probable area of application as indicated in what follows though no experimental verifications have been attempted Systems involving heat transfer by conduction which involve stochastic heat sources could find application for the theory of the infrequent sampling problem For example in nuclear reactor cooling systems a central control computer could be time-shared to consider only the best sites for temperature measurement in the walls of the pressure vessel over time

The need for better environmental monitoring has been described in the literature [4695102] typical measurement costs have been tabulated [14] Propagation of uncertainty in distributed systems has been considered in some detail 15659101] Related studies using other approaches do not address the monitoring problem either as it separates into the design and management problems or with the drastic simplifications which arise in the infrequent sampling problem (see the work of Seinfeld [113] Seinfeld and Chen [114115] Seinfeld and Lapidus [116] Reiquam [104] Bensoussan [17] Soeda and Ishihara [119]) Thus there is a naed for improvement of the synthesis procedures for monitoring systems in large scale environmental problems

The thesis is organized into seven chapters and seven appendices to keep things even Chapter 2 summarizes work by others in germane problem areas and defines the scope of the present study Chapter 3 develops briefly the normal mode modeling technique of the application of the method of separation of variables Chapter 4 deals with the

6

time-discretization of the associated f in i te set of continuous-time

ordinary differential state equations and summarizes the more salient

features of Kalroan Fi l ter Theory Chapter 5 presents the main theory

associated with the infrequent sampling problem punctuated with conshy

clusions as they can be made Application and demonstration of the

analytical results of Chapter 5 are made in the numerical examples of

Chapter 6 in which more conclusions are seen to follow In Chapter 7

the main results for the optimal monitoring problem for the case of inshy

frequent sampling are collected in summary and possible extensions for

future study indicated Some of the more routine analytical developshy

ments as well as al l of the computer program listings are gathered

in the appendices A rather extensive l i s t of references relevant to

the optimal estimation monitoring and measurement system design probshy

lems completes this document

7 CHAPTER 2 BACKGROUND AND PROBLEM STATEMENT

This chapter begins with a suiroary of representative work done by others In fields of Importance to the environmental monitoring problem An attempt Is made to present a reasonably complete survey of pertinent literature in the hope that future researchers may benefit from the sources this author has utilized

The broad area of optimal measurement system design is then narrowed greatly in scope as it applies to problems In certain classes of environshymental pollutant transport The problems of the optimal design and management of environmental quality monitoring systems are finally stated in the contexts of two cases for bound on the allowable error In either the monitor state or the monitor output estimite

21 Background

The major topics of concern in the study of environmental monitorshying systems in this thesis include the following mathematical modeling in dispersive environmental systems the numerical treatment of certain classes of partial differential equations the stability and asymptotic solutions of systems of ordinary differential equations optimization of a function of several variables deterministic dynamical system theory stochastic system theory and optimal estimation optimal measurement sysshytem design in lumped and distributed parameter systems and finally monishytoring system synthesis for environmental applications

Considerable Interest has been turned to problems In the dispersal of pollutants In environmental systems in recent years Some typical contributions 1n the areas of the atmospheric sciences include the modelshying of air pollutant transport on a regional basis [81 J the climatic

8

impact of f l y ing a f lee t of SSTs in the upper atmosphere I80J studies

1n the parameter sens i t iv i ty of models of the planetary boundary layer

[3599J and studies of models of the global transport of pollutants

[36131] In one recent study by Young [131J the classical methods of

applied mathematics were successfully applied to the solution of global

pol lutant transport problems in a unique way that takes advantage of

analytical results available fo r certain classes of part ia l d i f fe ren t ia l

equations By the expansion of solutions for such equations in i n f i n i t e

series form followed by quant i tat ively meaningful truncation of those

serious solut ions approximate solutions for otherwise Targe d i f f i c u l t

problems can be obtained This procedure involves coupling together

solutions for problems in adjacent subregions to e f f i c i en t l y approximate

the response in larger areas The theory for such Fourier-type expanshy

sions is now well established [183482118J but the unique extensions

made by Young possess the potential for applying classical normal-mode

analysis long associated with problems in the mechanics of l inear solids

[9347] to a far braoder class of problems including environmental

pollutant transport in nonhomoqeneous anisotropic media

This author follows Young in the application of normal-mode technishy

ques to problems in the solution of the dynamic equations of environmental

pollutant transport Such methods y ie ld f i n i t e sets of ordinary d i f f e r shy

ent ia l equations whose solutions form time-varying mul t ip l iers for the

spatial mode shapes which comprise the normal mode solut ion bond graphs

are seen to of fer a concise graphical representation of such normal mode

models (see for example Karnopp and Rosenberg [6S]) The study of the

numerical treatment of systems of ordinary d i f fe ren t ia l equations is a

fundamental part of the solution of the monitoring problem when using

9

the normal mode approach recent advances 1n the numerical solution of general nonlinear time-varying possibly stiff ordinary differential equations are typified by the work of Gear [43] Hindmarsh [5758] and Byrne and Hindmarsh [25] Analytical treatments can be found in Coppel [28]

In the case of linear time-Invariant ordinary differential equashytions the class involved in the infrequent sampling problem considered in this study the powerful techniques of linear system theory can be used (see for example Desoer [32] Takahashi et at [121] Brewer [22] Freeman [41] Timothy and Bona [123]and Schultz and Helsa [109]) In the actual implementation of algorithms associated with the solutions of such linear systems certain topics in matrix theory in numerical analysis prove to be useful [3840129] Involved in the optimal design problem in monitoring system synthesis are the problems associated with the optimization of a function of several variables Beveridge and Schechter [20] is found to be an excellent reference in this area while Fleming [37] provides a more firm background in the theory of a function of several variables A gradient routine by Westley [127] was chosen for the constrained minimization of the nonlinear objective functions associshyated with the optimal design problem Such gradient methods are conshytrasted for example with the work of Radcliffe and Comfort [103] in which constrained direct search methods are presented which do not involve the use of derivatives of the objective function gradient methods are found to offer computational advantages over direct search methods in their application to the optimizations involved in the optimal design problem In the particular problems of finding the position of maximum uncertainty in the pollutant estimate for the monitoring problem with

10

bound on error in the output estimate root finding methods for finding zeros in the derivative of the expression for the error were found to be superior to direct search methods for such scalar maximizations (see Hausman [5354])

The field of optimal state estimation in stochastic dynamic system theory is well developed in what it offers for vhe solution of the optishymal monitoring problem Gelb [44122]makes a particularly lucid presenshytation of the more practical topics in applied estimation theory the original work of Kalman [66] and Kalman and Bucy [67] still stand as basic reference material for the concepts involved Sorensen (in Leondes [78]) presents a concise introduction to Kalman Filter techniques Meditch [85] also presents a clear development of the optimal filter Aokr [ 3] contains a considerable amount of material concerned with speshycial topics in stochastic system theory as does Sage [105] Jazwinski [65] is sufficiently complete in its rigor to serve as one single refershyence in the area of stochastic processes and filtering theory for more fundamental material in the theory of stochastic differential equations including a particularly rigorous development of the Kaliran-Bucy Filter see Arnold [ 6]

The Special Issue of IEEE Transactions on Automatic Control Decemshyber 1971 dealing with the Linear-Quadratic Gaussian Problem [62] ofshyfers an extensive collection of topics in optimal estimation theory It Includes a well edited bibliography which should be a basic resource to any researcher 1n this field The proceedings of a special confershyence sponsored by NATO [98] summarizes many military and aerospace apshyplications of estimation theory

11

There are many special topics In estimation theory which could prove of Importance In future extensions of the work in this thesis to practical applications in nonlinear systems Of them adaptive filtershying 1s of particular importance see the work of Mehra [86878889] Jazwinski [64] Berkovec [19] Godbole [45] Nahi and Weiss [97] and Scharf and Alspaeh [108] Extension to nonlinear estimation are conshysidered in Wlshner et aZ[130] Athans et al [9 J Hells [126] Gura [49] and Gura and Hendrikson [52] Moore uses the Extended Kalman Filshyter as cited earlier in his work on the monitoring problem [95] As well as Moore others have examined the effects of using an imprecise model in the optimal filter upon the performance of optimal estimation schemes among them are Jazwinski [65] who considers the area of filter divergence at length Aok1 and Huddle [4 ] Leondes and Novak [77] and Inglehart and Leondes [63]

The area of theory most closely allied to that of the optimal monishytoring problem is known variously as optimal estimation with cost for observation optimal measurement system or subsystem control or the opshytimal timing of measurements Aoki and Li [ 5] were among the first to address such problems along with Meier [909192] Athans uses his Matrix Minimum Principle [ 8 ] along with the work of Schweppe [11] in an application in continuous-time systems this work is strongly based upon direct extensions of optimal control theory (see Bryson and No [26] or Athans and Falb [10]) Schweppe [12110111] has made developments of op timal measurement strategies in radar applications Denham and Speyer [30] did some early work in midcourse guidance Kramer and Athans [73 74] have made recent rigorous contributions to the mathematics associated with the combined optimal control and measurement problems along with PIiska [100]

12

Other studies Involving the optimal timing and use of measurement data include Kushner [75] Breazeale and Jones [21] Sano and Terao [106] Hsia [60] and Dreyfus [70]

Some of the most germane references found in the area of optimal measurement system design include Cooper and Nahi [27] Sauer and Melsa [107] Vande Linde and Lavi [125] Herring and Melsa [55] Shoemaker and Lamont [117] and Soeda and Ishlhara [119]

Studies which concentrate on monitoring and measurement system optishymization in distributed parameter systems include the work of Seinfeld [112113114115116] Draper and Hunter [33] Reiquam [104] Bensoussan [17] Atre and Lamba [13] Murray-Lasso [96] and Prado [10lJ

Bar-Shalom et al [is] consider monitoring systems much like those considered here but for a far more general class of problem Moore [95] and Brewer and Moore [24] serve as the inspirational basis for much of what is developed in this thesis

22 Problem Statement

Consider a region into which pollutants are being injected by a colshylection of deterministic and stochastic point sources Two problems in the monitoring of the pollutant levels in that region over time are conshysidered in this study

First suppose that measurements are required of pollutant levels for the purpose of closed-loop control in which case feedback signals are to be constructed to control seme of the amounts of pollutant being emitted into the medium An example might be thermal pollution near a power station where it is required to optimally monitor temperatures in the surrounding area for the purpose of closed-loop control of the mean

13

power level Assuming that a model can be constructed for the dynamics of the pollutant dispersal in the form of a finite set of first-order orshydinary differential equations whose solution forms the state vector for the model of the process (see Desoer 132]) It is well known that the mean square length of the error between the state vector and the esshytimate of the stochastic state vector fs given by the trace of the estishymation error covariance matrix for such a stochastic process as a funcshytion of time (see Kalman [66]) Thus if it is required to minimize the mean square error 1n the estimate of the stochastic state vector a suitshyable choice for the performance criterion for the optimal monitor with bound on maximum allowable error in the state estimate is

J(t) = Tr[p(t)] (21) where

P(t) = E (x(t) - x(t))(x(t) - x(t)) T ( )

is the estimation error covariance matrix for the optimal estimate S(t) of the state x(t) both of dimension n at time t E[-J denotes the exshypectation operator applied to the random argument and (bull) denotes the transpose operation Here

n

Tr[A] = T [A]^ (23) n=l

is the trace function The notation [ALj means the (ij)Jh_ element of the matrix A

Second suppose legal limits are placed upon the maximum error in the estimate of the pollutant level itself allowable at any time anyshywhere 1n the medium This case represents a problem of practical interest where a monitor might be used on-line to detect infractions of legal pollutant concentration levels in some airshed or watershed

14

Let the concentration of a pollutant of interest as a function of space and time bt denoted by Ut) Define

5(ct) = c(c) T x(t) (24) where x(t) as before is the state vector of dimension n of pollutant dispersal in the region is the coordinate position vector of the point where the concentration pound is being calculated and where c(c) is a vector (typically of eigenfunctions in the spatial coordinates c for the case of normal mode models) which maps the state x into the concentrashytion at the point pound In this application the function of the monitor is to provide an estimate (st) of pound(ct) such that the maximum error between the pollutant concentration and its estimate is maintained below a given constraint or bound for all times of interest and throughout the medium spanned by t Thus a measure of the uncertainty or error in the estimate of the pollutant level at some point c anywhere in the medium is given by the variance in the estimate C(t) denoted by a (ct)

Derive using (22)

o 2(Ct) B E (c(st) - C(t)) Z

= E ^(5) T(x(t) - x(t))c(c) T(x(t) - x(ty

- E[jc)T(x(t) - x(t))(x(t) - x(t) )Tc(s)J

= c ( 5 ) T E[(x(t) - x(t))(x(t - x(t))TJc(c)

= ztflMsty- lt 2 - 5 gt Thus the variance in the estimate of the pol lutant concentration i t s e l f

also termed the monitor output anywhere in the medium can be expressed

d i rec t ly in terms of the monitor state estimation error covariance mashy

t r i x P(t) and the readout vector pound() Hence a logical choice for a

15

performance criterion for the monitoring problem with bound on maximum allowable error in the output estimate is

J 2(ct) = a2(poundt)

= max a (t)

= max c(c)TPCt)c(c) 5 = StffytM) (2-6)

where C is the position of maximum variance in the estimate of uie pol shy

lutant concentration or output at time t

Thus the two estimation error c r i t e r i a to be considered here are

given in (21) and (26) for the optimal monitoring problems with bound

on state and output estimation error Once an error c r i te r ion is seshy

lected in a given problem the requirements of the optimal monitoring

system design problem are to select the optimal choice of monitor model

complexity the optimal number and qual i ty of measurement devices to deshy

ploy and their optimal locations in the environmental medium fo r a l l

measurement times tlaquo over the time interval of interest The added reshy

quirement of the problem of optimal monitoring management is to select

the optimal measurement times t K such that together with the results for

the optimal design problem the minimum cost monitoring program is found

which maintains the chosen estimation error c r i t e r ion within i t s bound

throughout the time interval of interest

This is a somewhat d i f ferent approach from those taken in the o p t i shy

mal design of systems with measurement cost by previous authors Athans

[ 7 ] defines a scalar cost functional which is a l inear combination of

the tota l observation cost and the mean square error in the estimate of the

variables of interest As in a l l problems with such combined performance

16

criteria most of which are direct extension1 of the original concepts of optimal control relative weighting parameters are required amongst the cost and estimation error terms to make the criteria adjustable to the needs of a specific problem (see Bryson and Ho [26] or Athans [10] regarding the concepts of optimal control See Athans [7] Kramer and Athans [73] Athans and Schweppe [12] Meier et al [92] Shoemaker and Lamont [117] Cooper and Nahi [27] Sauer and Melsa [107] Vande Linde end Lavi [125] Kushner [75] Sano and Terao [106] Dreyfus in Karreman [70] and particularly Aoki and Li [5] for examples of work in the area of optimal system design with measurement cost) The choice of such weighting parameters inevitably complicates the measurement system deshysign problem Particularly in applications in the environmental area combining the minimization of costs associated with measuring a process with the minimization of a measure of the errors made in the estimation of the variables in that process does not seem to address the correct problem In any practical implementation legal limits would be placed upon estimation errors allowable in the pollutant estimates On the other hand the use of a combined performance criterion typically admits arbitrarily high estimation error levels at certain points in time since the objective of the optimization is to minimize the time integral of the performance criterion not its instantaneous value Thus the minimization of a performance criterion involving the time integral of a weighted combination of measurement cost and estimation error is not solving the right problem in the context of an environmental monitor

Thus the separation of the optimal monitoring problem into the problems of optimal design and management leads to a problem structure which conforms better to the requirements in actual applications than

17

do those which come from the application of principles of optimal conshytrol with combined quadratic performance indices

If at all measurement times the cost of making a measurement of a given quality is a constant then the total cost of the required monishytoring program over the time interval of interest is directly related to the number of times a measurement of a given quality has to be made scaled by some cost weighting factor which is typically a function of the accuracy of the measurement instrument involved Roughly speaking then the total cost of the whole monitoring program is an increasing

function of the total number of individual samples which must be taken over the time interval of interest in order to maintain the value of the selected estimation error criterion within its bound over that entire time interval With this assignment of measurement cost as a function of measurement instrument accuracy then the two optimal monitoring probshylems to be considered in this study are defined as follows

The Optima] Monitoring Problem of the First Kind -Find the optimal number and quality of measurement deshyvices their optimal locations in the medium and the opshytimal measurement times such that the total cost for the measurements required to maintain the estimation error in the state of system below a given bound over the time interval of interest is minimized (27)

The Optimal Monitoring Problem of the Second Kind -Find the optimal number ana quality of measurement de-vices their optimal locations in the medium and the opshytimal measurement times such that the total cost for the measurements required to maintain the maximum estimation error in the pollutant concentration anywhere in the meshydium below a given bound over the time interval of inshyterest is minimized (28)

Notice that in the above problem definition the choice of model complexity for use in the monitor - the order of the model and perhaps certain aspects of its structure mdash has been excluded It is reintroshyduced later in Chapter 6 in a sensitivity analysis of monitor performance

18

as a function of the number of normal mode states retained in the series solution approximation for the dynamic equations involved

In what follows the problem stated in (27) or (28) are equivashylents referred to as the optimal monitoring problems with bound on error in the state or output estimate respectively

The next chapter considers normal mode models for pollutant transshyport which result in sets of first-order ordinary differential equations of the initial value type these are commonly known in system theory as continuous-time state equations (see Desoer pound32])

In Chapter 4 these continuous-time state equations are discretized in time (see Freeman [41]) for computational implementation and for use in the Kalman Filter in the optimal estimation problem In Chapter 5 attention is finally returned to consideration of the monitoring problems stated above

19

CHAPTER 3 NORMAL MODE MODELS FOR DIFFUSIVE SYSTEMS

The transport and dispersal of a particular pollutant in some reshygion P can be described by the following partial differential equation

K = 5 F + p P $ F laquoF + f + 9 O-1) where

F = mixing ratio of pollutant (grams of pollutant per kilogram of medium)

f = gradient operator y = local velocity of medium

p = mass density K = diffusivity coefficient

a = scavenging rate coefficient

f = stochastic pollutant source term (grams pollutant per unit time per kilogram of medium)

and finally g = deterministic pollutant source term (same units as f)

The terms of the right-hand side of (31) represent respectively (1) forced convection (or advection) (2) Fickian diffusion (3) environmental degradation (or scavenging) of pollutant from the region (4) stochastic and (5) deterministic pollutant production within the region

For some environmental media particularly the atmosphere the propshyerties p and K vary in space and time In some cases (31) will not be an accurate description where K may also vary with direction of diffusion andor the scavenging term may require a far more complicated description The above equation describes the transport of only a single pollutant species F if more than one pollutant is being considered an equation

20

like (31) is required for each one where more terms may be necessary to describe chemical reactions among the various pollutants if they exist Another case where (31) may be an incomplete description is with a meteorologically or hydrologically active pollutant one which can change the energy balance of the medium an example is a pollutant whose presshyence effects optical properties within the region For this latter case the full enevgy and momentum equations of fluid mechanics must be augshymented to (31) to complete the mathematical description of pollutant dispersal [3536] Thus modeling pollutant transport in general is seen to involve a great deal of analytical difficulty

While approaches to the solution of (31) typically evolve from the use of finite difference methods [808199] the extensions of modal analysis techniques proposed by Young [131] to pollutant transport probshylems will be used in this study The powerful results which come from the application of normal mode analysis are felt to extend directly to finite difference models as will be suggested at the end of this report thus use of normal mode models is not a real restriction

In order to gain insight Into the mathematical relationships involved in monitoring the dispersion of pollutants in time and space consider a more tractable simplified version of (31) namely

| | = wh - a + f + g (3)

where 5 - concentration of pollutant (grams of pollutant per

cubic meter of medium) The simplifications adopted in using (32) 1n place of (31) include the following mass density p is assumed to be constant which allows the use of concentration instead of mixing ratio as the dep3ndent variable

21

when the fluid can be assumed incompressible spatial variation of the diffusivity K is negligible and advection is dominated by diffusion as the principle mechanism of transport

Since (32) is linear in pound and since the main emphasis of this study iraquo upon the stochastic nature of its solution the deterministic source term may be eliminated since its effects could be added later to the stochastic solution by the method of superposition The result is

fsect = ltregh - a + f (33) This equation forms the basis for this study It is the stochastic difshyfusion equation including scavenging written in arbitrary coordinates (it should be noted that (33) equally well describes stochastic heat transfer in solids including radiation to the surroundings)

The above assumptions mean that applications of the results which follow to problems in atmospheric pollution are remote at best However (33) is sometimes used for long time scales in global atmospheric studies (see references cited in [131]) In such cases C is interpreted as the pollutant concentration averaged over mixing times sufficiently long that local wind velocities can be viewed as small scale effects of large scale eddies However application of the results to be developed around (33) are thought to be possible in groundwater systems or thgtse surface water systems for which local velocities are small

It should be noted that spatial variation in the density and difshyfusivity can be reintroduced into the problem to extend the results of this work to inhomogeneous anisotropic regions This can be done by dishyviding the region P into component subregions in each of which the asshysumption of constant p and K Is a reasonable approximation Young pound131]

22

has shown that by coupling such component submodels together low order models of relatively high accuracy are able to be formed

For now ignore the inclusion of poll tant scavenging in the transshyport equation It will be introduced later as 1t effects the results for the optimal monitoring problem for diffusive transport alone in Chapshyter 5 Thus with this final simplification the stochastic partial difshyferential equation governing Fickian diffusion results

|| = K7 25 + f (34)

Various methods exist for solving (34) but owing to its simplicity and useful areas of application the method of separation of variables will be used to convert (34) into an infinite expansion of ordinary difshyferential equations ir time whose solutions multiply related eigenfunc-tions in space Study has been made of the number of terms to retain in the expansion for adequate accuracy [131] Determination of this number will not be of concern here though its importance will be demonstrated by example in Chapter 6

Development of a finite set of continuous-time state equations of the form

amp = ampS + B (35) y = Cx + V (36)

from the application of the method of separation of variables to (34) is followed by developments for problems with media of various dimensions in the remainder of this chapter More rigorous theory regarding the separation of variables technique 1s summarized and referenced in [131]

23

31 Separation of Variables for the Diffusion Equation

Here the solution of the inhomogeneous stochastic di f fusion equation

(34) in arbi t rary coordinates is expressed as a f i n i t e set of normal

mode state equations of the form (35) with the use of the method of

variatiOTi trf parameters fcee Berg and fttftrego-r [ I S ] p 152)

Begin by considering the homogeneous counterpart to (3 4) namely

sectsect = KV2C (37)

Assume a solution for of the form

5(Pt) = x(t)e(P) (38)

where P is some point in the medium P Substitute th is into (37) to

obtain

x(t)e(P) = Kx(t)72e(P) (39) or

m=^- raquobullraquogt The left-hand side is a function of t and the right-hand side is a funcshytion of P so that for arbitrary P and t both must equal a constant the so-calle separation constant or eigenvalue Choose this constant to be -X so that the following separated equations result

i(t) + Xx(t) = 0 (311) V 2e(P) + | e(P) = 0 (312)

The equation in time (311) Is already seen to be in the form sought 1n (35) The spatial equation (312] 1s the Helmholtz equation which together with the boundary conditions for the medium forms an eigen-problem over P the region of interest The resultant eigenfunctions e (P) can be used to form bases for solutions of (37) assume a solution of the form

24

C(Pt) = 2 ^ x n(t)e n(P) (313) n=l

Substitute this into the inhomogetieous diffusion equation (34) to obshytain

oo oo

) i n(t)e n(P) = K ^ x n(t)7 2e n(P) + f(Pt) (314) n=l n=l

The eigenfunctions are distinguished by the property of orthogonality which can be stated as

[ 0 n + m ebdquo(P)em(P) dp = (315) rebdquo(P)em(P) dp -

n = m the integration occurring over the whole region P Use th is property in

(314) together with (312) to obtain

E i n ( t ) 1 e nlt P gt e n P gt - - laquo ] [ M ^ e n lt P V P gt d

+ f (P t )e m (P) dp (316) JP

The orthogonality then reduces (316) to the following set of first order ordinary differential equations

+ I f(Pt)ebdquo n(tgt deg -xM + I W^K^ dp (317)

The integral in (317) is the contribution to the nth mode due to the source term f(Pt) If f(Pt) can be expanded in a series of eigenfuncshytions it can be given by

25

f(Pt) = ) f n ^ n ^ - ( 3- 1 8 )

Multiply by e m(P) integrate over the region and apply orthogonality again to obtain

f fn(t) = f(Pt)en(P) dp (319)

Jp

where fbdquo(t) is the modal input for the ntjn_ differential equation Thus wit 19) (317) may be written in the compact form

xbdquo(t) = - y n ( t ) + f n(t) n = 12 (320)

This infinite sequence of ordinary differencial equations is known as the set of normal mode state equations and together with the mode shapes given by the eigenfunctions e n(P) they comprise the normal mode solution in (313) of the inhomogeneous diffusion equation (34)

The remainder of this chapter will concern forms for the eigenfuncshytions e (P) the spatial side of the problem This will involve solving for the eigenfunctions once the coordinate systems are specified and boundary conditions given Thus finding e n(P) the eigenvalues n and solving for the source terms fn(P) will be considered next for a range of different problems Solving for the time response x (t) will be apshyproached in Chapter 4

32 One-Dimensional Diffusion

Here w i l l be considered the problem of di f fusion in a one-dimensional

medium Classical ly th is is the problem of heat conduction between two

i n f i n i t e paral lel f l a t plates The problem also embraces that of po l lu t shy

ant d i f fusion where d i f f u s i v i t y constants dominate in one coordinate

26

direction only Consider then the system described schematically as

follows

bullgt f rtrade w l

^1 Sources f rtrade 1 r 1 t ~ J

Measurements

2 f

2L gt

- i gtJ Measurements

2 f

- 2 laquo^ 2 f

Figure 31

321 No-Flow Boundary Conditions - For the system of length 2L

described 1n Figure 3 1 the following specifies the related i n i t i a l -

boundary value problem

Bpoundjfcjabdquo K 3fpoundi5ja t f ( 2 l t t g ( 2 gt t )

dz-

gjC(0t)=0 5fc(2Lt)s0j

CUO) = bdquo

f^zt) ^ W l ( t ) ^ z - zw y

E[w(t)j = 0

EJytJw^T)] = W6(t - T)

f 2 ( z t ) H bdquo 2 ( t ) laquo ( z - z W z )

E w 2 ( t f = 0

(321)

(322)

(323)

(324)

(324A)

(324B)

(325)

(325A)

27

Erw2(t)w2(T)J = W2 laquo(t - T) (325B)

g i ( z t ) = u^t) oz - z u (326)

Thus the system represents diffusion in a one-dimensional medium of

length 2L and diffusivity K with no influx or efflux of the diffusing

substance at the ends The in i t ia l condition throughout the medium is

chosen as a constant 5 Q There are two stochastic point sources f j at

z = z and f at zbdquo with zero means and constant covariances given by W-l lt- Wn

W and W respectively One determnistic source of strength u^(t) acts

a t z - y Measurements y j ( t ) and y 2 ( t ) are taken at points z 1 and z Expresshy

sions ior these measurements in terns of the resulting system of normal

mode state variables are sought

As in (313) begin the analysis by assuming a solution of (321)

of the form CO

pound(zt) =2__ x n(t) cos ((n - 1) j f z) (327) n=l -

Substitute this into (321) to obtain

xbdquo(t) cos ((n-Dfz) n=i

n=l + f(zt) + g(zt) (328)

Right-multiply by cos Um-1) - z) integrate over the length of the medium and invoke the orthogonality of the eigenfunctions to obtain

28

2 r2L 2Lx n ( t ) = - (n - D 2 i | | x n ( t ) + f ( z t ) cos ( j n - 1) ^ z)dz

+ g (z t ) cos f ( n - 1) g f z ) dz n = l (329) 4=0

2 f 2 L

Lxbdquo( t ) = -(n - D 2 f - x n ( t ) + f ( z t ) c o s N n - 1) j f z ) dz

+ g(z t ) cos ( (n - 1) j f z)dz n = 2 3 ( 3 3 0 gt 4=0

The above may be generalized into one in f i n i te set of f i r s t -o rder ordinary

d i f fe ren t ia l equations in state-space form f i r s t by making the def in i t ions

n = 1 ^L 2L (n-l) zCTr2

n = 2 3 ^mdash (331)

(n-l)2lt7T2

With these definitions the complete normal mode solution for the one-dimensional stochastic diffusion equation equation (321) may be written as the sequence

n ( t ) = bull rr n ( t ) + r I f ( z t ) c o s ( ( n - ^ i f z ) d z

+ ^ - g (z t ) cos f (n - 1) g f z j d z n = l 2 n 4=0 ^ (332)

Thus the concentration pound(zt) is found by solving the modal equations (332) and substituting nto the ssumed solution (327) To do this

29

the solution must fit the initial condition so that

s0

CO

bull ) x n(0) cos((n - 1) ^ - z )

For this case it is easily seen that

x(o) = e 0

x n(0) = 0 n = 23

(333)

(334)

Point sources are the most straightforward types of inputs to represhysent in normal mode form (see Mac Robert I 8 2 ] p 124) The stochastic and deterministic sources are transformed as follows

2L

z=0 f^zt) cos ((n - 1) gf z)dz

-r (t)laquo(2-zH)cos(n-l)fz)dz

i(-raquopound) w(t) n - 12 (335A)

Similarly for f(zt)

-2L J - j f 2 (z t ) cos ((n - 1) 2Tz)dz

n -4=0

c i c o s f t n - l j ^ z ) w ( t ) n 12 (335B)

The deterministic term is

30

J- g(zt) cos((n - 1) z) n -4=0

dz

- | ^ c o s ( ( n - l ) ZL z u J u ^ t ) n = 12 (336

If the infinite series in (313) and (327) are truncated after term ngt the retained modal equation may be written as follows

0 deg Kit

O -lt-D2

1 traquo (ltraquobullgt if s )

(337)

bull with initial condition x^O) x7(0)

xbdquo(0)

(338)

The noise-corrupted measurements

1 c o s ^ z ) cos ((n-1) ^ Z l )

1 c o s ( z 2 ) cos((n-l)jf2 z) (339)

31

In summary the stochastic initial-boundary value problem (321) - (326) las been transformed through the method of separation of variables into a truncated sequence of first order ordinary differential equations (337) with initial conditions (338) Measurements made of the system are exshypressed as in (339) These equations comprise the state and output equations which may be written as

x = Ax + Dw + Bu (340)

y = S + v (36)

As in equation (34) most of the examples of interest here will exclude terms like gu in (340)

Once the truncated sequence of normal mode state equations is deshytermined the resulting pollutant concentration at any point z in the medium for any time t may be found as follows

e(zt) = Y x n(t) cos ((n - 1) |f zj ( 3 4 1 )

Finally insight into the structure of the finite normal mode model of the one-dimensional diffusion process may be gained by portraying relashytionships (337) (338) (339) and (341) in a bond graph [69] see Figure 32 The table at the bottom of the figure defines the functional relationships involved in the coefficients b c and d these are in actuality all modulated transformer elements

32

DETERMINISTIC b SOURCE

1

1 tt

1 -Hyendeg 1 trade NOISV

MEASUREMENTS

A h H yen 0

bdquoltbull

bull laquo ^ 5 ^ 7 l rs ((bull ) f((-gt5f-0 raquoraquo(laquobullI ffr) I ((-I) ^i)

Figure 32 Bond graph of normal mode state measurement and output equations used In the monitoring problem

33

322 Fixed Boundary Conditions - Consider the initial-boundary value problem

M | laquo t i K pound s ^ t i + f ( z gt t ) C 3 i 4 2 )

UOt) = 0 6(2Lt) = 0 (343) S(z0) = 0 (344) f(zt) = w(t)6(z - z w ) (345)

E[w(t)] - 0 (346) E[w(t)w(t)] = WS(t - T ) (347)

The essential difference from lthe problem in Section 321 is in the nature of the boundary conditions The so-called fixed boundary condishytions of (343) are referred to as the Dirichlet conditions by others (see Berg and Mc Gregor [18] Section 36) They represent the physically rare situation where the pollutant concentrations at the ends of the medium are fixed to some specified source levels as functions of time here those levels are arbitrarily chosen to be zero This difference manifests itself in the form for the eigenfunctions e (z) and eigenshyvalues x n

In this case assume a solution of (342) of the form

C(zt) = ) x n(t) sin (n bullpound z Y (348)

Substitute (348) into (342) r ight mult iply by sin ( m ^ f z ) integrate

over the length of the medium and invoke orthogonality to obtain

2 f 2 L

L n t ) = - n 2 bull x n ( t ) + f ( z t ) s i n ( | | pound z) dz (349) Jz=0

34

As before generalized modal resistances and capacitances may be defined n = 12

4L T~ST iTKir

Thus the general modal state equation 1s

(350)

Vgt - bull i bullltgt+ J_ fltzlaquogts1n ( n poundz)dz-(3-51gt The general solution (348) must satisfy the initial condition or

00

e(zo) = o =2_ V 0 ) s i n ( if z C 3 5 2 )

from which n=l

xbdquo(0) = 0 n = 12 (353) The stochastic forcing term 1s treated in a manner similar to (335A) for the case with no-flow boundary conditions

If the Infinite series in (348) is truncated after tern n the fishynite set of normal mode state equations results as follows

lb

o

44 o

laquo bull $ [bullsin (ST)

raquoltt) (354)

Note that the major difference in the dynamics between systems with no-flow at the boundaries (as In Section 321) and systems with fixed boundary concentrations (as in this section) is In the first element of

35

the matrix A In the former it is zero in the latter it is less than zero This implies that the initial condition of the first mode of the problem with no flow at the boundaries will remain unchanged in time whereas that of the fixed boundary concentration problem will vanish for large time This difference is central to the considerations of Chapter 5

33 Two-Dimensional Diffusion

Consider the diffusion of a pollutant in a thin flat three-dimenshysional volume For simplicity consider the region to be of rectangular shape with sides of lengths 21^ 2L 2 and 2L 3 in the C 5 Zraquo a n d 3 c o ordinate directions as shown in Figure 33

Figure 33

If the vertical height 2L 3 is small in comparison to the horizontal dishymensions 2L 2 and 2L 3 the gradient of the pollutant concentration In the C direction can be neglected so that the average concentration In the vertical direction can be assumed for the concentration throughout the vertical dimension for any horizontal location

36

Two dimensional di f fusion applies to such a simpl i f ied model Conshy

sider the case of di f fusion in a homogeneous medium with no-flow boundshy

ary conditions and with r stochastic point sources at various locations

in the medium The init ial-boundary value problem in two dimensions may

be wr i t ten for th is model as fol lows

3 2C(gt) 3 2 5U t ) N

H ( S t ) at

36(Ct)

1

3euro(t)

t) bdquoVg(pound

1 raquolaquo1 + f ( s t ) (355)

0 5 = 0 1 = 2 L r

- g ^ mdash - 0 C2 = 0 5 2 = 2L2i (356)

pound(50) = pound 0 (357)

E[w(t)] = 0

E t y U J w ^ T ) ] = W^t t - T ) 1 = 12 r (358)

The no-flow boundary conditions (356) correspond to the case which has interesting practical applications where many such models may be coupled together to span a larger possibly inhomogeneous region The initial pollutant concentration throughout the medium is chosen to be a constant in the initial condition (357) for simplicity r individual stochastic point sources each located at I = c I are described by the ~ wi [ w i wi^J relationships in (358)

The separation of variables of this two-dimensional initial-boundshyary value problem proceeds much like the one-dimensional case However in this case owing to the inclusion of two spatial dimensions the

37

eigenfunctlons 1n the general case (313) w i l l be products of independent

functions of the two space variables as follows

laquolaquonltSgt E en(laquolgtemltS2gt c o s (J 1 5q-laquo l ) c o s ( ^ h ^ ( 3 - 5 9 )

Thus assume a solution for (355) of the form

5 ( ~ C t ) L L x nm ( t e trade ( pound )

n=l m=l

= Z J Xtradegt(t) cos ( J - gt 217 1 ) ( j 1 1 ^ ^ lt 3 - 6 deggt This is a direct extension of the one-dimensional form in (327)

Applying the same techniques used in the one-dimensional problem leads to the following resultant normal mode problem formulation for the two-dimensional case (for details see Voung [131] p 76 Duff and Nay-lor [34] p 148 Mac Robert [81] sect 13 and particularly Berg and He Gregor [18] Chapter 10)

Define the generalized modal resistances and capacitances v and C as In (331) where v 1s either n or m as in (359) and u 1s either 1 or 2 to correspond with coordinate Ci or cbdquo as follows

R v C v

v = 2 3

2 L U

v = 2 3

(v - 1 ) Z L T I 2 2 L U

v = 2 3 (v - I )2KTT2

2 L U

(361)

As in the one-dimensional case substitute the assumed solution S(jt) given in (360) into the differential equation (355) right-multiply by eigenfunction e U ) integrate over the medium and use orthogonality

38

Transform the i n i t i a l condition (357) in a manner similar to (333) and

(334) and the set of igt stochastic point sources as was done in (335A)

Truncate the double- inf in i te series solution in (360) to include n terms

in each coordinate direct ion in order to obtain the following f i n i t e set 2

of n normal mode state equations

11

21

x n x21

X l bull -feyen7) nl

x l 2 bull(yen7 + yenF) 12

m 0 - ( bull ) xnn

1717)() i ^ - c ) ^ ^ ^ ) -

laquopoundcos ( F S) yenTeos ( )cos (fc S j

^-^)r)-fgt^0

w(t)

w 2(t)

raquobdquo(t)

(362)

with initial condition given by

39

Xbdquo10) x 2 1(0)

Vllt 0 )

x2(0)

x (0) o

(363)

For m noise-corrupted measurements y = Cx + y (36)

as in the one-dimensional case the measurement equation is written as follows

(D(i) raquoraquo(j^raquo2l)ltraquo(5q)

^bull )5frlaquoi) c 0 ( lt ^S)

Lw bull i

gt 2 1it)

bull

2

v

(364)

In the state equation (362) the position of the i t | i point source is

written as

(365)

where the components in each coordinate direction and c are as in

40

Figure 33 Similarly for the jth measurement position in the measureshyment equation (364)

i 5 gt (366)

also as shown in Figure 33 (do not confuse the subscript j with time indices used in later chapters here locally z^ means the vector of the coordinates of the jth measurement position)

The result is that the two-dimensional diffusion problem results in sets of normal-mode state and measurement equations which are directly related to those in the one-dimensional problem The only differences are that here SHOTS of the eigenvalues occur in the diagonal A matrix and products of the eigenfunctions occur in the C and D matrices The order of the system ie the number of states retained goes as the product of the number of modes retained in each coordinate direction Thus for the same number of modes n for each coordinate to obtain accuracy in the solution comparable to that for n modes in the one-dimensional prob-lem a total of (n) modes must be included in the two-dimensional model Dimensionality thus grows as the number of modes in one dimenshysion to a power equal to the number of space coordinates describing the domain of the medium in the problem

34 Three-Oimensional Diffusion

The results for the two-dimensional case can be extended directly to three-dimensional regions In applicable coordinate systems (see refershyences listed in Section 33 for conditions under which this extension is possible) In this case solutions may be assumea to be products of

41

eigenfunctions in the three spatial coordinates and may be written degdeg to traquo

( 5 t = L Z L x i w r ( t ) e n^lgt e bdquoA 2 gtM 3gt- lt 3- 6 7gt n=l m=l r=l

TII details of the development are identical to those in the two-dimenshysional case and lead to the same forms for the A D and C matrices in (362) and (364) except that the diagonal elements of A are sums of eigenvalues for eigenfunctions in three not two coordinate directions and the elements of D and C are triple products of the one-dimensional eigenfunctions Dimensionality of the resultant system of state equations goes as (rc)

Three-dimensional examples are included in the discussion of monishytoring systems in Chapter 5 where the development is carried further

It should be pointed out that the method of separation of variables used in normal mode analysis applies in other coordlante systems as well (eg cylindrical and spherical) See any of the references cited in Section 33 for their development

42

CHAPTER 4 MODEL DISCRETIZATION AND APPLIED OPTIMAL ESTIMATION

The purpose of this chapter 1s two-fold First the continuous-time normal mode state equation models of Chapter 3 are transformed into disshycrete-time recurrence relationships for use in the Aalman Filter The statement of these discretization methods is separated from the continushyous-time model development of the previous chapter since they stand alone and can be applied to a variety of modeling techniques which reshysult in systems of first-order ordinary differential equations In addishytion to the normal mode modeling techniques developed above they would for example apply equally well to uncoupled differential-difference models resulting from applying modal analysis [79] to finite-differshyence models [47] or to models resulting from using collocation methods [94] Thus the discretization methods outlined here are general and form a logical connection between the more familiar theory of continuous-time dynamic processes commonly associated with distributed system modelshying and the theory of discrete-time dynamic systems where the majority of applications have been limited to the fields of control system and aerospace system analysis and synthesis

Second the optimal estimation problem is defined and its solution with the Kalman Filter is stated While details of its development are referenced in the literature a concise summary of an algorithm combinshying the simulation of the response of the model of a physical process with all necessary calculations for the optimal estimation is included at the end of this chapter

43

41 Discretization of the System Model

411 The System Model Equations - The systems under considerashy

t ion are typ ica l ly modeled with sets of continuous-time f i r s t -o rder

ordinary d i f fe rent ia l equations of the form

x = Ax + Bu + Dw (41)

y = Cx + y (42)

where the etatietios of the i n i t i a l state x (0 ) disturbance vi(t) and meashy

surement error v ( t ) are given by

E[x(0j ] = m 0

E[x(0)x(0) T ] = M 0

E[w(t)] = Q

E[w(t)w(x)T] = W(t)6(t - T ) (43)

E[v(t)] = o

E[y(t)v(T)T] = y(t)s(t - x)

E[x(0)w(t)T] = 0

E[x(0)y(t)T] = 0

E[w(t)v(T)] = 0 (43)

The discrete-time counterpart of the above is

~ X K+1 = SW^K + ~ J K+1 + raquoK+1 W-laquo)

K+1 = SK+I^K+1 + X K +1 bull W-Sgt

where the dr iv ing functions are defined by

44

J^+l raquo(t K + 1t)B(t)u(t) dt (46)

~K+1 K+1

j(t K + 1t)D(t)w(t) dt C47)

These two terms are convolutions of the deterministic and stochastic inshyputs and ) the state transition matrix defined by the matrix differshyential equation

I = Araquo (tt) = I (48)

In the above the system matrices A B C and p may be functions of time For the time-invariant case however certain simplifying obsershyvations and approximations may be made Let the time step be fixed ie T = (tv+i (bull) a n d obtain (see Appendix A)

amp1 MlVTV-efiT-I+AT + p - t ^ j mdash (49)

-K+l I)AB

T ( I + 2T CA1) + 57 (AT)2 + )sect (410)

= T(J + 2J-(AT) + 3I (AT)2 + )D (411)

With these definitions i t is possible to discretize the problem which

results in a form necessary for the Kalman Filter The discrete form of

the state equation becomes

K+1 amp1laquoK + amph + poundK+SK- ^ J 2

45

Here it is assumed that the input terms u K and w are sampled at time tbdquo and held constant over the interval ti t lt tv+i t n a t isgt

u(t) = u(t K)

laquo(t) = w(tK) t K lt t lt t K + r (413)

This assumption reduces the calculation of the convolutions for u bdquo + 1 and

w K + in (44) given by pound46) and (47) to the far simpler matrix-vector

mult ipl icat ions in (412) above This is possible since the matrix ser-

ies for K and r pound + in (410) and (411) are analy t ica l ly exact expresshy

sions for the convolutions when the variables are sampled and held as in

(413)

The matrix series in (49) - (411) are c lear ly impossible to evalushy

ate exactly The truncation of those series to a pract ical balance beshy

tween accuracy and computational load has been suggested by H M Paynter

(see Brewer [ 22 ] Ch 8) The number of terms k retained in the series

is found as a function of the maximum size of the elements of the matrix

[AT] A bound on the size of the remainder in the series is used to deshy

termine where the series should be truncated Standard integration

techniques (e g Runge-Kutta or l inear multistep methods) are not used

here under the assumption that i f the time stepsize T = ( t j + - t K ) is

su f f i c ien t ly small smaller than the smallest character ist ic tiroes in

the system response then the accuracy of the truncated series approxishy

mation w i l l be suf f ic ient for the purpose of th is study

46

412 The System Disturbance Stat is t ics - I t can be shown

(Jazwlnski [65 ] p 100) that the convolution w K + 1 of the stochastic

variable w(t) in (47) 1s i t s e l f a zero-mean white Gaussian sequence

with covarlance matrix given by

0 K + 1 1 K+1

= I ( t K + 1 t ) 0 ( t ) W ( t ) D ( t ) T 5 ( t ^ t ) 1 d t (414)

This term represents the increase in uncertainty in the estimate of the system state over the time interval T = (t K + - tbdquo) due to the stochastic disturbance term w(t) as in (41) This term is used in the error co-variance equations in the Kalman Filter in the next section

W(t) is a deterministic quantity so the integral in (414) does not involve a stochastic integrand However its numerical integration in general is still far from trivial For this reason a recursive method for the evaluation of amp + 1 will be used a method which closely follows the truncated series approximations for bdquo + + 1 raquo and I V developed in Appendix A

The development of the algorithm to compute Q+ is detailed in Appendix B The method involves differentiating gbdquo + in (414) with respect to time resulting 1n a matrix Riccati equation Hamiltons equations are then found for the Riccati equation which are then solved as a state transition equation Partitions of its state transition mashytrix are shown to comprise the resultant expression for fi An iterative numerical technique (see DAppolito [29]) is used in the actual implemenshytation

47

Suffice it to say here that a method is used to find state transishytion matrices $ and $bdquo (see Appendix B) such that

OK+1 = 2lt T )$22 ( T ) T- lt 4 - 1 5 )

42 Optimal Estimation -The Kalman Filter 421 Optimal Estimation mdash State estimation in dynamic systems

is covered widely in the literature Various developments of the Kalman Filter for optimal estimation can be found in Kalman [66] Kalman and Bucy [69] Sorensen in Leondes [78] Sage [105] Bryson and Ho [26] Heditch [85] Jazwinski [65] and 1n an extensive Bibliography in IEEE [62]

The reader is referred to any of the above for analytical derivashytions of the Kalman Filter equations The emphasis here is upon their implementation taking advantage of properties peculiar to the models being used in this study

The optimal estimation problem and its solution in the Kalman Filter are now described Given is the discrete-time dynamical system described by the following difference equations

raquoK+1 bull K +1K + amp1laquoK + 4lK C416)

K+1 =poundK + 1K + 1 + X K + T laquobullgt

Here x K is an n-vector u an p-vector w an r-vector and y K and v R

raquoi-vectors The vectors x w and v are white normally distributed ranshy

dom vectors with the following statistics

48

ECs 0] = m Q E Xo So 3 gt pound [ K ^ = 2 E KSj = y^Kj

E t y ^ = 2 E K J = Vty

E o KKJ = Q E _5o raquoK = 2raquo

E raquoK l j bull 9-

(418)

A notational convenience will be that for a normally distributed random vector 5 with mean value p and covariance Z pound is described as follows

K N(uZ) (419) The recursive linear estimation problem for the system above is to

determine an estimate x K of the state x at tj that is a linear combinashytion of an estimate at t| and the measurement y K which minimizes the expected value of the sum of the squares of the errors in the estimate that is that estimate which minimizes

$-$-$bullbull (420)

I t has been shown (see Kalman [66]) that the following comprises a

f i l t e r which generates the best estimate in the mean-square sense of

(420) of the state of the stochastic system (416) - (418)

The predicted error covariance matrix PJ+1 is defined by

K+1 x K

~K+1 K+1 ) (K+1 ~K+lJ (421)

and represents the error in the predicted estimate 3pound + 1

o f X K + 1 a t K+1

based upon measurements up to and inc lud ing y K a t t bdquo and i s given by

~K+1 5K + 1 poundK$K+I + 8 K + r (422)

49

Eg ^ H0- (423)

Note in equation (422) that Q K +i 1s the uncertainty in the estimate due to the stochastic input w(t) acting over the interval tbdquo lt t lt tK+- in the state equation (41) This is discussed 1n Section 412 and at length in Appendix B This is pointed out here since many references for the Kalman Filter assume a discrete form for the stochastic input which 1s sampled and held as in (413) and (416) In those cases the so-called disturbance distribution matrix r+ in (416) comes Into the preshydicted error covariance equation as follows

EK+1 = K+1EK$K+1 + ^ K + l ^ K + T

where Wbdquo is the sampled value of the disturbance covariance matrix W(t) at t = tbdquo in (43) In this thesis since the system being studied is continuous in nature equation (422) will be used instead

The Kalman gain for the optimal filter may be shown to be

K T f K T j 1

-K+1 = EK+l-K+l[K+lEK+l-K+l + -K+lj bull ( 4 2 4 gt

The predicted state estimate at time t K + knowing measurements at times up to and Including t K is

amp1 4l~K + amp1-V lt-25) laquoS = bull (426)

The corrected state estimate at t K + 1 including the measurement at

raquopound bull amp 1 + ~GK+1 ffK+1 fiK+l8K+l] bull ( 4 2 7 gt

time t| + is

50

And finally the corrected error covariance matrix at t bdquo + 1 given statistics of the measurement at t bdquo + 1 is

E pound I bull [l bull - G K + I pound K + I ] E K + I [ I - SK+IpoundK+I ] T + sectK+I~ V K + IsectK + I T - lt 4- 2 8gt

An alternate form of the above can be shown to be

$ 1 - [ l bull e K + ipound K + i ]~ p K + r (4-zraquo)

Each form has Its own advantages as will be shown in the next chapter Note the choices for the initial conditions for the covariance equashy

tion (423) and the state estimate (426) They are precisely those given for the system itself in (418) This 1s the best Information available about the initial state to use 1n the filter It turns out that if knowledge of these initial conditions 1s Imprecise the effect upon the later values of the state estimate diminishes as new measurements are processed

422 Summary of Filter Algorithm - For convenience the system simulation equations and Kalman Filter equations are listed together as in Figure 41

The equations 1n Figure 41 are sufficient to both simulate a physical system((416) and (417)) when the actual system cannot be used and to compute the filter calculations themselves The computational cycle 1s as 1n the figure Time is initialized to zero K = 0 and each equation computed Upon completion of one cycle time 1s Incremented and the recursion 1s carried out again until the final time of interest is reached

SI

K+I = K+I2K + ampISK + TK+ISK- 5O bull N(Sto ftgt (416)

ampi - slampW + 9 m bull E - Ho (422)

^K+1 deg EK+1~K+1 poundK+IEK+IpoundK+I f poundK+IJ (424)

K _ 4K JK VK JO K+1 ~K+1 K + iK+lV 0 3 0

(425)

poundK+I = SK+I^K+I + XK+I (417)

jK+1 _ K - r c Jit -| K+1 K+1 raquoK+1 L~K+1 K+lIC+lJ (427)

Etrade [l - SK+IpoundK+I]EK+I[I - sectK+IpoundK+I] T + S W S K + I sect K + I T (428)

Figure 4 1 System simulation aad Kalman Fi l ter computation

52

CHAPTER 5 OPTIMAL DESIGN AND MANAGEMENT OF MONITORING SYSTEMS

The purpose of this chapter is to propose a method of solution for the monitoring problem as stated in Chapter 2 The models for various processes considered in Chapter 3 are discretized using the methods of Chapter 4 for computation in the Kalman Filter The structure of the filter is studied in the context of the monitoring problem in order to obtain a set of monitoring design and managment equations Properties of these equations are examined in detail to yield the optimal solution for the monitoring problem for the case of time-Invariant systems with constant source and measurement noise statistics and time-invariant estimation accuracy constraint Numerical examples to illustrate the conclusions follow in Chapter 6

51 Monitoring and the Kalman Filter

As stated in Chapter 2 two variations of the monitoring problem arise in practice The first is to maintain the error 1n the estimate of the state of the system beow some bound over the complete time intershyval of interest The emphasis on limiting the error in the estimate of the state arises in the use of that estimate In closed-loop state feedshyback applications where high accuracy in the state estimate is of primary importance The second variation in the monitoring problem is to mainshytain the error in the estimate of the output the system variable itself everywhere in the medium below some bound throughout the time interval of Interest The system variable could be pollutant concentration radiation level temperature etc The thrust behind maintaining high

53

accuracy in the knowledge of the system variable cones with application in the detection problem where it is required to know to some degree of certainty where and when a pollutant concentration exceeds a legal limit

Both of these variants can be approached within the structure of the Kalman Filter As described in Chapter 4 the filter provides an optimal estimate of the state of a linear stochastic prrcess optimal in the sense that the expected mean-square error between the estimate and the state Itself is minimized Thus when taking a measurement of an actual physical system the Kalman Filter uses the information obtained In the measurement 1n the best way 1n order to update the estimate of the state The discrete-time recursive nature of the filter provides a fertile structure from which the solution to the monitoring problem can grow

In either case with a bound on state or output estimate error the basic structure of the problem is the same to take the fewest total number of samples over a given time interval in order to maintain the error in the estimate within some bound This says nothing about the number of samples to be made at each measurement time whether or not that number changes from measurement to measurement whether sample locashytions move from measurement to measurement just that when the time inshyterval is over the least number of samples were necessary to insure the accuracy of the estimate

As summarized 1n Figure 41 the first step 1n the Kalman Filter algorithm 1s to Initialize the estimate of the state vector and state estimate error covarlance matrix (from (426) and (423)) The state esttate and its error covariance matrix are then predicted ahead one

54

step in time 11416) and (422)) Sefore each measurement the Kalman gain 1s computed (424) Next a measurement 1s made of the process Itshyself (417) which starts the correction phase of the algorithm The new information from that measurement 1s used to correct the estimate of the state (427) and the statistics associated with the measurement are used to correct the error covariance matrix (428) Finally the time is incremented and the new corrected values are used to reinitialize the prediction equations at the beginning of the algorithm so that the algoshyrithm may be repeated for the next cycle

This sequence of predicting taking a measurement correcting preshydicting taking another measurement etc was the original calculational form of the Kalman Filter (see Kalntan pound66]) Since then applications to guidance and orbit determination for example have resulted in splitting apart the prediction and correction phase allowing for reshycursive prediction of many cycles before a measurement is taken and its corresponding correction made pound301 [44] [65] Moore [95] has shown how this splitting applies In use of the Extended Kalman Filter in monishytoring system design for nonlinear aquatic ecosystems (see Jazwinski [65] for detailed discussion of the Extended Kalman Filter) Thus separating the prediction and correction of the estimate has been suggested as a beginning for the solution to the optimal monitoring system design and management problems (see Brewer and Moore [24] and Brewer and Hubbard [23])

Suppose then that the Kalman Filter algorithm is initialized as usual but instead of taking measurements at each cycle sampling 1s deshyferred until it 1s absolutely necessary to gain more information about the actual system throufh a measurement in order to mlt- intain the error 1n the estimate within some bound This seems like an approach which

55

would logically lead to the fewest number of samples over a given time interval but in fact the optlmaltty of sampling only at times when the error limit is reached is difficult to prove Since it can be shown that for certain special cases the minimum cost measurement program is to sample only when the estimation error is at its limit assume for now that the optimality of such a sampling schedule extends to all cases in order to proceed in the development of relationships for the optimal deshysign problem defer until later proof of the fact that sampling at the limit is the optimal solution of the management problem

Once the bound is reached it is necessary to take a measurement A major phase 1n the monitoring problem is at hand that referred to as the design problem [24] At a measurement time the design problem seeks to answer the following questions

1) What is the best number of samples to take for this measurement

2) What are the best types of samplers to deshyploy

3) Where are the best sites in the medium at which to locate the samplers

The term bes appears in all these questions but best Is what sense In the context of the monitoring problem here posed best can only mean In the manne- which will lead to the fewest total number of samples being taken over the entire time Interval of interest Thus if the assumption of the previous paragraph is true that is if it 1s optimal to sample at the estimate error limit only then the goal of the design problem should simply be to answer (1) (2) and (3) above such inat the time when the error bound is next reached is maximised Then if at each measurement the time to the next measurement is maximized overall the number of measurement times should be minimized

56

However this doe not take into account changing numbers of samshyplers at various measurements For now ignore this part of the problem in order to establish firm results about the case where the same number of samplers are used at each measurement time deferring until later remarks about the general problem

Thus the result in the solution of the design problem also solves the management problem that of the optimal timing of the measurements With this framework established for solution of the monitoring problem first the case of bound on error in the state estimate is considered then that of bound on error in the estimate of the system variable or

output will be dealt with

52 One-Dimensional Diffusion with No-Flow Boundary Conditions

A most important recent application of normal mode analysis is the bilateral coupling of diffusive elements (see Young [13TJ) Throjgh simshyplifying infinite order normal mode models in a quentitative manner it is possible to approximate the characteristics of an inhomogeneous medium by coupling together homogeneous models This is done by assuming no-flow or Neumann boundary conditions at the junctions and introducing pseudo-sources to account for resultant differences The technique readily extends to multiple space dimensions and is thus very powerful

With the practical importance of this technique established [131J the case of ore-d1mens1onal diffusion with no-flow boundary conditions is a fundamental system to consider 1n optimal monitoring system design and management This case is used as the basis for all the theoretical developments in the following sections For completeness extensions and applications of the results to other diffusive systems are considered in the last sections of this chapter

57

53 The Design Problem for a Bound on the Error in the State Estimate

531 The Infrequent Sampling Problem - In the statement of the recursive linear estimation problem in Chapter 4 the Kalman Filter was stated to be that filter which minimiz 5 the mean-square length of the error vector between the estimate of the state and the state itself of a linear stochastic system That is for all times tbdquo it mirimizes

Notice from (420)and (429) that the covariance matrix is defined by (

EK~K+1 ~K+V~ K+l K+l ltamp]bull lt5-)

that is at time t K + the covariance matrix just after the sample is K+l given by PK+-i- It can be seen from the aDOve that

^K+l bdquo YfcK+l W E ^ x ^ - x K + v ) [ ^ - x R + 1 ) I - T r | p mdash I (52)

Thus in order to minimize the mean-square length of the estimation error vector for a measurement at time t+ that measurement should oe chosen which minimizes the trace of the corrected covariance matrix Thus the choice of a convenient scalar performance index for the probshylem of maintaining the error in the state estimate within some bound is to use the tvaae of the estimation error covariance matrix

Returning then to the requirements of the design strategy of the last section it is necessary to choose a measurernt so that in this case the time when the trace of trie covariance matrix next reaches its

limit will be maximised This might be thought to be the same thing as finding that measurement which minimizes the trace of the covariance matrix at the time of the measurement but as will be seen these are not necessarily equivalent To study the evolution in time of the

58

trace of the covariance matrix repeat the equations for the predicted

and corrected covariance matrices

pK+1 ~K+1

where

[l - sect K + 1 pound K + l ] pound K + 1 [ l - sect K + l S K + l J + 5 K + 1 V K + 1 G K + 1

T (428)

sectK + I - ~ P U K + I [ S K + I amp I S K + I + K + I ] lt 4- 2 4gt Use (424) and (429) to obtain

Note that the two forms for p^Jj (428) and (53) can be shown to be equivalent (see Sorensen [78]) Both are listed since It Is u n shyknown that the former is superior computationally from an accuracy point of view 1n that it tends to preserve the pos1t1ve-def1n1teness of the covariance matrices better (see Aoki [ 3 ] ) but the latter is much simpler to manipulate analytically Thus (53) rill be used 1n all the analysis involved in the solution of the monitoring problem and in any numerical gradient algorithms resulting from that analysis whereshyas (428) vriU be used directly In the filter calculations themselves

To make the problem tractable constrain the range of the problem as follows

Assumption Only systems of the form (340) will be considered tthere the eyetem matrix A aontrol matrix g and disturbance matrix D are all time-invariant and c laquo where the disturbance noise oovarianos matrix W and measurement noise oovarianae matrix V are aonaiant

With this assumption initialize the algorithm at time t Q by setting the

covariance matrix in (422) to tfQ Then predict to time t to get

Pdeg = j H 0 j T + n (55)

59

where the subscripts have been dropped owing to the condition of assumpshytion (54) and $ for a fixed time step Is given 1n (49) Next it is necessary to check to see if the error limit which may be called Tr_ has been reached That 1s 1s

TS lrlim

I f not advance in time to t 2 and predict ahead again

Edeg bull laquoET + 5

Check again

I f not

$ZM$ + 4flraquo + Q (56)

[4 TrIBI gt Tr I i f f l

Edeg - JE 2V bull 0

2 0 2^ T

bull t39(jS3 + S 2S Z + 3 T + 8gt (57) Assume that fter K steps the limit is finally reached From Appendix C (57) can be generalized to the form

bull f sn-VlT eS - raquo bull gt s^V 1 bull (58)

It is now necessary to make a measurement Apply (53) to obtain for the measurement at time t K

Note here that from assumption (54) y 1s a constant thus no subscripts but Q K 1s net Q K 1s what 1s available to change 1n the design of the

60

measurement to be taken It is again to be chosen to maximize the time over which prediction may take place before the limit on the trace of the predicted covariance matrix is reached at the next measurement That is find Q K at time t K such that N is maximized where

DK ANbdquoKN T An-l nn-l T K 1 M

pound K + N EK + gt 4 Si (510)

and (511)

In developing a strategy for the choice of Gi to maximize N the properties of (510) the matrix solution of the linear matrix recurshyrence (422) are now considered Since the recurrence is linear In P its solution may be decomposed into the zero-input response and the zero-state response these terms are more commonly known as the homogeneous or unforced and particular or forced solutions in differential equations or dynamic system theory The first term in (510) is seen to involve only the initial state of the covariance matrix just after the sample at time t K the zero-input response The second term the zero-state response has nothing to do with the covariance at time t K and involves only the strength of the disturbance noise ft An observation can thus already be stated

Conclusion I The selection of C K at time t K to maximize t ^ the time of the next measurement is solely a function of PR and not the forcing function (CI)

This can be seen by rewriting (510) as follows

61

T T pound K + N ( C K ) - J N E pound ( G K ) N + ) n 10raquo B 1 bull (512)

Here it is seen that the predicted value of the covariance matrix at time t K +bdquo is a function of the measurement matrix back at time bdquo However only the first of the two terms in the expression for the predicted co-variance matrix involves that measurement matrix

Thus in order for t bdquo + N to be as large as possible before condition (511) is met it is required that the trace of the covariance matrix at time t K + N be minimized by the appropriate choice of the measurement matrix at time tbdquo This presents a formidable problem in the general case The general solution might be approached through the use of dyshynamic programming or through a direct search algorithm structured as follows

(1) Pick in sone manner Q|q (2) Predict ahead to time t K + N using (512) until (3) Tr[PJlt + N(C K i)] gt T r J i n

(4) Store N in N return to (1) (5) Stop when convergence to largest possible Nj Is assured (513)

Such a procedure could be quite costly to execute since it is a direct search technique rather than a technique for which an analytical expresshysion for the gradient of the objective function cn be found Also each evaluation of the objective function that is the finding of each Nj when (3) 1s satisfied Involves carrying out the solution of the mashytrix equation (422) N ( times (It should be mentioned that since the interest here is only in the trace only the diagonal terms of (422) need be computed each time but this 1s still costly nonetheless)

Since an algorithm of the type In (513) is cumbersome at best seek more concise solutions for the problem in (510) and (511) To do

62

this more information ci the structure of the process Involved Is necesshysary that is more knowledge of the forms of $ and Q Suppose the sysshytem which $ represents is a one-dimensional diffusion process with no-flow boundary conditions see Section 321 for such a system Suppose that the problem 1s formulated in normal modes so that the system matrix from (337) 1s given as

o A =

KIT

o bull lt - I ) 2 F

(514)

Thus for this time-invariant system matrix i ts state transition matrix

for the time step T = ( t K + 1 - t K ) according to (49) is given by

O

pound laquo T

Kn2

T ~~7 4LZ

o -0-1) ^ T

(515)

Notice that with the ordering of the eigenvalues in the system matrix in (514) the diagonal elements of laquo written t^ exhibit the following property

11 raquo 11 1+1 1+1 bull ^ deg l23n-l (5 where n I s t h e number of states retained in the normal mode mode and is thus also the dimension of the square matrices 6 and Choice of

63

a normal mode model has resulted 1n this unique relationship in (516) which allows drastic simplification of the optimization problem in (510) and (511)

Expand equation (510) to obtain

pK

tnlv iwl nraquo1

ML fir1

C517)

From the form of (517) using property (516) shows that for N large

the first term of (510) 1s given by

(518)

1 and j i- 1

64

Thus for N sufficiently ^rge all that 1s left of the homogeneous term 1n (610) at time t K + [ ) U -ie first element of g at time t R This result together with Conclusion I yields

Conclusion II For N large the following are equivalent r bdquo - (1) Find C K which minimizes Tr[EK+N(CK)J i (2) Find CKwh1ch minimizes ^ ( C K ) J CII)

From the discussion just after (512) 1t 1s obvious now that the choice of pound K gt for the optimal measurement matrix at time t K can be stated as

Conclusion III For (Llarge to maximize t|lt+N the time when Tr|E^+H(CK)J gt Tr j i m choose cj at time t K which minimizes ( E R ^ K O H (CIII)

Thus for the asymptotic case of N sufficiently large so that (518) applies within some tolerance level the monitoring problem is solved Such an infrequent sampling program may well apply to many physical sysshytems where the dynamics of the transient response are fast in comparison to the time between samples The above conclusions reduce the monitorshying system design problem to one of minimization of the (ll)-element of P in (59) a procedure for which writing the gradient of the objecshytive function is straightforward

In order to more fully understand the nature of the solution (510) consider the second term the zero-state response in (510) and (517) This term is a matrix convolution of the disturbance covarlance matrix Q and the statf transition matrix 4 As such it possesses qualities of convolutions of other linear processes Write the general element for the second term of (517) as

8 l l 5 l a i j L l W l a n d j ^ l (519) n=l

65

From property (516) 0 gt lt 1 1 + 1 Recognizing the products (ijtj) in the convolution term 1n (517) as conmon ratios in geometric progressions the element of the matrix convolution may be seen to apshyproach the limit

L n d j f 1(5-20)

Thus a l l the elements in the second term of (517) go to steady-state

constants as N gets large except the f i r s t which grows monotonically

as a ramp with slope [ f l j i i

Thus (510) may be wri t ten schematically as

+ pK -K+N

o c a sS

(521)

where the (1l)-elements of the matrices are shown partitioned from all the other elements of those matrices- this 1s a notatlonal convenience used throughout what follows From (521) the simplified relationship for the trace can be written as

[CCeK^^K^NMll^r^J Tr|P^bdquorc^| - |P)(Cbdquo)| + H[BJi + Tr| 8 I- (522)

The meaning of Conclusion II becomes clear In that changing the nature tbdquo by char

only through P K lt G K ) J it at time t K + N Then

(523)

of the measurement at time tbdquo by changing C effects the value of Tr P pound T N ( Q K ) only through P K lt G K ) J f o r N sufficiently large Also say the equality in (511) is just met at time t K + N gt Then

(523) can be used to demonstrate Conclusion III From (520) and with

66

a as defined In ( 5 2 1 ) 1 t Is seen that for various choices o f Cbdquo in SS - K

( 5 2 3 ) T r rn ] remains Invar ian t so long as N remains s u f f i c i e n t l y l a r g e LSSj

Thus In the equality In (523) the f i rs t two terms on the right-hand

side always sum to a constant and as CK 1s chosen to minimize IPKCK)J

N 1n the second term Is maximized Conclusion I I I 1s thus seen to hold

whenever the limit 1n (518) 1s approached

A graphical depiction of the relationships 1n (522) and (523) 1s

shown In Figure 51 In Figure 51A a representation of a typical plot

of the ful l trace of P over tine is shown while 1n Figure 5IB the eleshy

ments of the asymptotic approximation In (522) are drawn Writing the

trace of the matrices In (517) obtain

-W=fe]bdquo+[4^ [44 laquo[laquobdquo bull m2zEfv~) + bullbullbull+ r^yr lt5-24gt

As N grows large (524) t~-t to (522) but during the Initial transient period the last terms of both lines of (524) are going through changes These changes account for the approach to the asymptotic slope near time tu In Figure 51A

Notice how If a different choice of C K results In a smaller value of | P K ( C K ) 1 Figure 5IB that the start of the plot would be transshylated downward with the same offset of Tr[(jJ to result in a longer time

SS interval before the limit Trlim 1s reached again

532 The Effect of a priori Statistics - Choice of H Q and m Q

in the filter equations (416) and (422) has come under considerable study ever since the introduction of the Kalman Filter Much effort has gone Into identifying these terms in actual applications and consider-

67

Tr[ppound+H]

T r [ $

(A) Actual response

Trlpound]

Vim

T-reLj

gt _ T1i

raquo - T 1 M

(B) Asymptotic approximation

Figure 51 Schematic representation of the basic relationships In the Infrequent sampling problem

68

able time spent in assessing the sensitivity of the results to lick of knowledge of the Initial statistics Attention 1s now turned to these topics within the framework of the above results for the case of Infreshyquent sampling

It 1s required to find the effects that various values for M Q the matrix of 1mt1al uncertainties 1n the estimate of the state xX have upon the optimal measurement system design poundbdquo for che first measurement at time tbdquo For the case of bound on (58) It is necessary to sample when at time t For the case of bound on error in the state estimate from

bull [ p 0 K ] c T r [ V T + ^ J n 1 S J n l T gtbull ^ U m - lt 5 - 5 gt

n=l

If K lo sufficiently large at the f i rs t sample so that (518) approxishy

mately applies then (525) may be written as

[]u Mil + T [

s^ l r t i m ( 5 2 6 gt

as 1n (523) Thus only the (lf)-element of matrix H Q 1s of any signishyficance 1n the first sample for K sufficiently large Furthermore sines Tr[ f ] is a constant for various choices of H Q the remaining two

SS terms 1n the left-hand expression of (526) sum to a constant over all choices of M_ To deduce the significance of this write out the mashytrices for (525) in a manner similar to (521)

K Pdeg = $K tyfV 1 (5-27)

n=l for K large (518) allows (527) to be written as

69

]11 K[n ] n 0

pdeg - + +

o O a is

(528)

Note that 1f (520) applies then a par t icu lar ly important result fo l lows

namely that the ( l l ) -element of the predicted covariance matrix at the

f i r s t measurement time is given by

K L K ^ I l laquoSn)= laquowst (529) no natter what HQ may be

For the measurement i t s e l f E K i s used in the following expression

Pdeg - PdegC iyK+v]$- (530)

But from (528) since for K large a is f i xed and since (529) holds is

making the optimum choice C of C^ 1n (530) Is independent of the Inishytial error covariance matrix H Q but directly related toTr which is summarized in the following

Conclusion IV For K large determination of the optimum measurement matrix C K at t K 1s determined by the error limit Trlim and is independent of HQ (CIV)

Conclusion V For K large the only effect (jg has upon the monitoring program is in determining with T r z f m the time of the first measurement t K (CV)

Thus if the constraint T r ^ in (525) Is such that (518) and thus (526) hold choice of the Initial condition for B 0 is of little imporshytance However in practical applications the better approach to the identification of the a priori statistics is to concentrate analytical efforts upon the identification of only the (11)-element of Mg and not ujon identifying the full matrix in cases where the simplifying approxishymations of the infrequent sampling problem apply In this manner a better estimate of the first state should be possible for the same

70

analytical effort leading to a longer time before the first sample is necessary

533 Fixed Number of Samplers at Each Measurement and Fixed Error Limit - Thus far little has been said about the number of sampling devices to be deployed at each measurement time Consider here what happens when the same number of samplers m is to be used at each meashysurement Consider further the case when the error limit placed upon the uncertainty in the state estimate Tr m is the same throughout the problem

Suppose a sample has just been made at time t K In order to study the optimal designs which arise-at different measurement times consider the next two sanples which occur at times t|+N and t K + N + f ) Since T r J i m

1s constant If both N- and N 2 are large in the sense of (518) obtain the following conditions at the two sample times

^ U j ap()] n

+ Wi + T r s f lrnlt r K+N I r K+N lt

gt Tr lim

(531)

(532)

Since Tr[ 8] is the same for both measurements for the case of the

equality in both (531) and (532) I t is seen that

[i$o]n bull W T = p(eK + N l) + NgCfl (533) 11

Now if the full matrices In (532) are written out obtain

r p

K + N l l - PK+N N 2 r s j u

0 1 ^ Jl1 + 1 + N 2

O O ss

(5-34)

71

Substituting N 1 for N in (5211 comparing with C534) and using (533) leads t o

K+N it K + l E K + N = ER+N +N N l a n d N2 s u ^ 1 c 1 e n t 1 y large (535)

Thus the predicted covariance matrices at each sample time must be equal

The corrected coyarJance xoatrices just after both samples magt then he

written from (53) as follows

K+N p -K+N

laquo[c PK C C V T + V T V PK (c (536A) LfK+N^K+N^tyiK+N JJ SK+tl^KtH^K

l + N 2 raquo K+N bdquo K+N bdquo T

l+Nj^K+N+N2 ) EK+NJ+NJ^K+N ) EK+N^NJ^K+N ]poundK+N+N 2

r K+N T 1-1 K+N v [EK+NJ+N^K+NJ+NJI^K+N^K+NJ+NJ + -J ^ K + N + N K + N N J pound K + N )bull

(536B)

By recognizing that the two predicted covariance matrices are equal from (535) equations (536) lead to the most important result for the monishytoring problem

Conclusion VI For the infrequent sampling moni-toring problem with a fixed number of samplers and conshystant error 11mlt the optimal design of the monitoring system - the optimal number of sensors and their placeshyment - need only be done once for the same design is optimal for all other measurement times (CVI)

Also from (535) and (536) can be seen Conclusion VIA In the optim) monitoring probshy

lem measurement times are equally spaced (CVIA) These relationships ara Illustrated in Figures 52A and 52B The firsv curve represents a typical trajectory of the full trace while the second the asymptotic approximation Since P pound + N = E K + N + N bull t h e resulting optimal measurement matrices pound K + N and C K + N + N must be the same

72

r K + N I T l ~ p

r + +

^mdash Time

N [g]

(B) Asymptotic approximation

Figure 52 The infrequent sampling problem with fixed number of samshyplers and constant error bound

73

534 Variable Number of Samplers - The case where the number of samplers to be deployed at each measurement time may vary 1s 1n general quite difficult However in cases where (518) applies the case of infrequent sampling results can be obtained If the error limit Tr is constant over the time interval of interest then the result derives immediately from Conclusion VI

Conclusion VII For the case of infrequent sampling the optimal number of samplers to use may be found by reshypetitively solving the optimal design problem for CJJ at the fi rst measurement over the range of gt=1 tc m-n sam-plers then extending the results over the full time intershyval to find which C^ as a function of m leads to the fewshyest total number of samples The optimal number of samshyples to take at each measurement time is the same for all measurement times (CVII)

Thus for infrequent sampling the optimal number of samplers to use is seen to be constant at each measurement and that optimal number can be found in a computationally straightforward manner at the first measureshyment time

Even though the optimal number of samplers to use at each measureshyment is a constant it is important to note that at any specific sample time the optimal number of samplers to use is independent of the number used in the other samples This can be seen by comparing (531) and (532) as was done in (533) If m samplers had been used at time tbdquo

in the left-hand side of (533) m+ could have been used at time t K + bdquo in the right-hand side Since for the case of the equality the two suras in (533) must be equal if the dimension m K of the measurement on the left-hand side were smaller than u+u on the right-hand side then in general P K would be larger than PixJ a n d simultaneously N smaller than N Thus in the case of infrequent sampling at the sample time t K + N in (531) the value of the covariance matrix Ppound +bdquo for use in (536A) to determine C^ + N at time t R +bdquo is no longer truly a function of CJ nor

74

of mK Its dimension This 1s so since the sumnEjSCcj) + f t g^ - l in

(531) is a constant i f CjS changes so wil l N to maintain the sum at

that constant Thus since Trig] in (531) 1s fixed and since the SS

Cher two terms form a constant the trace Tr K 1 ~K+Ni o n t h e l e f t - h a n d

side is determined only by the error limit itself T r ^ Hence P pound + N

for N- large does not directly depend upon C K even though such a funcshytional relationship is implied by writing P pound + N (cpound) Thus various numshybers of samplers could be used at different sample times However it is only in considering the solution over the full time interval of inshyterest that the overall optimum is seen to be the use of the same number of samplers at each measurement This concept is demonstrated at length in the example in Chapter 6

535 Analytical Measurement Optimization - Thus far the optimal monitoring problem posed in Section 52 socialized to the casii of bound on error in the state estimate has been found to be equivalent to the minimization of Pj^(CK) as a function of Q K in Conclusion III Little has been said however about the actual determination of ct the optishymal choice of Cbdquo which minimizes the objective function Pu(Cbdquo)

~K L~ KJn As is well known analytical methods of obtaining extrema are supeshy

rior to numerical methods wherever analytical methods exist (see Beveridge and Schechter [20]) Analytical solutions to extremization problems usually exist however only for very special cases A fortushynate situation arises in the present case since some work has already been done in dealing with extrema and derivatives of the trace functional (see Athans and Schweppe [11] and Athans [8 ])

Pursue an analytical solution of the optimal design problem which with the simplifications of Conclusion III may be stated as follows

75

Find the optimal measurement matrlc C K such that lE^K^n 1S m1n1m1zed- C 5- 3 7)

This Is minimization of the first element of the corrected covariance matrix after a sample at time tbdquo over all choices of possible measureshyment matrices C K Analytical methods exist for approaching an allied problem which may be stated as follows

Find the optimal measurement matrix C K such that Trrj^(CK)] is minimized (538)

As shown in Conclusion II these are not the same problems (538) is minimizing the trace at the time of the eample whereas by Conclusion II (537) is equivalent to minimizing the trace for times far beyond the

aample time However techniques for the solution of (538) could prove to be applicable to (537)

Motivated by the computational efficiency of an analytical solution an attempt is thus made to solve

3 7 TK)]-9- lt 5- 3 9gt The notation in (539) means taking the partial derivative of the trace of P K ( pound K (a scalar) with respect to pound (a matrix) This concept has been developed by Athans and Schweppe [11] and applied to a similar probshylem by Shoemaker [117] In order to find the stationary matrix solution of (539) extensions of concepts of finding extrema in ordinary calshyculus are made to the case of scalar valued functions of a matrix

Consider the system starting at time t Q For a measurement at time t K seek C K such that using (59) in (539)

76

As detailed in Appendix D the result is

C = 0 (541)

This can be seen to correspond with the case of taking no measurements such that the extremum found in (540) is actually a maximum not a minishymum An initial attempt was made at constraining the range of C in such minimizations with the method of Lagrange multipliers with no success

more study is still needed of such analytical techniques One study is currently underway by Shoemaker I117J in which restricted classes of probshylems are treated through the use of analytical techniques such methods were not found to be appropriate for use in this study since they require n measurements at each sample time a severe restriction

Alternate performance indices to that used in (540) yield matrix equations whose solutions are not known so that the analytical approach with the trace function is not found to be fruitful see Appendix D

It can be shown that attempting to solve the more germane problem of finding Cjl in (537) such that

(542) 3CJ [~K(poundK) 11 also results in sets of equations for which solutions are not known An even more appropriate optimization problem might be to maximize the time itself between required measurements For the discrete-time formulation used here however this is equivalent to finding

where N is the number of timesteps between samples Solutions to this problem were pursued but led to less conclusive results since due to the discrete nature of N many choices of C resulted in the same maxishymum value for N Thus the analytical approach though instructive in

77

the erea of matrix calculus is abandoned as a means of solving the monishytoring problem (see Appendix D for details of gradient matrices for the trace function and its calculus)

536 Numerical Measurement Position Optimization - In the last section attempts were made at analytical minimization of TrIP KCbdquo)I or E K ^ K M W 1 t n respect to the matrix Q R itself A fundamental question underlies extremization of measurement functionals directly with respect to the elements of the measurement matric Cbdquo once Q K is found how is it related to the vector of actual optimal sensor locations in the medium z K None of the studies of measurement system optimization found in the literature adequately addresses the optimal measurement design problem from the point of view of optimal placement determination

The normal-mode formulation of the diffusion problem is introduced as a means of tying together Q K and z For the case of one-dimensionai diffusion with the no-flow condition at the boundaries from (339) write Q K as a function of z as follows

1 cos^z) cos(2fz) co((n- 1)^2)

1 cos^Zg) cos(z^-z2y COS((K - 1) 2^2) poundLzK) s

( laquo )

(543)

Thus C K is a continuous function of zK so that all the conclusions deshyveloped thus far apply with pound(z K) substituted for C_K and for minimizashytion with respect to zbdquo Instead of Cbdquo

For example with the use of C(z) as defined in (543) Conclushysion III may be written as follows

78

Conclusion IIIA For N large to maximize t K + N the time when TraquoTE|(+N(C|[ZK)))gtTIpoundWII choose that z K at time t K which minimizes [P^Ctzj^))] (CIIIA)

Consider the problem of the minimization of the scalar-valued objecshytive function pSfc(z K)) of a vector z R Such problems hae received considerable attention (An adequate coverage of the various techniques may be found in Beveridge and Schechter [20]) The monitoring problem where the allowable positions of the samplers are constrained to H e sonewhere within the region of the medium suggests consideration of ton-strained optimization techniques There are various types of constrained minimization methods methods requiring use of only the objective function itself (so called direct methods) methods which require the objective function and its gradient (first-order gradient methods) and those which 1n addition require the Hessian of the objective function (second-order gradient methods) Sscond-order gradient methods are often the fastest of available methods [l03] Thus in the interest of numerical efficiency such second-order methods are considered

Define the objective function of interest to correspond with Conshyclusion IIIA

JltKgt -= [edegK - E K pound T ( laquo K ) ^ K gt $ V + x T ^ e S ] - lt5-44gt As shown by Athans and Schweppe [11J for the case of the trace operator TrlO the total differentia am) trace operators are linear so that

(see Appendix D) d Tr[X] = Tr[dX] (545)

Similarly in (544) what may be called the []^-operator is also linear being a linear part of the trace so that

d [ X ] n = [ d X ] n (546)

79

From Appendix D

Define dX1 = -XHdX) 1 (547)

T 5 |c(z K)PdegC T(z K) + VJ (548 (546) (547) and (548) are used with (544) to find the gradient of the objective function which may be written as follows

^W-LiESfe^r E^

^SEfeOVfer^] (5-49gt

where the unit vector e H [00100] the l in the ith element Thus the gradient of J( K) may be written analytically in a straightshyforward manner Note that the inverse need be cc-mputed only once per evaluation of the gradient and that 1t is an (n x m) matrix not an (w x laquo) matrix Usually the number of measurement sensors m 1s smaller than the number of states in the model n so that this inversion is computationally manageable (As a historical note this quality of Inverting the smaller (m x m) matrix was one of the important features inherent 1n the practical utility of the Kalman Filter see Jazwinski [65])

For the second-order gradient of J ( J K ) known as the Hessian adopt for the time being the following notation

(1) Drop the time subscript K the tildas and the funcshytional relationship so that C = C(j K) P H gdeg

lt2gt c i s S 7 S ( 8 K )

lt3gt c i j E 8 i 7 5 i 7 G ^ - lt 5- 5 0gt

80

With (550) differentiate the ith element of (549) with respect to the jth element of zbdquo to obtain the UraquoJ)th element of the Hessian as follows

ra^ijj bull -[C^VCR - K^fclW+ c K c T ) T l c p

- P C V 1 lt(c1)cT + CP(C|)gtTYCJ)P

+ PCT T 1 ^ ^ ) - P^CJJT^CJ^CVCP

+ P C V 1 (C^PC 1 + C P ^ ^ T V C J J P C V C P

- PCV 1 (C 1 J)PCV 1 CP - PCT1(C)P(CT)T1CP

+ P c V ^ P c V 1 ^(cJPC 1 + Cp(cj)gtT CP

- PCV^CJPCV^CJP - P(CJ)T1CP(C])T1CP

+ P C V V ^ P C 1 + CP^JOT^CP^JJT^P

- PCTT1(c i)p(rI)T1CP - P c V c P ^ c J ^ C P

+ P C V C P ^ T 1 (C^PC 1 + CP^JHT^CP

- PcVcP^TjT^cJpJ (551)

This represents only one term if the m x n Hessian matrix which would be given by

where L is a unit matrix The computational efficiency of second-order gradient methods is seen

to be lost in the horrendous task of defining the Hessian of the objective function and for that reason first-order gradient methods are nought

81

Before going on to first-order gradient methods a word about direct search methods 1s in order While in general less efficient than gradishyent techniques direct search methods possess the distinction of not reshyquiring an analytical expression for the gradient an important practishycal advantage This is of significance first since it permits a user to proceed much more rapidly from his problem statement to its coded form for numerical solution Secondly and more importantly the vast majority of physical problems do not admit the writing of an analytical expression for the gradient so that for those problems direct search methods are all that is available An interesting example of a direct search technique is that due to Radcliffe and Comfort [103] j R w nich Powells unconstrained conjugate directions minimization procedure withshyout derivatives [l03] is extended to the case including nonlinear equality and inequality constraints However in the monitoring problem it is a straightforward process to define a gradient of the form (549) so that first-order gradient methods are preferred over direct methods for their computational efficiency

The algorithm chosen for finding the minimum of J( K) in (514) was written by G W Westley and is named KEELE [127] It is an algorithm to find a loaal minimum of a function of many variables where the variables are subject to linear inequality andor linear equality constraints It represents an extension of a Davidon variable metric procedure reported by Fietcher and Powell [127] using gradient projection methods (see Rosen [54]) to include the case of linear constraints

Note how in the monitoring problem it is necessary to constrain the ranges of the variables so that resultant monitoring positions bear physhysical significance to the problem statement Note also how only linear

82

not nonlinear constraints are required each of the elements of zl must satisfy a constraint of the form

0 lt z lt 2L i = l2m (553)

where the one-dimensional medium 1s of length 2L Note how this algorithm and all gradient algorithms seek only

local not global minima The only way known to approach solution of the global minimization problem is by solving a sequence of local minishymization problems starting from different initial guesses until some meashysure indicates probable convergence to the global minimum (see Beveridge and Schechter L20]raquo p 499 and Radcliffe and Comfort [i03]P- 3) For this reason KEELE has been modified to include random initialization of the starting vector zbdquo This technique has beer found to yield satisshyfactory results provided a sufficient number of random starting points is used 1n each attempt at finding a global minimum in J()

Thus within the probability that the best local minimum found is the global minimum the optimal positioning of the m samplers at any time tbdquo is considered solved

537 Numerical Measurement Quality Optimization - The last quesshytion left to answei at a measurement ltime 1n the design problem of Secshytion 51 is what types of sensors to deploy at a samnle Consider the filter equations of relevance for a measurement at time tbdquo

y K laquo C(z K)x K + y K (554)

Ppound = Pdeg - PdegC(z K) Tfc(z K) PdegC(z K) T+ yj C(z K)Pdeg (555)

83

h PdegCCz K) T|c(z K) P^ (z K ) T + VJ (556)

As presented in Chapter 4 the noise-corrupted measurements 1n (554) are

characterized by mean vector and covariance matrix given as follows

E[vK]i o

M Thus the additive measurement noise forms a sequence of zero-mean white Gaussian random vectors with covariance given by V To conform to this problem structure the only variables lnft to determine in specifying the sensors at a measurement are the strengths of the noise terms in vbdquo as defined by their covariances tha elements [V]^ of the covaHsnce matrix y From the theory of random variables if the measurements in (554) are made with independent sensors the elements of ybdquo the individual random errors among the samples taken will be uncorrelated For this case V is a diagonal matrix which leaves only the specification of the m Elements [JfJlfi i = 1raquo2gt bullbulllaquoampbull The diagonal elements of y may DO interpreted as the mean-square values of the errors in each of the m samples Thus their sizes 4re inversely related to the quality of the measurement inshystrument used so that if a high quality sample is desired for tybdquo] 4 gt then

mdashK 1

OfJii should be small and vice versa Thus if the sole objective In the solution of the monitoring probshy

lem is to minimize the total number of samples necessary over the entire time interval the optimal choice of measurement instruments is clearly that choice which leads to the most accurate measurement - use the highest accuracy sensor available If on the other hand the more meaningful

84

measure of minimizing the total monitoring program cost is to be used in the overall optimization a more complicated problem structure results Contributions to the total cost could include costs associated with every sample that is taken a quantized cost range associated with available measurement instruments of various accuracies etc Tradeoffs result between taking a large number of low accuracy measurements and a small number of high accuracy measurements at a sample time

Though this aspect of the total problem is an important part of the complete optimal design it is left for later study with an outline of the structure of its inclusion within the infrequent sampling problem framework given in Appendix E

What is clear from the conclusions so far is that once the optimal choice of measurement instruments is made for one sample that choice is optimal for all other samples which leads to the final result for the monitoring design problem with bound on error in the state estimate

Conclusion VIII For the case of infrequent samshypling the complete solution of the optimal monitoring design problem with constant bound on error in the state estimate - the determination of the optimal number of samplers to use at each measurement their optimal locashytions and the optmal choice of measurement instrument accuracies -may be obtained at the first measurement time with the same design being optimal for all other measurement times (CVIII)

54 The Design Problem for a Bound on the Error in the Output Estimate

541 The Minircax Problem - The second form of tha monitoring de-siqn problem is considered in this section It is required to make the fewest measurements possible over the time interval of interest while maintaining the error in the estimate of the pollutant concentration itshyself the output within some bound everywhere in the medium This is a

85

more complex situation than that of maintaining the error in the state within some bound the pollutant concentration over the whole region must lie within the error constraint so that the entire region must be conshysidered when testing for violation of the constraint

At time t let the pollutant concentration at a point z in a one-dimensional diffusive medium of length 2L be given by

pound K(z) = c(z) Tx K (558)

where the vector c(z) for the scalar output C K(z) is much like the meashysurement matrix Q(zbdquo) for the veotor measurement ybdquo in (543) and is given by

poundz)T - lcos pound zjcos ^ 2 ^ z J c o s ((n-1) jfj- (559)

Equations (558) and (559) are formalizations of the s2Hes expression in (341) and can be seen schematically in the bond graph in Figure 32 The pollutant concentration at any point is thus simply the sum of the modal concentrations at that point in the medium

Equation (558) applies for the estimated pollutant concentration from the filter as well and may be written as

C K(z) = amp(z) Txdeg (560)

where xbdquo is the value of the state estimate predicted to time tbdquo from time t n (see (C18) in Appendix C) it is required to maintain the error in this estimate to be within some bound Since K(z) is a scalar random variable an expression of the error between the estimate 5 K(z) and the actual value pound K(z) in the mean-square sense is the variance in the estishymate The variance in the estimate of the output in (560) is found to be

86

O 2K C Z ) ^ E [ ( pound K U ) - 5 K U ) ) 2 ]

-=|w Tft-^)(sw TiS-J) T] = E [ e ( z ) T ( s O - x K ^ x K T c ( 2 ) ]

5 S(z)TPdege(z) (561) where the last line follows from the definition of the predicted covari-ance matrix equation (421) Thus at time tbdquo associated with the estimate of the pollutant concentration at any point i given by K(z) is its variance o(z) a measure of the error in that estimate which is merely a function of the predicted state estimate error covariance matrix whose properties are by now well established

Since the monitoring problem with a bound on the error in the outshyput stipulates that everywhere in the medium at all times over the time interval of interest the fewest number of measurements must be made to keep the error in the output below a limit the concern is with checking the maximmi value of the variance ot(z) for all z over the length of the medium as time goes on to find when the error limit is reached The asshysumption is as it was for the problem with bound on error in the state estimate that at the time when the error in the estimate of the output reaches its limit a measurement should be made That measurement should be made so that the time before the error limit is next reached is maxishymized extension of the local optimal design for one measurement period to the overall time interval is assumed possible the proof of which will be considered later in Section58 dealing with the optimal management problem

87

Suppose at time tbdquo the variance In the estimate of the output at some point z in the medium is in violation of the error limit defined as

degUmgt t h a t 1 S gt

a2K(z) gt 4bdquo (562)

It is required to make a measurement at time t K that will result 1n the longest possible time say t K + N when the error limit is reached again This will occur when at some point z in the medium the maximum value of the variance over all other locations in the medium exceeds the limit This suggests the following algorithm for finding the optimal measurement design at time t R that will result in the longest time t K + p | when another measurement is necessary

1) Select in some manner a measurement design at time t K and make a measurement

2) Predict ahead to time t K + 1 31 Find the position z of the maximum variance

max a ( z) z K+l 4) Test for violation of the error limit

max o~ (z) gt c z K+l K m 5) If violated go to (6)

If not violated increment time one step and return to (2)

6) Store the time when the limit was violated 1n N

7) Check for convergence to the global maximum t K + N If not satisfied return to (1) reinitialize time to t K and select a different trial meashysurement If comergemce has accwrved the optimal deshysign is that which resulted in largest N^ the longest time tbdquo N - call it t K + N (563)

Such a direct search technique would be costly to implement The effishyciencies of gradient techniques do not apply since a gradient of the obshyjective function (which would literally be N- the time to the next meashysurement) with respect to the measuremsnt design variables cannot be

expressed analytically Thus more information 1s sought from the strucshyture of the problem to avoid using direct search methods

As in Section 537 exclude for now the choice of measurement instrushyment accuracy from the monitoring design problem Consider only the choice of the number of samplers m to be used in the measurement at time tbdquo and their optimal locations which are the elements of the ra-vector z Then the algorithm (563) may be concisely written as a minimax problem as follows

Find min max abdquobdquo (zbdquoz) gt a bull (564) z z K +N ~K ^m

In general such a minimax problem is quite difficult requiring advanced techniques of mathematical programming for its solution However in the case of infrequent sampling the solution of (564) is virtually complete in the earlier results of this chapter

In order to solve (564) from the definition of crpound(z) in (561) obtain the following

deg K + N M = s( Z) Tepound + N(S | fkltz) bull s( 2 ) T

K ) bullpound nV nl

( ) lt 5 6 5 gt

where

EKSK) bull bull $ ( Z K ) T [ C ( Z K ) P deg C ( Z K 7 bull v] 1 C ( K )Pdeg ( 5 6 6 )

is the corrected error covariance matrix jus- after the first measurement at time t K as a function of C(-) of zbdquo in (543) Expand (565)

T N (z K z) - c(z)TJNp|J(zKgtN c(i) t S ( z ) T V n W 1 pound(z) (567)

n=T

to find the same combination of zero-lnp t response and zero-state response that was found in equation (510)

89

For the physically interesting case of no-flow boundary conditions

in one-dimensional d i f fus ic the eigenvalues of A in the state equation

(41) lead to the ordering of the terms in J given by property (516)

For N sufficiently large conditions (518) and (520) are satisfied so

that (567) may be written as matrices to show

bdquo2 M a[ -(pound0 bullbullbull] M

[l co5(^z) ]

[ raquobull(poundlaquo) bullbullbull]

li[n]

O

o

1

J (ft)

Kir2)

a ss

bull()

(568)

from which the most important result for the monitoring prohlem with bound on output error derives for N sufficiently large

4^KZY [amp)]bdquo + N t 8 ] H + Slaquo 2gt T| Spound^) (5-69) Notice that In the asymptotic case for N sufficiently large even though 2

a +jj at time tbdquo +bdquo is a function of both zbdquo the positions of the measureshyment devices at time tbdquo and z the location in the medium where the varishyance is being tested at time t K + N the functional relationship tepcviateA

90

into Independent functions of each argument The selection of measure ment positions z K Is seen to effect only | E K U K ) exactly as 1t did 1n the problem with bound on state error (see equation (5-22)) The location z In the medium where a^ + N Is being tested effects only the variance associated with the steady-state terra of the matrix convolution of the input disturbance statistics here the matrix 8 was defined 1n (520) and (521) The second term on the right-hand side of (569) N [ g ] 1 1 ( represents the increase in uncertainty in the estimate of the first mode which has a constant value throughout the medium and thus 1s a function of neither zbdquo nor z

This may be summarized as follows Conclusion IX For infrequent sampling the varishy

ance in the estimate of the pollutant concentration the output of the monitor at time t|lt+N separates into indeshypendent functions of the measurement positions at time t|lt and of the pollutant concentration position at time K+N- (CIX)

Returning to the minimax problem stated in (564) application of Conclusion IX leads to the following fortuitous result

Conclusion X For infrequent sampling the followshying problems are equivalent () Find z at time t|lt and z at time t|lt+N such that

(2) Find z at time t K and zat time t K +f| such that m j I - K ^ K U H + N[~-1n + T pound ( z ) T deg e ( z ) - aim- (c-x)

- K gt- SS This result reduces the solution of the monitoring design problem from the oi-|etely unmanageable task of (563) to the relatively simple comshybination of two separate problems in minimization and maximization Solushytion of the former 1s Identical to that treated 1n the monitoring problem with bound on error 1n the state estimate as detailed in the section on

91

numerical measurement position optimization Section 536 Finding zpound

Ni 1s minimized results in the smallest con-at time t such that tribution due to the initial covariance at time t K to the variance in the output at time tj + N

Solution of the latter problem the maximization of the variance due to the steady-state convolution matrix at time t bdquo + N is developed in the following From (517) and (521) an expression for the variance associated with the zero-state or forced response in (567) may be exshypanded as matrices as follows

N

S(z)7Y bull n W - l T c ( z ) = s ( z ) W ) bull lmdash1 I f

[ laquo(i0-raquo] flu poundWbdquoX oX^n -

iPl n i

1

amp) (570)

bull J As before

N

^^ijL^w^^j ( s - 2 deg) n=l s s

so that every element of the matrix convolution in (570) approaches its steady-state value as N becomes Urge except the first which grows as a ramp with slope [nJii- Thus for N large

A T S ( z ) T J11 S(z) H[8]bdquo + c(z) T c (z) (571)

n=l

92

It is to be emphasized that as the limit in (520) is approached the variance associated with the matrix convolution (571) separates into a t1me-vary1ng term and a term which is a constant Thus for N sufficiently

9 large the only term involving z in the expression for oj+N(zz) is not

a function of time and can be precalcylated independently of the actual time that che error limit cC is reached in (564) This separates de-termnization of the maximum over z of a^ + N(zbdquoz) from the actual value of N and thus t|+Nraquo provided only that N is sufficiently large for (520) to apply

The relationships in Conclusion X are portrayed graphically in Fig-ure 53A and B Figure 53A depicts the actual evolution of a with time whereas 53B shows the asymptotic relationships of (569) The important point is that the last term in (569) the term involving z has the same

maximum as a function of z at each sample so iony as the number of time steps between each pair of samples is sufficiently large Thus

Conclusion XI The position of the maximum varishyance in the estimate of pollutant concentration at the time each measurement is required in the monitoring problem with bound on error in the output is independshyent of time provided the time between measurements is sufficiently large and is thus the same position at every measurement (CXI)

The procedure for the solution of the infrequent monitoring problem with bound on error in the output estimate is as follows

(1) At time t|( solve for the optimal measurement posishytions Z|( such that

(2) Compute ffilusing the relationships LSSJ

[4-T^te bull - bull [raquo]bdquo-

93

mjn max o K + N( Kz)

max CT^(Z)

(A) Actual response

Time

min max o^iz^z)

Time (B) Asymptotic approximation Figure 53 The Infrequent sampling problem with bound on error in the

output estimate

94

(3) Find N large enough that the infrequent sampling approximations appiy that is so that

[sL^LW^^^ and j f 1 (4) Find z the position where the variance approaches its steady-state maximum where

ltbull = max c(z) T a c(z) SS z S~S~ (5) For the pair (zpoundz) predict the solution to time

lK+N w n e r e

(6) Reinitialize time tv = t^+Nibull and return to (1) for next measurement t W (572)

All of the results for the monitoring problem with bound on error in the state estimate apply here as well permitting statement of the final result for the monitoring problem with bound on error in the outshyput estimate

Conclusion XII For the case of infrequent sam-pling the complete solution of the optimal monitoring design problem with bound on error in the output estishymate mdash the determination of the optimal number of samshyplers to use at each measurement their optimal locashytions the optimal choice of measurement instrument accuracies and the position of maximum variance in the output estimate at each measurement mdashmay be obtained at the first measurement time with the same design being optimal for all other measurement times (CXII)

542 Determination of the Position of Maximum Variance in the Outshyput Estimate - In the solution procedure (572) steps (3) and (4) must be developed First from the form of

1 bull n gt 22 raquo 22 bull Kn gt deg ( 5 7 3 )

as seen in (515) Thus in the determination of the number of terms necessary 1n the computation of the matrix convolution [ft] In (3) from N (570) and (520) the critical terms In the matrix those which approach

95

the i r steady-state values slower than a l l the others can be seen to be

[ n ] 1 9 and [pound2 ] 5 1 where from (570) N u N

(574)

As a measure of how rapidly the series in (574) grows as N increases deshyfine

4N-1 4N-1 plj 4A vao

as the ra t io of the contribution to the series for [ f iL- dnp to seep N N 1 J

compared to the contribution from step 1 in the series Thus a meaningful

check for approaching the steady-state value of the convolution is to

f ind N su f f i c ien t ly large that

P^j lt E i j = 12 n i = j f l (576)

where c 1s some practical convergence c r i t e r i on

Since Q I t s e l f is a covariance matrix (see Appendix B) i t is posishy

t i ve -de f in i te hence [8 ] i o = telov T n u K 1 l c a n D e readi ly seen from

(573) (574) and (575) that the series for terms [Q3 and poundpound ] grow N e K i x

more slowly than a l l the others (excluding of course M bdquo ) since N

p12 p21 gt p1j a 1 1 o t h e r ( 1 j ) ( 5 7 7 )

Thus a convenient measure for the convergence

Um [n] = [n] ltdeg 8 SS

is simply to find for just the second element of 2 2 that value of

N such that for some convergence accuracy e

N-1N- 4N-1 N 11 raquo22 22 S-2 c - bdquogt Plraquo - ~mdashZ A mdash 09 e- (578) It n22 22

96

Thus for the infrequent sampling approximations to apply within some

tolerance e at least N time steps must occur between sample times so that

steady-state conditions are adequately approached

In order to f ind the maximum in step (4 ) that i s f ind z such that

c(z) 52 c(z) is maximized an analyt ical approach is f i r s t sought Since SS ~

the problem is a simple extremization of a scalar-valued function of a

single variable elementary calculus techniques apply so that for some

value of z K a necessary condition for an extremum is

From Conclusion IX and (569)

(580)

a f lt amp f l M - 3 F | ^ n

+ ^ S bull poundU)T|s amp(z

i s ( z ) T ) | E ( 2 ) t c ( Z ) T | ( i c ( z ) ) SS SS

Recalling that since U is a covariance matrix

0 = 8 gt

SS SS

so that

al 0 K + N M S 2 ( l l^) )8 e (z )

Thus

S(z) 1 l cos( ^ z j cos^2 ^ z ) |

pound^J = 0 2 f s 1 n ( 5 f z ) - 2 2 f - s i n ( 2 ^ z )

97

M N ( M gt 2 poundpound-ltbull-i [(i - H c o s Ibull 2 taj ( 5 8 )

i-i j - i

2 For an extremum in vt N(zz) set (581) to zero from which it is seen clearly that for finding the solutions of (579) analytical methods are

of little nee

The numerical solution of (579) using (581) and (569) however is straightforward Since the derivative can be so concisely written it is well known that solving for the roots of (579) then checking the value of the function (569) at each root so as to classify each extrema in order to arrive at the global maximum is superior to direct one dimenshysional search methods (such as golden section or Fibonacci search) which do not employ derivatives (see [20] and [53]) Thus any of the widely available root solving methods for nonlinear equations could be suitable for the determinization of z at the maximum cf crK+N(Z|z) (see foi exshyample [61])

55 Diffusive Systems Including Scavenging

Return now to the original problem of monitoring diffusive pollutant dispersal including anvironmental degradation or scavenging of the pollutshyant The relevant transport equation from (33) is given as

| | = KV 2 - a + f (582)

where a is a smaller parameter This equation describes di f fusion in an

arbi t rary homogeneous region P where the small term -a accounts for the

scavenging of the pol lutant from the medium The scavenging term is

typ ica l ly much smaller than either the source or di f fusion terms and

usually leads to a slowly-changing component in the system response

98

Application of separation of variables to the homogeneous form of (582) leads to the following state and Helmholtz equations

x(t) + tt + )x(t) = 0 (583)

7 2e(P) + pounde(P) = 0 (584) Comparison with equations (311) and (312) for the case of simple difshyfusion the case in (34) with a E 0 shows that the only difference in the associated eigenproblem i In the rates of response in the time equashytion The equation regarding the spatial response is identical with that for the case of simple diffusion Thus all the eigenvalues are seen to be shifted by the same amount a the value of the scavenging parameter itself

Notice that nothing has been said that restricts this result to specific coordinate systems boundary conditions etc It 1s a general relationship between the eigensystems of (34) and (582) Thus the modal state equations for the case with scavenging may be written

n(t) = -(Xn + oe)xn(t) + f n(t) n = 12 (585)

where f bdquo ( t ) is the modal input to mode n (see (319)) Comparison of

(585) with (320) for the case of simple di f fusion shows that the probshy

lem with scavenging changes the response of the system with no-flow

boundary conditions to that of a problem which l ies somewhere between

simple di f fusion with no-flow boundary conditions and simple di f fusion

with f ixed boundary conditions I t would seem from what we have seen in

the infrequent sampling problem thus far that for the cases where a

is small in (582) extensions of the ear l ier results of th is chapter to

the problem including scavenging should be possible

99

Another way of seeing how the inclusion of the term -aE in (582 effects the structure of the eigenproblem associated with (582) can be shown by reconsidering the one-dimensional example of Section 32 Conshysider here only the homogeneous response Thus the problem may be stated as follows

bull^tl K 3 ^fi - g(zt) (586)

M|Mi0 ^f^EOi (587) SfzO) = 5 0(z) (588)

Now make the transformation (see Mac Robert [82] p 33) S(zt) = n(zt)eat (589)

Substitute (589) into (586) to obtain

nfzt)^-] + ^ ^ - B a t = K i ^ f L e- a t - an(zt)e-at (5

which reduces to ^1=K^ (691)

3 t 3z 2

But the eigensystem for (591) given boundary conditions (587) is just that for the problem of simple diffusion already discussed in Section 32 from which the homogeneous solution may be written as

^3 - K ( n - l ) 2 ^ nizt) = 2 ^ x

npounddeggt e 4 L cos f(n - 1) J zj (592) n=l ^

where the initial conditions for the modes are given by

100

x n(0) bullr n(z) cos (n - 1) 2L y dz (593)

Sibstitution of (593) into (589) then yields the important result for the case including scavenging

- _K(n-l) 2-Lt S(zt) = e 0 1 ^ xn(0) e 4 L cos Un-1) ^ zj

n=l CO

n=l (0) e

K(n-l) 2 _ C 4L 2 + ltxgtt ((n-l)^z) (594)

Thus the solution to the problem including scavenging has exactly the same eigenfunations as the case without scavenging and a set of shifted eigenvalues each of whose elements is just that of the problem without scavenging shifted by an amount a

551 The Infrequent Sampling Problem - Consider a one-dimensional diffusive system described as follows

Source

Measurements i

1 2

Figure 54

-S(zt)

2Llt - raquo bull

at S z i (595)

101

3z U 32 bull

S(zo) = 5 0

f(zt) = w(t)6(zw bull bull z )

(596)

(597)

HvWh = 0 E[w(t)w(r)] = Wlaquo(t - T ) (598)

After s impl i f icat ion of the series solution of the homogeneous probshy

lem in (594) to a f i n i t e number of terms n i t can be seen from the

form of (337) for the problem without scavenging that the fol lowing set

of modal state equations resul ts

1

- ( $ bull )

o

o

(bdquo-bdquo=pound)

a

w(t) (599)

f COS (lt-gtlaquoraquo) |

102

with in i t ia l condition

x(0) = [ 5 0 0 0 ] T (5100)

The measurement equation is exactly that of (339) for the case with no scavenging

Thus comparison of the dynamic matrix for the case with no scavshyenging in (337) with that in (599) for the inclusion if the a-term shows the one major difference for the Infrequent sampling problem In the former [ A ] ^ = 0 while In the latter [ A ] ^ = -a + 0 Thus the first modal state variable will fn general exhibit a relatively slow reshysponse governed by the term e The effect of the initial condition x(0) will decay at that rate whereas it remained constant in the case with no scavenging This leads to differences In the asymptotic propshyerties of the solutions which are developed in the following

Consider the time discretization of (599) The state-transition matrix laquo given in (48) for the A matrix in (599) is

o m o 4 - ) 2 S + a gt

(5101)

where the integration step T s (t K + - t K ) Assume as before that the problem starts at time t- with initial estimation error covariance mashytrix given by tf0 Assume further that at time tbdquo the estimation error constraint is reached so that a measurement is necessary at time tbdquo It

103

Is required to design the measurement by finding the optimal measurement position vector zt so that the time when the error constraint 1s next reached 1s maximized

Consider the evolution of the predicted estimation error covarlance matrix with time after the sample at t R

nl Expand the above as matrices as was done for the case with no scavenging in (517) to obtain

amp amp ) bull fetoiMi [ilaquo

M

nSl T5t B H

CS3bdquo nraquoi

(5103)

104

Now 1f a in (595) is su f f i c ien t ly small then the diagonal elements of

J cal led ^ i = 1 2 n w i l l be related in (5103) by the fol lowshy

ing ordering property

^N N 1 gt $j| raquo bdquoj2 gt ltjgtN gt 0 (5104)

Using (5104) the matrices in (5103) may be approximated by the follow- ing expression for N large

-K+N(-Kgt

[dtei

o

[Q] v 6 2 ( n- igt u

O 8 ss

(5105) Comparison of (5105) with (521) for the case with no scavenging shows the expected result that here the asymptotic matrix solution approaches that of just the (11)-element of th matrix with time plus the steady-state matrix n due to the forcing function

SS For the monitoring problem with bound on error in the state estimate

from (5105) the trace of the estimation error covariance matrix Is given by

N

Tr[EK-Hl(sK 3 - [ E K ( S K J l + Kill Y l i n 1 gt + T r [ | s J ( 5- 0 6 )

n=l which is similar In form to (522) for the problem without scavenging The only differences H e in the first two terms on the right hand sides of (522) and (5106) Both pairs of terms describe the response of i p K l I with tirno i n the former case the response is that of a fm$]]

w1th time ramp with slope [fl]- starting at efegt] bullvv In the latter case the

11

105

response starts from the same value but then slowly approaches a finite steady-state value in the limit as N + laquo much like all the othar terms do in the matrix The main difference is that the (11)-element of P K + N ( z K ) grows much much slower to its final value than all the other

K elements of P D + N ( z K ) this is the result of requiring the scavenging parameter a to be small leading to property (5104)

A graphical depiction of the trace of (5102) and its asymptotic approximation in (5106) is shown ii Figure 55 Comparison with Figshyure 52 for the case with no scavenging shows the difference in the asshyymptotic responses

For the monitoring problem w h bound on error in the output esti-mate using the form for Ppound+N(poundK) in (5105) in the equation (568) deshyveloped earlier leads to

N

lt 4 N amp gt Z ) a [K(4U + I83bdquo Y bull i i ( n 1 ) + e ( ) T

S V ( Z ) - ( 5 1 0 7 )

n=l Comparison of (5107) with (569) for the case with no scavenging shows the same asymptotic properties as exhibited in the problem with bound on error in the state estimate above which leads to the general result for the problem with scavenging

Conclusion XIII For diffusive systems with scavengshying all the results for the infrequent sampling problem for normal diffusion apply directly so long as the scavengshying parameter is sufficiently small (CXIII)

56 One-Dimensional Diffusion with Fixed Boundary Conditions

Consider the case of a one-dimensional diffusive system with the pollutant concentrations at the ends of the medium fixed at known values throughout the time interval of interest This case was modeled in

106

Tr[P]

Tr[P2]

(A) Actual response

(B) Asymptotic approximation Figure 55 The infrequent sampling problem for systems with scavenging

compare to Figure 52 for systems with no scavenging

107

Section 32 2 Such systems are of much lesser practical Importance than those with ho-flow boundary conditions since It 1s difficult to find many physical situations of any significance where fixed end conditions occur (see Brewer [22] and Young [131])

For such a system the following state and measurement equations apply

x = Ax + Dw y = Q + X

where from (356)

4|Z

A i

o - 4 KiT 5

O -ltraquo)2 K pound 4

D 2

E = raquo(poundl) s 1 n( 22Ti)

Sfff (bullgt)

(5108) (5109)

(5110)

From tne definition of A above and 4 1n (48) and (49) the state transishytion matrix for fixed boundary concentrations is given as follows where the time step T = (t K + - t|A

108

4llt o

raquoST -44 (511)

r 2 Kn T

4L Z

Comparing this transition matrix with that from the case for no-flow boundary conditions (see (515)) shows how the fundamental difference in the two normal mode expansions effects the dynamical responses of such systems In the case with no-flow boundary conditions [] = 1 whereshyas for the case with fixed concentrations at the boundaries 0 lt [Jl lt 1

This difference manifests itself in ways which effect both the monishytoring problems with bound on error in the state and output estimates Consider the predicted covariance matrix equation from time tbdquo to time

S-K+N A M I Pbdquo +

n=l

$ V From (5111) l e t

M = A l l

Then (510) may be expanded as f o i l ows

12

(510)

(5112)

109

[laquo

[lto [4 fll B1

n1 n=1 (5113)

Comparing (5113) with (517) for the case with no-flow boundary condishytions shows that the properties of first elements of both matrices in (517) which proved to be crucial to the simplicity found in the infreshyquent sampling problem do not hold in the case with fixed end concentrashytions

However as in the case with scavenging notice that owing to the ordering of the eigenvalues in the A matrix in (5110) there is a corre sponding ordering in the elements of such that for Pbdquo+ in (5113)

gt A N gt 0 1 gt (f^ gt lttgt22 (5114)

Notice from the matrix A that for the first two terms 4X 1 X 2 (5115)

so that the second mode decays four times faster than the first Thus the two dominant eigenvalues are widely enough separated to proceed with apshyproximations for an infrequent sampling problem

Use (5112) in (5113) to obtain 1 1

amp

o

Braquongt bulli- )

O (5116)

no which is exactly the same result as in (5105) for the case with scavshyenging The trace of (5116) follows the form of (5106) for the scavshyenging problem so that for the monitoring problem with bound on error in the state estimate all the results for the infrequent sampling probshylem apply Trajectories for Tr[ppound + N(zpound)] would appear similar to those for the problem of no-flow boundary conditions including scavenging as shown in figure 55 the rate of approach to steady-state for the (11)-element of P pound + N would be faster if X 1 for this problem is larger than a

in the former problem For the monitoring problem with bound on the error in the output

estimate the case of fixed boundary conditions causes a confusing relashytionship in the minimax problem for finding the location of maximum varishyance in the output estimate From the approximation for P pound + N in (5116)

LEHlt

o [sln(^z) sin ( i r f ) ] ISA

o

sin (tpoundj

sin k plusmn )

[1laquo(poundraquo) m (]pound) - ]

8 ss

sin ( JT )

sin (2 j f ) (5117)

I l l

where c(z) Is derived from the def in i t ion of pound (z t ) in (348) Thus

for N large

V ^ T + sin yz]_ ZJL8J-- ^ bull s~ s~

n=l

which is of the form

0JJ+N(2Kraquo Z) = a ( 2 K z N ) + e^ z N gt + E 2 ) (5119A) = a(z K)|3(zMN) + B(z)6(N) + E( Z ) (5119B)

It is required to find zjj and z such that for N large

4^1) = JjJ T degK+N( ZK Z)- (5-120) From the separation of functions in (5119B) it is clear that finding zt should be done exaotly as before that is

Find zj at t K such that [ t ^ ) ] bdquo = [ ^ Jin ^ ^ It would appear that knowing zpound the optimal measurement positions

for the measurement at time tlaquo one could then substitute its value dishyrectly into (5118) to solve for the position of maximum variance z at time t K + N- However as seen 1n (5119B) the terms (a 8 y) and (B 6) are functions of time t K + N gt such that the relationship between (agy + 86) and (e) in (51198) is always changing A general statement of a separashytion principle like (569) for systems with no-flow boundary conditions cannot be made for the case with fixed boundary conditions However if more knowledge exists about the specific problem under study for example if in (5118) [n] raquo [ Q ] i j i and j f 1 then the term (Blaquo) In (5119B) may dominate the right-hand side of that equation for N large such that

112

for such a special case

T C K+N(K Z ) = trade X s i Z [ t z

What is clear about the general case is that the minimax problem in (5120) simplifies to (1) finding z in the minimization in (521) as before then (2) evaluating the position z for the maximum oy +bdquo(z Kz ) in (5118) iteratively as N increases until for some t R + N o^ + N(z^z) gtcC The latter procedure is greatly simplified using the approximashytions of the infrequent sampling problem as can be seen by comparing the simplicity of the expression for aj + N in (5118) with the complicated

V

expression that would have resulted had the full matrices for P K + [ in (5113) been involved instead

Thus results for the infrequent monitoring problem with no-flow

boundary conditions extend with restrictions to the case with fixed boundary conditions

Conclusion XIV For N large all the results for the infrequent sampling problem with no-flow boundary conditions with bound on error in the state estimate extend to the case with fixed boundary conditions The results for bound on error in the output estimate do not all extend to the case with fixed boundary conditions in general however application of the infrequent samshypling problem approximations does drastically simplify solution of the functionally interdependent minimax problem to the solution of two independent problems in minimization and maximization (CXIV)

57 Extension to Monitoring Problems in Three Dimensions Systems with Liiission Boundary Conditions

As a means of demonstrating the power of the results for the infreshyquent sampling problem consider extensions to diffusive systems in three dimensions examples of applications might include pollutant transshyport in estuaries or bays and radiation level detection in settling basins

113

or in groundwater systems Suppose there is a rectangular three-dimenshysional region into which known stochastic sources are injecting pollutshyant In the case of bay estuary or settling basin systems the upper surface of this region would interface with the earths atmosphere whereshyas in groundwater applications the upper surface of this hypothetical region could coincide with the local level of the water table The reshyquirement of the problem is to place the fewest number of sampling stashytions at the best locations on the surface of the region taking the fewshyest number of samples over a given time interval in order to maintain the error in the estimate of the concentration ttceoughout the three-dimenshysional volume below a given bound This is an interesting variation of the general problem in three dimensions where sources may occur anywhere in the volume but measurements are required to be taken only on one surshyface of the volume

The validity of the description of pollutant transport in such sysshytems by the use of Fickian diffusion has not been thoroughly studied However it seems reasonable to assume that if small enough subregions which may be called components are considered thtn coupling large numbers of such component subregions together each of which is governed by its own diffusion equation could result in a system of submodels which could be used to model a large possibly inhomogeneous anisotripic medium Thus this example is presented for its conceptual interest as a starting point toward a more sophisticated approach to solutions for pollutant monitoring problems of this type

Assume the component subregion is described schematically as in Figure 56 One of the v generalized sources w ^ t ) is shown somewhere in the volume with its position vector defined as

114

Figure 56 Three-dimensional component subregion for a three-dimensional monitoring problem

115

Sw S 1 L M 2 3 Sw S K c w laquosw t 1 = 12 P (5122)

One of the set of m generalized measurements y is shown on the surface with its position given by

2j S [ Z V Z V 2 L 3 ] T J = 12 m (5123)

If the size of the rectangular region 1s sufficiently small the dif-fusivity throughout the medium may be approximated as a constant The boundary conditions of the submerged surfaces are chosen to be of no-flow type so that other such components may be coupled together in order to approximate inhomogeneous material properties over larger regions (see Young [131] Chap 3)

At the upper surface of the component the assumption is made that a no-flow boundary condition adequately models the characteristics of the pollutant exchange across the upper boundary of the region In problems involving transport of a volatile soluble contaminant in water systems (like DDT or disolved radioactive wastes) this assumption could be changed for instance to include emission of the pollutant into the atmosshyphere at the earths surface An approximate model of such emission is Robins boundary condition (see Berg and He Gregor [18] Sections 36 and 49 Mac Robert [82] p 28 and Duff and Naylor [34] Section 73) The only difference such a modification makes in the normal mode analysis is in the eigensystem which results for the coordinate direction which 1s similar in form to that for no-flow boundary conditions but has intershyesting conceptual differences (see 118] Section 49)

Suppose the initial pollutant concentration throughout the medium i given by the function 5 0(c) Thus the initial-boundary value problem for this system is defined as follows

amp bull (

bull bull bull Cj raquo 0 e - ^

K2 2 deg 0raquo 2 = 2L 2

c 3 = 0 3 = 2 L 3

c(co) H e 0 i Ml

116

t)t (5124)

(5125A)

(5125B)

(5125C)

(5126)

iMiltgtlte - s )^ - s 2 ) 6 ( c 3- s 3 gt E^tt)] = 0

E[w(t)w(T)] = W6(t - T ) i = 12 r (5127) The no-flow boundary conditions are specified for all surfaces by

(5125) The initial condition as a function of the spatial coordinate vector 5 is given in (5126) while the stochastic point sources with their statistics are described in (5127)

The essential difference between this problem and the two-dimensional case treated in Section 33 is in the extension to eigensystems in three dimensions and the resultant increase in dimensionality as mentioned in Section 34

Begin the analysis by assuming a solution in separated variables of the form

^ bull ^ L I L L W ) wsgt pound=1 nR n=l

mM e U l gt e m ( 2 en^3gt- ( 5 1 2 8 gt Jt=l m=l nlt

117

From the one- and two-dimensional problems 1n Chapter 3 elgensystems for

the coordinates C 1bull amp 2 and 3 given boundary conditions (5125) can be

w i t ten down Iranedlately as follows

h TT~ 4 = 12 (5129A) 11

(5129B) e l(5 1) = cos U - 1) mdash- c I

= R T m = l 2 (5130A) m m

e m (c 2 ) = cos ( m - l j j j - e j (5130B)

=^4~ bull n = 1 2 (5131A) n n

e n k 3 ) = cos ( n - l ) ^ - 3 (5131B)

The generalized modal resistances and capacitances the Rs and Cs above

are exactly those given for the two-dimensional case in (361) As before

substitution of C(ct) in (5128) into the differential equation (5124)

right-multiplying by eigenfunctions integrating over the volume and apshy

plying orthogonality results in the following generalized normal mode

state equation

fat14 Jf bdquo lt 5 t ) cs ( lt ) a q e 0 c ( - n pound ) C 0 S (ti1gt i ^ W r (5132) The initial conditions for x(t) are found as follows from (5126) and

(5128)

~] ~=LLL x raquo c o ) e U i gt ^ ^J- ( 5 1 3 3 )

xf npl n=l If CQ(C) 1S expandable 1n a triple Fourier series then x J l m n(0) is given

N

118

as Allows (see Mac Robert [82] p 43)f

r Z h r 2 4 r 2 L 3 W deg gt bull r r r o(-5) e i ( igt ^ eM d 3 d t2 d i (5134)

m n -^bullo-tj-o-tj-o

where the eigenfunctions are given in (5129) through (5131)

The stochastic point sources are transformed into modal inputs in a

similar fashion

r c V f (5 t ) efc) ^ ( ^ e n U 3 )d 3 d 2 d i

tradeltXs2H3) where treating the point sources as distributions the eigenfunctions in (5135) are evaluated at the coordinate positions of the ith point source

Truncating the triple Fourier series in (5128) and retaining n terms in each results in a set of state and measurement equations entirely anashylogous to those for the two-dimensional problem in Section 33 The dishyagonal element for A for the (ijk)-th equation is

bull^--jk4i+S ( 5 136 )

so that the eigenvalues of the three-dimensional problem are simply the

sums of those for one-dimensional problems written in each of the three

coordinate directions Similarly (see (362) and (364)) the elements

of the D and C matrices are merely triple products of the eigenfunctions

Thus the similarity with the two-dimensional case is well established

Notice that in the discretization of the elements of A from (5136)

and Table (361) [A] = 0 so that ct^ = 1 thus all the results for

the Infrequent sampling problem with no-flow boundary conditions extend

(laquo i = 12 (5135)

119

directly to multidimensional regions Thus regardless of the dimensionshyality of a region 1f no-flow boundary conditions exist at all boundshyaries the monitoring problem may be treated in a straight orward manner with thp techniques of the infrequent sampling problem

Consider the Inclusion suggested earlier of the emission of pollutshyant into the atmosphere at the surface of the component subregion at C = 2L A model for such emission (see Mac Robert [82] p 28) ibdquo given by the following homogeneous boundary condition

3(Ct) 33

bull+ h[e(poundt) - C 3(c rC 2)] = 0 5 3 = 2L 3 (5137)

where pound is the pollutant concentration in the atmosphere over the surshyface = 2Ltaken to be constant over time Thus the atmosphere acts like a pollutant source with constant concentration pound) h is a constant relating the emlsslvity of the surface e to the diffusivity within the component subregion by

h 5 eK (5138) Berg and Mc Gregor([18] Section 49) show that the eigensystem for a one-uimensional system with a no-flow boundary condition like (5123C) at C = 0 and a boundary condition with emission of the form (5137) at -g = 2U can be described as follows

V ^ = (n - D s r + V n = l2 (5139A)

e n(5 3) = cos (5139B

where J T must be a positive root of the transcendental equatio ^ tan (213^)= h (5139C)

ion

120

A graphical solution of (5139C) shows that there is an ordering of the roots y T 1 such that for u

gt p gt P 2 gt gt p n gt u n + 1 gt gt 0 (5139D)

For example for 2L 3 = 1 and h = 01

n 1 2 3 4 5

03111 31731 62991 94333 125743 (5139E)

Thus it is found that an ordering in this problem exists such that for

V 0 gt A gt Xj gt n = 12 (5139F)

Since the eigenvalues for the three-dimensional problem are the sums of those in eigenproblems written in the three independent coordinate dishyrections 5 c 2 and cbdquo from (5136) it 1s seen that if an emission boundary condition is used at s = 2L 3 the crucial first eigenvalue in the A matrix is given by

Xlll = (deg + 0 + v 2J (5140) 2

where p 1S the first eigenvalue for the modified elgensystem (5139) This leads to an ordering for the matrix elements such that

1 gt n gt 2 2 gt (5141)

so the the concepts developed for the infrequent sampling problems for the cases with fixed boundary conditions and scavenging apply here as well It should be noted that since P 1 gt 0 the first eigenfunction 1n (5139B) will be a function of c 3 so that the minimax problem possesses

121

the modified separation property of (5119) for the case of fixed bound ary conditions Thus the case of practical interest accounting for emisshysion at a boundary is seen to fall within the framework of the infrequent sampling problem

Conclusion XV For N large the results of Conclushysion XIV tor the case with fixed boundary conditions are seen to extend to regions with emission or radiation boundary conditions (CXV)

Another interesting point about the structure of this type of monishytoring problem is that pven though the dynamic response of the process must be computed for the entire region 1n three-space the measurement position optimization is constrained to a two-dimensional subspace that is to the surface

C 3 = 2L 3 (5142)

This reduces the domain of the optimization considerably and emphasizes the power and versatility of constrained optimization techniques In Section 536 a first-order gradient technique with linear constraints was described In the context of the problems of this section the power of such a technique is demonstrated in being able to express the requireshyment (5142) directly as an equality constraint upon the domain of 5 3 in the optimization

In the application to groundwater problems a more practical problem scatement might be to constrain measurements to be taken anywhere down to a depth e below the upper surface of the component subregion that is to a depth E below the water table This form of a constraint is readily placed upon the domain of the optimized variables as follows (see (553))

For the position of the jth measurement device require that z -J3

the element of z^ in the 5 coordinate direction be limited to (2L 3 - e) lt Zj lt 2L3 j = 12m (5143)

122

the form of a constraint for the optimization algorithm must be z s W lt 5 - 1 4 4 gt

thus decompose the single inequality constraint in (5143) into two of the form (5144) to obtain

zi 2 L 3 -

- Z j lt (2L3 - c) (5145)

Thus the subspace for the measurement posit ion optimization consisting

of a layer of depth e beneath the surface of the region is entered into

the optimization algorithm as two simple inequali ty constraints on the

elements z given in (5145) J 3

Thus formulation of a three-dimensional pol lutant monitoring probshy

lem over a homogeneous region with various boundary conditions amounts

to a straightforward extension of the methods used for one- and two-dishy

mensional problems In addi t ion confining the admissible region for

optimal monitor placement is a natural application of constrained op t i shy

mization techniques

58 The Management Problem

Thus far consideration has been given solely to the problem involved 1n the design of a measurement - the number and quality of measurement sensors and where they should be placed - in order to minimize the total number of samples necessary over some time interval It is the requireshyment on the other hand of the management problem to determine at what times within that time interval the measurements should be made in order to minimize the total number of samples necessary overall

123

It is desired to prove that the optimal management program is to

sample only when the error criterion for the state or output estimate

has reached its limit In general this is a difficult fact to establish

Results are clear for the scalar case however and (algebraically tedishy

ous) constructive proofs for a system with only two normal mode states

and one measurement device indicate that such a sampling program is also

optimal for the vector case However obtaining a comprehensive proof

that sampling only at the limits is optimal for multidimensional normal

mode representations remains an elusive task Heuristically the verishy

fiable resilt for scalar systems still seems to be extendable to the

multivariable case as will be shown

581 Optimality in the Scalar Case - Consider a scalar system whose Kalman Filter covariance equations (see Chapter 4 Figure 41) can be reduced to

(5147)

where ui and v are the disturbance and measurement noise variances p is the variance in x and c is the scalar measurement coefficient

Assume the process starts at time t Q In order to deduce the optishymal sampling program compare the two following monitoring programs which correspond to sampling at the error limit (2) and sampling before-the error limit is reached (1)

(1) Predict to t 1 sample at time t] and predict ahead to tfj (2) Predict to t N then sample (5148)

The optimality of one program over the other will be established after time t K + N by the determination of which of the two has the smaller

bdquo K + 1

= PK+1 v

PK+I = PK+1 PK+I C K+I + v

124

variance p since both wil gtve used the same number of measurements (one each)

a starting point make the assumption that the characteristics of the measurements at the two times (specified by cjL and v in (5147))

2 are the same The more general case where v can vary and c at t in

2 the first measurement program and cf at t N in the second may be differ-

2 2 2 ent is commented upon later Thus for now let ct = cz H c at both samples Case (1)

(A) Predict from t Q to t

0 J- j p1 = Sgt MQ + lto

(B) Sample at t

1 = P V

h = P pdegc 2

+ v

= (ltj2u0 + u) = (ltj2u0 + u)

_ ($ 2 u Q + u ) c 2 + v

(C) Predict to t^ N-l

pj = ( 2 ) N _ 1 P ] + 2 I n=l

-) laquo

(5149)

(5150)

(5151)

Case (2)

(A) Predict to t N

Pbdquo = () bullN Z n-l (bull ) i

n=l

( V bull pound (V

(5152A)

(5152B)

125

(B) Sample at t N

N 0 W+ (5153)

It is required to show that in (5148) program (2) is optimal (which is an analogous case to sampling at the limit in the monitoring problem when pH gt p 7 an error limit) This can be shown by finding conditions under which

(5154)

To illustrate the relationships involved in the optimality of such a monitoring program consider Figure 57

P

P N lt P N

Figure 57 Relationships involved in scalar optimal manageshyment program

126

The optimality of case (Z) is verified if after both programs have included one measurement after time tK+f- the variance for case (2) is below that of case (1)

In order to prove (5154) proceed as follows Consider the amount of correction A to the variance p at a sample as the difference between the predicted and corrected values at the sample time From Figure 57 then define

Al - (P bull P i ) lt 5 1 5 5

A N a (pdeg - p|j) (5156)

t wil be shown in what follows that if pj is a monotonically increasshying function of t K then

(PN gt P) bull (AN gt A l ) - ( G- 1 5 7) Then predict A ahead in time to tbdquo to show

(AN gt A) -ofy gtpjj) (5158)

which proves (5154) Finally it is necessary to show that if sampling at t N is superior to sampling at t then for all times t N + R after t

( P J gt P K ) - ( P J + R gt P NN

+ R (5-159) i

F i r s t consider the evolut ion of p pound + bdquo a f t e r a measurement a t time

bdquoK PK+N ( bull ^ bull ^ ( bull V V

n=l

where if the measurement after tbdquo is the first measurement

P K pK pdegc 2 + v

(5160)

(5161)

127

Since pdeg gt 0 and c Z gt 0 in (5161)

gtl lt Pdeg (5162) that is the variance in the estimate is (expectedly) decreased at a measurement In general the variance or uncertainty will grow beshytween measurements or at least it will under certain conditions upon

K 2 the combination of pj^ lttgt and ltu in (5160) those conditions which are of interest in the monitoring problem Thus restrict the study here to systems which possess monotonically increasing values of predicted varishyance as shown in Figure 57 Hence require that

(5163) Next consider the corrections in (5155) and (5156) To deduce

the inference in (5157) from (5149) through (5153) find

PNdeg gt P-

A - P - P

-5

V -0 2

V L J

V

I 2 + V

(5164)

(5165)

To find conditions under which

A N gt A 1 (5166)

substitute (5164) and (5165) into the above cross multiply by the

denominators aid collect terms to obtain

[(PS)2Plt2 bull ( P ^ ] gt [(-fif bull (ptfv] (5167)

from (5157) and (5167) follows Conclusion XVI For the scalar case of the monishytoring management problem and for problems with increasshying uncertainty 1n the state estimate between sample times the amount of correction made to the predicted variance In the state estimate Is an Increasing funcshytion of the predicted value of the variance at the time of the measurement (CXVI)

128

This concept of the comparison of the amounts of estimation error corshyrection at different measurement times Is suggested in a later section as the basis for a proof in the extension of these results to the vector case

In order to prove (5154) establish now the inference in (5158) Referring to Figure 57 and using (5151) and (51528) obtain

n 0 J PN PN (bullJ-pfL L

n=l V ) m

N-l

bull c 2 ) N - ] P E ^ V

However for a stable system

i i 1

[ P N - P N ] S V Thus by construction from Figure 57

[ gt gt l] [Pi gt P]

7 N-l i V 9 I1

() Pi + gt ( ) ltraquo n=l

bullA]

from which (5158) follows Finally to demonstrate (5159) for case (1) in (5148)

Plaquo+R

ft o R i 9 n-l

= ( ) Pf| + ) ( ) I n=l

(5168)

(5169)

(5170)

(5171)

(5172)

and for case (2)

129

n=l from which (5159) is obviously seen to follow regardless of the value

o o of ltr Hence if pfj gt p ^ m gt some error limit sampling at the limit is seen to be optimal at the sample time and optimal thereafter Thus in the scalar case (2) is the best monitoring program

o Notice how no restrictions were placed upon 4 lto or v except that the system must be stable and to and v as variances must be positive Thus Conclusion XVI includeb both the zero eigenvalue case for $ = 1 and the negative eigenvalue case where 0 lt ltjgt lt 1 Thus it is a general reshysult for scalar models where the asymptotic properties (518) and (520) of the infrequent sampling problem need not necessarily apply

Thus the verification of (5157) through (5159) prove that for a p

fixed measurement position reflected in c and fixed instrument accuracy fixed by v sampling at the estimation error limit is optimal

In the original comparisons for monitoring programs (1) and (2) 2 2 2

the assumption was made that ci = c in (5150) and cjj = c in (5153) The general case is now considered where the characteristics of the meashysurement at time t in program (1) are free to differ from those at time t N in (2) that is c f cjj

The objective of both monitoring programs under the earlier problem definition is to provide a sampling schedule which requires the least

overall number of samples necessary to maintain the estimation error beshylow its limit at all times An important observation for the scalar

case is that for a measurement at time t maximizing the time t K + N beshyfore the error limit is again reached is strictly equivalent to minimizshying the estimation error just after the sample at time t K (this may not

130

be the case in the extension to the vector problem due to the linear combinations of increasingdecreasing responses inherent in theTr[-] and g- [J functions this case is considered later) Thus the Objecshy

ts n tive of sampling schedule (1) is to choose c such that p is minimized and that of sampling schedule (2) is to find that cjj which minimizes pjj The optimality of the two is then established by determining which proshygram after time t N results in the smaller estimation error that is in determining which of Pu(c| ) and pbdquo(cjj ) is the smaller at time t N

for the scalar case it can be shown that the optinal measurement positions reflected in c and oL must be independent of the time each measurement is taken independent of the value of the variance at the times of the measurements and they must strictly be equal to each other To see this compare the first line of (5150) for a sample at time t with the case for a sample at time t N in (5153) Examining the denomishynators of the two expressions leads to the observation that the optimal choice for c in both cases must be the same In order to maximize the time until the estimation error limit is next reached after each measure-

1 N ment p-j and p N must be minimized at the times of those measurements From the forms of the expressions for the corrected variances this is achieved when the denomiators in both cases are maximized Clearly this occurs at the same common value

c 2 = c 2 = c 2 (5174) Thus for the eaalar case the optimal measurement positions as detershymined by c are seen to be independent of the value of the variance p at the times of the measurements and which is actually the same thing independent of time The same Is obviously true of the selection of the best Instrument accuracy as reflected In the measurement error variance

131

v which leads to the general result for the optimal management problem for scalar systems

Conclusion XVH For the scalar case of the tnonl-toring management problem the optimal sampling program is to sample only when the estimation error criterion 1s at its limit (CXVII)

Notice that the results in Conclusions XVI and XVII are general in that no restriction has been made which would limit them to the infreshyquent sampling problem only The infrequent sampling problem is obviously included under them as a special case

582 Extension to the Vector Case mdash Arbitrary Sampling Program mdash Consider the general case with n states retained in the normal mode exshypansion for the model m measurements at r stochastic disturbances for the monitoring management problem with bound on error in the state estishymate As in the scalar case assume the process starts at time tlaquo then compare the following two arbitrary monitoring programs

(1) Predict to t] sample at t and predict to t N (2) Predict to t N then sample

In the problem with bound on error In the state estimate the optimal program will be that which has the smallest value of Tr[P] after t N The relevant equations are for prediction

T r 8- T

ampN

s W +XVV-1 (s-176)

nl

on

nl

and for correction

Assume that the same measurement matrix pound Is used in both sampling programs

132

Ce Q ) (A) Predict from t Q to t

pound = H 0J T + Si (5178)

(B) Sample at t^

Ei bull Si - EdegE T [CPC T + y] _ 1cpO

=(5oJ T + s ) - ryo~ T + s)s T|9(io~ T + ~)~T + xl pound(JHoS T + ) s lt 5 - 1 7 9 )

(C) Predict to tbdquo using (5176) obtain N-l

pound - H Y H - l T +XV _ l T

n=l

^ n=l

- ^ ( J M Q J 1 + Q)pound T fe ( jy 0 T + Q ) E T + y l C ( M 0 T + s ) 1

(5180)

Case (2)

(A) Predict t N

(5181)

n=l

(B) Sample at t N

EM bull eS - E 0

N C T [ Q B deg G T bull y j 1 c E deg

N N

bull (V T + A pound r 1osn _ l TV ( t V T + Z J 1 ^ 1 ^ 7

^ n=l ^ n=l

x U v T + f laquon v- i T V + J V v T + Z jnlsslT (5182)

133

In order to establish the optimal1ty of program (2) it is required to find conditions on J a and MQ such that

Trjjpjj gt Tr[pJjJ (5183)

In general this is difficult to accomplish owing to the complexity inshyvolved in comparing traces of inverses of matrices Since it is so difshyficult to say anything at the symbolic level of (5180) and (5182) an example with n = 2 lt = l and r = 1 was developed algebraically which resulted in the same result as found with the scalar case in Conclusion XVII However an analytical result for the general case has not been found

Thus a general result for the optimal management problem for the vector case has not been obtained analytically though the results for the scalar case do suggest extension to the vector problem Numerical determination of the optimal sampling schedule for specific problems though tedious should be possible with dynamic programming (see Meier et al [92] for a related problem)

583 Extension to the Vector Case - Infrequent Sampling Program -Following the discussion for the scalar case where it was found that the amount of correction to the estimation error criterion was directly proportional to its predicted value at the time of a measurement it is desired to show the following for the vector case of monitoring with a bound on error 1n the state estimate

(A) Predict to time t K sample there and find the correction

poundTrK 5 Trfe - EJ J (5184A)

(B) Predict to time t K + N then sample and find the correction

134

ATr K+N 4degtrade - amp (5184B)

(C) Show that

(5184C)

(D) Finally predict the case in (A) ahead to t K + N and show

(5184D)

Graphically these relationships are shown in Figure 58 which is simply

the vector analog to Figure 57 for the scalar case

the cas

A T rK+N raquo i T r K

I K 1

Figure 58 Asymptotic relationships for Tr[pound] in the vector optishymal management problem

135

It 1s assumed that tines t K and t K + N are sufficiently long to pershymit the approximations in the infrequent sampling problem (518) and (520)) to apply at each sample With these simplifications obtain from (522)

T E H 4 + K deg + T r | j s

~PK = Edeg - efej [ s K $ T

K

+ y ]V p deg -K+N[~K+NEK+N poundK+N + ^J

pK+N -K+N ampamp CK+NEK+N

For consistency as before assume that

~K = poundK+N E ~

a t both measurement t imes Thus in (5 184A)

ATrbdquo = Tr

S i m i l a r l y for (5 184B)

ATr K+N [amp4 pound p K + N E + J

(5185)

(5186)

(5187)

(5183)

(5189)

(5190)

(5191)

I t is required in (5184C) to compare ATrK in (5190) with ATr K + N in

(5191) Making substitutions for pjj and Pdeg+ N for the matrices in (5185)

and (5186) shows that the only difference in pound[ and Ej + N is in the

valua of their (ll)-elements see the second terms in (5185) and (5186)

This results from the infrequent sampling approximations

Even with this simplification analytical comparisons in (5190)

and (5191) could not be found to substantiate (5184C) Approaches used

included use of the following theorem from matrix theory for the inversion

of a partitioned matrix

136

THEOREM I f fln is nonsingular then the inverse of the part i t ioned matrix

6

is given by

where

laquo11 Siz

A21 _ 1

1 5 2 2

A 1 + Xltf^X 1 - sect _ 1

e 1 1 e1

ilaquo x = 6 n f l

1 2

sect = ~22 ^21~

I - A 2 l A i r

(5192)

Attempting to use (5192) in comparing (5190) and (5191) where the

par t i t ion i s taken to ive A include only the ( l l )-elements of those

matrices shows that allowing only the ( l l ) -element of K and P + N to

be d i f ferent effects every element in the inner inverses in (5190) and

(5191) thus use of (5192) does not seem to help

I t was thought that use could be made of the

MATRIX INVERSION LEMMA For pound gt 0 and V gt 0

E - EpoundT[poundpoundST + y]_1poundpound = O f 1 + s V 1 ^ 1 (5193) (see Sorensen in Leondes 1781 p 254)

However though the number of terms in ATr K and ATr K + f | decreases the complexity in their comparison increases Thus the pursuit of an analytical statement for the solution of the optical management problem in the vector case was abandoned

584 Suggestion of a Heuristic Proof for the Vector Case - For the general management problem (of which the infrequent sampling problem is only a special case) the following heuristic proof is offered in substantiation of the optlmality of sampling only at the error limit when the model state is a vector

137

Suppose the problem started at time tQ and now is at time tbdquo The following two sampling programs as before are to be compared

(1) Sample at t|lt and predict to t +f (2) Predict to t K + N and sample (5194)

For consistency assume again that the same measurement matrix C is used in each case Then the optimality of (2) over (1) can be shown by provshying that at t K + N gt

T r ~K+N f o r C a s e ^ lt T r ~K +N f deg r C S S e ^ (5195) The above may be proven with a simple extension of the scalar results of Conclusion XVI to the vector case This extension can be made after making the following

Coniecture A The absolute values of the individual elements of the predicted covariance matrix in the linear recurrence (5175) are monotonically increasing functions of time (CA) Numerical experiments have shown the above to be true but an analytical proof has not been obtained Assume the conjecture to be true in what follows

The optimality of case (2) can be established by reasoning as folshylows at the first measurement time tbdquo

(1) Assume the measurement associated with the matrix C effects allthe modal state variables that is information is gained in the estimate of each state of the filter at a measurement (2) The information obtained in each mode decreases the absolute value of every element of the covariance matrix during a meashysurement

(3) Conjecture A implies that the absolute values of all the eleshyments of the predicted covariance matrix [PR+N3 at time t +tj are larger than those of [pound$] at time t|lt

(4) Then from Conclusion XVI for the scalar case the absolute value of the correction to each element of [J$+N] at t K + N should be greater than that to each element of [E$] at t|lt

(5) By the uniqueness of the solutions of linear recurrences the elements of [P|lt+M] for a sample at time t^+o must thus be smaller in absolute value than those of rPKM] at tiMM for a sample at t R K + N N N (5196)

138

A graphical interpretation of this even for a small number c reshytained modes adds more confusion than clarification to the above Such a pictorial description would follow Figure 57 for the scalar case where such a graph can now be thought to apply to eaah element of the (n x n) covariance matrix

If the above construction has validity 1t applies to both the trace of the state estimate error covariance matrix and to the variance of the system output estimate anywhere in the medium Thus in both the moi toring problem with bound on state estimate error and that with bound on output estimate error the optimal management program would be to sample only when the error criterion reaches its limit

Though a proof has not been found the concepts presented here may prove to form a basis for future solution of the optimal management probshylem for the multidimensional case

59 Extension to Systems in Woncartesian Coordinates General Result for the Infrequent Sampling Problem

Duff and Naylor [34] in Chapter 6 on the general theory of eigenshyvalues and eiaensystems discuss at length conditions under which partial differential equations of applied mathematics are separable Results are given there of conditions under which eigensystems for given coorshydinate systems can be found The results presented in this thesis for the Infrequent sampling problem based upon properties (518) and (520) extend directly to systems 1n any coordinate system for which complete orthogonal eigensystems can be found the requirement Is only that the first eigenvalue must dominate the asymptotic response a condition which has been seen to admit a wide variety of suitable boundary condishytions As developed in Young [131] no-flow boundary conditions can be

139

used in conjunction with pseudo-sources at the boundaries of actual sysshytems in the coupling of component models to one another greatly extendshying the applicati n of infrequent monitoring theory

The results of Conclusion XIV for systems with fixed boundary conshyditions extend as a worst case to systems in any separable coordinate system where a complete set of orthogonal eigenfunctions nay be found In those cases fidegd boundary conditions or emission or radiation boundary conditions lead to the modified separation property in (5119) this results in the necessity of solving for the position of maximum variance in the output estimate in the monitoring problem with bound on output error as a function of time This is not a serious difficulty and does boast the property that as in Conclusion XII for no-flow boundshyary conditions once the position of maximum variance is found at the first sa pie that position will be the position of the maximum varishyance for all subsequent samples Thus the time-varying maximization in (5119) and (51ZC) for one-dimensional diffusion with fixed boundary conditions or for systems with emission or radiation boundary conditions as in Conclusion XV need be solved only at the fivet sample the same result applying for all other samples the result extends directly to all systems of higher dimension in separable coordinates with complete orthogonal eigensystems

The more ideal results of Conclusions VII and XII for systems with no-flow boundary conditions appear to also extend to systems in arbitrary coordinate systems where again complete orthogonal eigensystems exist The requirement in order for the solution of the minimax problem to be Independent of time in Conciusion XI is that the eiaenfunction associated with the dominant eigenvalue in this case the zero eigenvalue be inde-

140

pendent of the spatial coordinates Consistent with this requirement make

Conjecture B For diffusive systems in any coordishynate system where solutions may be expressed in terms of a complete orthogonal eigensystem the case of no-flow boundary conditions leads to a dominant eigenvalue of zero modulus and an associated eigenfunction which is independent of the spatial coordinates (CB)

Examples include diffusive systems in cylindrical coordinates For a system with a no-flow boundary condition at radius r = R the eigenfunc-tions are Bessel functions the eigenvalues are the positive roots of

3 pound J 0 ( A R ) = 0 (519)

the first of which is zero The eigenfunctions are e n(r) = J 0(A nr) (5198)

but since A = 0 the fir-it eigenfunction is independent if r (see Mac Robert [b2] for n extensive treatement of Bessel functions in the area of spherical harmonics)

Another example concerns radial and latitudinal atmospheric pollushytant transport on a global scale (see Young[131] Chapter 4) It can be seen that eigenfunctions in the radial direction are Bessel functions while those in the latitudinal direction are the Legendre polynomials Both eigensystems possess zero first eigenvalues and related eigenfunc-ions which are independent of the spatial variables

In cases such as these the complete separation of the minimax problem as in Conclusion X into two independent problems in minimization and maximization both of which may be solved independently of time leads to in elegantly simple solution of the infrequent monitoring problem with bound on error in the output estimate

141

The following general results for diffusive systems in various dishymensions and coordinate systems summarize the extension of the one-dimensional results of this chapter o the general case in multiple dimensions

Conclusion XVIII The complete solution of the deshysign problem for an infrequent sampling monitor may be determined at the first sample time the results being optimal for all subsequent sample times The optimal sampling management program appears to be to sample only when the estimation error criterion is at its limit These results apply to diffusive systems in separable coordinate systems with homogeneous boundary conditions where complete orthogonal eigensystems exist and to normal mode models of arbitrary finite dimension

(CXVIII)

142

CHAPTER 6 NUMERICAL EXPERIMENTS

Examples are presented in this chapter which serve to numerically substantiate many of the analytical results of Chapter 5 The discrete-time Kalman Filter algorithm of Chapter 4 is programmed as shown in PROGRAM KALMAN (see Appendix F) using the normal mjde problem formulashytion of Chapter 3 and the time-discretization algorithms of Chapter 4 and Appendices A B and C The first-order gradient optimization algoshyrithm with linear constraints described in Section 536 (see Westley [127]) is coded as SUBROUTINE KEELE and included as part ot KALMAN For the case m = 2 for the optimal positioning of two noise-corrupted meashysurement devices and for a one-dimensional diffusive medium it is found to be convenient to generate contour plots of the value of the estimate error criterion (either Tr[Ppound + N(z K)] or [ P J ^ f z J L j ) as a function of the two measurement device position coordinates IKJi and f z K ] 2 at various times t bdquo + bdquo The surfaces shown in these plots with the high level of information they contain were instrumental in arriving at many of the conclusions of Chapter 5

The basic problem to be considered is developed in the following section various examples based upon it to demonstrate the more salient features of the infrequent monitoring problem are included in subsequent section

143

61 Problems in One-Dimensional Diffusion with Ho-Flow Boundary Condishytions Method of Solution

Consider a one-dimensional problem in diffusion including scavenging described as follows

Figure 61 One-dimensional Diffusive system example

For the pollutant concentration pound(T) consider the following initial-boundary value problem

3 5 uraquo 5 = 0 x = U

W e(cO) = V cos ((n - D f E )

(61)

(62)

(63)

The single stochastic point source 1s defined by

144

U U T ) = OI(T)S(C - c j

E[OI(T)] = 0

E[u(T)agt(T2)] = Wlaquo(T - x 2 ) (64)

In the interest of generality transform the problem to dimension-less functions of time and space as follows

t = poundl bull

a fix K

W T raquo (65)

Substitution of (65) into (61) yields the following dimensionless form

for the one-dimensional diffusion initial-boundary value problem 9

| f = S-l - 05 + f(zt)j (66)

bull amp i | f pound U 0 z = o z = 1 (67)

n laquoz0) = cos (n - 1) irzj) (68)

n=l

and where the dimensionless point source is given by

f (z t ) = w(t)lt5(z - z w )

E[w(t)] = 0

ElXt^wttg)] = Wa^ - t ) (69)

With these generalizations the modal resistances capacitances and eigenvalues from Table (331) become the following for the dimenshysionless problem with scavenging

145

n = 1 raquo

n = 23 2 n = 23 (n-l)V

The forcing terms from (335) become

((n-l)V + a)

[ c n cos ((n - 1)TT z w)jw(t)

concentration at any point z CO

pound(z t ) = ) x n ( t ) cos fn - UirzV

12

The pollutant concentration at any point z from (335) becomes

(610)

(611)

(612)

For a sufficient number of modes to be both theoretically interesting and computationally expedient choose n = 5 for the number of terms retained in the expansion in (612) This choice will be studied later as to its effect upon the outcome of the infrequent sampling problem

Thus the modal state equations may be written in dimensionless variables as follows

1 -o

2 bullU2+a) k3 - -(47i 2+a)

4

5

-(9ir z+a)

0

J +

o x l x 2

3

4

+

lt 5

2 cos (IT Z W ) 2 cos (2ir z j 2 cos (3ir z w) 2 cos (4 z )

w(t)

(613) The initial pollutant distribution (z0) is chosen as in (68) so that from (333) the initial modal state variables are written simply as

146

8(0) = m Q (614)

The covariance of the error in the estimate in the Initial state 1s chosen to be

005

Bo s raquoo 001 o

000001

o 000001 (615)

000001 For m = 2 the two noise-corrupted measurements in the vector y are given by

X pound i v

raquo1 1 cos(nz) cos (2irz) 1 cos(nz2) COS (2irz2)

r l1

x 3 x 4

v(t) v 2(t)

(616)

where the mean value of the measurement noise E[y] 5 o (617)

Choose the position of the stochastic source as z w = 03 (618)

For this case scavenging is ignored so that a = 00 (619)

Let the source and measurement noise statistics be defined by the folshylowing covarlance matrices

W = 0125 (620)

147

OOSO 0 (62i)

0 0025 A typical output record of the problem description from KALMAN Is

shown in Figuure 62 The data corresponds to a problem with a bound on the error 1n the state estimate where the error limit Tr = 0075 At each measurement time NSEARCH pound 5 random starting vectors are to be used In the measurement position optimizations The Initial guess for the measurement positions Is chosen as zbdquo = pound015015] (called Z) The computed values for A and D are shown For a steps1ze of OT 5 001 the so-called Paynter number raquo 35 that is the number of terms used in the series approximation for e- In (49) for an error criterion of EPS = 000001 The state transition matrix pound + 1 (called AK) and the discrete disturbance distribution matrix lpound + 1 (called OK) from (412) are computed along with the Incremental disturbance noise covariance matrix g K + 1 from (414) and Appendix B (called WKP1) The steady-state disturbance covariance matrix n from (519) and (520) including the

r - SS term | ft I ) Is listed as WSS along with the number of tlmesteps NSS

Nn necessary for the Infrequent sampling approximations to be valid see (578) for the value e - 100EPS (same EPS given above)

For the monitoring problem with bound on error in the state estishymate a measurement is necessary whenever at time t bdquo + N Tr[gpound+N(zpound)T gt Tr At each sample an attempt 1s made to locate the global optimum of the measurement position vector jJ + N such that

For the initial guess of z K + H = [015015]1 and for NSEARCH S 5 other randu^ starting vectors the constrained first-order gradient algorithm

DISCft i Te KALHAN F I L T E R SIMULATION PROGRAM V E R S 2 7 5 ftOV f

PFJ03LE1 INPUT JS AS FOLLOWS

EXAMPLE TO SHOW GROWTH OF T R A C E I P ( K K + N ) J Slf l lFACE WITH T I 1 E T ( K N ) ITS SHAPE APFRCACHES THAT OF I P l K K h l l SURFACE ASYHPTOTI ALLY FOR LARGE H

WO VECTOR I S

1OODE00 1OCOEOO

CAPMO MATRIX IS 500DE-O2 -DElaquo00

-OCraquoOC 1000E-O2 OE+CO -OE+OD CE+O0 -CE+OO -CE+OO -OE+OP CAPW MATRIX IS 1250E-01

CAPV MATRIX IS

10D0EO0 tOOOE00 IOODE+OO

-OEDO -OEraquo00 000E-05 -OE+OO -OE+OO

-OE+OO -OE+OD OE00 OOOE-03 -OE+OO

-OE+OO -OE+OO -OE+OO -OE+OO 1OOOE-03

2W VECTOR IS 3000E-01

Z VECTOR IS 1500E-0 1500E-01

NUWSEft OF POINTS FOR RANDOM SEARCH INITIALIZATION IN5EARCH) bull

THIS IS A MONITORINS PROBLEM OF TKE FIRST KIND WITH A CONSTRAINT ON THE ALLOWABLE ERROR IN THE STATE EST MATE THE ESTIMATION LRROR CRITERION IS THE TRACEIPltKK+N)3 THE CONSTRAINT ON THE ERROR IU THE STATE ESTIMATE IS FIXE) AT

Figure 62A Problem description from PROGRAM KALMAN

PARAMETERS FOR SYSTEM DESCRIPTION ARE

D IFFUSION CONSTANT K 1O00E+O0 LENOT OF MTPUW L = 1 OO0E-00 SCAVCKSINO RATE ALPHA = OE+OO

MATRIX I S - O E D D OE+OO

017+00 - 9 8 7 C E + O 0

OEOO OE+OO

OF+03 OEOD

OE00 OE+OO

MATRIX 1 5

1 O0JE+O0 1 1 7 6 E + 0 D

- 6 1 0 0 E - 0 1 - 1 9 0 2 E + 0 0 - 1 6 1 8 E + O D

OE+OO

OEDD bull3 94BE+01

OE+OO

CEOO

OE+OO CE+OD

OE+OO CE+DO

CE+OO OE+OO -eee3Eoi OEraquoOO

OE-00 -1S79E+02

1OOOE+00 bullOE+OD DEC0 OE+OO OE+CO

DK MAT)

10DDE-02 1119E-02 -5106E-03 -126CE-C2 -a134E-C3

OE+DO OOeOE-01 CE+OO OE+CD OE+DO

OE+00

OE+OO 673BE-01

OE+OO

OE+OO

OE+OO OE+OO OE+OO 1ME-D1 CE+OO

OE+OO OE+OO OE+OO OE+OO 2062E-0T

WKPt MATRIX I S

1 2 S 0 E - D 3 1 3 9 9 E - C S - S 3 B 3 E - 0 raquo l Q 7 6 E - 0 - 1 0 1 7 E - 0 3 1 3 3 B E - P 3 1 S 6 B E - 0 3 - 7 1 6 0 E - 0 4 - 1 7 7 6 E - 0 3 - I 1 5 2 E - 0 3

- 6 3 B 3 E - 0 4 - i e 6 E - C 4 3 3 0 1 E - 0 4 6 2 7 pound E 0 4 0 4 5 3 E - 0 4 - 1 3 7 0 E - 0 3 - I 7 7 6 E - D 3 8 2 7 0 E - 0 4 2 1 1 5 E - 0 3 I 4 2 7 E - 0 3 - 1 0 1 7 E - 0 3 - 1 1 S 2 E - 0 3 5 4 D 3 L - 0 4 1 4 2 7 E - 0 3 9 9 2 I E - 0 4

WSS MATRIX I S

9000E-02 143BE-02 - I 9 5 7 E - 0 3 -2 C77E-03 14d6E-02 A7MG-03 - 1 M 0 E O 3 - 2 0 3 2 E - 0 3

-1 957E-03 -I e^OE-03 6047E-04 1 I45E-03 -2 677E-03 -20(2E-Q3 1145E-03 254GE-03 - I 231E-C3 -I 4 1 E - 0 3 6333E-04 1 559E-03

bull1281E-03 bull l 417pound 03 6333E-04 1559E-03 1-036E-O3

THE NUMBER OK TEftK$ I N THE TRUNCATED MATRIX CCMVOLUTION SERIES FOR THE STEAOT-STATE VALUE OF tUSS) NSS 71

Figure 62B Problem description from PROGRAM KALMAN

150

KEELE produced the results for the first measurement partially shown in Figure 63 The global minimum is chosen as the best minimum found after the NSEARCH + 1 attempts

Figure 64 is a time history of Trlppound+N(zJ)] that is a plot of the performance criterion with the optimal measurement positions from time t K used in its evaluation between measurement times t K and t K N Three sample times are shown at t = 009 048 and 088 At each samshyple the optimal positions of the m = 2 measurement devices with covari-ances given in (621) are found such that the time to the next sample is maximized Examples of actual state and optimal state estimates are shown 1n Figure 65 In the plots those labeled X() are plots of states with time those labeled XH() (mnemonic for ( or x-hat) are the corresponding state estimates

In assessing the globil optimality of zpound and P found at time t K

(as in (62)) contour plots are constructed for the objective function [P^(j K)] 1 1 plotted against [z K] horizontally and Is K] vertically The minimum plotted value is noted with a the maximum with a 0 In between are nineteen equally spaced levels denoted with the symbols ()( )(D( )(2)( )(9)( )(U) The actual evolution of the optimizashytion calculations can be followed with such contour plots in order to understand the procedures of the algorithm More importantly study of the contours serves as an important method of understanding the nature of the design problem since the plots convey a level cf information otherwise not available through tabular listings or other means

At each sample time say t K + N the predicted covsriance matrix IK+N is written out for post processing and after the entire time intershyval in the monitoring problem is covered contour plots of the

THE NUMBER OF CALLS TO FVAL IG 1 1309346B3E-02 1ODO00000E+00 213471279E-01

THE KUKBER OF CALLS TO FVAL IS 7 127494646E-02 1OOOOOOOOElaquo00 1C3265064E-01

THE NUriBHR OF CALLS TO FVAL IS t 1 367C4440E-02 437O71939E-01 601669468E-OI

THE KUM3CR OF CALLS TO FVAL IS 19 12644I4E9E-02 21 J255890poundgt01 515S4B271E-01

THE NUMBER CF CALLS TO FVAL IS 1 146922GD4E-02 374187311E-01 B92S8163eE-01

THE NUMBER OF CALLS TO FVAL IS IS 1264J1463E-02 211254872C-01 S15347999E-01

THE NUMBER OF CALLS TO FVAL S 1 162042943E-02 5O7662490E-01 laquo00351916E-01

THE KUKBER OF CALLS TO FVAL 13 13 12B441469E-02 2t126264SE-01 3155529S3E-01

THE NUMBER OF CALLS TO FVAL I S 1 1SB617996E-02 3a5314991tgt01 27e840503E-01

THE NUMBER OF CALLS TO FVAL IK 11 126982870E-02 6621772E5H-01 1 67144930E-01

THE NUMBER OF CALLS TO FVAL IS 1 132010362E-02 2273t1246E-01 663S29703E-01

THE NUMBCR OF CALLS TO FVAL 16 442 1 E6441469E-02 2 U235SC4r-01 6I3540379E-O1

BEST LOCAL MINIMUM FOUND AFTER B TRTS I S 126441469E-02 211234672E-01 315347999E-01

Flpure 63 Sunmary of results of minimization of F P ^ Z ^ ] at the f i r s t sample time from SUBshyROUTINE KEELE r K ^ K ltJ l l

eooooE-o2

B3000E-02

42500E-OZ

X X X x ) x x x x x bull x x x x x x x x x x x x x X X X X X X X X X X X X X X X X X X X X X X X X X X - X X X X X X X X X X X X X X X X X X X X X X A X X X

x x x x x X X X X X X X X X X X

x x

Figure 64 Time response of TrJpK+MfZ|)Jraquo the performance criterion for the optimal monitorshying problem with bound on error in the state estimate samples occur at t K = 00D 048 and 088

B6900E-01

S5BOOE-01

947O0E-01

X X

X X

X X

x

X

X

X

X X X

X X X X X

X

X

X

X

X X

X X

X X

X X

XX XX

X

x X X X

X X X

XX

X X X X

X X X K X

X X

X

X

X

X

XX X X X

XRXX

XX XX

X X

X XXX

X

X

K

Figure 65A Trajectory of the f i r s t modal state [ K + N ] raquo versus time t K + f J

1OO3Opound00

xxxxxxxxxxxxxxxxxwoooutxxxwuwxxxxxxxxxxx

xxwoouooc

XXWOWKXXXXX) OIMXXXXXXXXXXXXXXXXW ucwxxxx

Figure 65B Trajectory of the optimal estimate of the f i rs t modal state time t K + s bull [ -K+NJ T versus

1000OElaquoO0 X

XXXJUUM WWXXX

-IOOOOE-01

Figure 65C Trajectory of the second modal state [SR+H] 2 versus tine t K + N

6000GE-01

JOOCIE-01

ZOOOOE-Ot

IX

1 X

I X

1 X

1 X

I X I X

I X I XX I X 1 X 1 X I X I X I X 1 X

i V I X 1 ft K XX XX XXX xxxx xxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 65D Trajectory of the optimal estimate of the second modal state I E K + N ] versus time t K + N- L J 2

157

[ppound +J)(z + N)] surfaces are made for each sample time Much use of

these plots is made in what follows

62 Problems with Bound on State Estimation Error

621 ftsyaptotic (tesporso of Stats Estimation Error mdash Fov the

monitoring problem with bound on allowable error in the estimate of the

modal state vector i t is necessary to make a measurement whenever for

a time tK bullK+N

T BK + N(SK) i T r l t a (623)

that i s whenever the trace of the error covariance matrix predicted

from the last measurement at positions z bdquo at time t bdquo to time t K + N reaches

the estimation error l i m i t T r

In order to numerically substantiate the fundamental results for

the Infrequent sampling problem contained in conclusions I I I I I and

I I IA the relationship between T l lpoundJ( + N( K)J and [pound()] is now conshy

sidered Suppose the monitoring problem is started at time t Q with

PS 5 Hbdquo as the i n i t i a l value of the error covariance matrix le t i t s -0 -0 value then be predicted ahead to lime t bdquo when

Tr[pdeg]= Tr i V nV l T gt T r z i r a (624)

at which point a measurement must be made The monitoring design probshy

lem is to choose pound at time t K so that the maximum time t K + N results when

For a measurement at 2 K the corrected estimation error covanance mashy

t r i x 1ltmed1ately af ter the measurement is given by

158

$(h) - PKdeg - $ ( [5(2K)EK-C(K)T + secthgt ampbullgt where

^ K )

1 cos (TTZ) cos (2TTZ)

1 cos (irz2) cos (2TTZ 2) (627)

In order to generate a contour plot of Tr[ppound(jK)] from (626) plot values of Tr[Pj(zK)] for all values of the elements of zraquo over the full length of tne medium (0 lt z lt 1 and 0 lt z lt 1 in (627)) The surface for the first sample at t R = 009 1s shown 1n Figure 66

To study the evolution of the trace of the predicted error covari-ance with time as a function of the measurements at time tbdquo let

-PK+I(SK) bull lt(SK)S T +

~PK+2(K) lti(Kgt T + 8

n=l (628)

Contours of the traces of the above predicted covariance matrices at tines t K + t K + 5 t K + 1 0 t|+11 and t K + 5 as functions of jo are shown in Figure 6-7 Notice how tht global minfmum moves with time ote also how the error 1n the estimate In the region near the stochastic source (z w = 03 along both coordinates z 1 and z 2) Increases in v ^e as time grows relative to the rest of the surface due to greater uncershytainty in the estimate in that area

CONTOUR PLOT OF TRACE[P(KK+Ngt(2(Kgt11 A3 FUNCTICI CF [Z(K)31 HORIZ C2(KM2 VERT EXAMPLE TO SHOW CROWTH OF TRACECPIfcK+Hll SURFACi UlTH TIME TIK+N) ITS SHAPE APPROACHES THAT CF [P(KK1J11 SURFACE ASVMPTOTICALLT FOR LAROE H

10 393 44 3 222 599 44 3 222 555 44 3 222 39 44 33 222 3 44 33 222

OS bull 44 33 222 44 33 222

444 33 222 444 33 222

444 33 222 06 444 33 222

4444 33 22 4444 33 22Z 4444 33 222

4444 33 222 07 bull 4444 33 22

4444 33 22 4444 33 22

4444 33 22

444444 33 22 0 6 M4444 33 2 1

4444 33 222

44 333 22 1 U f K l l Z 333 22 1

3333333 222 1 0 3 333 222 I

Z2222 2222222222

2222 33 4 S 6 77 2222 33 44 S laquo 77 2222 33 44 3 6 77 2222 33 44 3 66 777 2222 33 44 3 3 BB mdash 2222 33 44 S3 06 2222 33 44 S3 i-2322 33 4 S 61 2222 33 4 S 6L

222 33 44 33 66 222 3 44 S3 66 222 33 44 S BBS

222 33 ~

8(138 99999999 BUSS 99999999 S03B 999999B9 1)388 99903399 03986 93999999

777 888886 S9 J9999999 7 6883886 9999939999999 777 8838888 9S99999999

7 77 68868688 95J99 777 eeeeasses

77777 6888888688 77777 866886868666888

777777 6086666868886 666888686

04 -111111 111111 1111111 1111111 03 +1111111

1111111 i u m i m m 111111

oa + i i n

22222222222222222 22222222222222222222222

22222222 2222222 22222 22222 2222 333333 2222 222 3333333333 222 222 333333333333 222 222 33333333333 222 222 333333333 2222 2222 2222 222222 22222

2222222222 222222222 22222222222222222222

222 33 4 33 6G6 777777777 22 33 44 S 3 66S 7777777777 22Z 3 44 33 6663 7777777777777

22 3 3 4 4 3 3 GGXC 77777777777777 22 33 4 33 BE5636 77777777777777 222 33 44 33 3pound66S6GS6 777777

22 3 44 353 -36666666666666666 22 39 44 533S 6666666666666666686 22 33 444 355553553 222 39 4444 33333333553533353355333353333

22 33 44444444 222 333 4444444444444444444444444444 2222 3333333333333333333333333333 lt

22222 222222322222222 2222222222222222222222222pound222222

2222Z222222 11111111111111111111111111 t i l 111 m i l -

1111111111111111111111111111111111111 11111111 111111 111111111 111111 1 i u u i n 11111 11111 11111 11111 11111 11111 _ 11111 0

22222222222222 222222 01 +333333 2222 3933 2222 4444 333 222 44444 333 222 444 33 222 OO + 444 33 222 HH

urn i n i t i n

1 l 1 l l I 1 t l 1 l 1 1 1 l 1 1 1 1 U 1 l m i n i u m t m m t i i n n n i i

2222222222222 2222222 22222222222222222222222222222222 2222 3333333 222 333333 3333333333333333333333399333333 2222 3333 222 333 4444444444 222 33 44444444444444

TtK+N)raquo 90000E-02 T(K bull SO000E-O2 N bull O STEPS AFTER FIRST MEASUREMENT

T K S S S (S) (91

d616pound-02 3369TE-02

i e i (6)

33166E-02 32440E-02

(7) C7) 31713E-02

3O690E-O2 16) (6) 30265E-02

29540E-Q2 (3) (31

26814E-02 26089E-02

(4) (4)

27364E-02 26539E-02

(3 ) (3 )

23914E-02 23163E-0Z

(2) (2gt

244E3E-02 23738E-02

(1) lt1gt

23013E-02 22268E-02

(8jraquo 21363E-02 ESTIMATION ERROR CRITERION CONSTRAINT bull

78000E-02

figure 66 Contour plot of TnP|[(Sv)| a t f i r s t measurement time t K = 009

ITS SHti-e APPROACHES THAT CF lPtKKgt311 EbRFAC ~ IAYMPTOTICALLV FOR LAROE N

tZ(K)32 0 5

laquo 4 444

44444 ltgt444 4144 4444

444 3 444 3 444 33

222 222 222

2222 2222 2222 2222

i 222 pound2

2222 222 272 2ZZ

-1J4 444 44 444 44

33 222 03 222 33 222 33 22 333 333 2 3133 22 33333 222 2222 22222 222222

11111 1111111 111111 Mill 1111 111

111 1 111

22222 33 4 5 66 7 8338 9999999 0-22222 33 4 S 66 7 8e88 S999939 22222 33 4 S 6 7 BBC3B 933999S9 22222 33 4 5 6 7 7 8B380 99992939 22222 33 4 S 63 7 eSBGQ 93939993 22222 33 44 S3 66 77 6C8E68 933^9999999 222222 33 44 S3 60 777 8386888 99999S93999 22222 33 44 0 66 777 683B(8d S9999939 22222 33 4 55 6S6 7777 CSBBBSBB 2222 33 44 53 66 77777 088888888 22I-2 33 44 5 66 777777 08866886888 laquobull 2222 33 44 55 St 6 777777 8833668888880 222 33 A S3 664 77777777 88888888 222 33 44 55 tB-1 7777777777 111 222 3 44 55 6iC6 77777777777 11111 222 33 44 55 60566 7777777777777 1111111 222 33 44 55 UE66666 7777777777777 II 111 111 22 33 44 555 666666S666 777777 11111111 222 3 44 551 66666666666666 111111111 222 33 44 6-5 66666666G666666666

III 111111 2 2 3 3 44 pound5^5533553 66666 1111111111 222 33 444 5355355555533555555555 1111111111 222 33 4444ltM 55555 11111111111 222 3333 444444444444444444444444444444 11111111111 2 2 2 333333333 111111111111 22222 33333333333333333 111111111111 22222222pound22222222222222222222222 111111

222222 22222222222222222

222222 22222 2222 33=3 22222

2222 333333333333 222 222 33333333333333 222

2222 33333 333333 2 2 2 2222 33333 33333 222 222 33333333333333 2 2 2 2222 3333333333 2222 22222 pound222 1

222222 222222 11 2222222222222222

1111111111 111111111111 111111111 II 1111111 II II 111111 1111 1111111111 n i m i i i i 111111 H I m m 11111 i n i i

pound22222222 22222

333333 2222 3333 222

444lt] 333 222 441444 333 2pound22 4M444 33 222

1111111 1111111 1111111 111111 111111 1111111 1111111 1111111 111111

111111111111111111111

11111111 111111111111 11111111111 1111111111

111111 222222222

2222222 2222222222222222222222222222 2222 333333

2222 333333333333333333333333333333333333333 2222 3333 333333333333333333333333 222 3333 3333333333333

TCKNgt 10000E-01 T(K) bull 90000E-02 N bull 1 STEPS AFTER F r RST HEASUHEHENT

SYPcopy LEVEL RANGE

-s-srapoundsi m 35902E-02

35248E-02

i 34594E-02 33940E-02

33265E-02 32631E-02

i 31977E-02 3 1323E-02

30668E-02 30014E-02

s 29360E-O2 26706E-02

26051E-02 27397E-02

i 26743E-02 26CB9E-02

3434E-02 247eOE-02

(copy) 24T26E-02 ESTIMATION ERROR CRITERION CONSTRAINT =

750D0E-D2

12SJCE-013

Figure 67A Contour plot of measurement

T rfei(0] U K+1 010 one timestep af ter f i r s t

161

r w S z

m m n_ lnM bull MM ampnm J 5 8

pound8 SS8

totacopy t^f

I WW

laquo5S N K Jill timctmo B O O

ltoia mio v mm vn hi

ogtn M O W --

- w o n mdash ni Bin bull bull- w o n - w o n

a-o w - raquo - bdquo bdquo _ _

_ _ n n (M mdashmdashraquo- ~mdash^mdashlaquo-mdashmdash~raquo m r t r t o V T I V laquo o w - - ^ - - _ - - - - -

- n n m o n m ltrwMM nn w w - raquo - - - bull - - - -mU)D M T H J ^ M laquo r n w ^ ^ raquo - mdash mdash mdash bull mdash

M lt T M laquo n n n t i i ajpi raquo - - - bull bull nnnnnei laquo laquo - ^raquo - r - r - r -

n n n n ftiNw ^ - bull w w w m i i i - i n n o gtWNlaquo mdash _ bdquo raquo - _ CMVWMIM

n d n o n n n wcyNWh) mdashmdashmdash_- - ^ NNMt twNN laquo OjttOjCVWN bdquo - ^ raquo filtM laquoM

- - bull bull - bull - mdash -bull MU OO laquo

W

- N nnn bull

bullmdashgt- w w

III NiMdiuW

(MCMNfcrw

Bio

F-uu cvw lt laquo(jftlfCVJ

U S O -WMWtVWhJ

raquo-raquo- w

N mdash bull- mdash mdash

si WAituww n o n W N

WMW mdashZZ

CONTOUR PLOT OF TRACpoundtPfKK+HgtltZOOU AS FUNCTION OP t2ltK131 HOR1Z EZltK))2 VERT EXAMPLE TO SHOW GROWTH OF TRACEIPIKK+Hll SURFACE WITH TIME T(ftN) T6 SHAPE APPROACHES THAT OF (F(KK)311 SURFACE ASYMPTOTICALLY FOR LAROE N

0 2

Z S 2 2

aa 2g2 933 2222

333 22g 3333 222

333 33 222 333333 Z22

33333 222 bull33333 22

33J33 pound2 33333 22 35333 222

3333 22 33J 222

444 3 444 3

Aft W 44444 33 44444 33 +4444 333 444 33

333

22ZZZ222222222222 Z22222222222222222 22222222222225^222 Z22ZZ222Z222222222 22ZJ22222222222222

22222 22222222222 ~ 222222Z222

22Z22Z2222 222222222

2222222

333 44 H S 333 4 9 6 933 4 B TO

33 4 S3 66 33 44 S3 61 333 44 9 61

mdash 44 33

999399 O 999999

999999 9939999 99999399993 9999SS9

Mil

7 0B0BB 7 88088 n eases 7 BBSBS 77 BBSBBB T 7 BBBBBB

bdquo - ^ r 77 B680CB 33 44 9 3 68 77777 098888

33 4 9 668 77777 B6BBBBB3 33 44 raquo3 BB1 777777 BBBBBBBBBSBB

- - - 6raquor 7777777 60086886 - - laquo16G6 77771

33 4 S3 66666 77777777 -~ 353 66666B 777777777777

333 66666B66 777777777 SSJ 666666666 777

I SU5S 6066686666 bullJ353333 666666B666666B C666666B

222222 33 22222 33 44 33

222 mdash -222

222 i 22 222

11111111 11111111111111

11111111111111111 111111111111111111 111111 111111111

11111 111111 bdquo - -m i m i l 22^

1111 222 1111 222

111 222 3333133 111 2222

11111 22222122 2222 11111

1111111

2222 111 22222 1111

1111 111111

111111 l l i m

i m i m i i m m 11111 111111 11111 222222222222 11111 111111 222 2222 11111

111111m J g z 2 M 3 3 3 M 2 L - L - 1

444 pound33333333333 1 4444 9S5S35555S3B 13 44lt14ltM4 033333533353

44444444444

bull bull 1 1 U I U 1 1

liliSHn

3333 333

333 444444 333 444444

3333 222 33 222 333 22 333 22 333 222

333 222

11111111111111 111111111111111

m j u i m 01 +222222 111111 222 1111 33333 222 11 333 ---

_ 333 _ 222 33333333333 -raquo2 11111 2222 2222 11111 22222222222222 11111

1111111111111111111 bull 1111111111111 1111111111 1111111111111111111111111111 111111111111111111111111111111111111111 11111111111111111111111 1111111111 1 1111111111111111111111111111111111 m u 1 1 m m 111111111111111111111111111111

111111111111111111111111

0 0 bull144 33 333

sect22 22 111111

111 (11 11111111 11111 222222222 12pound2222222222g22a222222222222 111 2222 1 222 1 2222

T(KN1 19000E-01 TOO bull bull -0000E-02 N bull mdash 0 i E 3 AFTE FIRT BEASUREHENT bull bull bull ^ bull bull bull bull bull bull bull bull bull laquo B

COHTOUR LEVELS laquo0 SYPBaLS bull i i ^ i i i m i i i i i V1Vamp LEVEL RANGE i g g f i e e a s a t i i i i i

(0 47GG7E-02 19 (raquo m 171

47143E-02 46623E-02 46102E-02 40380E-02 4S059E-02 44S37E-02

( 6 ) CB)

44015E-02 43494E-02

IB) (31

42972E-02 42431E-02

11 t4J 41929E-02 41407E-02

13) 40Be6E-02 4 0984E-OS

(2J C2)

3SB43E-02 39321E-02 38799E-02 3S27SE-0Z

CM 37756E-02 I H ^ t H I I I I I I I I I ESTIMATION ERRdR CRITERION CONS^-AINT

7S000E-02 COVARIANCE tWJ

Figure 57C Contour plot of Tr ElLinfe) a l t 1 m e t ^ m - 0-19 ten timesteps after first measurement

CONTOUR PLOT OP TRACEIP(KKraquoN)lt2(KgtJ3 A3 FUraquoeTteM Of [ZCKI31 HORIZ CZIK12 VERT EXAMPLE TO SHOW OROWTM OF TRACEIPtk KN)3 itftACE WITH TIKE TltK+N) ITS SHAPE APPROACHES THAT CF [PIKfltJ311 SURFACE ASYMPTOTICALLY FOB LARUE l

bull 444 444 444 44144

333 33

06 bull 333 2222

333 pound22 3333 222 333333 222 33333 pound22 33333 22 0 7 raquo33333 22 33333 22 33333 22 33333 222 1 3333 22 1 OC 333 222 11 222 111 2222 1111 EZltKgt)2 22222 111 1111 0 9 bullU111111 11111

3 22222222222222222 3 22222222222222222 3 222222222pound2222222 2 22 222222222222222 222222222222222222 22222 222222222 HZ 2222 2222222222 2222 222

SBBflS eoeos 63886 eeeee 777 695808

laquo99999 0 939999 999999 999S939 99999999 9999909999 9999999

333 46 3 0 7T7 333 4 fl 66 -7 333 4 a ee -7 33 44 55 66 ~~ 33 44 55 61 333 44 S 6B 777 608689 _ 33 44 S3 63 7777 6BSofl8a 2222222222 33 44 59 CF 77777 aaSOBd 2222222222 33 44 53 6(6 77777 6638668 2222222 33 44 53 pound68 777777 680308888888 222222 33 44 33 ecEB 7777777 66380888 22222 33 44 S3 Gamp666 7777777 222 33 44 35 66666 77777777 1111111 Z22 33 44 35 6665666 7777777777777 111111111111 22 33 44 3L5 66666669 777777777 11111111111111 222 33 44 ESr3 66666866 77 111111111111111 22 33 444 311555 666666666 11 11111111 7 33 444 i353S533 6666666B66666 11111 22 333 444 55553535553 6666666 11111 22 33 444 55555535333 1111 22 333 44444444 33353533335lt 1111 22 333 4444444444444444 111 222 33533333 4444444444 1111 2222 333333333333333333 1111 222222222222222 111111 222222222222222222 1111111111111111111 1111111111111111111111111111 111111111111111 1111111111111111 11111 11111 bull 11111 222222222222 11 111111 222 2222 111111111 222 3333333333 222 1111111 11111 03 raquo111 111 111 11111 bullIU111 02 - 1111 11 -111111 11111111111111 1111111111111111 1111111111 bull222222 u n t i l 2222 1111 33333 222

333 222 33 222 00 +44 333 222

222 3333 333 22 333 333 pound22 222 333 4444444 33 22 222 333 4444444 33 22 222 33 444 333 2ZZ 222 333 333 222 2222 33333333333 222 11111 2222 2222 11111

1111 1111111111111111111 11111 11111l1111l1llt1l1111 111111 11111111111111111111111 11111111111111111111111111111111111 111111111111 111111111 nil 111111111)111111111111111111111111 11111111111111111111111111111111111 11111 11111111111111111111111

22222222222Z2 1111

01 11111111 11111111 11111111 11111111 11111111 11111111 11111111

1111 111 1 111 I 111111111111111111111111111 II111111111111111 111111111 111111 2222222222222222222222222222 1111 2222 22 111 222 333933333 3333333 I I 2222 333393333333 3333333333

T(KN)raquo 20000E-D T(K) bull 9C003E-Q2 N raquo I I STEPS AFTER FIRST MEASUREMENT

SYlaquoe LEVEL RAN3E (01 4B911E-02 (9) (9)

483g4E-02 47677E-02

(61 (8 ) 4735SE-02 46B42E-02

(71 (7 )

46323E-02 4S807E-02 (6) 16)

43200E-02 4 4773E-D2 IS) (5 )

44255E-02 43738E-02

(4 ) (4gt

43221E-02 42703E-02

C3) (3)

42166E-D2 4I6SSE-02

(2 ) C2)

41I31E-02 40634E-02

( 1 ) 40117E-02 33539E-C2

(6Jgt 390B2E-02 ESTIHAT ION E ROR CRITERION CONSTRAINT bull

75000E-02 souacEINPUT COVARIANCE [U]gt t I2530E-011

Figure 67D Contour plot of T H P I M I U K M moaciirAmont

at time t measurement

K+ll 020 eleven timesteps after first

CONTOUR PLOT OF T R A C E I P 1 K K N H Z ( K J ) J A S FUNCT13K OF t Z ( K ) 1 1 H C S l Z ( Z ( K ) 3 2 VEftT EXAMPLE Tfl s w a y cRCWTH CF TftACElPCRKH) 1 S U R F E WITH TIHE T(Kraquofl ITS SHAPE APPRCACML3 THAT OF I P t K K j - SURFACE A-irKPTOTICALLY FOR UtfWE K

444 33 444 33 4244 33 44a44 333 44444 33 09 +4444 333

22222Z2222222222 2222222222222222 2222222 2X22222 22222^222222222 222222 222lt222222 222^2iVLaJi222222Z 444 03 222222 2222222222222 33 22222 222222222222 333 2222 22^2^22222 333 2222 222222222 33 222 22222 222 pound2222 222 222 222 11111 2 22 m n i n n m 2i 22 11111111111111111 22 1111111111111111111 122 1111111 1111 111 till

333 44 S 68 333 4 3 65 333 4 5 66 33 44 S3 66 33 44 55 66 333 4 53 66 mdash 44 33 61 77

6BB0C 8003 esses csoese esses

99P999 339333 993999 9939339 99393399

3333 333333 33333 33333 33333 3i333 33333 33333 3333 222 Z22 2222 111 2222 111 1111 1111111 1111

1111 111 111 11

1111 1111 Mil 111 11U 111

777 eOOSSfi 9999999399 __ 7777 688888 9999999 33 44 35 6S 7777 6088898 33 44 03 5pound 777777 eceaeceo 33 44 53 euro6S 777777 608828833038 mdash - -s r66 7777777 60888008 bull55 6EG6 7777777 3raquo5 665666 7777777 _ 33 fifl 3 5- 66C65B6 777777777777 gt22 33 44 5 5ES 66366666 77777777 22 33 44 3Si3 65B6SSB6 222 33 44 SJSSSS 6666666BB 3 444 53353333 66666G656666 33 444 3U55S35S333 666866 bull 333 elaquo4 533S353353 2 333 c444444444 5355S35333 22 3333 44444444444444 222 3 3^13333333 444444444 2222 33333333333333

22 222

222222222222222 1111 1111111111111111 11111 11111 11111 22222222222 1111 111111 2222 222 1)111 111111111 222 33333333333 222 111111 III 1111 22 333 3333 222 1111111

1111 pound 2f2222222222222 111U1 111111-1111111111111 m i i n H i m t u i m m m i i i i t i i m i i i t

11111 222 33 44444 333 222 11 22 33 44444444 33 222 222 32 4444444 33 222 1 222 333 44444 333 222 1111 222 233 333 222 111111 111111 222 333333333333 22 1111 11111111 pound222 222 1111 11111111111 22222222222222 11111 1111111111 1111 n m m i m m i i i i m i t m i i i i i 222222 1111111111111 2222 1111111111 33333 222 11111111 333 222 I1M111 33 Z22 111111 44 333 222 11111

11111111111111111111 i i m n m i t r i m m u r n 1 1 1 1 1 1 m m m m m m n l i m i t 111111111111111 IU1111 m m i m i i i m m u r n l i m u m m u i i m m i m m i n i i i i i i m i i n i i i i i i m i m i m m i m i m m m m m m m m m m m

i m m m i m m m I m m 11

m i m i n i u r n m i m m i m i m t m m i m 1111111111 222222 raquo222222222222222222Praquo222222Z22222 11111111 22222 2222 1111111 2222 3131333 3333333 111111 222 33133333333 3333333333

TCKNgtraquo 240C0E-O1 TIKI bull 9000CE-OZ N bull 13 STEPS AFTEB FIRST MEASUREMENT

SYR3 LEVEL RANGE (0) 338S9E-02 (9) 19) 3 3389E-02 32asOE-02

(6) 3237IE-02 51862E-02 17) 17) 3 13S3E-02 30B43E-02 (6) (6) 39S34E-02 49S25E-02 (5) t5) 4931CE-G2 46607E-C2 (4) 14) 48297E-02 477Q0E-O2 (3) (3)

47279E-02 46770E-02 (2) 12) 462G1E-02 45751E-02 11) (1) 4S242E-02 44733E-02 (copy) 44224E-02

ESTIHATTON11

ERROR CRITERI0M CONSTRAINT =

7SO00E-02

IS500E-011

Figure 67E Contour plot of Tr p pound 1 ( z bdquo M at time t bdquo 1 i 024 f i f teen timesteps after f i r s t measurement L K + 1 5 ^ K J K + 1 5

CONTOUR PLCT OF TftftCEIFlKKN) (ZtK) J 7 AS FUNCTION OF IZ tKI I I KeRIZ IZtK)32 Vf=T OIAMPJS O SHOW GfCiWTH CF TRACEtP(KKlaquoN)l SUKFCr WITH TIKE TltKNgt ITS CH-PE APPROACHES THAT OF |P(HK)]11 CURFACt laquoSYKPTCTfCALLY FOR LARGE N

1 0 544 33

OG

EZCJOJS

533laquo3

+1313J J3H33 33333 3333

laquo

3 3 3

2K

l l | S l l l | | 2 J 3 CC d 53 poundCgt

0OCB3 Epound-008 pound3088

poundbull)

Z2 111 1 1 1 222 111 2222 111 2222 111 1111 bull1111111

111111111 1111111111111 111111111111111 1111111111111111 1111111 1111 111

90J099 99909ltJS9 55 6CG 7777 8B00CG 9990993959 44 23 GC 7777 688086 99999D9 333 44 C5 C6 77777 pound00386 33 aa 55 t5 77777 eooeraee 333 44 S3 (1pound6 777777 8380C8e0923 33 44 53 e6Dr 7 777777 noc8309 333 -14 Sf 56tgtDS 7777777 33 44 515 GG666 777777777 333 444 fji 0065656 777777777777

111111 11117 11 11111 1111111111111111 11111 11111 11111 2222222222pound2 1111 111111 222 222 11111 111111111 2 333333333333 22 11111 111111 2 333 333 222 11 24 333 4444444 33 22 2laquoipound 33 444444444 333 222 232 353 44414441 333 222 22 33 4444444 33 22 11 222 333 333 22 1111111 11111 222 33333 3^3333 222 11 HI 11111 ill 222 333 2222 1111 llllllllli 2222222 222222 11111

222 33 44 pound55 egt6igtEEGG6 77777777 22 33 444 Ii3i5 GG36CG666 222 33 44 35SS5 6(gtGGG66GG 22 33 44 SS5amp55555 C360GGDC5G3 22 33 4V4 55555555535 6G6GS 22 33 Mfl4 555S555555 22 333 44444444444 555555555 1 322 331 444444444444 1111 222 333333333333 44144444 1111 22227 33333333333333 1111 E222222r2222poundZ2222

m i l l t u i m i i M u 111111 i i i i i i n i t i i i m u

1111111111111111 1111111111111H1I

11111T11 1111111111111

2222222222222 111111111111 1111111111111111 llllltl 111111111 11 ill 1111111 111111111111111 1 111111111 11111111111 11111111111111111111111111 1111111111

11111111 111111111111111111111 11 11111111111111111111

111 1111111111 111111111 11111 111111111 +222222 111111 2222 11 1 33333 22 1 323 222 33 222 333 222

2222 i t t u m m bull1111 i n m i i i i i i i m m i i i i i m i m m i i i i m i i n i i i i i i -n i i m i u rn 111111111 22222222222222222222222222222222222pound 1 til 11 2222 2222 111111 2222 33C3333 3333333 111111 222 3333333333 3333333333

TIHE = 90000E-O2 F1R3T MEASUREMENT ELEMENT( 1 1)

CCNTO h LEVELS AND 5YKEULS SYMB LEVEL RANGE (0) pound 2200E 02 (91 2 1697C 1 1S4E Q2 02 ltegt 2 (6) 2

0C91F 01 OLE 02 02 (7) 1 (71 1 9680E 3103E 02 02 (5) 1 16 1 eampeoF 8177S

02 02 (5) 1 iSgt 1 7G74E 71gt1E 02 02 (4) 1 (4) 1 65^ TIE 6165E 02 02 (31 1 (31 1 5663E 5160E -02 -02 (21 1 (2) 1 4fr57E 4154pound bull02 -02 (1 ) 1 lt1gt 1 365 IE 314DL -02 -02 lQ)_t 2645E-02

ESTIMATION ERROR CRITERION CONSTRAINT =gt 75000E-02

SOURCE INJUT COVAKIANGE IU1 = C 1 2500E -on MEASIttCMEHT ERROR C0VAR rvj = t 050 I -0 -01 0251

Figure 68 Contour plot of E K ^ I I I asymptotic response of

at f i r s t measurement time t R = 009 compare with T r [~W M surface at t K+15 024 in Figure 67E

166

68 shows that for all values of z R

4 - bull bull bull

As N increases so does the convergence to the result

Finally to demonstrate the result in Conclusion II a contour plot of [Ppound(Zbdquo)] is shown in Figure 68 Comparing the traae of P at time

-f -N I] Vt-15 1 n F i 9 u r e 6- 7 E w i t h t n e OU-efceman of P at time t K in Figure

r all values of zbdquo

[EWB^K)]-^)]- lt 6- 2 9) o does the convergence to the result

^ T K + N ( K ) ] = [ ~ P f e ) ] n - (630)

Another way of seeing these relationships is as follows Write the trace of both sides of (628) as follows

4u4 -([jampol 4M 2 2

+ M 3 3 + - ) bull feu bull tS322pound] 4t]) ESJ33 J bull||- 1 gt bull )

X n=l n=l (b31)

where the two lines in (631) correspond with the two terms in (628) As N becomes large since 0 lt lttbj lt 1 i = 23raquo all the terms in the top lin anish except the first which remains unchanged with N For large N the first term 1n the second line grows continuously at a rate [SJn P e r l 1 m e s teP while according to the asymptotic relationshyship (520) all the other terms approach steady-state constants over N The meanings of Conclusions I and II are clear in (631) in that at time t K + the only term of Tr[P[+N(zbdquo)] which is still a function of z K is [P^Zj)]- none of the other terms effect the optimization over values of z K

Heuristically the response of the surface of Tr[Pv+M(i|()] o v e l a H values of zK as t K + N grows can be thought of as follows

167

EUK)] = T f | ] + [ e ^ ) + Nig] (632)

which may be studied schematically as in Figure 69 For successive values of N the contour of the surface of T r rPjJ + N (i K ) I I over z R is com-

i posed of the contour of [ P pound ( Z bdquo ) ] plus a constant value of Tr[ pound2] plus ~K ~K i i s s

a value which grows with t ime NEgJ^ The shape of the contour

Tr[ppound + f J ( K )3 should be exaatlythe same as the shape of the [P j^ (z | lt ) ] 1 1

surface and the value of a point anywhere on those two contours should

d i f f e r only by a constant

Figure 69 Asymptotic growth of TrlE^J

As a simple verification compare the values on the two surfaces for the global minimum itself the point plotted with a From the calculations for time t K = 009

[Pfc)]u deg- 0 1 2 6 4 5- (6-33) For fifteen steps after the sample at t K + 1 5 = 024 from Figure 67E

168

Tr -K+15 ( z ) j = 0044224 (634)

To estimate the stsady-state constant in (632) and Figure 69 hand ca l shy

culate the series in (631) by using only the f i r s t few terms and use

values for Q (called WKP1) from Figure 62 to obtain

11 = 1 N - 1 5 fl = O00125O N nn - 001875

bull 2 = 09060 0 22 + 22 + bullbullbull) ~ 55485 fl22 = 0001568 n 22 E 22 = bull 00080

33 bull= 0673B ( 1 + 4 raquo + 3 3 + - ) l-am ( 1 3 3 = 0000330 n 33 E 33 - 000060

44 = 04114 ( l + 44 + 44 - ) - 12037 n 4 4 = 000215 4444 bull 000255

hs bull= nraquo06Z ( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] =

poundlg5 = 0000992 n 55 r 55

+

000104 bull= nraquo06Z ( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] =

poundlg5 = 0000992 n 55 r 55

+ 003163

( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] = n=l (635)

~gt W ~ 001288

(636)

Thus from (633) and (635) approximate (632) at z as

[ P K ( Z K 3 I + N a + T r L | ] + N f i 1 1 + T r | Ci = 004428 (637)

I t is thus seen from a simple hand calculation that (634) and (637) are V

in close agreement thus values on the two surfaces nP K(z K)] and Tr[Ppound+ls(Z|)] do in fact differ only by a constant the constant in (635) For increasing values of N t K + M tbdquo N etc as in Figure 69 for N T+N K+N large any point on the Tr[Pbdquo+f(g1)J contours would then simply consist of Tr[ 8] from (636) added to Nfn] plus the value at the same point

The Tr[Pbdquo + N(zbdquo)j surface is just a trans-on the surface of [Mzj)] 11 lation in time of the [Ppound(z)] surface for N large ~K ~K bdquo

Another way of interpreting the asymptotic growth of the trace sur-face to that of the (11)-element of K as N becomes large is as follow

169

At the time of the f i r s t sample for t bdquo = 009 decompose the surface

for Tr[Ppound(z K)J into surfaces for each element of the trace that i s

[ E K ( Z K ) ] [E|^(z K) l poundPpound(zK)J as shown in contour plots of

Figue 610 The f u l l t race as in Figure 66 is shown in Figure 610A

with the individual elements shown on succeeding p lots As time t K + N

becomes large the formula for the trace in (631) may be rearranged as

fol lows

T r [ amp laquo ] [EK(K)]bdquo + B9nN

n=l

n=l

Each line in (638) represents what happens to each diagonal element of ppound + N comprising the trace as time goes on Since 0 lt lt 1 i = 23 45 as N becomes large all the terms except the first loose their funcshytional relationship with the positions of the measurement device given in zbdquo In terms of the plots for [pound + NJ through [ P pound + N ] in Figures 610B through 61 OF as time goes on these surfaces become flat with constant values equal to the steady-state values of the right-hand terms in (638) Thus for large time the surface Tr[P K + N(z K)] is made up of a number of steady-state slices a flat surface growing at the rate [pound]bdquo per time step and the surface [PD(z)]

CONTOUR PLOT OF TRACErPCKK+NMZfK) )3 AS FUNCTION OF tZtK)31 HORIZ IZ(K)32 VERT EXAMPLE TO SHOW GROWTH OF T R A C E C P ( K K N ) ] SURFACE WITH T I K E T C K N ) I TS SHAPE APPROACHES THAT OF [ P ( K K ) 3 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

+553 555 555

[ZCKJ12 0 9

44 33 222 44 33 44 3 3

444 3 3 444 3 3

444 33 444 33

4444 33 44-14 33 4444 33 44-14 33

bull 4444 33 4444 33 4444 33 4444 33

444444 33 bull44444 31

4444 33 44 333

033 i 3333333 2 333 22=

22222 2222322222

222 222 222 pound22 22 222 222 22 222 222 222

2222 2222 2222 2222 2222 2222 2222 2222 2222 222 222 222 222 222

33 4 5 e 77 33 44 9 6 77 33 44 5 G 77 33 44 5 66 777 33 44 59 56 77 33 44 5S 66 77 33 44 55 6 7

1888 99999999 B308 9SU99999 nS86 9^999999 9889 93399399 80083 99399999

66 33 4 33 4 33 44 95 tit 3 44 95 66 33 44 5 666 33 4 55 66 666 23 33 44 55 66-222 3 44 55 66 22 3S 44 50 laquo 22 33 4 55 222 33 44 55 22 3 44 955 22 33 44 5555 222 1111111111111 22 33 444 222 33 4444 22 33 44444 222 333 2222 3333333 22222 222r J222222222 22222222222 22222222222222222 22222222222222222222222 1111

22222222 2222222 111111 22222 22222 1111111 2222 333333 2222 111111 222 3333333333 222 222 333333333333 222 223 33333333333 222 222 333333333 222 2222 2222 222222 22222

9999999999 77 eeeeaeae 777 688066668 77777 6803068885

77777 088308888088860 7777777 8886Ce068e386

777777777 680688588 bulli 7777777777 56 7777777777777 gtSli 77777777777777 gt6iS6 77777777777777

51JS666666 777777 16666666666666666

666666666G666666666+ J5ii5555

55555555555555555555555955959 144

4444444444444444444444444444 JM333333333333333333 2322222222222222222222222222222

22222222222222 222332

bull333333 2223 3333 2222

44 333 222 44444 333 222

444 33 222 444 33 222

11111111111111 m i n i m u m 1 m i n i

1111

n i m 111111111111111 m m i i i i m i 111111

i n

2222222 2222 33333

222 333333 2222 3333 222 333 4444 222 3 44444

21222222222222222222222222222222+ 131

11333333333333333333333333333333

SYMB LEVEL RANSE

(6)375341E 62 (9) (9) 34616E-02 33891E-02 (8) ltegt

3316CE-02 32440E-02 (7) (7) 31715E-P2 30990E-02 (6) (6)

3Q265E-02 29340E-02 (9) (5) 26814E-02 2608SE-02 C4gt (4) 27364E-02 26639E-02 (3) (3) 25914E-02 25103E-Q2 (2) lt2gt 24463E-02 23730E-02 (1) (1 ) 23013E-02 22268E-02 fQgt 2-15C3E-02

ESTIMATION ERROR CRITERION CONSTRAINT = 75000E-02

Figure 610A Contour plot of Tr [K) at first measurement time tbdquo = 009

CONTOUR PLOT OF T R A C E [ P ( K K + N gt ( Z ( K ) gt 3 AS FUNCTION OF t Z ( K ) J l HORIZ t Z lt K 1 3 2 VERT EXA11PLE TC SHOW GROWTH OF T R A C E I P ( K K + N ) 3 SURFACE WITH T IME T ( K + N gt ITS SHAPE APPROACHES THAT OF [ p ( K K ) 3 1 T SURFACE iSYMPTOTICALLY FOR LARGE N

TJKE= 9 0 0 0 0 E - 0 2 F I R S T MEASUREMENT ELEMEhTt 1 11

+ 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 - ^ 2 2 4 4 4 3 3 2 2 2 2 2 2 2222i i 2

4 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 3 3 222222f 22L 2pound 2222

4J444 33 2pound2pound22 - 2222222raquo + 4 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 22pound2222 4 d 4 3 3 2 2 2 2 2 i 2 2 2 2 3 2 P 2 2 2 2 2

3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 - i 2 i gt 2 2 2 2 2 3 3 3 2 2 2 2 ~ 333 2222 333 222

333 44 S 66 333 44 S 66 333 4 0 6B 333 44 59 66 33 44 9 66 ___ 55 661-33 44 55 m 333 44 55 6

Ik 939999 D 999999 999909 999999 99999939

9999990999 oeeoae 9999999

222 222 222

CZ(K)32 09

33333

33333

33333

30393 +33333 22 33333 22 33333 222 3-33 22 1 3333 22 1 bull33 22 11

222 111 22222 111 2222 111

bull iiitm in

22222lt222i pound22 2 2 2 2 2 2 2 2 2 2 2 3 3 3 44

2 2 2 2 2 2 2 2 2 3 3 4 4 2 2 2 2 2 2 3 3 3 4 4

2 2 2 2 4 4

03236 7777 7777

77777 5 7 7 7 7 7 8808(1088 S6 7 7 7 7 7 7 8 3 8 0 6 8 6 0 3 3 3 6666 7777777

66666 7777777 535 S6656 777777777

2 2 2 3 3 3 4 4 4 CSS 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 1 U U U 1 U 1 2 2 2 3 3 4 4 5H3 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4 4 5 5 5 3 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 5 5 5 5 5 66G666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22 33 4 4 5 0 5 0 5 5 5 5 5 666666SG6G6 11 1 1 1 1 1 1 1 2 2 3 3 44 5 5 5 5 5 5 5 5 S G S f 1666

1111 2 2 3 3 4 4 4 1 4 5 5 5 5 5 5 5 5 5 5 1111 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 +

111 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 1111 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

_ 1111 2 2 2 2 2 0 3 3 3 3 3 3 3 3 3 3 3 3 3 A 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 111111111111111

111111111111111111111 222 333333333333 22 11111 11111111111111111111111111

222 333 333 222 111 U 1 111 1111ll 111111111 1 1111111111

11111 1111111111111111

11111 1111 + 11 111 2222222222222

111111 2222 222 n n i i - mdash 111111 Mil 222 333 4444444 33 22

222 33 444444444 333 22 222 333 444444444 333 225 222 33 4444444 33 22 222 333 333 22

222 33333 333333 222 11111 +111 Hill 222 333 2222 1111 1111111111 2222222 222222 11111 1111111111111 2222 11111

11111111111111 1 111111111111111111111

+222222 11 111 1111111111111 2222 111111111111111

33333 222 1111111111111 333 222 111111111111 33 222 11111111111

i +44 333 222 1111111111

111111111111111111 1111111111111111 11111111111111111 lllllllllllllllllltll 111111111 1111111 1111 11111111111111111 till 1111

11111 1111111111111111111111

111 1 11111111111111111111111111111111111111111111 1 1 1 i i 1 1 1 1 111111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1111 2 2 2 2 2 2 2 2 111 2 2 2 2 3 3 C 3 3 3 3 3 3 3 3 3 3 3 111 2 2 2 3 3 3 C J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 +

SYMB

CO) LEVEL RAN3E 2 2 2 0 0 E - O 2

( 9 ) ( 9 ) ( 8 ) ( 6 )

2 2 2 2

1 6 9 7 E - 0 2 1 ^ 3 4 E - 0 2

0 6 9 1 E - 0 2 0 1 8 S E - 0 2

C7J ( 7 )

1 1

9 6 B 6 E - 0 2 9 1 8 J E - 0 2

(G) ( 6 )

1 1

6 6 8 0 E - 0 2 6 1 7 7 E - 0 2

lt 5 ) ( S )

1 1

7 6 7 4 E - 0 2 7 1 7 1 E - 0 2

C4gt t 4 1 1

6 6 6 S E - 0 2 6 1 6 5 E - 0 2

( 3 ) ( 3 )

1 1

5 6 6 3 E - 0 2

5 1 6 0 E - 0 2 t Z ) (2)

1 1

4 6 5 7 S - 0 2

4 1 5 4 E - 0 2

( 1 ) ( 1 )

1 1

3 S 5 1 E - 0 2

3 1 4 0 E - 0 2

tcopy) 12645E-02

ESTTMATTOM ERROR CRITERION CONSTRAINT =

75000E-02

I25OOE-01]

Figure 61GB Contour plot of first term of Tr Ppound (z K) raquo K(JK)

CONTOUR PLOT OF T R A C t [ P ( K K N ) ( Z t K ) )3 AS P J N C T M N OF [ Z ( K ) 1 1 H O R I Z C Z ( K ) J 2 VERT EXAMPLE TO SHOW GROWTH 3F T R A C E P ( K K raquo N ) 1 SURFAi^ WITH TIME TCf + H) I TS SHAPE APPROACHES TH-T OF t P lt K k ) 1 1 1 SURFACE AMP10T1CALLY FOR LARGE N

TIME= 9 0000E-02 FIRST MEASUREMENT ELEMENTC Z 2)

2 2 2

660 gas

i w 22-1

33 4 S 6 77 80 _ 03 H 55 G 77 OB

Qpound2 3 4 5S 6 77 31 22 3 4 o 6 77 H5 bullPAV 33 4 s P6 7 (iO

33 44 5 56 7 03 33 4 5 6 bull BO

33 4 55 iS 77 faD 33 4 5 G 7 83 3 3 41 5 (iS 7 SO

3a 5 6 7 amp 33 4 amp 6 7 88

333 44 St (J 7 OS 323 44 6 77 00

3333 4 5 5C 7 mdash m 77 777 777 +7777 777 77777

-1 3 l l l | f JJ | II II

444 ri-14 44I 4441 444

bullM44 4144 55 GG 14144 444-14 5gt fi bullbull44-444-14 lili (it

5 5 aa

444444 333333333 444pound 4444gt

44444144444 ^^TI^-^^^ 444 ^ ^44

99999099 9 9999S9999S999 )y99999999C99999G999999939999S9 - 199999990999999593993 + amp939929309 000003008306000 10^83090803006060 laquo 777777777777777 i 77777777777 igtwC6C6+

eeeeccccecc Ii oiiSSBSS 4 -14444444 4 4 4 4 4

4^ 4444444 3 3 3 3 3 3 3 3 3 44 3 3 3 3 3 3 3 3 3 bull

3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 222222 1111111111111 2-S22 11111111111 c- 1111111111 + 111111111 11111111 copybull

111111111 US 1 1 1 1 1 1 1 1 1 2J222 1 1 1 1 1 1 1 1 1 1 1 1 +

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 nl 2 2 2 2 S 2 2 2 2 amp 2

3 3 3 3 3 3 0 3 2 2 2 9 2 2 2 2 2 2 Ain 3 3 3 3 3 3 3 3 3 3

4444444-14444 333333+ EiftSti 4444-1444444

S^bSOjEbSriSbS 4144 pound 55SS0 rt55iS I16G b55riij555

SYMamp LEVEL RANGE

CO) 8 9 S 2 7 E - 0 3

( 9 1 8 7 6 2 6 E - 0 3 8 5 6 2 S E - 0 3

( 8 ) ( 8 )

B 3 6 ^ 5 E - 0 3 6 1 6 2 5 E - 0 3

( 7 ) ( 7 )

7 lt1 i24E-03 7 VigtK3E-03

( 6 ) ( 6 )

7 5 6 2 3 E - 0 3 7 3 6 2 2 E - 0 3

( 5 1 (5

7 1 6 2 E - 0 3 6 0 S 2 1 E - 0 3

( 4 ) ( 4 )

5 7 f = 2 0 E - 0 3 C 5 S 2 D E - 0 3

( 3 ) ( 3 )

6 3 6 1 0 E - 0 3 G 1 6 1 9 E - 0 3

( 2 1 ( 2 )

5 9 amp 1 6 E - 0 3 5 7 0 1 7 C - 0 3

(1 ) t l )

S 5 G 1 7 E - 0 3 5 3 t i 1 6 E - 0 3

(0) 5 1 6 I 6 E - 0 3

E S I M A I ION ERCHR Ct l TERION CONSTRAINT =

7 H 0 0 Q E - O 2

1-2500E-01J

Figure 6IOC Contour plot of second term of Tr P ( K ) K(K) -

0 6

t Z l K ) J 2

C3NT0UR PLOT O F TRACECPCK^K-Ni t Z ( K U l AS FUNCTlC- t OF I Z t M H H C R I Z t Z ( K 1 1 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E [ P ( K K N ) ] SURFACE U I T H TIME T C K N ) ]Tlt SHAPE APPROACHES THAT OF [ P lt K K i 3 1 1 SURFACE XSVMPTOTCALLY FOR LARGE r

bull raquo + 4 4 + bull9-J19 8 0 7 5 4 3 272 3 4 5 6 7 0 3 9 0 bull 0 0 9 e a fi 5 4 3 2 2 2 2 2 3 3 4 5 6 7 8 ltlaquoltraquo laquo laquolf q 6 6 r b 5 lt1 3 2 2 2 2 2 3 3 A 3 6 7 O

6 0 7 6 5 1 3 3 2 2 2 2 2 2 2 2 3 3 4 5 7 7 8 s 7 7 5 U raquo3 2 pound 2 gt P 2 2 3 4 4 5 6 7 Q - - - laquo bull laquo bull - - - - -1 L o i B i a 3 6 0 7 6 S 4 3 6 0 7 6 5 A 3 a a y 6 5 lt 3 3 M 0 5 4 33 60 7 6 5 4 33 SB 7 6 5 4 33 80 7 6 5 J 33 03 7 E 5 4 33 B8 i amp 5 1 33 CB 7 6 3 A 33 e i 7 6 3 J 13 80 7 G 5 4 33

i 8 1 6 5 4 3 3

I 22

U3 83 7

Lgt A

iSP5

3 3 4 5 G 7 B 9 3 9 3 3 A 5 C 7 8 0 9 9 3 3 4 5 6 7 8 0 9 9 3 4 5 6 7 8 9 P 9 3 4 5 6 7 8 9 P 9 3 4 5 6 7 8 9 3 9 3 A S 6 7 O 5 9 9 3 4 5 6 7 3 G pound 9 3 3 4 5 6 7 0 9 9 0 3 3 4 S 6 7 8 SD9 3 4 5 6 7 8 9 9 3 4 5 6 7 8 0 9

3 3 4 5 6 7 8 9-J j 3 3 A 5 6 7 8 8 9ltJ 3 3 3 4 5 6 7 C 8 S9raquo0 9 9 9 9 3J3C-S33 bull 5 I) 7 (J T J 9 L 9 0 9 t i 9 9 9 9 9 3 9 9 9 9 9 9 3 9 9 9 S 9 9 9 9 9 9 9 9 9 9 9 9

-I 3 - ^ 3 -14 ti 6 7 flJ i - 3 9 9 9 9 y 3 y 3 3 3 deg 9 9 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 41 3 3 4 3 6 7 7 0 8 0 B B B 8 8 8

-14 4 4 5 5 6 7 7 8 8 ( 1 0 8 8 8 6 8 6 3 ^ 3 3 8 3 3 8 8 8 8 8 8 8 8 8 6 8 0 8 8 4 4 4 4 4 5 3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 -laquo4 4-14 5 5 6 7 7 7 7 7 7 6666ltgt6C6 6 5 G G G G G 6 6 C 6 6 e G 6 G 6

4 4 4 4 pound S tC6GE(JC6-J6 ampK35 5 3 5 S 5 5 5 gt t W 3 5 5 3 4 4 4 4 5 5 3 55455 ampAAamp - - - - - - -

3 3 3 3 3 3 3 4 4 4 4 3 4 4 3 3 3 3 3 3 3 3 4 4 4 4 4 3 3 3 3

i^Sa^^S1i bull 2 2 2 22 2222J2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22222 j S2laquolaquo2laquo S333 3 3 3 3 av^ raquo J laquo J U ) raquo raquo raquo raquo raquo J S

^rf11^4 233a33333 dd^-J^ 3 3 3 33333 2 - 2 2 2 - 2 Z 2 2 2 2 2 2 2 2 2 2 2 2 2

bdquo 3 3 3 3 3 4 4 1 4 4

5 3 5 6 6 6 C 6 b

7 7 7 7 7 7 7 7 7 7 7 7 7 r0 i 0 0 3 ( i O B f gt pound n O O - 8 6 8 8 G P 0 8 6 6 6 6 0 e 8 8 3 Q O Q J 6 7 7 HO 8 8 0 0 6 77 0 0 S1099lt E U 3 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 mdash 9 0 J 9 0 J - lt i j J 9 9 1 - 9 9 9 9 i S 9 9 9 3 9 3 9 9 9 9 9 9 9 9 9

9B0igtD0 9 gt ) 3 9 e G 3 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 S S 9 9 9 amp 9

Tl| f lE= 9 O 0 0 0 E - O 2 F l f S T MEASUREMENT ELEMENT 3 3 )

JYflB LEVEt RANGE (0gt 6 042ZE 04

S1 3 5 9133E 7CB4E 04 04

5 6S15E 534GE 04 04

tfi 5 5 4077E 2G00C 04 04

s 3 5 1339E 027OE 04 04

II A A

9001E 732E

04 04

(jJ) 4 4

64F3F S 1 04 E

04 04

iSJ f 393E 2G5GE

04 04

S A 1387E 04

il 3 3

6849 75301T 04 04

ltbull 3 6311E 04 EStMATION ERlIOR CRITERION CONSTRAINT = 7e000E-02 SampiJRCE IMI-JT CQVARIANCE [WJi r 1 2300E on MEASURfiMCNT ERlJOR COVAR IV3 = [ 050 -0] 0231

Figure 610D Contour plot of th i rd term of Tr )] [4

CONTOUR PLOT OF TRACETP(KK4N)CZ(K))1 AS FUNCTION OF tZ(K)J1 HORIZ tZ(K)J2 VERT EXAMPLE TO SHOW GROWTH OF TRACEtP(KK+N)] SURFACE WITH TIME T(KlaquoN) ITS SHAPE APPROACHES THAT OF [P(KKgt111 SURFACE SMPT0YI5Ai-LY FOR LARGE N

TIME 9O0O0E-O2 FIRST MEASUREMENT ELEMENT 4 4)

IUIAL 33 A 5 67 38 93 3 4 5 7 08 99 3 4 56 7 88 99

33 44 6 7 8 99 3 3 4 5 6 7 8 99

333 4 5 6 7 r mdash 39 8 76 S 1 333333 4 5 6 7 8 99 99 8 7 9 4 333333 4 3 6 7 8 99 99 6 7 6 5 44 223333 44 5 67 88 99 99 6 7 SS 44 C53333 44 5 7 88 99 99 8 7 6 4-1 3333H3 lti4 5 7 OS 39 99 B 7 6G 44 333333 44 5 7 tiS 99 99 8 7 5 4 333333 4 5 67 86 39 99 8 7 5 4 333333 4 5 6 7 6 99 99 8 76 5 4 33 33 4 5 6 7 8 99 9 8 G 5 4 33 33 4 5 6 7 0 99 9 0 7 6 4 33 3 4 6 7 8 - 5

99 8 7 OS 4 33 22 33 4 5 7 8 gg a 7 es 4 3 222 - - - - -99 8 7 65 4 O 222

9 8 7 65 4 3 22 9 87 6 54 3 S9 8 76 S - __ 99 6 7 6 44 333333 4 5 6 7 8 __ 8 76 S 44 44 S E 7 S 999

0 7 6 5 444 444 5 6 7 88 ~~ 69 7 6 55 4444 5 6 7 laquolaquo

fiSSeoe 7 66 5 55 06 7 66 7 7 77 S 5a 55 6 77 7777 5 5 5 copy6 6 8 5 5 65 666 666

1-4444 55 106 55 4444 5U 6665 555 3333 4 S5P5503 4-14444444 555503S5 444

2222 33 44 44- i 4444 444

3 4 5 7 6 99 3 4 5 7 8 99

33 4 56 7 0 9 3 43 6 7 8 99

33 4 5 5 88 99

8 6 8

1199999 9939999999i9pound999S9999g999999999g9g99g

esoossBBe aaeeeew

i n

t i

77777 UfcSB 55 33 13-333 44444 3333333333333 _- 333333 444 33 222 22222222 2222222222222 11 22 323 3333333333 333 22 111 11111 22222222

t 2 333 333333333333333 33333 22 11111111111 H i t 11 2 333 33333333333333 3333 22 H I T 111 1)11 11

11 2 33 3333333333 33 22 1 1 1 22222222222222 22 33 444444 4444444 33 ZZZZZZ222222 2222222 3 44 444 444 444 3333 3333333 333333333333

mdash mdash 4444 44444444 4444444444444 53363 U555S5355 35555V-3rraquo550

GCOC 6fo665G6 665GCSG6 777 77 77777 7777777 03C yi300C6P8 (-88831130008

6fi6

444 555 4444-14 355 555 oeeebf-Gb 55 15 seceeSSGe 777777 6 55 55 C 77777777

77777 BflaS 7 6C 5 E i 66 77 80C98 8S00amp 88 7 6 55 44444 3 0 7 88 __ bull ampSgt39399amp 3 7 6 E 44 44 3 6 7 06 939999999^ raquo9jiC0l-3 J999Ci999999S93asaampS9

99 Oft 0 it 4 3333 4 5 6 7 8 339 99993 99 6 76 0 4 33 33 4 5 7 99 9 87 65 4 3 222 33 4 6 7 8 99 9 0 7 5 33 222222 3 4 5 7 8 99

93 8 76 54 3 222222 3 4 5 7 8 3

SYKB LEVEL RANGE (0 25437E-03 (9) (9) 25Q05E-03 2455pound-03 (81 (81 24101E-03 23649E-03 17) (7) 23197E-03 22745E-03 (61 (6) 222H3E-03 2 1841E-03 (5) (51

213S9E-03 20937E-03 (4) 14) 20-135E-03 20033E-03 (31 (3)

19561E-03 10129E-O3 (2gt (2)

10677E-03 1S225E-03 lt1 ) (1 1

17773E-03 17321E-03

lcopyl_I 66 i3E-03 ESTIMATION ERROR Cftt tERION CONSTRAINT =

75000E-02

12300E-Oil

Figure 610E Contour plot of fourth term of Tr (4 [0 44

CONTOUR PLOT OF TRACEtP(KKNl li(K)) J AS FUNCTION OF tJIIOlt HPRIZ t2(KJ3Z VERT EXAMPLE TO SHOW OROUTH OF TRACECP(KKN)J SURFACE WITH TIME T(KN) ITS SHAPE APPROACHES THfl flF [P(KK)111 SURFACE 3VlaquoPT0T|CALLV FOR LAROE N

02

S3 0 76 5 44 99 6 76 S 4 99 8 7 5 4 99 0 7 C 3 44 99 B 7 6 5 44

4 5 6 7 6 09 4 5 6 7 8 99 4 3 O 7 9 99 44 3 6 7 00 99 44 3 6 7 r OB bull 9 8 7 6 3 444 444 5 6 7 8 9 1 8 7 6 3 444444 5 6 7 8 Q9 I 87 6 55 444444 53 6 7 8 99 I 6 76 55 44444 S 6 7 C 99 J 8 76 3 4444 5 6 7 8 39 08 + 99 8 76 5 4444 5 CS 7 6 99 9 8 7G 55 4 1444 3 6 7 t S3 9 87 6 3 444444 35 6 7 O 99 9 8 7 6 5 444444 3 i5 7 8 99 a 8 7 6 0 44 44 5 6 7 8 9 99 8 7 5 4 4 5- 7 GB 99 99 8 6 3 4 33 44 5 6 7 9 99 9 87 6 3 4 33333 4 5 G 7 9 99 9 6 7 65 4 333333 44 56 7 8 9 9 6 7 5 4 333 33 4 5 8 99 06 9 8 7 3 4 23 33 4 9 7 0 9 9 fl 7 6S 4 33 313 44 6 7 fl 91 9 ) 8 6 3 4 33333 4 3 6 7 0 99 bullJ 8 7 3 44 3 4 56 7 0 09 99 87 6 S 44 44 5 6 7 0 09 03 999S9 OB 8 7 6 5 4444 5 6 7 4 99 1 999amp9US 8 7 65 S3 S3 6 77 O S999999999 88 8D 7 6 305553 F6 7 8 9 888 77 8B8O0B 7 65 3355 7 83080388 77 66 7 77 G6 55 GG 77 777 66 04 444 0 6 77 66 553S G6 777 G6 530 333 44 5 eCGGGC 5C553t55 6666606 53 444 pound22 33 4 53 C555 5v53 553 4 It 2 33 4 335 44 5533 44 33 _bdquo 112 3 44 441444444 444 33 2222 03 -ltgt 11 2 S3 444 444^1444444444 4444 31 222 11 2 33 444 444444444444 4444 33 222 112 3 44 44444444 44 33 222 11 22 3 4 SSSiVS 3535555 44 333

222 3 44 gtZgt 3555 5555 555 44

199999

555 114444 1333

999 806888 888388 7777777777777 66666006066666 3535550555553353 4444444 44444444444 33333 3333333

ZPgt2 33333333330333333 22222 3333333333 222 333333333333 222 33333333 333333333333

bull33 44 05 tgt5 66G S33555 G66 656 35 6 77777 SS 555 65 77777777 6G6 6666 77 EOC 77 66 S5fgt 66 77 O03C9 777 777 68 EB 7 6 SS3rS5 66 7 8 803081 830 taiUQ 8 7 6 5 53 6 7 O 2999301)99 99939 93 C 70 5 444441 3 6 7 0 09 9 0 7 5 4 33raquo 44 U6 7 O 99 9 0 7 5 4 3 33 4 56 7 0 39 99 0 65 4 3 22222 3 4 6 7 6 99 9 8 7 34 3 22 S 34 3 7 6 99 99 3 76 4 3 2 22 3 3 67 0 99

33333 44444 55355 663066 7777777

iGFtlOUampUOOB

444444 4444444 55555055+ b0666666 7777777 88080608 93 990999999999999999999999999

TIKE 90000E-02 FIRST MEASUREMENT ELEMENT 3 5)

(0) LEVEL RANGE 1 0362E-03~

it 10I98E-03 1 -0035E-03

3GTI2E-04 97076E-04

95441E-04 93806E-04

sect 92170E-04 9053SE 04

ii 6e899E-04 872D4E-04

S3 B5G^9pound-04 83993E-04

sect G2358E-04 00722E-04

79037E-04 77452E-04

7S816E-04 74181E-04 (0) 72545E-04

ESTIMATION ERROR CRITERION CONSTRAINT =gt

75000E-02

to00E-O1J

Figure 610F Contour plot of fifth term of Tr [bull (4 [^L

176

622 Optimality of Measurement Locations - In Figure 64 was i

shown the trajectory TrlP K + N(z K)J where the optimal choice cf measureshyment positions was used at each measurement time In contrast suppose the designer felt that an intuitively good choice for the measurement positions would be to place the two statistically independent sensors right at the position of the source that is z = zbdquo = z = 03 Figshyure 611 compares the optimal trajectory Tr[ppound+f(zp)] of Figure 64 using

i

min [Pbdquo(z)] as the criterion at each measurement with the case with z K ~ K ~ K 11 z K = [0303] that is with measurements positions at the source The optimal case is plotted with the symbol 1 that with measurements at the source with the symbol 2 Clearly Case (1) is optimal since over a larger time interval it would result in fewer measurements necesshysary to maintain the estimation error below its bound

623 Comparison of Performance Criteria - Moore L 9 5 ] suggests that the minimization of the trace T rEPpound(z K)] at a sample time t K mey not be the best thing to do to lead to the fewest number of samples necshyessary over some time interval To demonstrate that this is in fact a true conjecture consider a slight modification to the problem of Section 61 Let

I 04 W

002 (639) -^ 000001

J^ 000001_ oioio

to -

lim and

(bull K)= 0 001

(640)

(641)

6 7 S 0 0 E - 0 2

5 5 0 0 0 E - 0 2

42300E-02

30000E-02

1 7 0 0 D E - 0 2

C mdash r ~ - rmdashU raquo mdash - bull bull r J V- mdash bull mdash a a t 2 1

2 i pound i I 2 1 2 1

2 2 1 2 1 1 2 1 2 1

2 2 1 2 1 pound J 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 - 2 1

2 1 2 1 -2 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2

2 1 2 1 2 2 1 2 1 2

2 1 2 1 2 2 1 2 1 2

2 1 Z 1 2 1 1 bull pound

2 1 2 1 2 2 1 2 1 _2

2 1 2 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 bull 2 1 1

2 1 2 1 2 1 1 2 1 2 1

2 1 2 1 2 1

1 2 1 1 1 2 1 2 1

2 1 2 1

Figure 611 Time response of T r [P^ + H ( z )J for (1) z the result of the minimization min [ p ^ z K j j M bdquo + bdquo H i t h s y m b o 1 a n d ( 2 ) Ln = r| = z ^ f b o t h m e a s u r e m e n t s a t tKe source

plotted with symbol 2 L J2 plotted wit locat ion

178

The other problem parameters are as before To measurement strategies are contrasted The first is at each

measurement time t K finding z K such that

as before The second is finding zbdquo such that 2 N

x T 4 Tr = min Trj Ppound(z) | (643)

In ti1s problem measurements are necessary at t 0 the initial time and it is found that immediately after the first measurements strategy number 2 using zj appears superior to that using ir The two trajectories

5 U l u

are plotted with symbols 1 and 2 in Figure 612 However it is seen that at t - 0021 the two curves cross afterwhich Criterion 1 remains superior leading to a second measurement at t = 0078 vs t = 0071 for Criterion 2 At the end of the interval 0 lt t lt 01 Criterion 1 clearly possesses the lower estimation error Thus it is not optimal to minishymize the trace of the estimation error covariance matrix at the time of

the sample but 1t is optimal to minimize its value for large time N which by Collusion II is equivalent to minimizing the (ll)-element of the covariance matrix at the time of the measurement

624 Effect of Instrument Accuracy - To study the effect of the quality of the measurement instruments upon the evolution of the Tr[PK+N(zj)] contours in the above problem consider the measurement error covariance matrix

005 O

001 (644)

93000E-02

76000E-02

59000E-02

42000E-02

23000E-02 I OE+00

222 111 222 111 22 111 222 111 22 111 222 111 222 111 22 111 22 HI 222 1 I 22111 221 11 2211

122 11222 1 1222 1122 1122

22111 2111 1111 321

22 22 1 2 1 2 1 pound 2 2

22 2 22 11 22 11 22 11 2 t 22 11 2 11 laquo2 1 2 2 2 2

1 2 1

1 1 1 1 1

B000E-02 1000E-01

Figure 612 Time response of 7r| P^ + ( j (z j j for (1) z the result of the minimization min P K ( K ) plotted

with symbol 1 and (2) zpound the result of the minimization min Tr |ppound(z K )J plotted with symbol

2 note how after the f i r s t measurement at t K =00 (2) possesses lower estimation error but with t ime the curves cross such that (1) is superior at the end of the time interval shown and thereafter

180

This accounts for a 51 difference in variances in the two sampling deshyvices in contrast to the 21 difference in the problem above The evo-

i

lution of T r L P ^ + N ] is shown in Figure 613 The contour plot of Tr[Ppound i (z K)] at t K = 009 is shown in Figure 614 Contour plots of Tr[ppound+f

(Z|)] are shown for t bdquo + 1 t K + 5 t K + ( | and t K + 1 5 in Figure 615 and finally that for [P(zbdquo)J in Figure 616 In this case since the two -K -K ii measurements are of much different quality than those in the previous case the error contour is much less symmetric showing where the more accurate sensor [z]o is preferred over the more inaccurate poundz] Notice the large motion that the global minimum can make over time in a particular problem the positions of zt the global minima can change greatly as a function of t+ for the surfaces TrpoundP K + N(z K)]

63 Problems with Bound on Output Estimation Error

In the monitoring problem with bound on the maximum allowable error in the estimate of the pollutant throughout the medium it is necessary to make a measurement whenever for a time t K +bdquo

T 4JhZ) Aim ( 6 4 5 gt

a 2K + N(z Kz) S c(z) TP + N (z K) c(z) (646)

where

as in Section 541 Suppose the first time (645) is satisfied is at sample time t K gt

It is required to select the best set of measurement locations zt such that

0 K + N ( 4 Z ) = m l nK mx deg K + N ( 2 K Z ) (6-47)

EXAMPLE TO SHOW QROWTH OF T R A C E I P t K - K + N H SlRi-ACE WITH T IME T ( K N ) I T S SHAPE APPROACHES THAT OF t P l K K J 5 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

I XX I X I X bull X 1 X

X X

X

x x

X X

X X

X

IX

X X

X X

gtbull X

X

X X

X X

X X XX

X

s X X

XX X

X X

X X

X

X X

X X

X X

X X

X

I X 1 X I X I X I X I X

X X

X X

X X

X

x x

X

I X I X

I i

X

X X

X

X X

X X

X

Figure 613 Time response of Tr 096

ppound + N(z^j] showing three sample times at t R = 009 052 and

CONTOUR PLOT OF TRACECP(KK+N) (ZIK)) 1 AS FUNCTIC-J OF CZCKUI HORIZ [2CK)1Z VERT EX^tfPLE TO SHOW GROWTH OF TRACEEPCKKN)1 SURFACE WITH TIME T(KN) ITS SHAPE APPROACHES THAT OF tP(KK)J11 SURFACE ASYMPTOTICALLY FOR LARGE N

95 44 33 55 44 33 55 44 33

S55 44 33 6 5

5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 bull 5 5 4

4 4 444 444 444 444

444 444 3

4444 3 44laquo4lt44 3 44444 33

333 33333

333333 2222

22122 222222

2222222 3 222^2222

22J2222 222J2C22

222igt22lt222 2222222S2Z

222222222222 222222222222

22222 2222 222 222 222

2 2 2

33 44 55 66 77 OSS 999339999 33 44 55 66 77 868 S939933999 333 44 55 66 77 88 9 9999993999 333 44 5 66 77 68 38 999^9999099 333 4 5 6 77 8 380 99999-JS999999 333 4 5 66 777 -36488 999D9999999S999999+ 33 44 55 66 777 809863 939999999999 33 44 55 66 777 686368888 33 44 5 66 7777 6880860680300 333 4 55 66 777 8385600068866880888888

33 44 55 66 7777 8888886808088883-33 44 55 66 7777777

22222 33 4 55 666 777777777777 2222 33 44 5 666 777777777777777777777777777

pound22 33 44 55 0666 777777 777777777777777 222 33 4 55 6066 56 77^77777-

22 33 44 55 66E JEiS66 555 6Le0j66660CCCG666C66666S

555 S66G5eeUf=i6e6G-eSB6666S666666 5555

4 5555555535555555055555555555555555555-2K araquo 444 222 33 4444444434444444444444444444444444444444

22 333 222 333333333^ 53333333333333033333333333333333

222

111 11111 11111 111111 m m 111111 1111111 i m m - m i n i

2222222222222 222222222gt222

222-fc222 2222222222222 222-22222222222222222222222222

222222 22222 22222 333333333333333333 2222

22222 333333 33333 222 2222222 3333 3333 222

222232 333 444444144444 333 2222 +222222 333 4444444444444 333 2222

222222 333 444444-^44444444 33 2222 222222 333 44444-44444 333 222 222M22 333 333 222 222^2222 333333 333333 2222

22222 333333333333333333 2222 I i i 222222222 22222 1111 22pound22ii222 222222222 222222222 111 2222222 22222222222222222222222222

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 bull 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 gt2

3 3 3 3 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 4 4 4 4 4 4 4 3 3 3 2 2 1 - 2 2 2 2 2 2 2 3 3 3 3

2222 2222222222222222 2gt22222222Z222222

22^222222222 n m m m i ii

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 bull 1 1 1 1 1 1 11II - 1 1 1 1 1 1 11111 i i i n n n n n m i i m i i i i m m 11 m i n i m u m m i i n i i m i n i m u m i m i n m i m n m m i m m i m m i i i m

2222222222

11 m m i i i n u m n n n m i i i u m i t i 1 U 1 1 1 U H m m i i i i i i

444 333 555553 444 333 5S5iiti55 44 333

-i222222 22C222 22222

333 333 333 4444444444144 4 444444 144344444444 4444 4444444444444

1111111111111111 1111111111111111111 52222222222 22222222222222 33333333333333333033330

TtKN)= 90000E-02 T(K) = 90000E-02 N - 0 STEPS AFTER FIRST MEASUREMENT CONTOUR LEVELS AND SYMBOLS SYMB LEVEL~RANGE (0) 2 9993E 02 (9) (9) 2 wm 02 02 lb) (0) 2 2 5poundI 02 02 (7) (7) 2 2 sectisectSe 02 02 (51 CO) 2 2 m 02 02 (5) (5) 2 2 poundpoundi 02 02 C4) (4) 2 2 iiaE

02 02 (3) pound3 2 1 g|pound 02 02 (2) (2) 1 SJ3i 02 02 (1) (1 ) 1 1 Z2TJ 02 02 (0) 1 flf 02

ESTIMATION ERROR CRITERION CONSTRAINT = 7 Slt gtgtbullbull)pound-02

Figure 614 Contour plot of T r l g ^ A ] a t f 1 r s t measurement time for case with d i f ferent measurer-gtnt error covariance matrix V

t bdquo - 009 compare with Figure 66 K

CONTOUR PLOT OF TRACEtPCK K+Nl t2(Kgt 11 AS FUNCTIOt- Cl= CZltK)11 HORIZ [2CK)J2 VERT EXAMPLE TO SHSW GROWTH OF TXACEtr(KKNgt3 SUff AGE WITH TIME T(KNgt ITS SHAPE APPROACHES THAT OF CP(KK)311 SURFACE rSVPTOTICALLY FOR LARGE N

EZ(K)J2 09

555 44 44 44 444 3555 5355S 5555 5555 535 444 44 444 444 4444 44-44 44-14-14 444 bull144 bull444-144 3 444-J4 3 444-14 3 44444 4444

333 333 44 333 333 44 333 3333 44 333 3333 pound4 333 3333 44 333 333 At 33 3333 4 333 333 4-333 22 333 333 222222 333 333 222222222 333 33 222222J2222 333 (33 222222222222 33 13 2232 22222222252 333

6 77 bull CS 77

dec oec oota

eteo cae

999Q99S99 5359929999 SC339^-99

S999i)J99399 D999399SP9999

333 4 33 222 333 222 3333333 222 353 222 22222 22222222

JPPZZ 2222 2222 222 222 11

m i 1M11 H i l l

n n i i 11111111 11111111

777 euseoe 77 BSEBSC3

777 acaoseesee 6 777 7 see8fJ8633888888 6S 77777 6R6 7777777

rgt0G 777777777777 56G6 777777777777777777777

_J 6G6E6 777777777777777777 22222 33 4-1 555 66E6t5poundS

22222 333 44 550 EGtmejGGGSS 222 33 44 555 C5e6tweampe6u66eGfl0^6eS666666666 2222 33 444 55tgt3 666666o6666S6GG6666l3S

222 33 44 5ti055amp 222 33 44 555S5iij555S555555SS555555555 222 33 444 55355555555555

222 33 444444^44 444444444 V2Z 3333 2222 33333333233333333333333333333333^3333333

2222 2222222222222 pound22222222222222222222222222

1 1 1 1 - -

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 111 111 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 1 1 1 1 1 1 1 1 1 n u n

f i i t u r n i i 2222222222222222222222222222 11111111 222222222 222222 111111 22222222 33333333333333333333 22222 111 22222 33333 3333 2222 3333 444444444444444 3333 222322 3333 44444 4444 Clt33 22222^2 33333 4444 4444 333 2222222 3333 4444 4444 333 22222pound2 3333 --4444 44444 3333 222222 33333 444444444444444 333 2222 22 3333 3333 2222 bull222222 3J333333333333333333 2222 2222222222 22222 2222^222^2222222 2222222222 2222i2ii22222222222222222222e22222pound222 22222222pound22-i2222222 2222222222222 +33333 222H2222222222222222222222222222222pound 111111111111 333333 222222222222222 222222222222222222222222222 444444 3333 2222222 33333333333333Ct3333 44444 3333 33333 333333333333333333333333 35 444 3333 3333 444444444^4-la 5555 444 333 33333 4444444444444-1444

22222222

111111111111111111111111111 1111 111111 111111111 1 i i m i u m i i n t i n i i a

m i m u n i n i i i i i n i i i m i i i i

T(K+N)= 1OOOOE01 T(KJ = 90000E-O2 N s 1 STEPS AFTER FIRST MEASUREMENT

^ =^ i f (91 (9) l^llgl lt8) IIg3f|gl (7) (7gt lSiil tS) pound6) i83I--8 (5) t5gt i3^igi (4) (4) l8sSgi f3I (3) lf^gl C21 (2 li5SIgl ( 1 ) (1) P | (0) _l18537E 02_

ESTIMATION ERROR CRITERION CONSTRAINT = 75000t-02

12500E-O13

Figure 615A Contour plot of Tr measurement

p K ~K+1 M at time t K+l 010 one time step after first

CONTOUR PLOT OF T R A C E C P f K K + N ) lt Z ( K ) ) 3 AS FUNCTION OF t Z t K U l HORIZ pound Z ( K ) ] 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E [ P ( K K + N ) 3 SURFACE WITH TIME T I K + N ) I T S SHAPE APPROACHES THAT OF C P ( K K gt ] 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

5S3 44 333333 555 444 333333

5555 44 33333 S5SSS 44 3333

_ S555S 444 3333 +555 44 333

44 3333 444 3333

4444 333 444444 333

CZ(K)12

09

3333333 333333 3333333

333333 33333

33333 44 55 65 777 3333 44 55 66 777 0888G888BS

3333 44 55 66 777 660688886888 3333 444 55 6S 77777

3333 44 55 G66 777777777

4 4 4 55 6 77 889 pound39999999 0 5 6 77 8C8 993399999

4 4 5 66 77 860EI 9999999999 4 4 55 66 77 eSEIS 9999999999 4 4 55 66 77 009688 999999999999S999

44444 U33 222222222 333 44 55 4444 333 22222222222222 333 444 55 444 333 2222222222222222 333 44 51 44 33 222222 22222222 333 44

333 2222 22222 33 444 333 2222 2222 33 44

333 222 2222 333 222 1111111 222

3333 222 11111111111 222 333

$656 777777777777 66666 7777777777777777777

lta 6563566 777777777 555 66666GS66666

555 666666666656666666666 G66666666666666-555E5

14 55SS5o335 444 5553S5555amp5S55SS5555

_ _ _ _ _ 444 amp55555lgt535555555555555 33333 222 1111111111111 222 333 4444444

333333 222 111111111111111 222 333 444444444444444444444444444444444+ 33 2222 1 1 1 1 11 1111111 222 33333

2222 111111 11111 2222 3333333333333333333333333333333333 222222 1111 11111 pound22222222 22222222222

11111 1111111 1111111111 1111 H i l l 111 1111111111111111111 1111111111111111-11111111 111111111111111 1111111 11111111111111111111111 1111111111t 111111111111111111111111 I -bull 111 11111111 2222222222 111111111

222222 22222 11111111111111111111111111111 2222222 3333333333333333333 22222 11111111111111111111111111111111

22222 3333 4444444144 333 22222 3333 4444 4444 333 2222223222222222222222222222

33333 444 555555555 444 333 222i2222222222222222222222222222222 +3333333 444 555555b555555 44 333 22Ppound2222222poundpound222222222222222222222-3333333 444 5555Si5o555355 44 333 22^ZV32222222222222222222222222222 33333333 444 55S55L555 444 333 2222 213222222222222222222222222

3333 4444 4444 333 2222ZT22Z 22222222 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 ^ 4 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1

+ 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 P 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 Q 2 2 2 2 2 2 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 t 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2pound222222

3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 3 3 2 J 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 33C-333333333

4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 AAA 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -

T ( K + N ) laquo 1 4 0 0 0 E - 0 1 T ( K ) = 9 0 0 0 0 E - 0 2 N = 5 STEPS AFTER F I R S T MEASUREMENT

SYMB

( 0 )

LEVEL RANGE

3 6 1 1 7 E - 0 2

( 9 ) ( 9 )

3 5 5 5 5 E - 0 2 3 4 9 9 2 E - 0 2

( 8 1 ( 8 )

3 4 4 2 S E - 0 2 3 3 0 5 6 E - 0 2

( 7 ) (7)

3 3 3 0 4 E - 0 2 3 2 7 4 1 E - 0 2

( 6 ) ( 6 )

3 J 17BE-02 3 I 6 1 6 E - 0 2

( 5 ) (5gt

3 1 0 5 3 E - 0 2 3 0 4 9 0 E - 0 2

( 4 ) lt4)

2 9 9 2 7 E - 0 2 2 9 3 3 5 E - 0 2

( 3 ) ( 3 )

2 8 6 0 2 E - 0 2 2 8 2 3 9 E - 0 2

( 2 ) ( 2 )

2 7 6 7 C E - 0 2 2 7 1 1 4 E - 0 2

( 1 ) ( 1 )

2 6 - 5 1 E - 0 2 2 5 9 0 8 E - 0 2

(copygt 2 5 4 2 5 E - 0 2

ESTIMATION ERROR CRITERION CONSTRAINT =

7 3 0 0 0 E - 0 2

Figure 615B Contour plot of Tr measurement amp 5 (0] a t t in tbdquo = 014 five time steps after first LKt5

CCM-OUR PLOT OF T R A C E t P ( K K N K 2 ( K ) I AS FUNCTION OP t Z ( K ) 7 1 HORIZ EZ fKJJS VERT EXAMPLE TO SHOW GROWTH OF TRACECP(KKN)3 SURFACE WITH TIME T ( K + H ) I TS SHAPE APPROACHES THAT OF [ P ( K K ) 3 U SURFACE ASYMPTOTICALLY FOR LARGE N

4 4 4 46 AC A

r5 66 - 7 7 7

GG 7 7 7 PSb 77

6G6 5 66 55 666

0 bull 555 144 333333333333 55f 44 333333333333

555 44 03333333333333 _ 55555 444 33333353333333 55555 44 333^333033333333 bull555 444 333333333333333333

4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 XH M 4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 4 5

4 4 4 4 3 3 3 3 3 3 3 3 3 3 4 4 4 4 1 4 4 4 3 3 3 3 3 3 3 3 4 4 4

1 + 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 ^ 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 44 5 5 5

3 3 3 3 222222222222P gt 33 4 4 5 5 5 333 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 5 5 5 5

3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 4 4 5 5 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 g

3 3 3 3 2 2 2 2 2 2 333 4 4 4 4 3 3 3 3 2 2 2 1 I t 11111 2 2 2 33 4 4 4 4

3 3 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 444

3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 bull 3 3 3 2 2 2 U 1 1 M 1 1 1 U 1 U 1 1 2 2 2 3 3 3 3

2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 1111 11111 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 raquo I 1 1 1 ) 1 1 1 1 1 1 bull 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 111111 1 gt

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2

2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 2 2 2 2 2 2 3333 4444 53535 444 333 2222

3333333 444 5555555 5555555 444 333 33333 444 555 555 444 333 33333 444 5555 5555 444 333 333333 44 55555 55555 444 333 33333333 444 555555555 444 333 222

3333 444444 44444 330 221222 222 33333 T^33 22222 222222222 3333333333333 22222

2222222222222222 2222222 22222222222222222222

2222222222222 222222222222

333333 222222222222 222222222222222222 33333 2222222222222222222

4444444 333 22222222222 33333333333 4444 3333 333333

4444 3333 3333

JSiJ 3Sfl e raquo 3 8

9 9 9 9 9 9 9 9 9 9 9 9 9 S 9 S 9 9

9 9 9 9 9 9 9 9 9 9 9 9 3 9 9 9 9 9 9 9

iSBraquolaquo 9 9 9 9 9 9 9 S 9 9 9 9 S 9 9 858cea3e 999999999-

7777 7777777

7777777777 iGi i 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ei5666 7777777777777

S6666666666 6666G66666666666

S35 SGS6S066666666B )5i S55555

HJ5555555S5U555555 5555555555^555555555

14 55555 1444444444444444444444

4 4 4 4 4 4 4 4 4 4 4 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 I222222222222222222222222222222

r i u i u i u i u i i i u n u n i i i i i i

1 i n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 bull m i n i

2 2 2 2 2 2 2 2 2 2 2 gt 2 2 2 2 2 2 2 2 2 2 2 2 2 lt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 pound

2 2 2 2 2 2

u u i n 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

m i n i m i m i n i m i 1 1 1 1 1 1 1 m 11 1111 111 1111111111

1 1 1 1 1 1 1 1 1 1 m i m m 1 1 m 2J22222

222222222222222222222 i33333333 3303

33333333333333333333332 3 333333333333333333

T(KraquoN)= ISOOOE01 TIK) = 90000E-02 N = 10 STEPS ftFTE F IRST MEASUREMENT

CONTOUR LEVELS ANO SYMBOLS

SYMS LEVEL RANGE

t O ) 4 2 3 1 9 1 1 - 0 2

( 9 ) ( 9 )

4 1 7 9 7 E - 0 2 4 1 2 7 4 E - 0 2

3 ) t e gt

4 0 7 5 1 E - 0 2 4 0 2 2 0 E - 0 2

(7gt ( 7 )

3 9 7 0 5 E - 0 2 3 9 l a 2 E - 0 2

( 6 ) (Ggt

3 6 amp 3 9 C - 0 2 3 amp 1 3 C E - 0 2

( 5 ) ( 5 )

3 7 t e l 3 E - 0 2 3 7 0 9 1 E - 0 2

( 4 ) ( 4 )

3 6 5 G R E - 0 2 3 6 0 4 5 E - 0 2

C3gt ( 3 )

3 5 5 2 2 E - G 2 3 4 S amp 9 pound - 0 2

( 2 ) 3 4 4 7 6 C - 0 2 3 3 S b 3 E - C 2

(1 ) ( 1 )

3 3 4 C O H - 0 2 3 2 9 U 6 E - 0 2

(0) 3 2 3 0 5 E - Q 2

EST) MAT 1 Oi l EKROR CRITERION CONSTRAINT =

7 5 O 0 C F - 0 2

1 - 2 5 0 Q E - 0 1 1

Figure 615C Contour plot of Tr measurement

bullK+10AK (h) at time t K+10 019 ten time steps af ter f i r s t

cz(Kgtia 03

CONTOUR PLOT OF T R A C E t P t K K N ) t Z ( K gt ) 3 AS FUNCTION OF t Z ( K ) ] T HOR1Z t Z ( K H 2 VERT EXAMPLE TO SHOW GROWTH OF TRACEEPCKKraquoNgt1 SURFACE WITH TIME T ( K N ) ITS SHAPE APPROACHES THAT OF [ P lt K K ) ] 1 1 SURFACE SVYPTOTICALLY FOR LARGE N

555 44 33323333 555 4 333023333 555 444 333333(333

5b55 44 3333tngt33333 5S55S 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 55L5 444 333333333333333

444 33333333333333333 444 33333333333333333333

444 55 6 444 55 444 55 444 S 5

77 BE 6 77 OEGfl

7 7 pound9118 777 ease

4404 33333 444444 3333 44444 3333 444 3333 222

33333333 444 5 333333 444 3333 444 333 444

55 66 777 44 55 66 777 444 55 666 7777 666 77777

999999999 999S90999 9S9SS39999 99999999999 99999999999999 99999999

333 2222P222222222 333 22222222222222222 3333 222222 22222222 3333 22222 2222 3333 222 222

680e88666038B68 6S6 7777777 BC3QBQSBBB gtamp 66GC 7777777777 555 6i6fiS 77777777777777 777 bull 555 6056666 77777777777

3333 222 333333 222 11111111111 33333 222 11111111111111 33 2222 111111111111111111 2222 11111 111111 222222 1111 11111

444 5555 666666366666 I3 444 555S 66GS66666S6666666 33 444 5amp05S5 6666666666666 333 444 t5Sy555555S5 333 444 555555555555555555 55555555S55555555 222 333 4444 222 333 444444444 222 3333 44 14444444444444444444441 mdash2 333333 44444444 222 333313333333333333333333333333 222222 111111 221-22222222222222222222222222222 111111111111111111111111111111 1111111111111

llll1111111111 111111111 1111 111111)1111 22222222222 11111111 22222 22222 11111111 222222222 3333 3333 22222 2 3333 444444 444444 333S 222222221 3333 144 555555535 444 3333 ZZpoundZ 333233 444 5555 5555 444 333 3333 444 555 555 444 3333 333 444 5556 555 444 3333 3333 44 5555 5555 444 3333 333333 444 5555555555555 444 3333 Zt 33333 4444 4444 333 2222222 33333 444444 3333 22222 22222222 3333333333333333 22222 111 22rgt2pound222222222 222222 11111111 2^2 2e2Sgtpound22222222222222222 1111111111 2gt2212222Ve^^-^2^222 1111111 222222poundZi2222

3333333 22222222222222222222222222222222222222 33333 222222222222222222 4441444 0333 22222222 3333333333333 444 3333 33333

111111111111111111111111111111

444 3333 33333

111111111111111111111111111111 11111111111II 111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 = 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

T t K N ) = 2 4 0 0 0 E - 0 1 TCKl = 9 0 0 0 0 E - 0 2 N = 15 STEPS AFTER F IRST MEASUREMENT

CONTOUR LEVELS AND SYMBOL5 SYM0 LEVEL RAN3E tOgt 46551E-02 (9gt (9

4 4 9039E-7D27E--02 02

4 4 701-1E-eao2pound-02 -02

lt7 (7raquo

4 4 59fSE-5477E--02 -02 lt6J (6gt

4 4 49GEE 44S2E--02 -02

(5J 4 4 39C0E-34pound7E--02 -02

(4j (4J 4 4 291

rJE-2-103 E-

bull02 -02 I3J (3)

4 4 1 830E-I37SE- 02 -02 (2gt 12)

4 4 06C5E- 03L3E--02 -02 J (1)

3 3 93-IIE-3323E--02 -02 lt0 36310E-02

EST 1 HAT I ON ERRPR CRITERION CONSTRAINT = 7taOOOE-02

Figure 615D Contour plot of T r EK+^^K) a t time t K +_ = 024 fifteen time steps after first measurement L J

CONTOUR PLOT OF TRACpound[PCKKNgtCZ(KgtgtJ AS FUNCTION pff C Z lt K ) ] 1 HORIZ t Z ( K gt 1 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E t P ( K K + N H SURFACE WITH TIME T lt K N ) I T S SHAPE APPROACHES THAJ OF C P f K K l l U SURFACE AgtV1PT0TICALLY FOR LAROE N

TJME= 9 0 0 0 0 E - 0 2 FIRCT MEASUREMENT ELEMENT 1 1)

555 444 444 55 6G 55 444 33 444 53 66

555 44 0333 4444 55 66 555 444 3333333 444 55 66

553555 AAA 3333333333 4444 55 6pound 5555 444 3 3 33 33 i 133333 444 553 S 444 333333333333333 444 ~

6D3 8 0 3e

3 3 F 9 7 7 7 3poundJt

939909039 9999S9999

990030099 39J999999

7 7 7 1 3 8 8 0 8 6 9 9 9 9 D 9 9 S 9 9 9 9 9 9 66 777 eaiaaena 99999999-

_ 666 7 7 7 7 8 6 6 e 8 8 - 8 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 55 6 6 77777 8e38688C8O880OO(38

4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 3 6 6 6 7 7 7 7 7 7 7 7 8 8 0 6 8 8 8 8 8 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 656G 7 7 7 7 7 7 7 7 7 7 7 4 4 4 4 4 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6G3E-6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - -4 4 4 3 3 3 3 3 3 3 144 sect55 5pound-SG6666 7 7 7 7 7 7 7 7 7

333 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 = 5 5 666665G5GGG6 3 3 3 2 R a R a raquo K 2 2 2 S 3 3 3 4 4 4 505 CGtJ6ampo6-6GGGCrGCGfiC6

3333 r y 2 2 2 2 r i 2 2 L 2 2 2 2 2 33 4 4 4 SS55 -gtb 66Gl5CCftgtG0tgt5 3 3 3 3 2gtZ2 2 2 2 2 Z 33 4-14 5E- 3 j ^ S S r i S W S 3 3 3 3 2r-22 2 2 2 2 333 4 4 4 4 55555503555511555555

3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 0 5 5 5 5 5 amp 5 5 5 5 5 5 5 5 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 333 4 4 4 4 4lt 4-14444

3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 I I I 11 2 2 2 2 333 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 + 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 4 4 4

2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 V3Z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 11111 1 1 1 1 1 1 2 2 2 2 2 2 2 ^

1111T1 111111 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111

11 1 11 111 1 1 1 -

11111111111111111111111111 1111111111 2222222222222 11111111

2222^ 22222 111117 1 22222222 33i^3 3333 2222

333 4-S44 44444 333 pound2222222 333333 444 55555555555 444 333 1

33333 444 5555 S555 444 3333 33 44 55 3 6G666 D55 44 393333

444 505 6665066 555 44 33333 333 444 555 555 444 3333 333333 444 55555555555555S 444 333 3333333 4444 4444 333 2222221

33333 4444444444 3333 222222 2222722 3333333333^3333333 22222 2222222222222 222222 111 1111 22P222i2-22l22P22222222222222 U11 U 1111 2ir2ai22-222i22irr2222 1111 11

22222r2-2Ki2 22 3333333 22pound2J22222Z22222222222222222Jai

3333 22222222222222222 4344444 3333 2222222 333333333 33C-

4444 3333 33333 444 33333 33333

11111111111111111111111111111 22222222222222222222222222222

33333333 3333333333333333333 333333333333033333

33353 22222

bull22222222222222222222222222222 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22222222

2 2 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3 3 3 ^ 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J

( 0 )

LEVEL RAKCE

1 6 0 S 3 E - 0 2

13) ( 9 )

1 6 3 4 S E - 0 2 1 5 0 4 0 E - O 2

1 5 3 3 4 E - C 2 1 4 C 2 E - 0 2

it ( 7 )

1 4 r 2 U - 0 2 1 3 t 1- t 02

( S ) ( 6 )

i sacaoos 1 2 8 0 2 E - 0 2

(5gt ( 5 )

1 2 2 9 5 f - 0 2 1 1 7 6 9 c - 0 2

( 4 ) ( 4 )

1 l pound P E - 0 2 1 0 7 7 C E - 0 2

( 3 J 133

1 O27OE-02 9 7 o 3 ^ pound - 0 3

(2) ( 2 )

9 2 5 t t l E - 0 3 8 7 j O ^ E - 0 3

(1 ) (1 )

BZnopound-03 7 7 3 7 5 E - 0 3

tOgt 7 2 3 1 2 E - 0 3

ESTMATUN ERtiR CRITERION C L l t T R U I H =

7 t r n o e - 0 2

SOURCE NPUr COVAKlANCE I W 1 - 1 2 5 0 f E - 0 1 1

Figure 616 Contour plot degl [amph at f i r s t measurement t ime t bdquo = 009 compare with asymptotic

response of Tr [ppound + N (z K )1 surface at t K + l g = 024 in Figure 615D

188

at the next sample at time t K + N when (645) is next satisfied From Conclusion X the minimax problem in (647) separates into finding zt

such that

[ E^4i = IK L - ^ that z which

^n-lr-1 $ 5$ pound

and independently findino that z which leads to

4 T max c(z) c(z)

(648)

(649)

for N large Various properties of the solution of th is problem are

demonstrated by example in what fol lows

631 Asymptotic Responses of Output Estimation Error - to demonshy

strate the asymptotic separation of the minimax problem in (647) into

the independent problems of vector minimization in (648) and scalar

maximization 1n (649) the problem of Section 61 was solved but as a

monitoring problem of the second kind with

~005 p 002

000001 (650) 000001

^ 000001 _

and with thi bound on maximum variance in the output estimate

Pdeg = ~0

lim 01 (651)

For this case a plot of the evolution of o^+(j(S((z) t n e gtin1max probshylem statement In (647) as a function of time t K + N 1s shown in Figure 617

The asymptotic separation of the minimax problem is demonstrated in Figures 618 and 619 The former 1s a plot of a^[z0z) as a function of the position 1n the medium z for values of time t R = 0 T 2T 9T

1OOOOE-01

6BO0OE-O2

S2000E-02

OeOOOE-02

4C000E-DZ

X X

X X

X

X

X X

XX

gt XX

X

X X

X XX

X X

X X

X X

X X

X X

X X

X X

X XX

X X

X X

X X

X

X X

X

X X

X

X X

X X

X

X

X X

X

X X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 617 Time response of aLwU((laquoz)gt t h e P e l f deg r m a n c e criterion for the optimal monitoring probshylem with bound on error in the output estimate for a = 010 samples occur at t = 011 047 and 085

EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTFUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-$ I At IT VALUE FOR LARGE TIME

80000E-02

74000E-02

96 7777 6 7 709 9 76666 e 876 6 7 9 976 555 6 78 6 55 56 9

1 0 0

865 4444 56 S 87 44 4 9 7654 4 5676

8654 33 9 754 33 33 4 567

3 SZZ100 965 3333g2H00 754

6BOOOE-02 4444pound2110 8343 5 55-JJgt3322 1002533222 777ii -514332293222 S^SS tiS314i65 0111

g- 03779S7 0 S99 (

62O00E-O2 1 2 3458

1 6 1 2 34579

36 1 2 4 79

1 35 8 2 6

i 1 34576 O I 2 6 J

C 1 23457) 6 9

12345 B 1 234 i7f)

1 gt579 0 123 13539

00 12 J4M5S9 41 OC 1 3-Ti67 9 9567

00 i345 6 6300 OOOOOO 0 00

SYMB TIME TK+N (0) 0E00 CI) 5000CE-C3 (2) 0001^-03 CD GOOCOE-03 (4) 80000C-03 t5 ) IOuOCE-02 (6) 12000E-02 ( 7 lJidOOC-02 0000 (6) 1600CC-02 000 I1 (9) 1 OOOOE-02 00 111

00111222222 0122 30333 P0112233344444 011223S4445SS-3 01 23341553 C306 012g34J50tt b67777 01254553077770360

12334Lpound67736999 12345My88393 12345677S99 12345^769 123b67699 1245S7S9 12456099 1245789 1246709 1246G99 134689 135799 13579 14R89 i99 2589 04799 2599

4000E-01 PtSl ION Z

Figure 618 Plot of performance criterion oilaquo[z) as a function of position z in the medium for K + N- -- - 2 _ _ _ J times t K+N 00 002 004 018 note how position z

changes with time of o + N(z ) = max a K + N U)

130O0E-O1

1 32O0E-O1

1 1 4 0 0 E - 0 1 ODDOnOOOCOO

raquoe00Dpound-02

oooooouooo

60D00E-02

Figure 619 Plot of asymptotic shape of performance c r i te r ion deg K + N ( z ) as a function of position z in the medium as N-raquo compare posit ion z =

totic position of maximum in Figure 618

the medium as N+degdeg compare posit ion z = 03 for Urn r j x apound + M (z) in th is curve with asymp-im n x N-~gt z

192

where T = (t K + - tbdquo) = 0002 zbdquo was taken as the initial guess at the best measurement locations z Q = [015015] The latter plot is a plot of

lti(z)T a c(z) (652) SS

2 the steady-state term in the asymptotic response of crJ + N fo r N large

Thus comparison of the asymptotic approach in time of the curves in

Figure 618 to the steady-state curve in Figure 619 shows that

N

c ( z ) T V n 1 M n 1 d(z) - c ( z ) T a c(z) (653) imdash S~S~ n=l

As a special case it shows that

max o+fzz)mdashgt max c(z) q c(z) SS

(654)

at the position of maximum variance z Note here that as expected the position of maximum variance is directly over the source position

(655)

632 The Effect of a priori Statistics mdash To demonstrate the efshyfect of the uncertainty in the initial state estimate x = m upon the optimal monitoring design problem consider variations in the a priori

statistics given in the initial state estimate error covariance matrix Pg = M- For this example fix the time interval of interest at 0 lt t lt 20 and set o | i m 5 02

(656A)

Compare the f i r s t case for which

000001 o E o s 8 o

0 0 00001

193

with the case where

E g - H o

oi 000001

o

o

000001

(656B)

The first choice results in the evolution of obdquo+bdquo(ztz) shown in Figure 620 resulting in one measurement at t = 126 The corresponding con-tour plot of [ E K ( K ) ] ] I as a function of [ z j and [jd for that meashysurement is shown in Figure 621

The plot of o^+f(zJz) for the second choice of M as in (656B) 2 is shown in Figure 622 where owing to the higher initial value of aQ

two sample times result at t = 046 and t = 160 The corresponding conshytour plots for those measurements are shown in Figure 623

Study of Figures 621 and 623 show that the locations of optimal measurement positions are not effected by the a priori statistics given in MQ provided that the time to the firsc sample is sufficiently long for the infrequent sampling approximations to apply

For the first case the time to the first sample is t = 126 for the second case the first sample occurred at t K = 046 Thus the only

effect that the choice of Mbdquo has upon the optimal monitoring design probshylem is the detirnrination of the time of the first sample

Thus the results of Conclusion V are substantiated here within the context of a monitoring problem with bound jn output estimation error

To illustrate the transient effects at play in the general monitorshying problem effects that exist before the infrequent sampling requireshyments of (518) and (520) are met consider the same problem as in the

20000E-01

16000E-01

taoooE-oi

raquo XX XX X XX X XX XX X

X Xt XX X XX X XX XX X

X X XX XX X XX X XX

I XX

X sx

XX X XX

X XX XX X XX X XX X 1 XX 1 X I X I XX I X I X I X I X I X

XX X X X X X X

X 1 X IX

X

X

1 600E+CO

2 2 0 Figure 620 Time response of ai+ufivtZ J f o r degi- = 0- 2 with initial covariance matrix P Q H H Q given in (656A) one sample occurs at t = 126

CONTOUR PLOT OF CP(KK) tZ(K)) J11 AS A FUNCTION CF CZCOU HORIZ AND EZtKgt32 VERT

bull4444 33 22222222222222222 4444 333 222222222222222222 4444 33 222222222222222 444 33 22222222222222222J 333 22222 2222222222222 333 2222

fZCKHZ

03

3333 __ 3333 22

33333 222 3333 2222 333 222 333 222 33 222 3 222

222222222E222 222222222222 2222222222222

2222222222222 222222222222

222 222

222 1 2222 11

22222 t11 1111

11111 bull1111111

22222222222 2222 31

1111 2222 31 11 111111 222 11(1111111111111 222

111111111111111111111 222 1111111111111111111111 22

1111111111 22 1 1111 I 22

11111 1111

1111

33 AA RK 7 aesss 999939 0 33 AA UK 7 7 eaaeo 99999 333 AA KH 7 a ieaa 333 A fifi 77 888908 999999

33 Ai HH 333 A 55 6t 7777 CAB 188 99999999

33 44 bullgt B 77777 888883 9953 333 AA Vgt 6(i 77777 0888883

3 3 44 Hfgt lies 777777 8880088885 3 3 3 AA 55 8SS6 777777 889Pd3S8

66666 7777777 44 555 6G6666 77777777 444 E5gt3 6666666 7777T777777

I 44 5SS5 66D6666 7777777 I 44 i5555 666G665 13 444 5555S5 666G66G66 J3 444 55055555 6665666666

1111 1111111111 22 33 AApoundA 5555555555 66666 22 333 J4I44 555555555 222 333 44AA4A4AAA 55555555553

222 3333 4444444444444 222 3323gt33 444444444444

111 222 33333333333333333 11U1 222E222 3333333333

11111 222222222222222222222 11111 1111111111 2222222-

H I 11 i i i i m i i i i i i i n i i i i n i u i u n i i i m i n 11111 m m 111111111111111111111

11111 222222222222 1 1 m m m i m - m m 1111111 222 33333333 222 11111 11111111111111111111 11111111 22 33 444 33 22 111111 11111111111111111111111111 1111 2E2 33 44 444 33 222 1 11 11 11 1 1 11 1 11 1 1111 1111 222 33 44 555 555 4 33 222 1111)11 2222 3 4 55 66666666 55 44 3 222 22222222222222 222222 33 4 5 G6 666 55 ltJ 33 222 222bull22222222222222222222 bull22222 33 44 55 66 777 66 35 44 33 22222 2222222222222222pound22222222-22222 33 44 53 66 777 6 5S 4 33 2222 2222222222222222222222222 22222 33 4 5 66 666 55 44 3 222 2222222222222222 222222 33 A 55 6666666 35 44 33 222 1 2222 33 44 655 555 44 33 22 11111111111111111 1111111111 222 33 444 44 33 22 1111111 1111111111111111111111111 222 333 333 222 11111 1111 ^

bull11 O 111111111111111111111 1111111 111111 111111111111111111111 1 22222222 22222 222222 22222222222222222222222222222 2222 222222222222 222 2222222

11111 bull2222 1 11 11

2222 1111 333 2222 11

3333 224 333 222 333 222

222222 222 111 m m

i m i m i i 111111 1111111111 111111 m i m 111 m m i i 11111 n

m m i i m n

CONTOUR LEVELS AND SYMBOLS

SYMB LEVEL RAIiGE

~76) iTs^ ie -o i 19) (9)

2 2

4972E 4402E-

02 02

( 8 ) 2 2

303i 3263E

02 02

C7) pound7)

2 2

2S94I-2124b

02 02

(61 (6)

2 2

155ipound 0985g

02 02

(5) (5)

2 1

011 5pound 98-562

02 02

t4 ) (4)

1 1

927ampE 87071J

02 02

(3) (3)

1 1

6137E 75S8E

02 02

(2) (2)

1 1

6996E S428E

02 02

(1 ) n 1

1 1

5059E 52QUE

02 02

(copy) 1 J720E 0 2

EST1 HATION ERROR CRITERION CONSTRAINT =

SOOCC^-Ol

12500E-O13

F i g u r e 6 2 1 C o n t o u r p l o t o ^ F K ^ K ^ l n w 1 t h i n i t i a l cdegvariance matrix E Q = - 0 9 i v e n i n ^ 6 5 6 A f o r

the sample at t j 126

20000E-01

95000E-02

6 OOOOE-OS

SS000E-02

Figure 622 Time response of C J | + N ( Z Z ) for ltm = 02 with i n i t i a l covariance matrix P 0 i MQ given in (656B) two samples occur at t K = 046 and 160

CONTOUR PLOT OF t P ( K K ) ( Z ( K ) ) 311 AS A FUNCTION OF CZCfOJ I HORIZ AND r Z ( K gt 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T IME P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-SiTATE VALUE FOR LARGE T I M E

CZ(Kgt]2 05

4444 33 222222222222222222 4444 333 222222222222222222 444 33 222222222222222222 444 33 222222222222222222 333 22222 2222222222222 333 2 22 333 2222 3333 2222 33333 222 3333 222 333 222 222

222 t 222 11

2222222222222 2222222222222 2222222222222

22 22 22 22 111

2222222222222 pound22222222222 2222222222 22222

23 44 55 6G 77 33 44 5 66 777 333 AC 5 66 777 333 4 55 66 777 33 44 55 C3 777 333 4 55 56 7777 33 44 5 e3 77777 333 4 55 i36 77777

999999 99999 93999 999999 99999999 99989999 9999 8888866

0

2222 222 222

111 222 222 222 2222 111 22222 111 111 1 11111 1111111

11111 11111111111 11111111111111 1111111111111111

1111111111 111 1 I I

11111 1111

111

55 666 77777 4 53 6666 777777 68688688 4 tgt55 66666 7777777 44 3E5 666666 77777777 444 5J55 6666666 77777777777

44 S55S 66665C6 777777 44 5555 6666666 Aamp1 555555 66666666

2 a 3 J14 555555555 6666666666 2 33 4144 555555555 66666 22 333 44444 555555555 222 333 4444444444 55555555555

222 3331 4444444444444 222 3133333 444444444444

1111 222 333333333333333333 11111 22 2^22 3333333333

111111 322222222222222222222 222222 11111

111111111111111 -11111 111111 111111111111111111111

11U1 222222222222 11111 1111111)11111111 1111111 222 33333333 222 11111 11111111111111111111

bull11111111 22 33 4444 33 22 111111 11111111111111111111111111 111 222 33 44 44 33 222 11111111111111111111 11111

222 33 44 555 555 4 33 222 11111111 22222 33 4 55 66666666 55 4 33 222 22222222222222

222222 33 4 5 66 66 5 4 33 2222 2L 1222222222222222222222 22222 33 44 55 66 7777 66 55 44 33 22222 2222222222222222222222222 2222 33 44 5 66 7777 66 SS 44 33 2222 2222222222222222222222222 22222 33 4 5 66 666 55 4 3 222 2222222222222222 222222 33 4 55 66666666 55 44 3 222

2222 33 44 555 555 44 33 22 111111111111111111 111 11 111 111 222 333 44 444 33 22 1111111 1111111111111111111111111

2222 333 333 222 1111 11111 2222 3333333 222 1111 11 22222222222222 22222 22222 3333 2222 333 222 333 222 333 222

111 11 0 11111111111111111111 1111111 111111 111111111111111111111 1 2222222222 22222 222222 22222222222222222222222222222 2222 22222222222 2222 222222

SYMB

t b i

LEVEL RANGE

z 5 5 1 9 pound - b 2 _

( 9 ) ( 9 )

2 2

4952E 4384E

0 2 C2

I B ) ( 8 )

2 2

3816E 3248E

0 2 0 2

( 7 ) ( 7 )

2 2

2G60E 2112E

0 2 0 2

( 6 ) ( 6 )

2 2

1544E 0977E

0 2 0 2

( 5 ) lt5gt

2 1

0409E 984 I E

0 2 0 2

( 4 ) ( 4 )

1 1

9273E 8705E

0 2 0 2

( 3 ) ( 3 1

1 1

8137E 7570E

0 2 0 2

( 2 ) t 2 )

1 1

7002E E 4 3 4 E

0 2 0 2

( 1 ) ( 1 )

1 1

5 8 6 6 E 5298E

- 0 2 - 0 2

( 0 ) 1 4 7 3 0 E - Q 2

ESTIMATION ERROR CRITERION CONSTRAINT =

2 0 0 0 Q E - O 1

1Z300E-011

Figure 623A Contour plot of Ppound( K )1 with in i t ia l covariance matrix f 0 = MQ given in (656B) and ulim = 02 for the first sample at tbdquo = 046

CONTOUR PLOT OF t P I K K lt ^ C K J gt 1 1 AS A FUNCTION O t 2 ( K ) J 1 HOBI2 AND t Z ( K gt ) 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPU ESTIMATE WITH T I M E POSIT ION OF KAXtrUlK VARIANCE APPROACHES STEADY-31A7E VALUE FOR LARGE T I M E

09

333 44 14 33 44J 33 333 333 2222 3333 2222 3333 222 33333 222 3333 2222 06 +333 222 333 222 222 I 222 11

07

CZCK132 O S

222 222 222 2222 22222 1i till lllli bull1111111

22222222222232222 22222222222222222 222222222222222222 222222222pound2222Z222 22222 2222^2^222222 2L2 222 222222 222222222222 2222222222222 2322222222222 222222222222 22222222222 22222 1 2222 1111 1 111111 Mil 111111111111111 11111111111)111 11111111 111

3 3 4 4 7 7 7 3 3 3 4 4 S 3 3 4 59 66 7 7

3 53 6 7 aar 4 4 ss i6 3 4-1 tgt

333 44 S3 tgttgt6

777

333

222 222

44 SS 66 77 USB66 993939 0- 3 G 6 99999 8388 59939 eeeoas gposgfl 00866 99999599 ltft aeoeoo 9999399s-77777 888068 3999 77777 8638880 665 777777 6608800888 4 OS 6SE6 777777 86000680 4 55= 66666 7777777 44 ESi 66SCC6 77777777 444 5i3 60EG666 77777777777 44 iSC5 6GGGGG6 7777777 44 35355 G61606G 1 44t 555553 GoGG66G66 22 33 114 355553C3 G6GG66G6G6 I 22 33 44 4 5355330553 CS666 II 22 333 4444 535555553 III 222 333 1444444444 33353515533 111 222 3333 4444444444444 till 222 3313J33 444444444444 1111 222 33333333333333333 11111 222122 3333333333 11)11 222222222222222222222 11111 Hill It II 222222 111 M1111111111111 11 II111111 I 1111 III11111I1 11111 111111 111111111111 11M111 11111 222222222222 11111 1 It 1M111111111 111111 222 33333333 222 11111 bull 1 111 11 1111 11111M 11111111 22 33 44 33 22 111111 11 111 11 I 111 11111 1111 I till 22 33 44 444 33 22 11111 11 bull 111111111 11 II 222 33 44 553 335 4 33 222 1 1111 III 2222 3 4 55 C666666G 53 44 3 222 222222raquo22222 222222 33 4 5 G6 666 53 4 33 222 22222222222^222272222222 22222 33 44 55 C 777 5 05 44 33 2222 2S222Wr2S2222222222 22222 33 44 5E 66 777 6 53 4 33 2222 22L-22rT22E22222 222222 22222 33 4 5 66 6SG 55 44 3 222 2227222222222222 2222222 33 4 55 G66GC66 53 44 33 222 11 2222 33 44 555 533 44 33 22 111 111 1 11 I I 111 111 11 I11 1 11 111

1111 111 HI

222 33 444 222 333 -111111 222 333333 222 11P1H 22222222222222

33 22 22

11111

2222 111 t i n 11 t i n 1 3traquo3 222 1111111111111

3333 222 11111111111 333 222 1111111111

2 111 m m

m n i u l i i i i i n m i n i i m i 11111

m m 11111 mi 11 1 11111 m 1 m 111111 1 22222gt222

222222 2222 222

m m 111 m 1111111111111

111111 m i n i m i m m i i m t 22222 222222222Z3222222222232222222 2222222222222 2222222

SYI-3 LEVEL RANGE (0) 25540E-02

l 2 2

4970E-02 440IE-02

2 3B31E-02 32G1E-02

i l l 2 2

2GXE-02 21225-02

1 2 1352E-02 0963E-02

11 2 1

O4I3E-02 9843E-Q2

i I I

9274E-02 8704E-02

II 1 8I3-JE-02 -756-S-02

si 1 1 6S93E-02

GJ25 -i-02

1 I

3333pound-02 GZilLC-02

lt0gt

g trade -12uorE-oil

Figure 623B Contour plot of [ P pound ( Z K j L with i n i t i a l covariance matrix PQ = HQ given in (656B) and

degl lim = 02 for the second sample at t R = 160

199

2 last case above with HQ defined in (656B) but with a = 016 instead

This results in the curve for o K + N(zJJz) shown in Figure 624 for the

shorter time interval 0 lt t lt 10 Two sample times result at t bdquo = 011

and t K + r ) = 086 Corresponding plots for [pound(lt)] and [ P pound + [ | ( Z K + H ) ]

are given in Figure 625 Notice how in this case that the optimal meashy

surement positions it and z bdquo + N at the two samples are different The o

reason for this is that here the estimation error l i m i t o is so low

that the infrequent sampling approximations do not apply at the f i r s t

sample t ime This is inferred by the response of degV+N^K Z^ i 9 U r e

624 where i t is seen that zhe steady-state slope [ f tJ i i = 000125 for

this problem has not been reached yet at the f i r s t sample whereas i t has

at the second thus the steady-state simpl i f icat ions 1o not apply at the

f i r s t sample For th is reason in practical applications step (3) of the

algorithmic procedure given in (572) is important where at each sample

i t is necessary to check whether or not steady-state conditions have

been adequately approached for the infrequent sampling approximations to

apply

833 Problems with a Fixed Number of Samplers aid Constant Error

Bound - Consider a problem withm = 2 samplers to be used in every 2

measurement with a time-invariant error bound o = 0075

The i n i t i a l covariance matrix

000001 O 1

eS = y 0 (657)

O 000001 Conclusion V and XI are substantiated in the context of this problem with bound on output error

laquo vV

X X K

- w XX XX XX XX XX XX XX XX

X

XX XX XX XX XX XX XX XX XX

xx m

X XX XX

gt X X X X

X X XX X X X X X

S5QQ0E-Opound

X X

X

X

X X X x

X

Figure 624 Time response of a K + fzpoundz) for a = 015 with initial covariance matrix P Q = M Q

given in (656B) Two samples occur at t = 011 and 086 compare with Figure 622 for case with a = 02

CONTOUR PLOT CF CP(KKMZltKgt1311 AS A FUNCT0^ t r [ZC EXAMPLE TO SHOW EVOLUTION OF VARIANCE ID C - J _ P C rSrl POSITION CF MAXIMUM VARIANCE APPROACHES S T C ^ V bullpound ATE i

Ji HOTIZ AND tZ(Kgt]2 VERT E WITH TI ME LUE FOR LAHGE TIME

tZ(K)12 05

aa 33 44 4 -_ -

4444 33 222 4 4 4 33 2222 4 4 333 222

33 222i 33 222

3333 222 33333 222 33333 222 33333 222

2222222222222222222 2222222222222r222 22222 2 t2222^^22

22222 2 2222 2f P 22 2222^22P2 22j2^^2r^22

22 ^lt7ih

3333 3333 3333 3333 3333 33 33 3333 333

22 22

2 2

i n n i m n n i n 11111111111111

2222 222 222

77 7 A C e R B 9C99 0 77 c-rrc-rs 90909 77 SCT638 S3^99 7 77 0^036 099999 777 CC3C36 92999999 7777 G363G3 99999999-

7777 eee 9999 i j 7777 e^cr pound33 (--bull 77777 iJZWrampec V G 7777 7 6^000833

j GMJ-5 7777777 o U -CG 777777 gtbullgt Ev -ro 777777777777 bulljT -5 CCSG^GS 7 7 7 7 7 7 7 7

11111111111 11111 j

1111 m i

22 33 AA

2 2 2 2 2 2 2 2 111

1111 bull i m m 1111

1511 2 2 33

i l l

111111111111 11111 11111

1111 222222222222 1111 111111 222 3333333 222 1111

11111111 22 33 4444 33 222 11111 i m 222 33 44 44 33 22 11111

222 33 44 55 555 4 33 22 11 22222 33 4 5 666666666 55 A 3 222

22222 33 44 55 G6 66 5 4 3 2Z2 2222 33 4 5 6 7777777 CO 55 4-1 33 2222 2222 33 4 5 66 7777777 56 55 44 33 2222 22222 33 4 4 5 5 6 6 7 66 5 4 3 222 222222 33 44 55 G66S C666 55 4 3 222

22222 33 4 555 55J 4 33 22 11 2222 33 444 44 33 pound2 11111

222 33 44444 T3 222 111 11

4l4 4fCltits44-44 53355-ltt44-144444

J333333333 r333533 33333333333

2222^^^^22^22222222 11111 1 I I 2222

m m m m i 11111 m 11 m m m i i m u m

m m m t m u u u u-u m i m 1111 m m i m m m m 11 n m M TVZ

222ytgt gtr 222222 2 2 2 - f v SW2V2vbullgt222222

22 - ^ ^ 2 ^ 2 2 2 2 2 2 2 2 2 ^ V 2 2 2 2 2

11111 bull m i m i m u m m m M U U 1 1 1 1 1

i raquo i 11 I I 111 m i 2 2 2

2 2 2 2 2 2 2 2 2 2

333333 222 333 222

4444 33 222 44444 33 222

2 2 2 2 2 2 111 m m

11 M l 111 1

111 M i l l 1 1 1 11 t m i l i u m m u i 11 U U 1 1 U 1

1111 u

22222 2222

2222 33 222 333

1111111111111111 1111111111111111-1111111

2222222222222 22222222222222 222222222

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3133333333 3333333333

CONTOUR LEVELS AND SYMBOLS

SYMB LEVEL RANGE

( 0 ) 2 C ^2E-02

( 9 1 113^151 ca t I-I13II--S1 pound71 pound71 iiS51ESf ( 6 ) (6) flIIlsecti ( 5 ) ( 5 1 UI|g| ( 4 ) pound41 i laquoSIS ( 3 ) ( 3 ) ^IIsectI ( 2 ) ( 2 ) sectvSgSI pound1 ) pound1 1 ssiis (0) 1 4302-02

ESTIMATION ERROR Jraquo TERION C0NampTR i - r =

C W 1 =

pound - 0 1 )

Figure 625A Contour plot of te)]u wi th initial covariance matrix P = H given in (656B) and cC HO15 for the first sample at t K = 011 case with a s 02

Lim

Compare with Figure 623A for

CONTOLR PLOT OF tPCKK) CZIK)) 311 AS A FUNCTION 3F [ Z ( m W3R1Z AND tZ tK) )2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE UTH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE fOR LARGE TIME

tZ(K)12 os

44444 333 22222222 44444 333 2222222 44444 333 22222-222 4444 33 2222222 4-14 333 2222222 A 33 22PZZZ

333 22ZS-K^^2222 333 22222^ 22222 333 2222222-222 22222

333333 222222222222222222222 33333 22222 33333 2222 3333 2222 3333 222 333 222 bull333 222 333 22 333 222

222

9333 At 3333 A 3333 A 333 gt 3333 333 bull 3333 333 333 33

22 222

2222 11 pound2222 1111

22222222222222 2222222222222 3

22222222222 22222 2222

111 11 222 11111111111 222

111111111 222 1111111111111111 1 11111111111

1111111 1111111

11111

99299 0 909999

S3 GG TIT B06BB 939999 55 66 77 85BG03 993299

A 5 65 77 03BBB 99999999 4 55 66 7777 66G86 99D999999 AA 5 6 3 7777 BBB30G 999999 AA 55 6 56 77777 QBOB600

44 55 56U 77777 eeBSBBBO AA 555 6GS6 777777 8008806008

44 S5S 0666 777777 66800 44 55 i 666C6 7777777

i3 44 5-iS 666666 777777777 33 44 550 6GG6666 7777777777 33 444 raquo5Si5 6G666SS6 77777 333 44 S)iS35 GGGGGGG6 33 444 3555535 6GG6660GG0 333 444 5555555555 66G666666

222 33 44 14 5555555S5S5 22 33 14144 5555555555 22 333 4444444444444 5535555 222 333 1 4444lt1444444 2222 I3lt13333333333 4144444

33333333333333

111111111111 1111111111111111111

1111 111111 1111 2222222222222 11111

11111 222 33333 2222 11 11111 222 333 333 222

1111111 222 33 44444444 333 111111 22 33 444 444 33 ez 1111 222 33 44 5555 44 33 Zi 11 22 33 44 55555555 44 33 2 11 22 33 44 55SS5 444 33 f 1111 222 33 444 444 33 22i 111111 222 33 3444 4444 233 222 11111111 22 333 44 333 222

111111 222 3333333333 222 11 11111 2222 22L1

11111 22222 1111111 111111

11111 11111111111 111111111

11111 222222 11111

2222 1111 222 11111

33 222 11111

11111 2222 11111 222222222222222 1111111 222222222222222222

i i11111 i 11111 n i i i I 11 i m i n i i i i i i

n i n m i i i i i i i i i n i n i i i i i i 111U1111111U1111111111111

m i l i i n u n i i i n i i 1111 i i m i m i i-1111111 I 111 i i n i n i 11111 11 1 111

1 1 2222222222

1111

1111 11111 11111 111111

222222 222W222222222 1 2222P222 HiP2222222222 2 2222222i^22222222222

1 111 222 1111 1 I I 1 1 1 1 1

1 1 1 1 1 1 1 lt i m i l m 1111 in 1111 m i ii 1111 ii i i lt i i i i i i i i i i i i i i i i i

m i i i i i i i

n m i n i m i i 222

222 - 2222222222222222222222222222Z22 222222 222222222222222222

22222 2222222222222

SYK3 LEVEL KAKEJE

(01 25171E-02

l 2 2

d570E-02 397CE-02

2 2

33G3E-02 27tiOE-02

2 2

21amp8E-02 15G7E-02

i 2 2

OQti7E-02 OatiiSE-QZ

i 1 0765E-02 9163E-0Z

1 05G4E-C2 79G4E-02

1 1

73G H-02 O7r3E-02

sect 1 1

eir2pound-02 55G1E-02

1 1

49G1E02 43G0E-0Z

tQl 137G0E-02

ESTIMATION EMWJ3 CPlTpoundRtCN CCNS^MNT laquo

I SOJSt-Ot

HIAfCL IWJ

Figure 625B Contour plot of | EK(^K) w i t h i n i t i a l covariance matrix p[j = HQ given in (656B) and a =015 for the second sample at t K = 086 Compare with Figure 623B for

case with a 7 - ~ 02

203

Supoose the problem starts at time tbdquo As discussed in Section 63 and according to Conclusion XI the position z of maximum variance in the estimate of the pollutant concentration at all measurement times is independent of time and is thus calculated at the beginning of the problem With this value z relationships among the various optimal measurement position vectors z at Ihe measurement times are to be conshysidered

Assume that the time the first measurement is required is at timj t iy is found to maximize Ktt) the time the next measurement is reshyquired Then at t K + N gt it+bdquo is found to maximize the next time interval to a measurement etc A typical plot of a (zz) over values of tbdquo is shown in Figure 626 For each measurement time t bdquo + N gt zJ +bdquo is to be

found to minimize [ P S ( Z K + N ) ] so that to corroborate the optimizations K+N over K + N contour plots are made at every measurement time for [ P K + N

(z K + N)] as a function of [ji+N] horizontally and [Zj+NJ vertically Plots for the four resulting measurement times in this problem at t = 027 048 069 and 090 are shown in Figure 6-7 Notice that the contours at all samples are the same leading to the eame optimal design for z] + N at all measurement times t K +^ thus Conclusion VI is demonshystrated

Comparing the first two measurement time intervals in Figure 626 that is (t K - t Q) = 027 compared with ( t K + N - t K) = 021 shows that for N large the only effect that the choice of U Q has upon the optimal measurement design at the first sample at time t is in determining the time of the required measurement t K it has no effect upon the optimal locations zt which demonstrates again Conclusion V

RUN N3 1 EAMfgtLE 7 0 - T I C W IPOLUTION OF VARIANCE I N O U T f U I ESTIMATE WITH T I M r S I G ( t ) POSIT ION OF r A X I M W I VARIANCE Prf iOACHES STFAIV -STATE VALUE FOR LArtCE T I M

60000E-02

4B0DEE-02

1-6000E-02

x x raquo X

X X

X X

X

X X

X X

X X

I X

I X I X I X I X I X I X

X

X X

X X

X

x

x x x X X X x x x

x x

I X I X

I X

X X

X

X

X X

X

X

X X

X

X

X X

X

X

1 X

i x

IX

X X X laquo(

X

l - f y r s ^ - ^

Figure 626 Time response of o K + t Yz z ) fcr obdquo - 0075 fojr samples occur at t f deg-7 048 069 and 090

205

deg gK Slt1

1 ss rjti on OO OO s

Vr gK Slt1

1 is 5 1 T 3

ore 2-5--

co iZ ^ pound3 Sm mdash SS raquo N

T 3

ore 2-5--

o tfgt W laquo WWttWW r-r- bullft w laquo NWWWW r-- ID n v ^ n WWVWftl r-f^ o m raquoltT f t WWWWCd S lO V o WWWWW

o rt V WWfV-W N T iT o ftiwwcvw N r u w N M V N N

bulla L i V laquo ltj laquobull IV o V o n wywcvcv

t o o i n lt o n WflWftWfti bull bull M O O m T WltoeJW

O t f rt V WWftftftiftJ O O w T o r a OlttKiV-jAiAW p laquo T WWMMftAlMW - N L I V WftiXFMAiiVOi

- N 1 bulli l V OCT L i ft

pound o irw 7 o ft ltt -v

t ID o ttvfitirv i m laquo w bullcjftCnWW

^ tvft fNPJVWPi o Ift W o W f - gt bull laquo ( raquo gt laquo OHO ifl bull o laquo c (M^Cft(M lOul n ^r Vi Nfftl O O - iv iww

(D^-gt bull c- laquo wwv luWNUi 10OO - 1 n n wwcv vwni

ww o o bull

mdash mdash mdash CJW

mdash mdash - mdash mdash Wftl

- ^ N N N N r v

www bull inmdash

bull (Oioininraquo-))0in

H 5 S 5 2

ftjft www Mftt

WiMCU

mdash ^ - w

c^v fJSJCl mdash - mdash -

iiiisis mdashmdash WW bull O mdashmdash (M J bull bull bull bull o

CONTOUR PLtff OF EP(KK)(Z(K))311 AS A FUNCTION F rZ(K)J1 H0R1Z AND CZ(Kgt32 VERT EXAMPLE TO SH3W EVOLUTION OF VARIANCE IN OUTPU1 ESTIMATE WITH TIME POiilTION Of MAXIMUM VARIANCE APPHOACHES STEADY- J T M T E VALUE FOR LARQE TIME

1

CZ0012 05

444 444

4444 4344 4VV

4144 444

4444 bull4444

44444 44-14-14

444-144 444444 44 14 4 4414

444444 5 444444 5 444444 5 4lt14lti44 SI 444M 44444 4444 44-144 4444 4 114

777 777 777

66

114 333 3333 3333 3333 3333 3333333 3333 22JU22 2222 2222222 22221-2

3333 333C333 333S$33333 I33333J373333 $33313raquo33S33333 4-144 555 666 3$3333amp3i33333333 444 55 666 33$^33J33J33333333333 444 55fgt 66J 3333 33333 333333 44 55 6E-6 333$3 3J33C333 444 55 GS 05S33 444 505 33333 44 b-S 222222 3333 444 555

0080 ueeo H388 SC30

OC038P occecoo

9990339 99093999 9S9S999 99303399 1S999 _ 9999S99raquo 999959999b 88663098 S99999 77 388833083 7777 8063000068 777777 808EJ8C88380860 7777777 0S03C3SQyC8B 777777777 6838008 777777777 Jifi 77777777777 ltJ 0C6 7777777777777777 fgtiit36SC 77777777777 66b5Eil3S^GC6 222222222222 333 44ltJ 555 22222-gt^I22amp2pound22 3333 bull 222pound222222222222 33 222222222 333 2222222 3333 -4^4ltM1414444

222222 33333 4441444444444444444444 222222 333333333

50305555355555 555555505555555555

222222 pound22222-2 2222

2222 2222222 ^ 2 2 2 2

1111111 1111 111 1111 111 II i n i n m i n i m m m i i n m m i m m i m i m i m i 1111

i n i m n

m m n n m i i

11111 m i l

2222

22

111

n

m i n i I n 11iin11 I I ii i m i n i m i IinI1111 n i n m 111111111 in-1

111 Ull 22222222-111111 22222222poundK22222 t 22222222222

11111 2222 2222 2222222222222 11111 2222222

11111 22222 33333333333 J3333 oo ^22222 ii i n ^ ^ i m i i H2222 333333c

SYMamp LEVEL RANGE

tO 21520E-6pound

(6t C6gt lISISi (5[ (5f l3ililgl (4) 14) 15SfI8i

(2J 1026oE-02

ita

I250UE-01J

F i g u r e 6 2 7 B C o n t o u r p l o t o f fe)jn for the second sample at tv = 048 K

CONTCLrt PLOT OF I P f K K ) ( Z ( K ) ) J 1 1 A3 A FUNCTION O f [ Z t K l l l HOR12 AND t Z ( K gt 3 2 VERT EXAMPLE Tr- SiTOW EVO^UTIDN OF VARIANCE I N OUTPUT r S l M A T E WITH T IME POSIT ION Oi MAXIMUM VARIANCE APPROACHES STEADY-G ATI VALUE FOR LARG T IME

444444 55 66 777

41 V pound4 tgt5 SS6 77 SS 66 777

44 444 oL-5 06 77

4 4 4 4 4 4

4 4 4 4

4 4 4 44-11 33333

444 1 3 3 3 3 3 3 3 A4-aA 3 3 3 3 3 3 J 3 3 3 [4ltii 3333Cgt J3073033 44 4 3 3 3 5 J i 3 J 3 3 3 3 3 3 3 IJ44 33 3V333o3-raquo3333333 M4 3 3 1 3 3 i 3 3 ^ J j J 3 a 3 3 3 3 a 3 144 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 44 5 S 3 6(gt 14 3 2 3 3 3 3 3 3 3 3 3 444 5S 5C I 3 3 3 3 3 3 2 3 3 3 AAA C 5

3 3 S 3 3 3 3 3 3 4 4 035 3 3 3 3 E222222 3333 -144 j-5

3 3 3 3 ZZZsrlte22 C3C3 4 4 4 5555 bull 3 3 3 3 322 2 22SV2222 3 3 3 3 4 4 4 5 3 3 3 3 3 3 3 23222gt2222-2raquoPgtpound22 3i3 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 2 3133 4-1444-i

2 2 2 R 2 r t 2 2 2 3 3 3 3 4- 1

2222-222 2 2 2 2 ^ 2 3 3 3 3 3 bull 2 2 2 2 2 2 222 3 3 3

1 1 1 1 1 1 1 1 1 1 2J222

-1-114 J 44-1

4 4 4

m i n i i i i i i i n i m i i i i i i i i t i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 bull i i i n m m 11 I n i i

m i i n n i m i m l i m n

u i m 11 i i t 1 1 I 11 II 1111 1111111

bull111111 111111111

11111 m i l

2222 1111 +pound2222 1111

111

22222 22222222 2222222

m u m 111111111111111 11 111 1111111111111111111111

11111111111111111111111111111 m m i u n i i i i i

m m i i m n u m n m

l i m n m m

11 11 1 22-gt22 11111 2222222 11111 22222 11111 22222

1 C8 9 3 9 9 9 9 9 0+ B t3 9 9 5 9 3 9 9 9 U CBS 93S--99

EU3S 3SJSJ3U39 E-r-so 9 r j099S99

CC30a 33S-SSE9 CfiSBOO 9999 pound999999

383S3S8 9 9 9 9 2 9 9 3 9 9 77 8S33C308 9 9 9 9 9 9 bull717 GC^raaraquoSB 7T777 amp088 iS9QeS

777 777 e8oSSr 30808388 777777 6 3 a 0 8 3 8 3 3 8 0 a

7 7 7 7 7 7 7 7 7 8 8 8 8 6 0 8 7 7 7 7 7 7 7 7 7

Ht 7777777777

CCfiSS 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 i l Egt6 -amp3S 7 7 7 7 7 7 7 7 7 7

S-j^tiGfcG666SG

0 j55 6C6eSCi66e666 _x^CJ50tgtSS555553

S5Cgt5055C55DS5oS5S5 -4M44444444A

4444444444--1444444444 3333333

33333333033333333333133333 3333oJ33333 2r^222 2- i^^22222222

22 pound 3ft laquoraquoamp 2 22222P2S2 222 22i^lamp r PP-2-2222^22222e2

2222 vr^- amp2222222 2 r ^ g 2 L - - ^ 2 2 pound 2 2 2 2 2 2 2 2 2

2^2 r 22 gt22222HS222222S22 P22^252i-pound-HSpoundHS-222i 12K 22c

2222^222gt2222222P22 22222222 2 222 222^22

pound22222222222 m i 1 bull m i n 11111111111111

i i i 1 1 1 1 1 1 i i i 1111111 11H11111 i l l 111

22222222-2^222222222222222^22222222222 bullbulliiiiL22ZZgt2Z-ZZZt

SYMB (01 mm (91 i OC03E-02 0152E-Q2 (8) (B)

9450E-02 B748E-02

(7) (7)

C04SZ-02 7344E-02

(6) (6)

GC43E-02 5341C-02

15) (5)

5235E-02 4 33E-ca

14) (4)

3S36E-02 3134E 02

(3) 13)

2432E-02 1730E-02

(2) C21

103pound-C2 Oj27t--02

(1) (1 J i 6252E-03 9234pound-03 (copyJ 8 - 2 2 1 7 E - 0 3

ESTIMATION ERROR C-RIrEKl f lN CONSTRAINT =

7 0 0 0 P S - 0 3

KlANCE [WJe

1 2 S 0 0 E - 0 1 1

Figure 627C Contour plot of [bullft M i l for the th i rd sample at t K = 069

CONTOUR degLOT OF tPCKK)(2(K))I1 AS A FUNCTIOM CF [ Z C K U I HORI2 AND (Z(K)13 VERT EXANPLF TO SiampU EVOLUTION OF VARIANCE N OUTPUT ESllMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIKE

3b55 5Sgt3 S5S6 555

444 4444 444 AAH 444

aaaa aaa

4444 44 3-4

lt4444 44- 114 444-44 44441

444444 444444 444 4 11 444414 4444-1 44444 1444-1 -14414 4444

53 G6 777 55 66 777 55 66 777 55 (JPS 77 GSS SS 77 55 GG 7 55 S6 7

I o

4 t44 Sco SG$

535

IZ(K)J2

05

33333 3333333

333333J333 333333330

33-raquor-ltgt3^ii333 V J 33ogt-i333ampJ^33333 444

3 3 3 3 S 3 3 S S 3 3 3 3 3 3 3 3 3 3 J 3 4 4 4 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 4 4 4

I 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 3 3 3 3 3 3 3 3 4 4 4

3 3 3 3 3 3 3 3 3 44 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 3 4lt

3 3 3 3 222222gt22 3 2 y a 4 4 4 3333 27-1- 2222Z 3333

3333333 S2Sk4gtgtZSfgtamp2lrfS32 033

3 5 0

4 4 4

3 3 3 3 22222 2 2 2 2

2222222 + 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 U U 1 1 1 1 1 + 1 1 1 1 1 1 1 1 1

l l t t l l l 11 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 U I U M 1 i i i m n 1111111 n u n 11111 bull i i i n 11111 m m

m m i m m

Z-2222P2 3333 414 2222222 3333

222222 33333 222222 3

pound222322 22222r

222

222222 2222J222 2222222

1 1 1 1 1 1 1 1 M M M M M M I

1 1 1 1 1 1 1 1 1 1 111111 111 111111 1 1 M l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M I M t n i 11 M l

m m m 11111 m 0 1 1 m

m m 1 1 1 1 1 1 1 1 1

u r n 11111

2 2 2 2 11111 +22222 Mill

1111M1M 1111111 1 M 1 M Mill ZZM 11111 222raquo222 11111 22222 Hill 22222

9S39399 0393339 UvV9 9S0S999 8bamp3 30S0S3999 B08CSS S99SS3S999 Oer668 9999999999999 6800836 939S3S9939 77 8SC8PC03 999999

777 08SS bull-iOPOS 7777 uoaac^osae 777777 5031^GOBpound3338

7 7 7 7 777 8S08S3 l 38J 08 7 7 7 7 7 7 7 6080668

bullrraquo 7 7 7 7 7 7 7 7 7 7 G6 7 7 7 7 7 7 7 7 7 7 t-se66 77777777777777

coorgts6eeu 7777777777

iJ amplaquo053 660CC666C666 i J5S5055oj5C55

14 5535555S^0li055555 --444444444444

4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 r )33333339

33333333333333333332233333 33pound-3333333 gt22222222 22P22 gt2222222

222222gtpound2222222222 2P^222 igt222222222222 22-222poundgt ^22^22^2^22222 2gt=-r^^c-^i7iVgt^y2^2

2poundf 2222 pound laquo 2t222-poundT2222 222222pound^2 222222

222L22222222P2^22222 1 22222-222222 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 111 M l 11 1111111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 M l 111 111 111 1 I M M

22222222-gt22r222gt2222222 12222222222222

^2^22222^2222222

CONTOUR LEVELS AND SYMBOLS

SYC1 LEVEL BADGE

( 0 ) 2 1 5 6 2 E - 0 2

( 9 ) ( S I Isectlil81 ( 8 ) ( 8 ) i l^Ig| 17gt ( 7 ) SMIgI ltS) (6gt lWSUi ( 5 ) ( 5 ) iI5SIsectI ( 4 ) 1 4 ) V^f-Si ( 3 ) (3gt f^gl C2gt 12 ) JSISi ( M ( 1 ) lIii8i lt0gt 8 2 3 3 E - 0 3

E-STIMAIICI-I E R O J CUTEFUQN CONSTPAlMT =

7 i i C 3 C E - 0 2

12oOCE-013

Figure 627D Contour plot of [laquo)] for the fourth sample at tbdquo = 090

20

634 The effect of Level of Estimation Error Bound upon the Opti-niaJ_jhpoundrtoring Problem - In the examples of the previous two sections a comparison is now made of the effect of the level of the estimation error limit upon Jie outcomes of the optimal monitoring problems of design and management In both cases start with H given in (656A) or (657) In the first example in Section 632 o r 02 whereas in that of Section 633 j v 007b

In the first case o+(zjtz] is shown in Figure 620 in the secshyond in Figure 626 Notice immediately that there is a diieat effect upon the bullbullbullbull bullt- problem a lower estimation error limit leads to higher sampling frequency as would be expected

However a more interesting point comes in the effect of the value of o v upon the optincl design problem the optimal placement of moni-

tors Comparison of the contour plots of [P^(zbdquo)l for sample times 2 2

tbdquo in Figure 621 for a r 02 with those in Figure 627 for a = 0075 shows that the optimal design problems are vastly different leadshying to entirely different positions zt for the global minima in the two problems

Notice also that the shape of the contour in Figure 621 is differshyent from those in 627 the predominant difference being the cmaller height of the rise around the source location z = 03 This can be exshyplained as fallows la the case of the flrst samples far the problem with a = 0075tbdquo = 027 whereas for o = 020 tbdquo = 126 Thus

urn J K ivn K

the stochastic source has longer to act upon the system with te higher error bound The effect of this can be seen by considering ihe form of the predicted covariance matrix P^ in (624) and (628) For the asympshytotic case of infrequent sampling from Section 532

210

Pdeg Mbdquo Ktg]

(628)

o o n s~s

(Jo] + K C ^n)

L ss

(658)

Thus as K grows the first element of fdeg get larger relative to the other steady-state terms in Pdeg as seen on the right-hand side of (658) This results in different values for the inverse [ pound ( 2 K ) P S C ( J K ) T + V] in the equation for the corrected covanance matrix in (626) Thus with T = (t K + 1 - t R) = 001 oZ

tim = 02 leads to K = 126 for the probshylem in Section 633 whereas that in 632 with cr = 0075 leads to K = 27 this results in the different contours in Figures 621 and 627 Thus the optimal design of the measurement locations is seen to be a function of the level of the error bound which substantiates Conclusion IV

635 Examples of Various Levels of Bound upon Output Error -The same problem as in the last examples was solved but with a range of error bound levels as follows o ^ H 005 0075 01 0125 015 02 and 05 Resultant contours of [Ppound(Z)]bdquo at the first sample time tbdquo for each case are shown in Figure 628

As the time interval grows before a sample is made the uncertainty in the estimate of the state in the area near the source z w s 03 beshycomes large relative to that elsewhere in the medium These plots further

CONTOUR PLOT OF t P ( K K ) ( Z ( K gt ) 3 I 1 AS A FUNCTION C CZ(K )31 HORIZAND t Z ( K ) J 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT E-STlMATE WITH T l W E POSIT ION OF KAXir iUM VARIANCE APPUOACHES STfeADY-STATE VALUE FOR LARGE T I M E

CZ(K)32 05

555 555 553 555 555 S55 555

444444 444444 44444 44444 44444 4444 41444 4444 4444 4444 4444 4444 444

4444444 4444444 4444144 4444144 AAA 144 44 1-144 444144

55 G6 77 083

4444 444 444 444 444 444 44

44444 444444 44444 raquo5 et 4444 555 I 44444 55 I 4444 55 I 4444 55 lt 33 444 55 3333333 4444 55 33333333333 444 555 33333333333333 444 33J333333333333 44 33333 3333333 444

999999999 992919339 53 66 i i JBB 53993399 55 66 77 CSS 099S9S939 55 66 77 608 999329999 55 66 77 copySi 9029099993 555 66 77 CU-iS 09 Oji 309999 555 f-6 77 BCe 9S23DS99S9999 55 66 77 Or60 999990999999999 55 56 777 FEd9 99993999999999993999 535 GB 77 C0U98 9S9P9999992999993-777 8U930O 99999999999999 77 03311388 939999939 6 777 S0ii008338

6 7 7 7 7 s a o a a a a e e a s 6 7 7 7 7 Q880aBCelt23688e tiG 7 7 7 888dC0e0LC388Ca8C338888

_ 6 6 6 7 7 7 7 7 8 8 8 8 3 8 0 3 8 0 8 8 3 8 8 8 9 5 5 66S 7 7 V 7 7 7 7 7

665 777777777777 4444 3333 33333 144 555 6666 777777777777777777777777

4444 3333 3333 444 553 6C6C866 7777777 444444 333 2222 3333 44 5555 6666666565606066666

3333 222222222222 3333 444 S55t3S 566S66666 33333 22222222222222222 3333 4444 55D55555555S555555j55555555

3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

pound 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 i m i m t m u

bull 1 1 1 1 1 1 1 I M 1 1 1 1 K 1 1 1 1 1 1 1 1 1 U 1 1 11111

i i i

n u n 1 1 U 1 1 I 1 1 1

m i l l 2 2 2 2 2 11111 2 2 2 2 2 2 2 2 1 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1 1 1 1

22222222 333 4444 222222 33333 4444444444444444444444444444

22222 333353333 333333333333333333333333333333

222 333333 22222222222

2S 25 722222222222222222222 2^2222222^22222222222222222222

22222lt222222222227222222 Z22222222222232222222

22222222222222222-11 1111 111111 1111111 11111111 111111

1111111 22222222222222222222 111111 22222222222222222222222222222222222 11111 2 2 222-2 pound2 111111 22222 333333333333333333333333d 1111111 2222 33333333333333333333333333 11111111 222 3333333

1111111 2 2 2 2 2 2 u i m u n 1 2 2 2 2 2 2 1 1 1 1 U 1 1 1 1 1111 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111111 n n u m i i i 1111111111

1111111111111111 i m i n t t i i i i i i

l i m n l i m i t 11111111

SYM3 LEVEL RANGE (6) 13141E-02 ( 9 ) ( S

1 2 6 8 7 E - 0 2 1 2 2 3 4 E - Q Z

( 0 ) ( 6 )

1 1 7 6 1 E - 0 2 1 1 3 2 8 E - 0 2

(7gt (7gt

1 0 8 7 4 E - 0 2 1 0 4 2 1 E - 0 2

( 6 ) ( 6 )

9 9 3 7 0 E - 0 3 9 5 1 4 5 E - 0 3

( 5 ) ( 5 )

9 O 6 1 2 E - 0 3 8 6 0 7 9 E - 0 3

( 4 ) ( 4 )

8 1 5 4 6 E - 0 3 7 7 0 1 3 E - D 3

(33 lt3gt

7 2 4 3 0 E - 0 3 6 7 3 4 7 E - 0 3

( 2 1 ( 2 )

6 3 4 1 5 E - 0 3 5 6 0 9 2 E - 0 3

( 1 ) ( 1 1

5 4 3 4 9 E - 0 3 4 9 8 1 6 E - 0 3

(Q) 4 5 2 3 3 E - 0 3

ESTIMATION ERROR CRITERION CONSTRAINT =

5 0 0 0 0 E - 0 2

12500E-01J

Figure 628A Contour plot of B ^ ( z K ) l 1 1 at f i r s t sample tirr t K = on for o ^ = 005

CONTOUR PLO T OF [P(KKIZ(K))JM AS A FUNCTION O r Z(K)11 H3RIZ AND tZ(K)J2 VERT EXAILE TQ SIOW EVOLUTION or VARIANCE I N OUTPUT E I M A T E WITH T I M E POSITION OF MAX MUH VARIANCE APTtOACKES SrCADY-SrAE VALUE FOR LAHQE TIME

C Z lt K gt J 2

0 5

4 4 4 1 4 4 4 5 5 5 6G 4 4 4 4 1 - 1 4 gtSgt 6 6 4 4 4 4 1 4 1 SOS G5 7 7 7 4 4 I - 4 - 4 0 5 eC 7 7

4 1 4 4 4 4 5 5 GC 7 7 7 444 - = i14 5 5 5 5G 7 7 7

4 4 4 4 - 1 4 5 5 5 GS 7 7 7 4 4 4 4 4 5 5 6 S 7 7

3 3 3 3 4 3 144 5 5 5 0 5 6 77 3 3 3 3 3 3 3 4 - 1 4 4 4 5 5 6 C 7

3 3 3 2 3 3 3 3 3 3 1444 5 5 5 tgteuro6 3 3 raquo 3 3 - j ^ - 3 i 3 3 4 4 4 4 S 5 6 3 6

333333-gt gtraquo3 -gt3333 4 4 4 4 5 5 5 C S G I - ^ v 3 3 3 o 3 3 5 - j 3 3 3 3 3 3 3 3 4 4 4 5 S 5 6GGS 4 4 3 1 r--ijgt333 3 5 3 3 3 0 3 3 1 3 4 1 4 5 J 3 6 -4 4 4 3 3 3 S 3 3 3 i 3 3 r ^ 3 3 4 1 4 -i CC 4 4 4 4 33T-2 3 3 i J 3 3 454 j ^ 5 f 4 4 3 ^ 3 3 3 ^ J 3 4 4 4 5 3 5

3 3 3 3 3 3 3 4 4 4 5 5 1 5 3 3 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 555E-

3 3 3 3 2 2 2 r - i ^ 2 2 2 3 3 3 3 4 4 4 5 S 3 3 3 3 3 3 22 laquo - - yraquo jraquo2 3 3 3 4 4 4 4

_ _ - - - r ^ amp ^ 2 ^ i 2 2 3 3 1 3 4 4 4 4 2 2 2 2 2 C 2 r 3 3 3 3 4 4

2222ltgt2 3 3 3 3 3 2 2 laquo 2 2 2 2 3 3 3

P 2 2 2 gt

5555 444 5555 444 555 4-i4 5-5 444 i 55 444

44-14 4444 4444 4444 44414 44444

4444- 14 444444

33333 222222

22222 222 -2

1111111 1111111 1UI1 11

2 - 2 pound bull

11111 11111111111 11 n m i n i i i n n i n m m n i

1111 n m 111111 m m m 1111 111111m 111111

m i

1111 11111111

111111 11111 ftfraquofgti- bull

1 1 1 1 1 WWZZZ

JErJSe pound 1 9 3 9 9 9 9 0lt

S L B 3 9 9 0 i T 9 - 9 f - a 3 D O - bull s - s s

bull i 3 3 3 O 3-3999 eccose ss-v9S3999

8 t S S C 8 9 9 0 9 9 0 9 9 9 9 9 9 9 9 8tt81B8 99S999999S9

V e t J f i380 t i 9 9 9 9 9 9 9 7 7 c s s o e r G O y77 e o s u c c - i i s n o

7 7 7 7 7 fcampceooaaeoeoe 7 7 7 7 7 7 7 a p 3 3 C 8 e e e e e 3 9

7 7 7 7 7 7 7 7 o c e o B e o s i 777f77777 Jo 77771(1777 3 3 77tn7777 pound 0 6 5 3 6 7 7 7 7 7 7 7 7 7 7

iGeampampG6CgtGS6 3poundGC66SC(GpoundGQ

i 5 i 3 6 G amp a amp 6 6 G 6 6 6 6 C G 5 5 J 3 5 5 5 5 5 W S 5 5

3 5 5 5 5 5 1 J S C - 5 5 5 5 5 G 5 5 5 5 5 1 1 - 1 1 4 4 4 4 4

44444 44 44444444-T444444444 J333 4444

3-3Cn3S333J3L--J33333 3 3 3 J J 3 3 3 3 3 J 3 3 3 3 0 3

pound 2 - 2 2 2 r i - 1 H i i 2 2 2 2

2-raquo i- raquogtr---2igt2 j j - r gt V ^ - l 2322

222 - bullgtbullbull2 raquo2222222raquoa 2 2 gt V 2 ^ gt i gt - S P 2 2 2 2 2 2 2 2

- 2 r ^ - gt 2 K 2 2 2 2 2 2 2 2 2 2 ^ 2 - ^ - - V 2 ^ 2 2 2 2 2 2

2fc i 2^22^ -2lt i 222

m m bull m m 1111 m 1 1 m 11111 i i i i m - i i

222222222 bull bull bull 2 i r - ^ 2 2 r ^ 2 R 2 2 2 2 2 2 2 2 2 2 2 - 2 ^ r ^ - ^ ^ 2 2 2 2 2 2 2

SYM3

( 0 ) mm ( 9 ) ( 9 - iJiiI8i ( 8 ) ( 6 ) Wiiiii lt 7 t ( 7 ) J5JiSi ( C ) ( 6 ) I8Sf8 ( 5 ) ( 5 ) 3i5i|g| ( 4 ) 4 gt lHIgI ( 3 ) ( 3 ) lfJ|8i ( 2 ) ( 2 ) HSSiSi ( I ) ( 1 gt I2iJIsect lt0gt 7 0 S W E - O J

ESTt l - ATITN tlrila C1C TCR10N C C K - r r A f T =

7 S 0 J C E - 0 S

SOURCE 1VPUT CUVAFUANCE [ W l raquo t 1 2 6 0 0 E - 0 1 J

Figure 628B Contour plot of fell at f i r s t sample time t 027 for o- i 0075

CONTOUR PLOT OF [ P f K K X Z C K ) ) 111 AS A FUNCTION CF I Z O O J 1 H 0 R I 2 AND t Z ( K 1 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E P O S I T I O N OF MAKIKUH VARIANCE APPROACHES S T E A D Y - E T A T E VALUE FOR LARGE T I M E

t Z lt K gt 3 2

0 0

44 444 AAA

4114 44444 A 4 4 L I 41 44 44 4 4 4 4 444

33333333333 33333333333 35 S 3 3 3 3 laquo33

SiJ^JyS gtlt33 32 i i - - 3^ - gt33 33-gt3- bull -

05 66 77

33 444 444

444 333 313 r i 33 laquo - i n333 3 2 ^ 3 3 J i3i bullbullraquo33333

3 3 3 3 3 3 3 3 gt t j r 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 444 3 3 3 3 3 3 3 3 3 3 3 3 3 3 AAA

3 3 3 3 3 3 3 3 3 3 3 3 Ad 3 1 3 3 3 3 3 3 4 4 4

3 3 3 3 2 2 2 2 2 3 3 3 3 44 2 V 2 2 P 2 3 3 3 3

63 66

i 66G

8000 0 3336

7 60G0B 7 Q6CS0 77 seaoe 777 flSJSi

777

9999939 9999999

9 9 9 9 9 3 9 93939999

S9Q09999 osaa 9993099999S9 80COB0B 999999999ltgt

533 3333

3i33 333333 33333 ZtZZ 333 gtZZ

2^22 222P2222 22222 1

1 M I 11111 11111

111111111111 11H1M 111

111 - 1111

11111 111111

ifpFte gt222 -gt22222 a 2pound-2P2

22222222 2S2ii2^

2 22

7777 O00C36 66 7777 0050008

gt 06 77777 6G03Ceea iS 656 777777 0030830888088-i5 6tGti 7777777 060088308 53 CM a 77777777 BB 555 6006 777777777

^1 533 ( J6GS6 77777777777 144 Su fJ3 60695096 777777777777

44 5355 6660CC-66S6 777777 3 44 G3C3 6CS56GG=S06 3 ^ 4 4 4 ^ s s - s s e e i i c c s e e s G c s 3laquo3 444 o35S355SS 66Gpounde66666

333 441 Sb5335rgtS55j5 333 444441 igtS5Sgt5SS55S55535

1 1

2 2 2 2 3 3 3 lti 1 4 4 4 4 4 4 4 4 4 4 4 4 4 111 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 111111 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 M 1 I 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 2 2 2 2 2 - 2 2 2 2 2 2 2 11 2 pound 2 2 2 2 2 2 2 2 2 2 2 gt2222

2222r-V j2222222222

22222222222 222i-rt 2 222r-222222 2222222222222222 2222--i2 22poundPamp22

1 1 111111

111 euro 3333

222222 222222 22222 22222 22222

22222 222222

1 1 1 1 1 1 1 1 11111

1111 2 2 2 2 2 bull 2 2 2 2 2 1111

222222- V222JV222J-P22222 22^22 -- ^^22222laquo22

22--V-J W J2gt2gtJ 22

222f Pr - gt 225r^laquo2J 2222 2222raquo fi 2r-2^igt22222

11111111111 22222 1111 222222222222 11111111111111111111 Kill 11 II 11111 111 11111 1 i 111111111 111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 m i l 111 m i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

g) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111 2 2 2 2 2 2 2

11111 2Pgt 2222 2222 =V 22222222222 222 11111 22l- bull 22Vv22222

11111 222222 11111 222222 333

SYtu

( 0 )

LEVEL RANGE

2 4 0 S J E - b 2

9 ) 9 )

2 2

33Z 1E-02 J 6 2 C E - 0 2

( 6 ) ( 3 )

2 1 9 2 7 E - 0 2 1 2 2 r i E - 0 2

( 7 ) ( 7 1

2 05271E-02 0 C 2 3 pound - r ) 2

t o ( 6 i

1 1

9 i r 2 r - o e - S ^ l E - 0 2

( 5 ) ( 5 )

1 1

7 7 2 G E - 0 2 7 0 1 3 E - 0 2

( 4 ) ( 4 ) 6 3 1 7 E - 0 2

S61 (3pound -02

f 3 ) ( 3 ) 1

4 9 1 5 E - 0 2 4 2 1 4 E - 0 2

(2gt lt2J 1 331 3- -02

2 8 1 I E - 0 2

( 1 ) ( 1 )

1 1

21 I O E - 0 2 1 4 0 9 E - 0 2

(0) 1 0 7 0 8 E - 0 2

s^fc 1 2 Q 0 0 E - 0 1 ]

Figure 628C Contour plot of fe)]n at f i r s t sample time t bdquo = 046 for a = 010

CONTOUR PLOT OF tPltXK)(Z(K))J1 1 AS A FUNCTION 01 tZ(K)I HORIZ AND [Z(K)J2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT KSUMATE WITH TIME POSITION OF MAXIMUH VARIANCE APPROACHES S1EA0Y-SAVE VALUE FOR LARGE TIME

333 444 4444 4444 333 44444 333 44444 333 +4444 333 444 333 333 222 333 2222222 3333 222222222 3333

33C3

CZ(K)]2 OS

333TJj3 333333 33333 33333 33333 3333 3333 333

33333333 44 6 68 77 33333333 44 S3 66 77 3333333 44 55 65 7 3333333 44 55 66 7 33333333 444 S ^6 3333333 44 55 J6 3333333 44 55 666 33333 44 55 666 33333 444 55 G6i 3333 4-1 55 6-222K2222222 333 44 55 i 222222222222222 333 44 2^2222222222222222222 22222 2222222222222 333 44 222 22222222222 2222 222 222 111 222 111 1111111

222 m n i i i i i i 222 1 HI 11 11 111 1 22 11ll 1111ll 111

33 33 333

44 444 55

11111 1111

11

2222222 2222 2222 33 444 222 333 4444 222 333 444 222 33C 4 222 333 2222 3333 2222

mil limiii ii i i 1111 2222222 1111 22222 22222 Mill 222 3 2222 22

22

222222 2 1111 11111111 11111111 11111111 11111111 11111111 1111111

68BG8 999999 eSCfiS 093999 86838 999999 bull7 8SC83 9399999 77 eoooee 99999999 777 7777 77777 i 77777 S 777777 S58ECSBQBC30 bull SM5 7777777 60830860+ 6ilaquoC6 7777777 66666 77777777 66666GE 77 77777777777 i 6SG6C666 777777777 iSf 6pound 6666566 7-i5amp05 666666666 50555595 6666666666666

555Q5555C35 6666666 I 5 5 U 5 ^ 5 5 5 5 5 14lt144 5555553555555-

444444444444444 13 4laquoi444444444444 333333333333333333 3333333333333 22222222222222222

22222222222222222 1111 11111111111 11 imiimt

222 33333333333 222 333 333 2222 iiii 33 4 333 2222 333 44444 333 222 33 4444 333 2222 333 3333 222 11111 J 33333 333333 222 11111111 222 3333 2222 1111111111

+11111 1111m mi 22222 111 222222 111 2222 111

11111

copy

22222 222222 1111 m m m m m i m

urn

m m m i 2222 m i 222222 1111 2222222

I 2222222222222222222 222222222222222222222 222222222222222222222 22222222222222222222 II 1 11111111 111111111111111111111111111)1 1 m u m m i n i m u m

i i n m m m i m m m m m i l i m u m i m m m 2222222

2i22222222222222222222222222222 22222222222222222e22

22222222222222

TIME laquo 66D00E-O1 FIRST MEASUREMENT

CONTOUR LEVELS AND SYMBOLS

SYM3 LEVEL RANGE (01 2 4793E 02 (9gt 2 pound9gt 2 4158E 3523E 02 02 (0gt 2 (8) 2 2363E 2252E 02 02 (7) 2 (7) 2 1617E 0982E 02 02 (6) 2 (6) 1 0347E 9712E 02 02 (51 1 (5) 1 9077E 9441E 02 02 (4) (4) 1 7806E 7171E 02 02 (3) 1 (3) I

6536E 5901E 02 02 (2) 1 (2) 1 52S5E 463DE 02 02 (1) 1 (1) 1 39S5E 3350E -02 02 (0) 1 2725E 02

ESTIMATION EPROR CRITERION CONSTRAINT = 1-2500E-01 SOURCE COVARi INPUT AHCE Wl-

12500E-01J

Figure 628D Contour plot of feMi at f i r s t sample time t K = 066 for o ^_ = 0125 2

CONTOUR PLOT OF E P ( K K H Z lt K gt ) 3 1 1 AS A FUNCTION 0 Z ( K ) 1 1 KORIZ AND C Z ( K ) 3 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT i S T I M A T E WITH T I M E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-S A f t VALUE FOR LARGE T I M E

bull 4 4 4 4 4 3 3 3 2 2 2 2 2 2 2 2 46640 3 3 3 2 2 2 2 2 2 2 44444 3 3 3 V2Z2Z9ZZ 4444 33 22222c J 22 4 4 4 3 3 3 2 2 2 2 2 2 2 2 bullA 3 3 2 gt 2 2 2 V 2 2 2

3 3 3 2 2 2 2 ^ ^ 2 2 2 2 3 3 3 2 2 ^ ^ f - 2 2 2

3 3 3 22^V22^ 2 2 2 2 2 3 3 3 3 ^ 3 2 2 2 2 2 i 2 ^ f r 2 2 2 2 2 2 2

[ 2 1 K gt 3 2

05

3333 4 3333 4 3333 4

333 3333

333 3333

3^3

11 65308

2 2 2 33333 2222i 33333 3353 3333 333 333 E33 33 222

222

3 3 3 3 3 3 3 3

44

2 2 2

2 2 I t 2 2 2 111

2 2 2 2 1 11 2 2 2 2 2 1111

1111 l i n t

2 2 2 2 2 2 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 2 2 2 2 2 2 2 3 a

2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3

2222 I 11111 2 2 2 2 11111111111 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

1 1 1 1 1 1 1 1 1 1 1 2 2 11111111

3 9 9 9 9 9 9 3 9 9 9

9 S 9 9 9 9 9 9 9 9 9 9

t i s s u e 9 9 9 9 9 9 9 9 7 7 7 7 09888 993S99399-

6 7777 esesao 999999 5 77777 8300886

flfl -Jigt 66 77777 88030688 44 5 5 5 ltSlt~C 777777 8008808888

44 SS5 liCSS 777777 86665+ 44 S55 66S66 7777777 44 5SE 6G66G6 77777777

44 556 666S666 7777777777 13 444 5t 5raquo 66666666 77777 3 44 SJ55 66666666 33 444 pound5555555 6666066666 333 444 55505S5555 666666666

33 444fl 53555555555 33 44-AV 555555S555

333 4144444444444 5555335

1111111 m i l l m i 111 n I mi mm in

It T1111 222 3333 44444444444 111111 2222 3(333333333333 4444444

111111 2222 333333333333333 111111 222J 2222222222222

1111111 2222222222222222222-111111111111 1111111111-11111

1111111111111111111 11111i111111111111111111 1111 111111 1111111111111111111111111111

1111 2222222222222 111111 111111111111111111111111111 11111 222 33333 222 11111111 1T11111111111111111111111111111

11111 222 333 333 222 11111111111111111111 222 33 22 33 bull 222 3 44 22 39 44 22 33 44

33 44444444 333

444 444 ~ S555 44

553SS3 444 555055 444

444 11 22

33 4444 33

222 4444 333

333 2 3333333333 222

222 u m m uui 222 11111 222 222 222 222 1111

33 2222222222 2222222Zamp22amp222222222 -2222222222222222222222 222222222222222222Z22

222 11111111111111 111111

1111 2222 2222 11111 11111 22222 11111 copy

11111111 1111111 11111 11111111111 11H11111 niituut nnniniv mu mmiimi i m mimiim urn m 222222 11111 111111 222

2222 1111 11ll 1 2222222222222222222222222222222222222 222 1111 11111 222222 222222222222222222

33 222 IHtl 11111 22222 2222222222222

TIME 6 6 0 0 O E - O f 1RST MEASUREMENT

CONTOU LEVELS AND SYMBOLS

SYHB LEVEL RANGE

lt0) 2 5 1 6 G E 0 2

( 9 ) ( 9 1

2 4 5 6 5 E 2 3 9 6 4 E

0 2 0 2

( 8 ) ( 6 )

2 3 3 6 2 E 2 2 7 6 1 E

0 2 0 2

( 7 1 lt71

2 2 1 6 0 E 2 1 5 5 S E

0 2 0 2

( 6 ) (6gt

2 0 0 5 7 E 2 0 3 5 6 E

0 2 0 2

lt5) ( 5 )

I 9 7 5 5 E 1 9 I 5 4 E

0 2 0 2

( 4 ) 14 )

1 0 5 5 3 E 1 7 9 5 1 E

0 2 0 2

( 3 ) ( 3 )

1 7 3 5 0 E 1 6 7 4 9 E

0 2 0 2

12) ( 2 )

t 6 1 4 G E 1 5 0 4 7 E

0 2 0 2

1 ) ( 1 )

1 4 9 4 5 E 1 4 3 4 4 E

0 2 0 2

l O ) 1 3 7 4 3 E - 0 2 ESTIMATION ERROR CRITERION CONSTRAINT =

1 5 0 D 0 E - 0 1

SUUSCE INPUT COVTMANCe pound 1 2300E

MEASUREMENT ERR03 COVAR

I 0 5 0 I - 0

W]=

on tv)laquo - 0 1 D233

Figure 628E Contour plot of [ P ^ K J I a t f i r s t Spoundp1e time t K = 086 for a l i m = 015

CONTOUR PLOT OF I P ( K K ) ( Z ( K ) ) 1 1 1 AS A FUNCTION ( F t Z I K I I I HCRIZ AND t Z ( K ) 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY- ITAVE VALUE FOR LARGE T I M E

CZltK)J2 0 3

^IPllI 33 44 55 6G 7 J

3330 2222 3333 222 33353 222 3333 2222 333 pound22 222 pound22 pound22 333

pound2 22 22 pound2

22-gt222 2222Z_222Z 22222 T-K222 2222- 0272ZZ 33

2d2i7gt2922 33 22lt2gt-222 3 22222 1 2222 1111 222 11111111111 222 111111111111111 222 1111111111111111 22 1111111111 22 111111

333 44 5 lt 333 4 55 I 33 44 55 333 44 55

0CCSO 0S8GO 83808

333 44 55

7 i 777 bull 777 til bulllt 7777 pound C 77777 t Gi 77777 rgt66 777777

999999 03099 9D399 999399 99939999 99999999 686830 9999 8608069 8088366368

111 222 222 222 II 2222 111 22222 111 1111 11111 1111111 11111

111 111111111111111 11111 11 11111 222222222222 1111111 222 33333333 222 11111111 22 33 444 33 1111 222 33 44 444 3 222 33 44 555 555 4 2222 3 4 5 66666C66

6665 777777 44 55 66G66 7777777 3 44 55 GSG666 77777777 3 444 5-5 66GCCCC 77777777777 33 -14 5555 6605666 777777 33 44 gt5535 666G66G 33 444 555555 606660666 33 AAe 5tgt5lgt5555 666G666G66 z 33 44I4 5553355S55 6GG66 22 333 4-144 555555555

bull 33 506 55 4 33 222 777 66 55 A- 33 22222 777 6 55 4 33 2222 i 66 665 55 44 3 222 55 6666G6G 55 44 33 222 2222 33 44 555 555 44 33 22 1111 222 33 444 44 33 22 1111111 222 333 333 222 11111 11111 222 333333 222 1111

11111 222 333 -1-544444444 55555555555 Ill 222 3333 4444444444444 1111 222 33C3323 444444444444 1111 222 33333333333333333 11111 2222 pound2 3333333333 11111 222222222pound22222222222 11U11IMI 2222222 1111-111111111111111111111 11 1111111 111 1111 111111 11111 11111

111111 111 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 2 2 2 1 1 1 1 1 1 1 1 3 2 2 2

111 H I 1 111 1111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111

33 44 53 66 33 44 55 66 33 4 ~

223J222222222 22222 ^2poundf22^2 2222222

22XgtM2V-gtpoundlt2V2Z_WW2PZZZ 22222 e222222gt22222

22222L-2222222222

1 1 1 1 1 1 11111

2 2 2 2 11 2 2 2 pound

333 2 2 2 2 3 3 3 3 222

3 3 3 2 2 2 3 3 3 2 2 2

22H22222222222 11 1 uiiinninniniii mini iniii iiiinmniiinimi 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

SYK3 LEVEL RANGE

oi 2 5 5 4 1 E 0 2

sect I 4 3 7 2 E 4402E

0 2 0 2

sect I 383 3S 32C5F

0 2 0 2

n I 2 0 9 E 21 EZ

0 2 0 2

ni I 1554E 0ampC6E

0 2 0 2

fl 0 7 1 5 E 9S45E

0 2 0 2

n 927SE 67D7E

0 2 - 0 2

sect 8 I 3 7 E 7560E

0 2 - 0 2

I 6 9 M E 6 4 2 J E

- 0 2 - 0 2

i 55C5E 5a5C

- 0 2 - 0 2

a -L 4 7 2 0 E 0 2

ESTIMATION ERHCrt CR f E i d O N CONSTRAINT =

2 C 0 0 0 E - 0 1

1 2500E-01]

Figure 628F Contour plot of P ^ i O m a t f i r S t s a m p l e t i m e tK = 1 2 G f o r deglw = deg 2 0

217

C O i O O bull O O i O O ss OO i

i mdash tfgt i W mdash 1 mm gt turn CUM I bull n n 55 flH

^ w J I

H U J U O

Si mdashbull- ltgtjltvwlaquotvw

O l o r -

E D gt o o O C O O f -

KM (-^-gt -gt - 3 V J mdash w n n laquo j - mdash mdash o o bull O D H W o o o n W - - o bull Z 10 - ltl O O O O WftJ wv 3 K - - lti o o ft l L - ^ 0 - W O laquo ^ 1 1 laquo W M fu

HI - W gt T 1 gt O N bull t U T n -v i i i o bull=bull w w

o o - w T I m i l i i c raquo ltgt l i v - w n igt t i v W C J bullVft -lt lt o - o v i n I O O O O ifgt n w i i y bull

laquo mdash W m t o I D T O laquo w - e n mdash W O f ( N - M v i 3 laquo J t ^ - laquo o - w n v m o huraquo n laquo ^ (

bull-gtlt - N 0 ( 0 0 (OTTO ft-lt bull - laquo (0 h - U J i f l W gt

w _ O O N raquo t u r n o r n ftikM w bull o o ftlt - 2 laquo o ^ E a N lt 0 sect W lt n sect rt N T ^ lt WCgtVtfgt 0) O N V O - o - ftt-gtv P - M i laquo i i laquo r ^ mdash o N laquo I O O O ^ V L I T C K I gt I - ( w o v O X - N O ^ V c

o gt p P - n ogt O N I - gt T c x -i

- - - - - - O R - n v o laquo o o r - T o n

- D E - - - - - - O w f t v a o s o c o t a T I laquo - D E - - - - - - O laquo W O N ) lt O O O - laquo r o N O i 1 o

o U 1 X

- laquo r o N O i 1 o

o OO

l u - w B i o N N ifgt o o o o -- - W O ^ r i O o m i T O

O u W O 10 Q U O igt T O O J O O [ j bdquo _ _ mdash _ _ _ _ _ - - M V i f t O 3 ( i o o D-t- - w w w w w _ _ _ _ _ _ bdquo _ - - - W 0 gt T - W u l l O L I T O

z ( C W O n i z ( C W O +_laquolaquoOKV f t JgJlaquo l ~ _ W w o Slt n T5 SS lt- n i 3 _ 1 ~ ftftjftjlt) _ ft O - 3 1 T V [J laquo 0 C H mdash _ j o W T S J - C o o o 1 laquoSp ^ojci^S^^Jv^^^NN^ bullbull w ^ v i - j ^ 2 5 ^ laquo laquo - gt laquo laquo W W ft I j - W N W l ^ C f l J W O T o o o o L1U1 bull o x o 0 - ~ 0 W M M ( laquo gt N A i M mdash - M W O O O O O t O f i -O a J t t laquo f ^ O U N T W W W - - - w w o o o o o in1) bull

0 0 ( 0 W W W W W bdquo _ _ (u Pgt n n o n laquo laquo raquo bull

218

substantiate the existence of a functional relationship between the optishymal measurements zt and the level of the output error bound o

636 The Effect of Time-Varying Error Bound upon the Optimal Meashysurement Design - Consider here an example where the output estimation error limit cC is allowed to vary in time For this problem let

lim 01 (659)

at the first sample time and then

Aim - degL + deg- 0 2 5 (660) for each sample thereafter

The resultant plot of o^ + N(jtz) over time for the interval 0 lt t S 2 is shown in Figure 629 where the initial covariance P^ E M n is as before in (657)

Notice how the curve asymptotically approaches the slope [Q]- =

00025 just before each sample in accordance with the infrequent samshypling approximations

v

At each samplecontour plots of lEDU^)] a r e 9 e n e r iraquoted and preshysented in Figure 630 for sample ti mes t| - 046 104 180 As can be seen from these plots the contours change with the error level as shown in the previous sections in fact they directly compare with those of the previous section Thus the converse of Conclusion VI may be stated as

Conclusion VIB The optimal measurements found at one measurement time may not in general be optimal for other measurement times if the bound on estimation error varies with time (CVIB)

Further verifications of the effects of the a priori statistics and level of estimation error bound upon the optimal design problem can be

1 2 0 0 0 E - 0 1

6 0 0 Q O E - 0 2

1 X

X

x x X

XX x

X X X

X X

x x X

XX x

X X

X X

X X

X

x X

X X X

X X

X X

X

x X

X

X

XX X

X X

X X

X X

X X

X X

X

X X

X X

X X

X X

X

X

X

X X

X

X

X

X

X

X

x x

X

X

X

c

X X X

Figure 629 Time response of ^+n(K z) f o r t lt n e v a r y i n S estimation error l imit o z ^( t) = 010 0125 and 0150 at sample times t K = 046 104 and 180 respectively

CONTOUR PLOT OF t F ( K K ) ( 2 ( K gt ) i 11 AS A FUNCTION = I Z I K H I HOfIZ AND I Z i K ) ] 2 VERT EXAMPLE TO S1ICW EVOLUTION OF VARIANCE I N OUTPUT r l 11 MATE WITH T IME POSITION CF MAXIMUM VARIANCE APPROACHES S I EADY- -T TE VALUE FOR LAKOE T I M E

C6

tZltKgt12

444 444 4444 444

44 33333333 444 444 3333333lt33 444 3333333J333 444 33C-^rS3J3333 444 33333S3333333 4444 3333333i333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333 4444 33333 3333333333333 444 33333 333333333333 3333 3333333333

55 6G 77 bulljV 66 77 eoaee 9900J 0 3

93 li9

3333 3333 3333 333333 33333 333 2222 2222 22222222 22222 1 1111 1111111111 m m i m i l 1U1111 m

i n m i

i n n m m

111111 m m 111111

i i i m i n n

i n n i m

i n

2222 333 lt 4444444444-1414

33333333 i 33333 I 22222 3333 2^^-^^2-222 3333 2222222222222222 333 2222J2222222222222 333 22222222 2222222222222 333 2222 2222

22222222222 22222222^22222222 2222 222222 222 222322 222 33 22222 222 3333 22222 2222 22222 2222 22222 222222 222222 1111111111 222222222222 111111111111111111

^222iV-2v_iV bullbull VJlaquo

222 2 L 22 2 2 r-^ gt L2 22I-22 22222

11111 11111111111U11111111

1111111111111

11111 11111111

u r n 22 11 11 22222 1111 22222 1111

11111111111 111111111111111

11111

n u n i m i n i i i i i i i i i i n m i i n bull m 11111 n i i i m i m i - i i i i i n m i i i m 1111151111111111111 ill 1 1 2222222 222222222222222222222222222 22222J-=2 2222222222222222r 222222 222222 333

t o t z i-o-

( 9 ) ( 9 )

2 KiSi ( 0 )

2 bulltJi-ll ( 7 1 (7)

2 1 degri-pound

ltegt 1 -vmii lt5gt ( 5 )

1 1 STSIgl

( 4 gt ( 4 )

1 -mii-n ( 3 ) ( 3 ) bullm-E ( 2 ) ( 2 )

i i if8f

C 1 ) ( 1 )

i i bullVW-ll

) O70 pound e ii ON

- 0

lwAa v i i E U T [W] =

C 5 C 0 C 3 E bull 3 1 1

ESamp sr EV3-

I -5g =pound

Figure 630A Contour plot of Figure 628C [4i a t f i r s t s a m p l e t i m e t bull deg 4 6 f 0 r deglin 0 1 0 compare w i t h

CONTOUR PLOT OF I P ( K K M Z ( K ) ) ] U AS A FUKCUOH poundlPLE TO SHDW evOLUT ON OF VUiJAhCE IN OHIrJ COS TIOM OF MAXIMUM VARIANCE APliCACULi STL-HY

pound2(KH2 03

d4At 33 4444 333 44444 333

444 44 333 44-1dfl 333 4J44 333 3^3

3333lt33 4 3333333 4-0333333 4 3333333 J 3333333 333333 333333 333J3

3333

bull ^ 3 9lti9nlaquo

33333 33333 33333 33333 3333 3333

32 2p||p-gtill p 044 55

2222 222 222

2222222222 333 222222 33 444 22222 333 44 33 444 1 J-2 333 44 2^2 333 laquo 222 333 2232 333 2222

11111 222 222 111111111111 22 33 22 1111111111111111 2 222 1111111 111 11 1 1 ] 1 111 222 i n u n u u u i u n n

222222 111 11 111111111 222 11111 1111111 111111 1 1 1111 11111111 1 I U U 1 U 1111 111111111111 11111111111111111111111111111111 inn i m n 11 n

1111 2222222 111 111 Tll 22222 22222 1 1 1 1111 222 3 1 2222 111 11 222 333333333333 222 111111 22 333 333 2J-22 m m m u 22 33 44pound 333 2222 bull11111111 22 333 444-144 333 222 11111111 22 333 44444 333 2EKpound 1 lllllll 222 333 333 222 lilt 1 1111 22 33333 33333 222 UUUi 1111 222 33333 222 111111111 111 22222 222222 11111 1111 22 11111 111111111111111111 11111111 1 1 1

bull4444444I4444444 C _ r 4^44444444444

m 1 r i i m 111 m

illllll

111 111 22222 111

I 1 M 111 ill 11 1 1 1 111 111 1111 1111 1 111 111111111111 m m m

2222222 bullit bull-222222^SfTl - 2222222222222 bullZ 222222222222 2 ^222 22222222222222

Figure 630B Contour plot of [ l $ (z K ) with Figure 628D

at second sample time t ^ = 104 for ^lln

CONTOUR PLOT OF tP(KK)(Z(Kgt)311 AS A FUNCTION V IZ(K)JI IflRIZ AND tZltKgt12 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT EI-M HATE WITH TIHE POSITION OF MAXIMUM VARIANCE APPROACHES STEAD-li TATE VALUE FOR LARGE TIHE

i 444d4 333 22222222 44444 333 22222222 44444 333 22222222 4444 33 22222222 444 333 2222222222 I a 33 22222222222 333 222222222222 333 22222222222222 333 2222222222222222 333333 222222222222222222222 bull33333 22222 33333 2222 3333 2222 3333 222 333 222 bull333 222 333 22 333 222 1 222 1

39399 999939 999939 999399

CZ(K))2 06

3333 44 5 66 77T 6BI 3333 44 0 66 777 861 3333 44 55 66 777 81 333 4 55 66 777 I 3333 44 9 66 7 77 333 44 55 66 7777 3333 44 5 60 7777 333 44 55 665 77777 333 44 53 CiSe 77777 33 44 35^ St 66 777777 333 44 555 6666 777777 2222222222222 33 44 555 66666 7777777 22222222222 33 44 555 666666 777777777 222222 333 44 535- 6666666 7777777777 2222 33 444 55S-5 66666666 77777 111111 2222 33 44 515555 66666666 111111111111 222 33 444 5555555 111111111111111 222 333 444 5555555555 1111111111111111 222 33 4444 555555555SS 1 11111111111 22 33 444lt44 5555555555 11111111 22 333 444444444444 5555555 1111111 222 3333 44444444444 11111 2222 33G33333333333 4444444 111111 2222 333333333333333 11111 22221222222222222 1 11111 2222222222222222222+ 111111111111 1111111111111111 1111111111111111111 111111111111111111111111 1111 bdquobdquobdquobdquobdquo A 111111 1111111111111111111111111111 1111 2222222222222 111111 111111111111111111111111111 11111 222 33333 222 11111111 111111111111111111111111111111+ 11111 222 333 333 222 11111111111111111111 1111 222 33 44444444 333 222 1111111111111 111 22 33 444 444 33 222 11111 2222222222 1 222 3 44 5555 44 33 222 222322222222222222222 22 33 44 55555555 444 33 222 2222222222222222222222+ 22 33 44 055555 444 33 222 222222222222222222222 222 33 44 444 33 222 11111 222

M 33 4444 4444 333 222 U l l l l i m u U 33 44 333 222 1111111111111111111111111111111111111111 222 3333333333 222 11111 111111111111111111111 2222 2222 1111

222 111 2222 111 22222 1111 1111 11111 +111111

111111 11111111 2 bull 111111 1111 11111 22222 11111 1111111 1111111 11111 11111111111 +111111111 1111111111 11111111111+ 11111 111111111111111111111111111111111111 11111 111111 222 2 2 1 1 1 1 11111 2222222 2222222222222222r 222222222222 n n n 1111 11111 222222 222222222222222222

CONTOUR LEVELS AND SYMBOLS SYMBLEVEL RANGE (0) 25168E-02 (9) (9) 24567E-02 239G6E-02 (6) (6) 23365E-02 22764E-02 17) (7) 22164E-02 21563E-02 (6) (6) 20962E-02 20361E-02 (5) (5)

19760E-02 19159E-02 C4gt (4) 18558E-02 1795SE-02 (3) (3) 17357E-02 16756E-02 (2) (2) 16155E-02 15554E-02 (1) 14953E-02 14353E-02 (reg) 1375EE-02

ESTIMATION ERROR CRITERION CONSTRAINT =

15000E-01

5Q000E-0J1

^ 2 2 11111 111111 22222 2222222222222

Figure 630C Contour plot of [ p ^ z ^ at third sample time t K - 180 for o ^ = 0150 compare with Figure 628E

223

obtained by comparison of the contours in Figure 630 with those for the cases with a^ = 01 0125 and 05 in Figure 628 in the previshyous section

637 The Effect of Time-Varying Disturbance and Measurement Statistics upon the Optimal Monitoring Design and Management Problems Consider a problem with

_2 Ums0-

0125

005

(661A)

(661B)

0025 (661C)

and with PQ = M given in (657) Consider two cases F i r s t f i x the

measurement s ta t i s t i cs V to the values given above in (661C) but l e t

the disturbance s ta t i s t i cs vary For this case for the time interval

0 lt t lt 2 sample times occur at t K = 046 and 122 The time-varying

disturbance s ta t is t i cs between samples start ing with W in (661B) is

then given by

j W 0 lt t lt 046 W(t) = lt 05 W 046 lt t lt 122

025W 122 S t lt 20 (662)

The resultant plot of cC + N(zpoundz) as a function of time t K + N is shown in Figure 631 wrere the effects of variable W(t) in (662) are readily seen As W(t) decreases so does the rate at which the uncertainty in the estishymate of the maximum variance in the output grow Thus times between samples change greatly changing the nature of the management problem

i

Though the plots of [PudSt)] are omitted for brev i ty for reasons slnri-K K 11

la r to those in the example of Section 534 the contours change from

sample to sample affect ing nonconstant solutions to the design problem

10COOE-O1 L t 1 bull bull XX i gt t X I X [ X I X I X

X XX X XX XX X XX

laquo t X I X 1 X I X I X I X

X x x x

XX X X XX X X

XX xxx xxx xxx xxx xxx xxx xxx xxx I X I X I X i x I X

X X X X

X X

XX X

X X X

1 X

1 X

IX

X

X

x

X

X 1600E00

Figure 631 Time response of ^ + M ( Z | ( raquo Z ) for time-varying disturbance statistics W(t) given in (662)

225

Thus Conclusion VIC The solutions for the optimal

monitoring design and management problems may not in general be the same for all measurement times if the disturbance noise statistics are allowed to vary with time (CVIC)

Second fix the disturbance noise statistics W to the value given in (661B) but now let the measurement error statistics vary from sample to sample In this case the sample times occur at t = 046 080 112

138 162 180 and 194 over the interval 0 lt t lt 2 Starting with V given in (661C) for the first sample let the measurement statistics be given by

V(t) = lt

[ - t = 046

15 y t = 080

(1-5) 2 V t = 112

( i 5 ) 3 y t = 138

( i 5 ) 4 y t = 162

( i 5 ) 5 y t = 180

( i - 5 ) 6 y t = 194

(663)

The plot of c^+N(zjjIz) for V(t) is shown in Figure 632 Note that V(t) specified in (663) may be interpreted as taking consecutively worse and worse measurements from sample to sample Thus as the quality of the measurements decreases the uncertainties in the estimate of the maxishymum variance in the output increase leading to higher initial conditions for the branches of at after each measurement and resulting in shorter and shorter times between measurements This completes the countershyexamples for Conclusion VI which are summarized in

Conclusion VIP The solutions for the optimal deshysign and management problems may not in general be the same for all measurement times if the measurement error statistics at each sample are allowed to vary (CVID)

X X

X

X [ X

( X

X X

X

x x

X X

X

x x

X X

~k X X X

X X X X

x

x x x x

x x x X

X X x x

X 1 X

X X

X X

X X

X

X

X

X

X ) X

X

lt X

x x X

X

X

x X x i X

x

-

X

x

X

X

X

X

X

X

X

X

figure 632 Time response of crj^^zjjz) for time-varying measurement statistics V(t) given in (663)

i

1

227

638 Variable Number of Samplers - As shown in Section 534 and Conclusion VII the optimum number of sampling devices to use at each measurement time t K the dimension m of the optimal measurement position vector J is the same for every measurement 1n the Infrequent sampling problem In order to find that optimum number the monitoring design problem Is solved Heratively n times at the first measurement time tbdquo with m = 12 n samplers used in each iteration This esshytablishes a sequence of optimal measurement vectors zf of Increasing dishymension from which corresponding values of [P pound ( Z J ) 1 may be found To find the zt of optimal dimension the various values of [E^zt)] are used to find the choice which leads to the fewest total number of samples necessary over the entire time interval of interest

o To demonstrate this concept consider an example with at s 01

W = 0125 EQ = Hg 9 v e n 1 n (6-57) and the measurement error in each measurement given by [ V ] ^ = 005 i = l2raquora Since the number of modal states retained n = 5 five cases are compared with from one to five samplers used for each measurement in each case

To find the optimum number of sensors m for the case of bound on output error 1n the Infrequent sampling problem from Conclusion X a measurement is necessary at time t R + N when

[eampOjn + laquoflu + poundlt z ) T

s 5 s slt z gt gt- Art lt 6- 6 4gt

where the ^-vector zj 1s the vector of optimal position locations and z from (572) is the position of maximum variance in the output cC + N(zJz) over all positions z in the medium

In order to compare the optimal zpound for various dimensions m first find

228

c (z ) T a c(z) s max c ( z ) T pound2 c(z) (665)

SV 2 sV This value is found by computation according to (572) where the matrix

B is defined in (520) For th is problem with the stochastic point ss source at z = 03 and including B E 5 modes in the model the position of maximum variance

z = 02711 (666) Then by computation

c(z) T a c(z) = 00417 (667) S~S~

For the first measurement at time t an expression for the time interval until the next sample is necessary can be obtained from (664) as follows For this problem the integration time step for i = 5 for the time interval 0 lt t lt 1 is chosen as

T = ( t K + 1 - t K ) = 001 (668) The time to the next sample necessary is thus

K+N O ( N ) ( T ) (6-69)

where from (664) the number of time steps

N = l iny (degH bull [amp)]bdquo - s ( z ) T | s ( z ) lt 6- 7 0 1

The results starting at t Q = 0 with initial covariance matrix p|j i M 0 as in (657) led to the times of the first measurement t = 046 The numerical determination of the optimal measurement position vectors zj at t K for m = 1234 and 5 along with the corresponding values for [EK-IP-I a n t tle l deg n 9 e s t times to the next required measurements Atbdquo + f are summarized in the following table

A tK+N

229

[laquo)]bdquo

[p 15196] [013866 |_013865_

013395 013160- 013016 013398 013160 013016 013398 013160 013016

013160 013016 p 13016

0022194

029

0014246

035

0010707

03S

0008705

039

0007417

deg-4deg (671)

Thus as the number of measurement devices m deployed at the f i r s t

measurement time increases so dos the time interval A t K + N before the

next measurement is required However over the ent ire time interval of

in terest the optimal choice can clearly be seen to use only one measureshy

ment device at each sample To see t h i s consider Figure 633 where

plots are presented together for a +(zz) as a function of time and

for a l l f ive optimal choices of z j for dimensions m = 1 through 5 (plotted

with 1 2 5 ) At the end of the time interval 0 lt t lt 1 the

tota l number of measurements necessary for each case are

xi 1 2 3 4 5

Total Samples 8 10

Clearly taking only one sample at each measurement time is best To see this another way compare the two extreme cases for m = 1

and m = 5 to determine the optimal dimension m for the measurement vecshytor zj From the table in (671) for m = 1 A t K + J - = 029 If this is compared with the case for m = 5 where Atbdquo + N| = 040 if only one measurement device (m = 1) is used over five measurement times 5 it K +M| = 145 time units would be covered whereas five measurement

~10(KKNI

40000E-02

-laquor TT^HMW 1-2 3349 11 22 3455 1 2 3349 11 22 345S 1 2 3345 1 22 3455 11 2 3345 22 34B5 2 345 2 3349 2 3455 1 22 345 1 2 3349 1 23 95 1 2 349 1 2 345 1 2 349 1 2 345 1 1 2 345 2 349 1 2 349 1 2 349 2 349 2 345 349 2 9 39

2 3 4 2 3 4 2 3 4 9 2 3 4 5 2 3 4 9 2 3 4 5 2 3 4 5 2 3 4 5 3 4 9 3 4 S

2 3 5 4 3 O

Figure 633 Time response of CTK+W(|(raquoZ) for optimal measurement position vectors z of dimension w = 1 2 3 4 and 5 plotted with corresponding symbols note decrease in sampling frequency with number of measurements taken at each sample time

231

devices used at only one measurement time results in A t bdquo + N | = 040

Both cases use a total of f ive samples but the case where only one samshy

ple is taken at each sample time leads to a much longer time Interval

overwhich the accuracy constraint is met

Examination of the optimal measurement vectors zjpound In the table in

(671) yields n observation regarding the placement of monitors of equal

measurement qual i ty which may be stated as

Conjecture C For the monitoring design problem using m s t a t i s t i ca l l y independent sampling devices of equal measurement qual i ty at each measurement t ime the optimal position of each sampling device is the same point in the medium (CC)

This is an interesting a lbei t obvious result which has arisen elsewhere

for the steady-state solution of the Riccati equation associated with

the continuous-time Kalman-Bucy F i l t e r (see Hersch pound56]) I ts interpretashy

t ion l ies in the real izat ion that since the measurement devices y ie ld

uneorrelated noise-corrupted measurements (that i s V is assumed to be

diagonal) the best position for one measurement device Is also the best

for a l l others The optimal design then is to make m statistically

independent samples a l l at the same point in the medium at each measureshy

ment time This requirement of s ta t i s t i ca l independence has Implications

about actual hardware needed for each measurement i t would tend to rule

out making more than one measurement with any given sensor at any one

measurement time since the resultant additive noise would probably be

correlated to some extent This does however deserve closer study

and is not the point of th is example

639 Sensit iv i ty of Results for the Infrequent Sampling Problem

to Model Dimensionality - The effects of the size and complexity of the

model of a physical process used in the analysis of any system upon the

232

results of that analysis is always a point of concern Much work has been done elsewhere on related problems including a recent study of the quantitative simplification of normal mode models presented in Young [131] Chapter 2

As mentioned earlier it is not the intention of this study to exshyplore this area in depth However a cursory look into model dimensionshyality as it relates to the infrequent sampling problem is in order here Consider then the effects of increasing the dimension n of the normal mode model used in the Kalman Filter upon the results of optimal design and management problems for the case of infrequent sampling As seen in previous examples the variable of critical importance is the quan-

i tity [P^(zbdquo)] its minimization directly effects the optimal design

and management problems and as will be seen in what follows that minishymization depends greatly upon the dimension of the model used in its calculation

Consider a problem with bound on error in the output estimate with o o

0 a 01 Let the time interval of interest be 0 lt t lt 1 with Pbdquo W and V given in (657) (620) and (621) respectively Consider the sequence of problems with n = 56789 and 10 the family of curves for oi+f[zZz) is shown in Figure 634 plotted with symbols 5 6 7 8 9 and 0 for the same order laquos can be seen immediately the dimension of the Kalman Filter model can greatly effect the results in the optimal management problem

To gain insight into the effect of the value of n upon the design problem contour plots of [PuCju)] at the first sample for each case are shown in order in Figure 635 The addition of higher modes to the

y

model is seen to complicate the nature of the [Ppound(z)J -surface This makes the optimization task for higher dimensional models more difficult

1COOOE-Ol

800D0E-02

60C00E-02

096 oea 7 06 77 -08 7 66 9 7 6 58 7 6 93 7 6 96 766 OB 76

960 7 66 038 7 G QBS 77CS -98 7 6 088 7766 06 7 6 77 6

qnn 7J5 098 7 3S 968 77 6 OSS 7 E6 96 7766 003 7 6 98 7766 - 77 6

66

C0S86 0 98 0 98 0S96 09 6 77 C989 7 0S6 7 020 7 6 C98 7 6 01 7 6 09 0 7 6

nflMfl 099P 00988 0 SB 7 00Oft 77 0 90C 7 I 0996 77 66 00P38 7 6 O 98 77 66 0993 77 65

X7-fift__ bull _ _ raquon 7 6 0E9 f 63 009 8 092 8 009 68 0 5 6 C099 5 0 9 80 0 9 8 03S S 0C9 38 0 9 8 77 099 8 7 09 8 7 03 8 77 OS SB 7 S 0006 7 5 9 6 7 5 09 8 7 5 09 8 09

40000E-O2 00 76 8 7 976

9 8 0 9 e

20000E-02

Figure 634 Time response of o W M ( K gt 2 ) fdeg r filter models of dimension n = 5 6 7 8 9 and 10 plotted with corresponding symbols note increase in sampling frequency with order of filter model

CONTOUR PLOT OF IPIKK)CZ(K))311 AS A FUNCTION CF tZ(K)I1 HEJRIZ AND tZ(K)32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-ETATE VALUE FOR LAROE TIME

tZltKgt32 09

bull33333 333 222Z 2222

444 444 4444 444 444 444 444

44 33333333333 444 33333333333 444 333333333333 444 3333333333333 444 3333333333333 4444 333333333333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333 4444 33333 33 3333333333 bull444 33333 333333333333 3333 3333333333 44lt 3333 33333333 4 333 33333 A 3333 22222 3333 333 22222222222 3333 3333 2222222222222222 333 3333 222222222222C222222 333 3333 22222222 2222222222222 333 S33333 2222 22222222 333

66 77 88888 0999999 0-66 77 8888 9999999 66 777 88388 9999999 66 77 88808 99999999 66 777 68886 99999399 -5 66 777 883888 9999999999999 15 66 777 SBBBBBB 99999999S9 55 666 7777 8888886 999999 55 66 7777 8808888 05 66 77777 80088888 666 777777 i as 6660 7777777 I 55 pound666 77777777 14 555 6BS66 777777777 14 555 6S6666 77777777777 144 5555 66666666 777777777777 44 5535 6666666666 777777 44 5555 65666666666 444 5S5H55 666666666666 444 055555355 6666666666

A44

444 S55

222222 333 444 5555555555553 22222 333 44414 555555555555555 2222 333 444444444444444 2222 333333 44444444444444444 22222 3333333333333333 222222 03333333333333333333 2222222222222 22222222222222222222 2222222222222222222222222

1111)111 22222 11111111111111

11111111111111111111 111111111111111111111111

111111111111111111111 1111111 1111111111

1111111 gt 1111111 22222222222

111111 22222222222222222 111111 2222 222222

111111 222 222222 111111 222 S3 22222 111111 222 3333 22222 111111 2222 22222

11111 2222 22222 11111 222222 222222 11111111111

1111 222222222222 1111111111111111 11111 1111111111111111111111111111

1111111111111111 1111111 1111111111 I _ 1111111111111 11111111 copy 1111

1111111111 11111 11111111111111 11M111 1111111

11111 11111 2222222222222222222222222222222222 22 1111 11111 22222^2^22222222222222222 22222 1111 11111 222222

bull22222 1111 111V 222222 333

222222222222222222222 2222222222222222222222

222222222222222222222222 2222222222222222222P22222

22222222222222222222222222 2222222222222222222222222

222222222222222222222222 222222222P22222222222

22222

111111111 11111111 11111111111111111 111111111111111II 11 1)1111111111111

2222222

SYMB LEVEL RANGE (0T~274031E-02 (9) (9)

2 2

3329E-02 2620E-O2

(0) 8)

2 2

1927E-02 1226E-02

(71 (7)

2 1

052CE-02 9823E-02

(6) (G)

1 1

9122E-02 0421E-02

(5) (5)

1 1

7720E-02 7019E-02

(4) t4gt

1 1

6317E-02 56^6E-02

(3) (3)

1 1

4915E-02 4Z14E-02

(2) 2)

1 1

3513E-02 2811E-02

(1 ) (1)

1 1

2110E-02

1409E-02 ltgt 10706E-02

ESTIMATION ERROR CRITERION CONSTRAINT -

1OOQOE-01

I2500E-01]

Figure 635A Contour plot mension laquo = 5

deg f [lt)]bdquo at f i r s t sample time t bdquo = 046 for f i l t e r model of d i -

CONTOUR PLOT OF [P(KKM2ltKgt H11 AS A FUNCTION Or IZ(K)31 HORIZ AND tZtK)JP EXAMPLE TO SHOW EVeLUTICN OF VARIANCE IN OUTPUT W I K A T E WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-SATE VALUE FOR LARSE TIME

CZ(K)32 00

44 33333333333 444 33333333333 444 333333333333 444 3333333333333 444 3333333333333 4444 333333333333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333

55 66 77

33333 33333 3333 3333 333

3333333333333 333333333333 33333333cr 33333333 33333

444 444 444 4444 444 444 444 --444 53 666 444 55 66

(bull3B88 QBBB eenee

o

53 68 777

9999999 S999S99 9909399 99999999 99999999 9999999999999 9999999999 999999

aBB8BQt-J8

7777 4444 33333 3333333333333 44 55 66 77777 14 555 666 777777 144 55 6Si6 7777777 44 55 6lti6S 77777777 444 555 lti6I-06 777777777 3333 22222 3333 44 535 6=6666 77777777777 333 22222222222 3333 444 5555 66666666 777777777777 3333 2222222222222222 333 44 5SS5 666666666B 777777 3333 2222222222222222222 333 44 555 i 66666666666 3333 22222222 2222222222222 333 444 55gt55 66666666666 333333 2222 bull33333 2222 333 2222 2222 22222222 bdquo 1111111111 111111111111 1111111 111 111 1111 11111 111111 nun m m 111111 111111 11111 11111

22222222 333 444 51lt555555S 6666666666 222222 333 444 5555555355555 22222 333 444-14laquo 5^oS55553553553 2222 333 414444444444444 2222 333333 44444444444444444 22222 33gt333333333333 222222 33333333333333333333 222222 2 i2222 i2222222222222222222 2222222222222222222222222 2225gt22222pound22222222222 22222222222 222222222222222222222+ 22222222222222222 22222222222P2222222222 2222 222222 222222222222222222222222 222 232222 2222222222222222222222222 222 33 22222 22222pound-2222222222222222222 222 2333 22222 2222222222222222222222222 2222 22222 222222222222222222222222 22222 222222222222222222222

| | raquo

222222 222222 22222 11111111111 11111111111111111111 11111 111111111111111111111111111111 n n i i m t i - t i u i i u i i i i n m i i i i i i i ^ i i i i n i i i i i i i 1111111U1 0 m t i i i i i i i i 1I111111111U111111 11111 i i i i i i i i i t i i i i i i i i i n i l i u m i i m n 11111 11111 22222222222222222222222222222222 22 1111 11111 222222i 2pound2222222222222222 22222 1111 11111 222222 bull22222 1111 11111 222222 333

1 11111 1111 111111 11111111111111111 11111111111111111 11111111111111111 2222222

f i T i l f

m 2 2 3329E-02 2626E-02

iii 2 2 1927E-02 122SE-02

IV 2 1 C525E-02 9823E-02

iii 1 912PE-02 6421E-02

Si 1 1 7720E-02 7019E-02

] 1 1 6317E-02 56I6E-02

iii 1 1 4915E-Q2 4214E-02

i 1 1 3313E-02 2611E-02

1 1 2110E-02 I409E-02 (Qgt 10708E-02

ESTIMATION ERROR CRITERION CONSTRAINT a 1OOOOE-01

12309E-01)

Figure 635B Contour plot of [ P pound ( Z K ) ] ] 1 a t f i r s t s a m p l e t i m e K = deg 4 6 f o r f 1 U e r m w t e 1 o f d i m e n sion = 6 note similarity with case for n = 5 in Figure 635A

CONTOUR PLOT OF IP(KK)(2(K11]II A A FUNCTION CF IZtKHI HORI2 AND tZ(K)32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTFJ ESTIMATE WITK TIME POSITION OF MAXIMUM VARIANCE APPROACHES SCEADV-CTATE VALUE FOR LARPE TIME

1 0 +444444444 444444444 AAAAAAAAA

AAAAAAA AAAAAA

AAAAA 44444 44444 444144 4444 44 434 4444444 331 AAAAA 33233

33333 333333 3333333 333333333

06

03

4 4 4 4 4 4 4 4 ^ 4 4 35 6 6 7 7 7 0CG 4 4 4 4 4 4 4 4 4 4 4 55 7 7 7

5 5 7777 P338 4 4 4 4 4 4 4 4 3 5 7 7 7

4 24-144 5 -14444 R 7 7 7 7 ercao

4 4 4 4 fgt CSQ3 3 444 6G 7 7 7 7 coca

33 333 333 33S33 rraquo33333 3333333 3333333 33i323333 333113333333 333laquoS 3333333 __ 3_laquo5j^y353U333333 44 55 06 33333333333 4 OS 6C-6 3333-33Ji 44 u5 6GGC 333333333333 44 S3 GC66 33333333333 44 555 fi- 3333333^33 444 551-S

55 63

3333333 2222222 3333 444 33333 2222222222 3333 444 raquoV 3333 22222222J2222222 333 441 33 222222 2222222222222 333 4444 2222222222 33 4144 22222 33 4444444 2ZVZ 333 444-4-44 2222 lt33 44V 4 2222 3333

222 33333333 22222 222222212

22222 22222 22222 222222 22222222222 05 +2222222 n i l

1111111111T1111

111111111111111 i t m i

m u m 11111111 i l l 11 i i i i i i t m i 111 t u 1111 u i i n i i i + i m m i i 11111111111

1 1 m m

i t m t i i i i m m i i i m i n 1111 1 2222222 22222 222222 222 33 2222 22 3333333333 2222 222 333 333 2222 222 33 333 22222 22 333 333 2222 222 3333 3333 222 222 333333 222

11 mit mi m 1111111 11111111 11111111

1111 2222 2222 U l U U l U t 1111 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 m m i i m i m m 1 111 m m 1111 1 1 1 m m m i n i m u m

1 1 1 1 m 111 m m 11 m m m m 11 m m m m

laquoS99 Sacs 99S9 3399 9999 0 99 3 S339 eaea 33S9 eeflS S3999399999999999 777 8J68 99339999999999 7 7 7 7 c o a a

7777 CG0e3B3C^003B33B3 77777 G6C383

GIG 777777 6S1666 777 7777777777777

(36566 -bull 6GIM36G8 r i50 6Cfcamp56SSGGS6i66366 amp055D55 6GGG06S666GG6G

5D0355

1444 J555GC5Gi55555550555 14^-144444 55i355JtJ5

4 4 4 4 4 4 4 4 4 4 S333333 4 14444444

3 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 gt222222 2 2 2 2 2 2 2 2 2 2 2

222222222222222222222 222D222P22rfpound2222222222

gt222i 222 222222 22222 2322 2 333333

3330333 bullbull 33333- v^^S22H222222222K2

222222222222i-2ii222222222 22222222

m m m m m m 1111111111111111111111 m m m u m m u u i 11111111 m u m 11

22222222222222 222222222222222222222

2222222 ^2ri 2122222222222 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 r gt 2 2 1 2 2

2 2 2 2 2 2 2 2 2 22222 2 2 2 2 2 2 2 2 2 2 2

SVM3 LEVEL HAN3E

( 0 ) 2 3 1 7 5 ^ - 0 2

2 2 5 0 7 F - 0 2 2 1640E-02

W 2 1 1 7 3 K - 0 2

I I 1 E 5 3 Q ^ - 0 2 1 9 1 7 1 E - 0 2

1 0 S 0 3 E - 0 2 1 7 G 0 6 E - 0 2

1 1 7 1 0 9 E - 0 2 1 C 5 C 2 E - 0 2

15 1 amp C 3 4 E - 0 2 1 51 17E-02

ill 1 4 5 0 0 E - 0 2 1 3 5 3 2 pound - 0 2

i l i 1 3 1 G 5 C - 0 2 1 - 2 4 0 0 E - 0 2

1 1 0 3 0 E - 0 2 1 1 1G3E-02

iQ) 1 04lt-SR-02

i MAT I ON ft CRITERION TRAI IT =

1 O00OE-01

isa CE ir U7 VlANCE I W J

r t 2 5 0 0 t -on

amppound URLK NT lt CCVAK I V 1 =

bull _ - 0 ] 0253

Figure 635C Contour plot of P | X J K ) at f i r s t sample time t bdquo = 041 for f i l t e r model of di sion n = 7

237

8 n i o l bdquon M M

ttf- gt WW O N lt I O mdasho ttf-

y W W W W W -bull- -- mdash laquo-- mdash ttf-

CJlaquot

6 U ffim Qltff -- ougt ss 5 n o mdashmdash ZZ

wm N N W M N N

T^ laquo WWW

5 5 f v a I T nn ^tn]

tN (DIP mm Tr-wv nn Mraquo- copy I D in in w n

laquogt-laquo t laquo o o n r NtCKK o o n KH ww w _ mdash - -

laquogt bull C I S J O M ^ N J V traquogt -gt W W W W W mdash mdash mdash mdash w pound bull laquo i a i Nrsfsfs o laquo ew w mdashmdashmdashmdash 1 4 - - i r^V w ^deg F1 -s laquo w w w - - mdash

5 M ^ k 1 $S fcl v i o c i cw bull r bull bull - bull bull - r - mdash

D W ^ 1 O C J C J WCv N h N I ^ S 1 0 o S S deg IDto1 V laquo raquo ( - raquo ( t f u

zngt- bull M raquo OlDOtOO raquotfgt i r V i CVAJOKJfW - bull mdash bull- mdash ( j c a lt T T P I K i M

Po5 n t n w r t W W Po5 v o o o W W O D t - W W CUWWN mdash mdash mdash laquo - - _ mdash laquo to w 3 Z w L - mdash laquo n n n w

n n n lt u i r O C T O M N

u u n o w 1W

lt lt o (VCVWCVCKU W W W W mdash - mdash bull - mdash bull - bulla Wf tJCWCJ

- C O W gt W N laquocu w - + - lt f t N t J W t l i w mnn w bull- gt J w w w w n n n n w mdash

w w w (o o n o w mdash - U U N N P I C ) n raquo-mdash o o w w w N n o w^mdash w K w w w w n ltraquo o wmdashmdash N Z lt cuww w n w o cu mdash - p - W t u t g N o w o N raquo- bull mdash c W W W w o v o wmdashmdash

gt-lt ( M W W t t bullmdash- w o o wmdashmdash o gt MIUAI - bull mdash mdash w o n mdash

o b N W laquo - w o n o n cw mdash O

ww o n w - o b V V w o n o n cw mdash O ww o n w -

01 W mdash W W laquo whi ww ^ bull

I E

laquo C M bull W I M N N mdashmdash

I E bull n W W n C T S laquo r t S r ) w w w W W W W

cvtvwww bullmdash-- ^ W W ~ -I E bull n W W n C T S laquo r t S r )

w w w W W W W

cvtvwww O tL C ( V W ^ W W J D Q

bull |E5i degssecto laquo i W M W W mdashmdash J D Q

bull |E5i degssecto laquo i W M W W

KUIO N M U O l N 3 J ~ O O - H w w w w

^B35^I ssl (UWW-N -^B35^I ssl (UWW-N UbJCL- fllNNN

bull y w raquo laquo r v w w c ^ _ o n deg - raquo - -

CONTOUR PLOT OF t P ( K K ) f Z C K gt ) ] 1 1 A3 A FUNCTION OF C 2 ( K ) J 1 HORIZ AND t Z C K ) J 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E POSIT ION OF MAXIMUM VARIANCE APPROACHES STEADY-STV i VALUE FOR LAR3E T I M E

0 + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 +444444444444 444444444444 44444444444 4444444444 4444444

oe

os

04

03

OI

4444444444 4444444444 4444444444 4444444444 44444444444 4444 44444 444 444 444

380 pound88 068

east) 3333333 3333333 3333333333 3333333333333333 3333 33333333333

553 666 777 53 6B6 777 53 666 777 55 666 777 53 6G6 777 33 666 777 53 6666 77V 55 666 77V7 355 666 7777 44 C5 6666 7777 444 353 666 7777 44 53 666 7777 444 535 6666 77777

B99SS9 999999 9999999 99999999 999999999 999999999999 99999999999909 99999999999 99999

eeocsssB 0898868888888889 333 33333333333 44 535 666ltgt 777777 333 3333333333 44 5555 6066 77777777 07 +333333 33333 33333 444 S555 6666 77777777777777 3333333333333 22 333 444 53553 666666 77777777777 73333333333 222222 333 444 555 1 666666666 333 22222222 333 44444 gt5555 666666666666666666 222222222222222222 333 44444 5553553 66656 22222 22222222222222 3339 44444 5555555555535 12222222 33333 444444 55555555555533555 222222 333333 44444444 2222 33333333 4444444444444444 2222 333333331 4444444444444444444 1111 22222 333)33333 1111111 222222 3333333333333333 1111111 2222222222222 3333333333333333333 111II 222222222J2 22222 1 2222222222222222222222 222222 2222222222222222222222222+ 2222 22222 222222222222222222222222222 2 33333 2222 22222222222222222 333 333 2222222222222222222222 33333

22222 22222 22222222222222 2222222222222 22222222222

1111 1 111111111111111 111111111111111 11111111 11 1111111 11111111111111 11111111111 1111111 2pound 33 111111 22 33 111111111 111111111111 111 111 22 33 44444 333

333

333333333333333333 3333333333333333333 3333333333333333 2222222222222222222222

11111111 11111111111111 bull11111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 111111111111

00 +11111111

2222222222222 isit 222222222222 333 222222222222222 3333 2222 222222322222 2222 11t1 2222222 111111111 111111111111

11111 111111111-111 1111111 111111111111111111111111 1111111 111111111111111111111111111111111111 111111111111111111 1111 11111111111 2222222 11111 2222222222222222222222222 11111 222222222222222222222222222 11111 2222222222222222222222222 111111111 111111111 1U11 till

22222222222222222 222222222222P-22 222222222222222-

TIME gt 3 9 0 0 0 E - 0 1 F IRST MEASUREMENT

CONTCtr LEVELS AND S HBOLS

SVMB LEVEL 3 RANGE ( 0 ) 2 3 1 6 6 E - 0 2

( 9 1 2 ( 9 ) 2

24PE-

1 7 8 E --02 bull02

( f t ) bullgt U ) 2

1 0 7 5 E -

0 3 7 1 E -bull02 bull02

1) 1 ( 7 1 1

9 6 6 7 E - 6 9 6 4 E

- 0 2 - 0 2

( 6 ) 1 ( 6 ) 1

8 2 6 0 E - 7 5 5 6 E

- 0 2 - 0 2

( 5 ) 1 ( 5 ) 1

6 B 3 2 E

6 1 4 9 E -- 0 2 - 0 2

C4) 1 ( 4 ) 1

bull 5 4 4 5 E - 4 7 4 1 E

- 02 - 0 2

( 3 ) 1 ( 3 ) 1

4 Q 3 8 E

3 3 3 4 E - 0 2 - 0 2

(ggt 1 ( 2 ) 1

2 6 3 0 E

1 9 2 6 E - 0 2 - 0 2

( 1 ) 1 ( 1 ) 1

1 2 2 3 E

0 5 1 3 E - 0 2 - 0 2

ESTIMATION ERROR CRITERION CONSTRAINT =

1 0 0 0 0 E - 0 1

SOURCE INPUT COVARIANCE IW3laquo [ 1 2 S 0 0 E - 0 1 ]

MEASUREMENT ERROR COVAR [ V l gt

[ 0 5 0 - 0 1 C - 0 0 2 3 1

Figure 635E Contour plot of [pj^(zK) sion laquo = 9 bull J

at first sample time tK = 039 for filter model dimen-

CONTOUft PLOT OF [P(KK3(Z(K) )311 AS A FUNCTION OF tZCfOJI HORIZ AND CZCK1J2 VEPT EXAMPLE TO SHOW EVOLUTION OP VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIME

10 +444444444444 444444444444 4444444444444 4444444444444 4444444444444 +4444444444444 4444444444444 444444444444 4444444444 44444444 +444

09

oe

ot

444444444444 5S 444444444444 SS 44444444444 53 44444444444 55 4444444444 53 444444444 55 33 44444444 55 3333 444 S 33333 3333333 33333333 3333333333 33333 33333 33333 333333333333 444 3333 3333333333 44 3333 333333333 44 3333 333333333 333 44 3333333333333 2222 33 3333333333 __22222222_ 33

777 0866 9999333 777 0868 9999999 777 068 S999999 777 068 9999999 0 777 068 9999999 777 668 9999339 77 66B 939999 777 8088 9999999 444 555 666 777 666868 99999999999999 444 555 6SS T77 44 555 666 7777 44 5555 66S 777 6555 666 77777 8888888888688688

6S6 666 666 6666 6666 6666 6G68 666

5555 666 777777 888888a88B68 55555 6E6 77777777 55555 6666 777777777 lt M 5 S 6666 77777777777777777 444 5555 66666666 7777777777 44444 3f-6U 22222222222 333 44444 055355 6666666666666 222222222222222222222 3333 444444 5S5555S3S555 22222222222 2222222222222 33333 44444 55555550355555555 2222222222222 2222222222222 333333 444444444 222222222222 22 2222 3333333 444444444444444 22222222222 2222 3333333 44444444444444444 2222 11 222 333333 44444444444 11111 2222 33333333330333 11111 22222222222 3333333333333333333 333333 1111111 1111111 2222222222222222 333333333333 11111111111111111111 222222222222222222 111111111111 222222 222222222222222222222222222 U11111111 222 2222 2222222222222222222222 11111111111111 22 33333333 222 2222222222222222 11111111111 22 33 33 2222222222222 3333333333333333333 22 33 444444 33 22222222 333333333333333333 22 33 444444 33 22222222 333333333333333333 11111111111 22 33 44 33 222222222222 33333333333333333333 111111111111

II +11111 11111 11111 11111 11111

00 +111U

U 1 U 1 1 1111111 1111111 111111 111111 11111 11111

33333333 222 2 2 2 2 2 2 1

1111 222 11111 11111111111111 illll

111111 111 111

1111 1111 111

laquo I 1 0 ill m 11 11

11 m i m i m i m i m i nil i

22222222222222222 22222222222222222222 u u M U i n u 11 111 n i n 111111111 111I111111111H11111 l i m n i i 2222222222222 22222222222222222+ 22222222222222222222 222222222222222222222222 222222222222222222222222 22222222222222222222222 22222222222222222222222+

T I K E raquo 3 6 0 0 O E - O 1 F I S S T MEASUREMENT

CONTOURLEVELS AND SYMBOLS

SYKB LEVEL RAN3E

( 0 1 2 2 8 7 1 E - 0 2

( 9 ) ( 9 1

2 2 1 7 6 E 2 1 4 9 2 E

0 2 0 2

1 ( 0 )

2 0 7 6 7 E 2 0 0 9 3 E

0 2 0 2

( 7 ) ( 7 )

1 9 3 9 8 E 1 8 7 0 4 E

0 2 0 2

( 6 ) ( 6 )

1 S009E 1 7 3 1 5 E

0 2 0 2

( 5 ) ( 5 )

1 6 6 2 0 E 1 S925E

0 2 0 2

( 4 ) lt4gt

1 5 2 3 1 E 1 4 5 3 6 E

0 2 - 0 2

( 3 1 ( 3 )

1 3 8 4 2 E 1 3 1 4 7 E

OZ - 0 2

( 2 ) ( 2 )

1 2 4 5 3 E 1 1 7 5 8 E

- 0 2 0 2

( 1 ) ( 1 )

1 1 0 6 4 E I 0 3 6 9 E

- 0 2 - 0 2

t copy ) a 6 7 4 8 E - 0 3

ESTIMATION ERROR CRITERION CONSTRAINT =

I OOOOE-01

i zsooE-on

09

Figure 635F Contour plot of sion laquo = 10 [M at f i rs t sample time t bdquo 038 for f i l t e r model of dimen-

240

owing to the addition of numerous local extrema The classical approach to solving minimization problems which possess complicated objective functions is to increase the number of initial search points until suffishycient confidence is obtained to suspect that the global minimum has been found no other methods are known Quoting from Beveridge and Schechter [20] p 499 regarding finding the global optimum in a problem with multiple extrema

Thus once a particular local minimum has been located by an appropriate search technique it is imshyportant to check that other better optima do not exist There is no rigorous method for this search except in certain restricted classes of problem One can only begin the search procedure at a number of different initial base points

Thus the dimensionality of the filter model is seen to bear directly upon the complexity of the associated optimizations in the optimal deshysign problem

1 Another method of comparing the [Pbdquo(zbdquo)L surfaces for various model dimensions is by fixing one of the measurement positions and plotshyting sections through the surfaces over the range of dimensions for n

as functions of the other measurement position Such plots are included for values of [z K] = 01 03 and 08 Schematically they represent cuts through the three-dimensional contour surfaces as in Figure 636 The three sets of curves for n = 5 6789 and 10 are shown in Figshyure 637 For the first two cuts with U J = 01 and 03 large difshyferences result particularly in the region of the source near z = 03 For the third cut for Ui]_ - 08 agreement is fairly good note howshyever that in contrast to the first cases this cut is farther from the position of the source where it is seen that the effects of the source tend to be filtered out

241

Figure 636 Schematic representation of the intersections of [ P | lt ( | K | I I surface with the planes [ z K ] 2 i 0 1 03 and 08

Comparison of the contours in Figure 635 and par t icu lar ly the cut

for [ z K ] 2 = 01 near the global minimima in l l f e ^ bdquo n h t h e t i m e bdquo

sponses for o^ + f (zJz) in Figure 637A gives r ise to an apparent anomshy

aly in the expected resul ts even though higher dimensional models in

general are seen to result in lower optimal values for lPuUv)l at

the sample times the sampling frequency for higher dimensional models

is greater This can be explained as follows Consider the s i tuat ion

77777 996777 7763 77777877 770 99a

77777777 53336999 77 699977809 77 969999 988 777777 88979666860686886 55696666666 5333335 B9 77 mdash mdash O0000000OD 000 0000 00

7 S 99988 8B9geeeee

73999 899

9988 OOOOQOOOOOO 000

i e 77777 6 77B 77 9879 958 667 689 67 88BBC9 8 t 99 B S3 I

79 0 7 7 9 0 a c

1C400E-O2

SB 689 6 6888 9 I 19 68808868 99 0 O S 9999 O 0 9999999 O 0 OODOOO COOOOOO

S0Q00E-03 1 0E00

Figure 637A Intersections of the [PJ^SK)]^ surfaces with the plane [z R ] 2 = 01 plotted as funcshytions of [zA for filter models of dimension n = 5610 plotted with correspondshying symbols

1laquo000E-02

B80B 69B9D8 9 77907 907 907_ 67 raquo7 057

14I0COE-D2

687 9990 88 - 75 80799990059 99 79 00909 00060 78 00997 000 66 09 98 C 3 S 7 60 10 77 66 089977 66 O 98 7 097668666 t- $8 78777 0 S99999 coooo

CO 666688 07777 68 80758999

86 999999079939888 000609900000077 0 899 77 _ 777770 999 755 777 O 68775777775 S566SS6G6666 7 088 555 708886998 55

11000E-02 I

87 O 77 69 775 6 0 998733 8 O S555986 86 0 000 9 6688 0 1 00000 99 099

Figure 637B Intersections of the [pj((2 K)| n surfaces with the plane [ z K ] = 03 plotted as funcshytions of fgK| for filter models of dimension n = 5610 plotted with correspondshying symbols

lPtKi-raquo11

S2500E-0Z

2O5D0E-02

1B7ODE-02

16B00E-02

6C99C0 C63900 76 23C 7SGBS0 776 300

777777777777777 777 66C53C9 77 G63CiC-93399 7 5GC099939 7 1C9laquoOOOOOOC030DO 7 CCCITOCCC^ 7 0639J CO 778635 000 76999 00 76G9 000

77C1

OSSO 7eS90 76 90

7 6 77 6 _ 7 6 690 7 6 020 7 6 990 7 9 0 89 0 6900 620

00

9 0

14900E-02

666 77777

677 pound677

C 7 bull3605008992987 0000099 6G96

000000 6997 0C0E37

70 579 S57790 5553777 CO 55507077 690 5535 99999999000 C69S67SlaquoS 7793 009S 777779C 0990 600 OODOOO

13000E-02

Figure 637C Intersections of the [P^K)] surfaces with the plane [lKz 08 plotted as funcshy

tions of ing symbols

zv for filter models of dimension n = 5610 plotted with correspond-

245

at the first set of sample times The results from the figures are summarized in the following table Even though as n Increases and

n S 6 7 8 9 10

2 [01340] |013401 [02568] [024121 [02393] [024181 ~K Lo l340j Lol34oJ LOO622J LOO6I8J L00648J I00633J

m)u 0010707 0010707 0010495 0009953 0009814 0009674

degfcgt 002280 002280 002384 002697 002717 002828

h 0460 0460 0440 0400 0390 0380

hH K) 0380 0380 0360 0320 0310 0310

(673)

[ppound(z)] deoveaaes the time to the next sample (t K + f - tbdquo) also deshy

creases Note however that as n increases so do the initial condishytions on the trajectories for cCtztz) This effect stems from the fact that even though [Ppoundzbdquo)] 9eis smaller as n grows more terms

~ K~ K 11 are being added into the quadratic forms for ajUzJz) as the matrices increase in dimension

The effect of this can be explained concisely in the asymptotic case for infrequent sampling by writing the expression for degK+N(zJjz) at the second set of sample times t+

4 N ( K lt ) pound pound amp ) ] n + N [ 8 ] n + sU)T g amp ( 2 (674)

As n increases even though the term [p^U^)]]] decreases the last term c(z) Q e(z) increases at a faster rate Thus for the same time period (t + N - t) larger values of variance in the output result for models of larger dimension thus higher frequency sampling programs

One final comparison is made for the monitoring problem with bound on error in the output estimate The number of modal states retained in

246

the Kaiman Filter model is seen to effect the outcome of the determlnl-zatlon of position of maximum variance in the output estimate That is the model dimension effects where in the medium the error in the pollutshyant estimate will first reach its limit The maximization problem re-

For time t(c+N given optimal measurement positions zpound at time t|lt find z such that

4damp)degV $(bull) (675)

For the infrequent sampling problem in the case of no-flow boundary conshyditions from Conclusion X (675) was found to be equivalent to finding

max c(z) pound2c(z) (676)

o

For the example treated here plots of oS(z) at trie f i r s t sample

times for the range of model dimensions n = 5 through 10 are shown in

Figure 638 Results for the maximization problem are tabulated below

n 5 6 7 8 9 10 Z 02711 02711 02940 02922 02883 02957

c ( z ) T 0 t ( z ) 00417 00417 00447 00501 00509 00519 SS

mdash ( 0raquo

Recalling that the single point source is located at z 5 03 i t 1s

seen that as more modes are Included in the model the posit ion of the

maximum variance in the estimate ef the output approaches the position

of the source as expected th is 1s the point in the medum of greatest

uncertainty in the estimate

Notice that the steady-state term aiy a c(z) does In fact ln -S5~

crease with he dimension of the nodel n corroborating the reason

bull1ODOOE-01 1

8SD0OE-O2 666658665360 77777777777

8886999000 9938665999990000 O0DD0O0QQ00O

666696 6S79D 697 66 730 537

7 890 890 890 890

987 057 9 0 6 7 9 9 - 8 7

B 7 O S 8 73 S 0675 08 7

i9 7 S 06 7 5 C8 7 6 93 7786 ose 7 e 098 7 9 098 7799 038 7 99 0098 77 99 098 7 99 098 77 99 0998 77 99 00968 777 555 00988 777 6599 00988 777 9559 09988 777 55995 0099886 7777 00099888 00099886 000999668 000099988888 000099999688860886 000000099999999399939 00000000000000

5555S8S69 7777777 595553555 777777777777777

Figure 638 Plots of CT(ZJZ) at first sample times t K as functions of position z in the medium for filter models of dimension n = 5610 plotted with corresponding symbols

248

behind the increased sampling frequencies for higher dimensional models Notice further in all of the data here that there are no differences

for models of dimension n - 5 or 6 The reason for this can be seen by comparison of the input distribution matrices for the two models the matrix D in equation (613) For these cases computation yields

n 5 6

1000 1000 1176 1176

-0618 -0618 - -190 -1902

-1618 -1618 1923 X 1 0 1 0 (671s)

Thus the contribution of the noise source to the sixth mode is seen co be negligible in comparison to the others The reason for this is that the sixth mode characterized by its eigenfunction

e g(z) = cos (5irz)

possesses a zero at z = 03 which happens to be the location of the source Thus the addition of the sixth mode does not change the response of the model after its transient term has disappeared since that mode is unshyforced

The results of this section are brought together in Conclusion XIX The dimension of the model used in

the optimal monitoring problem is seen to directly efshyfect the results in the optimal design and management problems (CXIX)

A word of caution is in order then in practical applications tradeoffs are necessary as in all analyses involving finite dimensional models of infinite dimensional processes Short of embarking upon a quantitative solution to the model simplification problem the analyst

249

should assure himself that a model of a given dimension is sufficient to adequately represent his process In the framework of the infreshyquent sampling problem the mathemat cs associated with the sensitivity anolvsis of the results for the optimal monitor are seen to be particushylarly simple providing a basis for rapid determination of adequate model complexity by straightforward comparison of numerical simulations

6310 Problems Including Pollutant Scavenging - All the exshyamples thus far have been fc the case of one-dimensional diffusion with no-flow boundary conditions and with no pollutant scavenging Consider here cases where the scavenging term -aC in the initial-boundary value problem (66) is nonzero For the monitoring problem with bound on error in the output estimate from Section 551 the maximum variance in the output estimate in the asymptotic case for infrequent sampling is given by

n=l (679)

From the state transition matrix J for the matrix A in (613) it is seen that in (679)

JO a = 0 n = bull (680)

le-aT c^O Thus the asymptotic growth of the first mode is a ramp of slope [fi]-- for a = 0 whoreas it is a forced first-order response with a negative real eigenvalue for cases where a gt 0 in problems with scavenging These differences are studied in the following examples

250

Consider first the example of the previous section with raquo = 5 modal states Choose for comparison the values a raquo 0 01 and 02 A plot of opound + N(zz) for the three cases using symbols 1 2 and 3 respectively is shown in Figure 639 For completeness contour plots of [Py(zbdquo)] at the first sample times for the three values of -K -K n

a are shown 1n Figure 640 As suspected from the separation of varishyables in the eigenproblem of (583) and (584) in Section 55 the addishytion of scavenging has no effeat upon the results for the optimal measureshyment design problem but does have a direct effeat upon the management problem the sampling frequency changes with a but the optimal mea-surenent locations do not

Consider a second example the cases o = 0 1 and 2 plots for these are included in Figure 641 It is seen that for both values of nonzero scavenging nc samples occurred within the interval C lt t lt 1 From (520) it is found that the steady-state values of apoundN(zpoundz) for the cases a = 1 and 2 are as follows for the condition 0 lt $j lt 1

From (518) the limit for the first term in (579) is

^[EK(4 = 0 1 lt681A)

From (520) the limit for the second term in (57S) is given by

5 Wi i gt bullit - T ^ ( 6 - 8 1 B )

Thus by computation obtain

251

pound[4i 0 0

ltrade pound0311 ) lt n=l

2(n hi

bull1 ) 006221 003124

s(z)Tne(z) 003782 003493

lim K + M ( z t z 1 1 01000 006617 (6B1C)

for the case of a =1 the limiting value of deg K + N ^ K Z S s e e n t 0 c lt u a 1

2 the estimation error limit o J i m laquo 01 Thus this is seen to be the limiting case for the size of the scavenging term a for which the reshysults of the infrequent sampling cease to apply for values of a gt 1 no samples occur For the case a bull 2 the limiting value for 2

aKtN s c l e a r 1 y below the estimation error limit It is seen then that for monitoring problems Including scavengshy

ing situations may arise in practice where a steady-state level of unshycertainty In the pollutant estimate may exist which Is below the specishyfied estimation error limit In these cases it 1s never necessary to sample in order to assure that the estimation error remains below Its limit for such cases the monitoring problem solution proposed here has no meaning

lOOOOC-01 1

2000DE-02

U 2 33 1 22 33

22 3 2 33

33 3

1 1

2 2 2 2

1 2 3 1 2 3

1 2 3

i HE

1 2-112233

12233 -(1233

ti33 122il

1233 1233

123 233

233 3

3

i t ia 34 1 S 33

12233 233 3

y i

2 7 2 3

r 2 3 1 8 3

I 2 3 i 2 3

2 3

1 1

I t 1 2J

11 2 1 22

11 2 3 22 33

1 2 3 11 22 33

V 22 3 11 2 3

1 2 33 22 3

2 3 2 33

U 2 33 1 22 33

22 3 2 33

33 3

1 1

2 2 2 2

1 2 3 1 2 3

1 2 3

3deg 3

3

3

2 o 3

1 2

1 3 2

1 2 3 1 2

3

t 2 a

1

Figure 639 Plots of ^ + N ( K Z ) versus time t K + f ) for systems with scavenging parameter a = 00 01 and 02 plotted with symbols 1 2 and 3 respectively

CONTOUR PLOT OF IPCKKKZCK1 111 A3 A FUNCTION CT (ZOOM HOtflZ AN3 CZ(Kgt32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE UlTtf TIME PCSITlCN CF KAXinUH VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIME

tZK)32 0 3

444 444 444

444 4444

444444 444444 44444 4444 03333 444 33333

3333 3333 333

33333333333 3333333333 033333333333

9333333333333 3333333333333

333333333333333 33333333333333

3 333=333-3 33333333 3373333333337^333333

444 9 444 5 444 5 4444 5

444 3 444

444 444

444

eaesa ease ecssa

777

3333333333333 333333333335

3333333333 33333333

33333

44 44 444 3333 32222 3333 333 22722222222 3333 lt 3333 2222222222222222 333 3333 2222222212222222222 333 3333 22222222 2222222222222 933 333333 2222 222222^2 333 33333 2222 333 2222 2222 22222222 Mil Mil

22222 t n n n t m n i

9393999 9999999 9S9D999 99999998 06088 9999D999 CD if 6080PC 9999999999999-ee 77 BBOufleB 9399999999 ess 77 essaooB 599999 6S 7777 0BC3683 i 6B 77777 OBBBBeGO i5 GGC 777777 6060300888808 iS 66G 7777777 55 laquoGlaquogt6 77777777 335 CUC66 777777777

035 GCG666 77777777777 4 5533 GG6G866G 777777777777-4 5535- GGGG6G6GCB 777777 44 Q3S 65665066666 444 K-5555 6GGG666GGG66

444 U55S5SS3S 6GGG6G6666

0

M M 1 M M 1 M 1 1 1 1 1 M 1 1 M M M M M M M 1 M M I 1 M 1 M M 1 M 1 M 1 M 1 1 M M 1 1111111 1111111111 1111111 1111111 22222222222 11M11 2222Z2222222Z2222 111111 2222 222222 111111 222 222222 111111 222 33 22222 111111 222 3333 22222 1M111 2222 pound2222 II111 2222 22222 11111 222222 pound22222 222222S22222

2-2222 U33 444 5525559353553 22222 333 44444 535555353533553 2222 333 444444444444444 2222 333333 44444444444444444 22222 3333333333939333 222222 32393333333333333333-2222222222222 22222222222222222222 2222222222222222222222222 222222222222222222222 222222222222222222222-2222222222222222222222 222222222822222222222222 2222222222222222222222222 22222222222222222222222222 2222222222222222222222222 222222222222222222222222 222222222222222222222 Mill Ml Ml 22222 11111111111111111111 11111 11111111111111111111111111111111 111 11111111 Ml 111111111 1111111111111111111111111111111 _ 111111111111 11111111M1111111111111 1111 0 1T1U 11111111111111111 111111111 11111 1111111 M M Mill 1111 Ml 111 111111 11111 111111111111111111111 bull M M 1111 111M11 2222222 Mill 11111 222222222222222222222222222222222 22 1111 Mill 222222222222222222222222 22222 1111 Mill 222222 22222 11M Mill 222222 333

(0)24031E-02 (9) 19) 2 2

3323E-02

2620E-02 (8) (B) 2 1927E-02 1225E-02 (7) (7) 2 1 0525E-O2 9S23E-02 C6) tB) 1 1

9122E-02 S421E-02 (3) (5) 1 1 7720E-02 7019E-Q2 14) (4) 1 1 6317E-02 5G1GE-02 (3) (3) 1 1 4915E-02 4214E-02 12) C2raquo 1 1 3513E-02 20ME-02

lt1) 1 1 2110E-02 1409E-02 (Q) 10708E-02

ESTIMATION ERROR CRITERION CONSTRAINT =

10000E-01

12303E-011

00 0 1

Figure 640A Contour plot of |PK( Z K)J I I f deg r t h e f i r s t s a n i P l e a t bull lt = deg - 4 6 for the case with scavenging parameter a = 00

fONTOUR PLOT Of tP(KK)lt2tKl) I11 AS A FUNCTION 3F IZ(K111 HOR1Z AND CZltKgt12 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-JTrtTC VALUE FOR LAROE TIME

10 bull 444 333333333333 444 333333333333 444 33333333333333 444 33333333333333

444 33333333333333 09 4444 3333333333333333

444444 33333333333333333

444444 33333333333333333333

44444 333333 3333333333333 14 3313 333333333333

06 raquo444 3333 33333S3333

07

09

04

444 S3 6C 77 4444 S3 66 77 4444 S3 6B 77 7 444 33 SB 7 444 S3 66 77

688 6068 86888

88808 888688

9959999 999939 S999999

9939999 99999999

4444 33 SB 777 8868- 8 9939999999999-444 Q3 68 777 8685888 3999999999

444 SS 666 7777 8888888 99989 444 Q3S 668 77777 888B588B

444 S3 66 777777 686088888 SS 66iJ8 777777 8886888888663-__ 880866686 333 3333333333 444 535 6gt6G 7777777

3333 3333333 44 53 5606 77777777 333 33333 444 335 66368 777777777

3333 222222 3333 44 333 666666 777777777777 333 2222222222222 3333 44 335 66666666 77777777777

3333 22222222222222222 3333 444 555 J 666666666 777777 333

333 333333 22222

0 6 33333 222 3 3 3 bdquo 2 2 2 2

K112 2222222 2222 111 bull 111111 1111111111111 1111111111111 11111 111

nil n u n

22222222222222222222 333 44 55 59 66666K66666 222222 2222222222 333 44 35035 66666666666S

22222222 333 4444 5553535553 666666666 222222 333 4444 55335333355553

22222 333 441444 55555335555555 11 22222 3333 1444444444444444

1111111111 22222 33331 4444444444444444 11111111111111 22222 1333333333333333 11111111111111111 2222222 3333333333333333333+ 11111111111111111111 22221222222222 111 J1111 11111 J 22222222L 11111 111111 22222222222222222222222 11 11111 22222222222222222222

22222222222 22222222222222222222bull 22222222222222222 222222222222222222222 i i t i i i

H i m l i n n m m

m i l m t i

m i m i

u r n i i i i m

1111111111111

22222 2222 222 222 3333333 222 33333 222 22222

222222 222222 22222 22222 22222 22222 22222

tradeHIbdquo

1111111 111 t m m i m 11111111

m 111 111 i i n bull i n 11111111 i m m m i i m i i i t

i n n i m m i

i i i i m i i i i i i i i m m i i lt i m m m i 1111111 11111 mn 11111 m i

22222222222222222222222 222222P222222222222222222 222222222P222222222222222 2222222222222222222222222 22222222222222222222222-222222222222222222222

111 11111111111111111 11111111111111111 11111111111111111 11111111111111111

2222222 2^22222222222222222222222222222222

222222222222222222222222 222222

3333

3VMB LEVEL RANGE c i i i t e i s t t i i t i i

(O) 2 3926E-02 (9) (9) 2 2 323BE-02 2550E-02 C6gt 161 2 2 1663E-02 1173E-02 17gt (7gt 2 1

0467E-02 9799E-02 (6) [61 1 9111E-02 6424E-02 (6) (5) 1 1 7736E-02 7040E-02 (4) (4) 1 1 6360E-02 5672E-02 (3) (3) 1 1 4983E-02 4297E-02 (2) (2) 1 1 3609E-02 2921E-02 (1) (1) 1 1 2233E-02 1546E-02 (0) 108S8E-02

ESTIMATION ERROR CRITERION CONSTRAINT gt

10000E-01

12300E-011

2

F i g u r e 6 4 J Cu i tour p l o t o f M O j ^ l K t h e

s c a v e n g i n g p a r a m e t e r as 0 1

sample a t t bdquo laquo 0 4 9 f o r t h e case w i t h

CONTOUR PLOT OF tPCKKKZCK) )311 AS A FUNCTION OF CZ(K)11 HORIZ AND LZ(K)]2 VERT EXAMPLE TO 8HOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEAOY-SATE VALUE FOR LARGE TIKE

10 444 3333333333303 444 33333333333333 444 33333333333333 444 333333333333333 444 333333333333333 09 bull 4444 33333333333333333 444444 3333333333333333333 4dlt 44444 333333 3333333333333 4lt 4444d 33333 3333333333333 4-4444 3333 333333333333 08 +44 3333 33333333333 3333 333J33333 3333 3333333 3333 33333 3333 22222222 333 07 bull 333 22222322222222 333 3333 222222222222222222 333 22222222222222222222 3333 22222 333333 2222 33333 2222 333 2222

4444 S3 66 77 4444 S3 66 77 444 S3 66 777 444 53 6 77 444 53 copy6 777

BB8B BBSS 66388 66888 663889

9999999 939399 9999999 995J999 99999999 _ _ _ 77 688B8B 999999999999 555 66 777 B8BBBBB 9999999999 I 55 666 7777 6886089 99999 I 55 666 77777 68686868 14 55 663 777777 888868888 14 55 656 777777 6238080808888 144 355 65t6 77777777 886886886 44 55 56-36 77777777 44 353 CG66B 777777777 444 535 666666 77777777777 335 66666666 77777777777 333 44 77777

2222 2222222 2222 11 inn 11111111111 11111111111

555 i 6666666666 __ 55533 6666^666666

2222222222 333 44 SSU5S5 666666666666 2222222 333 444 0353555553

22222 333 4444 3355535555355 2 2 2 2 3 3 3 3 4lt 14-1d 5 5 5 5 5 3 5 3 3 3 3 5 3 3

111 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 ) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 gt 2 2 2 2 2 2 2 2 2 2 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i l l 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 11111

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 2

2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2ZZ 3 3 3 3 9 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i 1 1 1 t 111111111 1111

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 Zi22222222222222222222222222222222

zxx m i 11111 2 2 2 2 2 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1111 11111 2 2 2 2 2 2 2 2 2 2 2 1111 1111 2 2 2 2 2 3 3 3 3

1 1 1 1 1 n u n 1 1 1 1 1 1 m m l i n n i n n i n n m i

bullHI

2222222222222222222222 2222222222222222222222 222222222222222222 2222222222222222222 2222222222222222222 22222222222222222222222 222222222222222222222222 2222222222222222222222222 Z222222222222222222222222 22222222222222222222222 22222222222222222222

111111 111111 111111111111111 111111111111111 111111111111111 111111111111111

T I W a B 2 0 0 0 E - 0 1 F I R S T MEASUREMENT

bull bull bull bull bull bull l i B i i n i i l CONTOUR LEVELS

AND SYMBOLS

SVMB LEVEL RANGE

1 0 ) 2 ~ 3 7 S 9 E - 0 2

( 9 1 2 ( 9 ) 2

3123E 2447E

0 2 0 2

( 8 1 2 ( 8 1 2

1772E 1096E

0 2 0 2

( 7 ) 2 ( 7 ) 1

0 4 2 0 E 9 7 4

0 2 0 2

( S I 1 ( 6 1 1

9 0 6 8 E 6392E

0 2 0 2

( 3 ) 1 ( 5 ) 1

7716E 7041E

0 2 0 2

( 4 ) 1 ( 4 ) 1

63G3E -56B9E

0 2 0 2

( 3 ) 1 ( 3 ) 1

5 0 1 3 E 4 3 3 7 E

0 2 0 2

( 2 ) 1 ( 2 ) 1

3 6 6 1 E

2 9 8 5 E 0 2 0 2

( 1 ) 1 ( 1 ) 1

bull 2 9 0 9 E 1 6 3 4 E

0 2 0 2

( reg ) 1 0 9 5 8 E - 0 2

E S T I M A T I O N ERROR CRITERION CONSTRAINT =

l OOOOE-01

S O U R C E I M P U T COVARIANCE tWi I 1 2 5 0 0 E - 0 1 1

MEASUREMENT ERROR COVAR I V

E 0 3 0 - 0 1 [ - 0 0 2 3 3

Figure 640C Contour plot of [PJlt(K)]II f o r t h e f 1 r s t s a m p 1 e a t K = 0 S Z f 0 r t h e C a S e w 1 t h

scavenging parameter o = 02

10300E-01

80D00E-t2

0OOOOE-O2

4000CE-02

20000E-02

n i n - n bulllaquolaquolaquotradelaquolaquolaquo2222222222 1 1 222222222 11 22222222 1 222221 11 222222 11 1 22222 1

11 1

11 ^222 1 1 2222 1 1 222 11 11 222 1 i 1 222 1 1 222 M a a a a a a a a a a a a M 3 3 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 -

22 3331333333 1 i 1 2 11 22 1 22 1 2 33 122 333 1 233

3333 1 i 333 1 i 1 1 1 1 1 1 i

1 1 1 1 1

13

3 3

i

i i

(

Figure 641 Plots of deg+N(ziz versus time t K + N for systems with scavenging parameter a 3 00 10 and 20 plotted with symbols 1 2 and 3 respectively Notice how iwgt samples occur for the cases with large scavenging terms compare with Figure 639

257

6311 Problems with Multiple Sources mdash Though the results for the problem with a single point source are general two cases are inshycluded here with multiple sources to demonstrate the applicability of the infrequent sampling concepts when more than one source is injecting pollutant into the medium Compare three cases Including one two and three point sources with their respective source location vectors given by

w s [deg4 gtbullbull[]bull 01 03 08

(f82)

For consistency each of the three independent sources is specified by the same variance [W]JJ = 0125 1 = 123 as In previous examples Since the total disturbance to the system 1s more In the multiple source cases than for just one source as in past examples the response of the output variance ojjtzlz) grows faster with time In order to allow a sufficient number of time steps for the steady-state assumptions in (518) and (520) to hold a larger error limit is used 1n these examples of = 05

A plot of the maximum variance in the output estimate aj+N(ztz) 1s included for the three cases in Figure 642 trajectories for one two and three sources are plotted with symbols 1 2 and 3 reshyspectively over the time Interval 0 lt t lt 4 It is seen that the greater the noise input to the total system the faster the maximum uncertainty 1n ths pollutant estimate Increases

Contour plots of [Ppound(zbdquo)] at the first sample times are shown for the cases with one twgtgt and three point sources in Figure 643 The general shapes of the surfaces change from those with just one source For the two with multiple sources the original source from all the

sooooe-ci i

3

3 4 2 3 2 4 4 9

2 9 2 9 3 2 3 2 1 3 9 3 11 J 2 9 It 2 11 9 2 3 tt

11 9 11 2 11 9 2 U 9 2 2 3 2

raquo _32 9

9 2 3 9

2 11 I 2 311 2 31 pound 11 Z 11 3 2 11 3

2 l 3 laquo

bull3

t3

2 3 2 3

V 32 32 32

3raquo 3 1 3 11

2

211 3 2 3 11 3 3 112 2 11 2 3 2 3 2 2 2 3 2 3 2 3 2 3 1

C 3 2 2 1

2

11 3 2 3 2

3 2

3 2 3 3 2 3

3 2 3

3 2 3

3^ 3

3 1 2 tl

1 1 t

2

I

Figure 642 Plots of lt^+ M(sJ[z) versus tine t K + N for systems with one two and three sources plotted with corresponding symbols for sources with positions given in (682)

COHTOOT FLBT OP t M K i O I 2 I 1 0 raquo 1 1 1 AS FWCTIOH O r Z(K131 HCRI2 AW t Z ( K ) ) 2 VERT EKATtPLE TO SMOW EVOLUTION OF VARIANCE IH CUTTUT I3yen |laquoATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LAR9E TIBC

C Z ( K gt 3 2

0 3

333 22 333 222

3333 22 33333 22 3333 222 333 22 33 222

222 222

2222 2222

22222 222222 22poundP22 222223 2222

222 222 222 222

bull 2222 22222 2222

111 222 33 44 9 9 1111 2 2 2 3 3 4 4 9 3 1111 2 2 2 2 3 3 4 9 3

111 11 2 2 2 2 5 3 4 4 6 3 111111 2 2 2 3 4 4 9 111111 2 2 2 2 33 4 4

1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1111111111111 222 33 44 111111111111111111111 2Z 33 111111111111111111131111 222 333 11111 111111111111111111 222 33 1111111111111111 22 333 11111111 22 33 11111 222 - -

ISO 180 6G3 CG66

USS8

77777 laquoC5EpoundB 777777 eCBBBSS

77777 P6BBS68 77777 8868888888

777777 BeSBSBBB

1111 111 111 111 111 111 111

9668 777777 BBSS a gt 66668 777777

355 66666B 77777777 i 5533 6S6668 777777777 14 G33S9 GB66BB 777 gtlaquolaquo 55555 CC6666S 444 555533 66C6666BCL

4-14 5535533 6B666EG66 4444 55555335 688

4ltJ444 33555553 4444444 555333555

bull 1 1 2 2 3 3 3 1111 2 2 2 3 3 3 3

1 ( 1 2 2 3 3 3 3 1111 2 2 2 33 13333

111 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 111 111 2 2 2 2 111 1111 Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

1111 H i l l 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11111 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 11111 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 1111

2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 3 3 2 2 1111 2 2 2 2 2 2 2 3 3 4 4 9 5 5 5 9 9 9 S 4 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +

2 2 2 3 3 3 4 9 6 6 laquo 9 4 3 2 2 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 lt 333 44 33 6 77 77 ( 5 9 4 3 222

3333 44 5 6 77 tSB i 7 6 S 4 1 3 3 2222 222222222222222 444 95 B 7 U 999 MB bull 7 S 9 44 3 3 Z22raquo22222222222222222222222222

444 S C 7 0 99 99 e 7 C 55 4 33 221222222222222 22222222k -I S 5 6 7 8 B M 0 laquo bull 8 7 H 9 4 3 3 2222222^2222222 22222222 22i 444 9 6B 7 B 99 99 B 7 e 9 44 3 3 222gt22222222222222222222222222222

444 95 B 7 48 999 B 7 6 5 4 3 2222 22222222222 333 44 9 9 77 BBSBBB 77 6B 9 44 33 222 1111111 333333 44 9 66 777777 6 9 4 3 222 1 f 1111 M1111111111111 Ml 11111111

333333 44 553 66BB 5 5 44 3 222 1 1 1 1 1 1 1 1 1 33333 444 0553 44 33

3333 4444444 3 3 222 3333 3333333 333333 222

bull33333333 333333 2222 3333 2222222

4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 444 333 222222222222

11353 44 333 2222222222 5555 44 3333 222222222

H i m 1111111 m i n i m i

1111111H11 m m _ 111111111111111111111 222222222

2222222222222222222222222 333333(313 222222222222

3333333lilaquo33 222222

SVKB LEVEL RANGE

CO) 2 7 6 0 7 6 - 0 2

C9gt ( 9 )

2 6 9 9 9 E - 0 2 2 6 3 9 1 E - 0 2

8 J I B )

2 9 7 8 - J E - 0 2 2 9 I 7 6 E - 0 2

C7gt lt7gt

2 4 S C 9 E - 0 2 2 3 9 G I E - 0 2

CSgt 16gt

2 3 3 S 3 E - 0 2 2 2 7 4 6 E - 0 2

lt5gt lt5gt

2 2 1 3 8 E - 0 2 2 1 5 3 0 E - 0 2

141 C4)

2 0 9 2 3 E - 0 2 2 0 3 T 5 E - 0 2

1 3 ) lt3gt

1 9 7 O 7 E - 0 2 1 9 1 0 0 E - 0 2

C2gt 121

1 B 4 S 2 E - 0 2 1 7 6 6 4 E - 0 2

1 1 1 ( 1 1

1 7 2 7 7 E - 0 2 1 6 6 6 9 E - 0 2

lt9gt 1 6 0 6 1 E - 0 2 ESTIMATION ERROR CRITERION CONSTRAINT gt

9 0 0 0 0 E - 0 1

SOURCE INPUT CQVARIANCE I W 1 I I 2 5 0 0 E - 0 1 ]

OSO - 0 1 - 0 0 2 9 1 bull M l t i l l t l l l l

Figure 643A Contour plot of | E $ ( J K ) fdegr t h e f i r s t sample at t R = 365 for the case with one source at z w s 03

CONTOUR f L O T OF I P t K bdquo K gt C 2 t K 1 ) J11 AS A FUNCTION CF I Z lt K raquo HSRIZ AND t Z ( K gt 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ES1IKATL W I T H T I K E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LAROE T I K E

tZ(K)3pound 09

11 1111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111

m m m m l i n n 111111 m m m i i m m m m

11111 m m m i l l m i l l

11111 111111

m m 1111111 1111111

l u i i i i 11111111

i m i i i 1111111 11111111 1111111U 11111111111

2222 2222 2222 2222 22222 22222 poundpoundpound22 22222 222222 22222 22^222 22222 22222 22

333 333 333 333 333 333 333 333

444 4444 444 444 4444

35333 335=3 35353 553553 33553 35555 5555533 553333

666666666 ee ~gtSSE66E0 6 6666C66B 56EGGCGG66 6amp6G6G6G6C666SS8

66S56GC6G6ee6 666666666 333 44-4 3333553 333 444 S53353SS5 3333 4444 35553553355 3333 44444 3335535535533353 333 444444 535355355355533 3333 34444444 0555355335 222 3333 444444444 pound2222 3333 44444444444 22222 33333 444444444444444444

2222 333333 4444444444444444 2222 333333333 4444444 2222 3333333333333 22222 3333333333333333333333 2222222 33333333333333333 22222222222 22222222222poundlti22222222 1111111111 gggzegeeeeezggezzezzgggggzz 1111111111111111111

t i t 11111111111mm u i i n m m m i n u m 11111m i n m m i n m m

111111111 n i i n u n i n m u m i n i m m u i i i i i i i i i m i m i i m i m m i

222222

i i i u m i n 2222 3333333333 pound222 3333333333333333 222 3333033333333 33333 2222 333333333^3333 3333 222

333 222 3333 222 44444444444444444 3333 222 4444444^4 3333 222 53555553 44laquo444 3333 222 5S555 44444 3333 222 666C66665 533 444 333 2222 777777 66 55 444 333 2222 77 66 555 444 333 see 77 e 555 444 333

111111111111111111 11111 11111111111111111 11111 111111111111111111 11111 111111111111111111 11111 111111111111111111 11111

itmtmmmui 11111 111111111111111m

in 44 333 tgt5 44 333 999 OS 77 60 55 444 3333 0 09 6 7 BE 55 444 3333

2222222222222 111111111111111111 111111111111111 1111111111111111

i i m i m m i n 111111111111111 111111111M11 11 i i m u i i t m t i

m i m i i u n t i l i i u m

11111111 i m m m 11111111111111111111111111111111111111111

i i m n t m m i i m i i m i i m i i i i m i 11111111111111111 2222222 222222222222222222222222

222222222222 2222222222222222222222222222222222222222222222 222222

SfHS LEVEL RANGE (0) 32227E-02 19) lt9gt 30316E-02 46404E-02 10) lt8gt 46492E-C2 44530E-02 (7) lt7gt 42E68E-02 4Q7SCE-0Z lt6gt 6raquo 3B344E-02 36933E-CZ (31 (3) 35021pound-02 33I0SE-02 14 31197E-02

29283E-02 3) fraquol

27373E-02 234C1E-02

(2) (2gt

23550E-02 21638E-02

Jl) 19726E-02 17ei4E-02 (copy) 15S02E-02

ESTIMATION EtfROR CRITERION CONSTRAINT -5Q0aQE-01 SflURCE INPUT C^VARIANCE [W]gt [ 1 2 5 0 0 E - O 1 1

H S A S U R C A E N T EJTROR C O V A R t v j laquo

Figure 643B Contour plot of [ E ^ I ^ L for the first sample at t K = 140 for the case with two sources at z = 1010311

amp R 3 amp k deg I O F IP(KKgtZKraquo5311 laquo A FUNCTION 3F IZIK1J1 HOR1Z AND CZltKI]2 VERT lpoundW2VL T 2raquo S M O w EVOLUTION OF VARIANCE IN OUTPUT EST I KATE WITH TIHE POSITION OF tflAXlPlUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIHE

tZltKJ]Z 05

11111111 TTTTrfTT 11111111 11111111 11111111 111111111 111111111 111111111 1111111111 11111111111 11111111111

111 i n n I I t i u t i i u U] J 3 I M n m 111111m m i i n i i i i i i n m i i i i i i i i i

1111111111 222

2222= 2 2222222 S^SSSSSSSS26222ZJ-^Z2 2222222222 222222222222 222222 -^olaquo--tradebdquobdquobdquo ^ 33333333533 2222 i l i i l l i i S s M S 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ^

22221 323 444 55 66SS6 22222 313 444 55 666G6 ZZ2Z 3pound3 444 35 66666 2222 3333 444 553 66656 2222 333 44 553 66G6G 22222 333 44 555 666CC6 2222 333 44 555 6CGe66 2222 333 4lt14 555 6666068 ZZ7ZZ 333 4ltI3 555 66CSCC666 2222 333 44 555 666G60C66666666S658 222Z2 333 C M 555 666G6G666666666e666 2222 333 44 553 6666G6666C6G6666 2222 33J 444 5555 2222 Di3 AAA 55JSS5S 2222 323 4444 55550555555555535555 22T 333 44444 2222 3333 44444444444444444444^444 2222 33333 444444444444 22222 3333333333 222222 333333333333333333333 1 222-222222 1 22222222222222222222 1 22222222222222222222222 2222222222

333333353333353 33333 3333 333 S A A A fl 4444 4 4 44444 44444lt4lt 14444fl44laquoJ4444444444 333 4444444 4 (bull A 444 AAAAAamp4A 333 _ bdquo laquo laquo bdquo 4444444 333 5355555555 44444 J33 535555535555 3 4 3 333 elaquo ^ laquo laquo bdquo 555555 4444 333 666bS666666 55553 4444 333 7 7 7 ---65Spound 553 444 333 - - - - I 7 7 7 7 ^66 555 444 3333 SDSB8Q 77 66 533 AAA 2333 D Q O a o o

a e 8a 7Z 66 355 444 33333 deg 9 3 9l2r f i 0 sect raquo Z7 66 555 444 33333 9399 86 77 6 555 444 33033 7 C66 550 444 33323 77 566 555 444 33533

2222 222 222 222 222 22-gt2 222 222 2222 2222 2222 2222

1111111111 111111111111111111111 11111 1111111111111111111111111111111 11111111111111111111111111

993 6B 2222122 22 tl _gt2232 2i3gt222222

222 22222222 222222222

COMJteuR LEVELS NO SYMBOLS SYHQ^EVEL RANGE (O) 56137E-02 (9gt (9) 6 5405E-02

B2673E-02 (8) (6) (7) (7)

S9940E-02 _B720Spound-02 I -4476E-02 5 1744E-02

(6) (6) 0 9011E-02

0 6279E-02 (5) C5) A3547E-02

laquo 0615E-02 (4) (41

96032E-D2 3 5350E-02

C3) (31 3 2 6 i a E - 0 2

B903CE-02 (21 (2) 6 7153E-02

C4421pound-02 (1) (1) B1609E-02

183572-02 BfOgt_l -6224S-02 ^ll^TioN 3 K O L c f c n e R i o r i CONSTRAINT 3

5-ooooe-oi

12500E-OU

OI

Figure 643C Contour plot of L^SKOJn f o r t h e f 1 r s t s a m P l e t K = 1 0 deg f o r t h e c a s e w l t h t h r e e

sources at z = [OlOSOS]1

262

previous examples 1s included at z = 03 and results in the rises 1n the s p a c e s near that location In Figure 634B the second source at z w = 01 1s added which significantly Increases the uncertainty in the region near the left end of the medium In Figure 643C a third source at z s 08 results 1n a slight rise in that area

It seems 1n Hne with the results of Section 639 that the dimenshysionality of the model effects the sensitivity of the response of the

It surface [Pbdquo(z] to the locations of sources ilaquo the medium This can -K -K n

be explained as follows The model used in these two cases has only five modes retained in the modal expansion The spatial mode shape or

elgenfunction for mode n is of the form cos ((n-1) TTZ) where 0 lt z lt 1 in these examples Thus near the end z = 0 all n modes have e1gen-functions which approach unity whereas for other positions out into the medium cancellations can occur Heur^stically the effect of a point source nearer z = 0 should be greater in each of the modal equations resulting in a larger uncertainty in that region of the surface than 1n other areas The response near z w = 03 and z = 08 should then be more like that in the area of z = 01 if a greater number of modes were retained demonstrate this concept Figure 644 shows the contour for [E^(laquo K)] for the same problem with j w as in (682) for three sources but with n - 10 modes retained Comparing this plot with Figshyure 643C shows greater definition in the response near the region of the source at z = 08 In the limit as n -raquo raquo the response of the surface [PIAZ)] to a single point source should be more nearly the same for all w 0 lt laquo lt 1

In cases with multiple sources the dimension of the model also efshyfects the variance in the estimate of the output ltj^+N(zJz) as a function

CONTOUR PLOT OF I P f K K J t Z(Kgt raquoJ1 t AS A FUNCTION CF I Z t K I J I HORIZ AND I Z ( K I 3 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E POSIT ION OF MAXIMUM VARIANCE APPR6ACHE3 STEADY- TATE VALUE FOR LARGE T IME

IZ(Kraquopound 03

111111 11111 1111111 111111 11111111111111 11111111111111 1111111111111 -1111111111111 1111111111111 11111 1111 111 1111 1111 1111111 1111111 1111111 1111 111 111

222322 2222222 222222

2222 222 222 222 222 222 222 2 222 2222 2222 zzz

AAA

AAA

i53

6CG6 66SS 666 668

I 55 6 77 I 55 6 7 B 55 6 77 6 53 ee 7 ei 55 66 77

7777777 777777 777777 77777 7777 777 7 oeoeaoo

6 8 8 8 0 0 8 6 6 8 8 8 9 9 9

iliiilHliHHilaquo

111111 1111111 1111 11 1111111 11111111 11111111 11111111 11111111 i m i n i i i n i n t 1111H11

3333 3333 3333

3333 3333 3333 3333 3333 333 333 333 _ _ _ _ __ 333 AcA 53 66 7 88 8638 77777 3333 i4A 55 66 77 S68 77777 2222 3333 10 55 66 777777 666666 2222 333C 444 555 666666666 22222 3pound3 AAA S555S5amp535b5553553533 pound222222 C-33 444444 2222222 3333 4444441444444444444 2222222 33333333333 222222 333333333333333 22t2^22 33333333

2-ll 222222222222222pound 22222222222222222222222 pound2222222222222222 1111 111111 111111111 111111111 11 11

2222222222 2222222222222222222222222222222222 Z222222222222222 222222 333333 3333 22222 333 AA4AAAA4A 33 2222 444444444444 444444 555555 AA 33 22222

5 3 5 3 4A 3 3 5353353 - 5 5 6G666 55 44 333 5353555555iS3333 663660 03 44 333

553535555555 666 35 4 333 35355555555 555 4 333

55555553555033 44 33 666666066666 55555555 44 333

666 55555 44 333 77 66 55553 444 3333 3 7 66 5355 444 mdash

99999 999 68 7 66 555 44 93 6 1 666 55 44 O 93 J 77 666 55 44 323 222i2f2 99 6 77 666 55 44 333 Z22Z27gt 99 6 77 666 53 44 333 22222f2r3 99 6 77 656 35 44 333 222221212 99 6 77 666 5 44 333 222pound -22

11111 1111 11111111111111 til 11111111111111111111111 111 11111 till 11111111111 11111111111 111111111 1111111 1111 11111 1111 1111111 11111111111111111111(1111111111 111111111 11111111111 2222222 11111 11111 2222222 111 1111 1111

bull bull 1 1

2ZZ222 2 2 2 2

2 2 2 1 1 1 2 2 2 1 1 1 1 1 11 2 2 2 1111 I 11

2 2 2 1 1 1 ) 1 1 1 2 2 2 2

3 3 3 3 2 2 2 2 2 2 2 3 3 3 3

3 3 3

111111 111111111 111111111111111111111 1111111 1111

11111111111111111111111111111 m i 11111111

2 2 2 Z 2 2 2 J 2 2 2 2 2 2 2 2 2 2 2 i - 2 2 2 2 2 2 2 2 2

pound 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

SYI-S

( 0 1

LEVEL RANGE

6 T 3 1 2 E - 0 2

t9gt C9)

5 e9S-3E-02 3 6 6 Z G E - 0 2

( B ) ( 8 )

5 4 2 S 3 E - 0 2 5 19-CIE-Q2

C7) ( 7 )

4 9 5 9 7 E - 0 2 4 7 2 5 3 E - 0 2

( 6 ) ( 6 )

4 4 9 1 0 E - 0 2 4 2 5 6 7 E - 0 2

15) ( 5 )

4 0 2 2 4 E - 0 2 3 7 6 6 1 E - 0 2

( 4 ) C4gt

3 5 5 3 3 E - 0 2 3 3 1 9 5 E - 0 2

( 3 ) ( 3 )

3 0 8 5 2 E - 0 2 2 3 5 0 9 E - 0 2

lt2gt ( 2 )

2 6 1 6 6 E - 0 2 2 3 8 2 3 E - 0 2

( 1 ) ( 1 )

2 1 4 7 9 E - C 2 1 - 9 1 3 6 E - 0 2

ltcopyraquo 1 6 7 9 3 E - 0 2

ESTIMATION EPROR CRITERION CONSTRAINT =

5 0 0 0 0 E - 0 1

1 2 S n o E - 0 1 )

Figure 644 Contour p lot of | P [ [ ( Z K ) for the f i r s t sample at t K = 102 for the case with three

sources at z = [0 1 0 3 0 8 ] T but with f i l t e r model of dimension n = 10 Compare with Figure 643C where n three sources

5 note hiaher resolution in surface near positions of

5000DE-01

47000E-01

4400QE-01

41000E-01

3SOOOE-01

5SS 0000500000 9 00 I 5 0 I 5 1 S 0 3 0 5 3 0 5 0 3 0 0 Q 0 5 0 3 9 3 0 5300000000 9 0

9 0 6 3 0 99 0 3 9 0 9 9 0 0 S O ft 00 deg- laquobull bull o o 3 0 0 so o oo 30 0 00 3 0 0 000 3 0 9959 0000000 5 ) 0 35333 535555399355555 6 00 0 93 33 00 0 S3 3 000 00055 55 OOOOOOOOOOO 55 55 5 3 5 5335 5553 535

bull0E00 2OO0E-O1 400DE-OI 8000E-01 POSITION Z

Figure 645 Plots of oK(zzj at first sample times t as functions of position z in the medium for case with three sources at z = [010308]T and filter models of dimension n = 5 and 10 plotted with symbols 5 and 0 respectively Compare with cases with just one source

265

of position z in the medium The cases corresponding to the plots of

C E K U K gt ] 1 Figures 643C and 644 for n raquo 5 and 10 are plotted in

Figure 645 with symbols 5 and 0 respectively Here again dimenshy

s ional i ty effects the resul ts

64 Optimality in the Management Problem

Demonstration of the optimality of the monitoring sampling program as proposed in Section 58 can be made by cross-comparing many of the examples included above Two particular choices from Section 635 perhaps serve to demonstrate better than the others extension of the scalar results of Conclusions XVI and XVTI to the vector case Let Pjj = M Q at t Q be defined in (657) as before and choose the time inter-

2 val of nterest as 0 lt t s 1 Let cr = 0150 for a monitoring problem with bound on error in the output estimate However compare the followshying two sampling schedules

(1) Predict to time tbdquo when K l

sample then predict to t = 1 (2) Predict to time t bdquo when

K 2

7 9

sample then predict to t = 1 (683) The plot showing the trajectories for the two programs in (683)

plotted with symbols 1 and 2 respectively is in Figure 616 Both schedules result in only one sample time over the interval 0 lt t lt 1 such that since both require the same number of samples to maintain the estimation error within its bound the schedule resulting in the lower variance after both have sampled is clearly the better sampling program

12000E-01

S0000E-02

300D0E-D2

22 222

bull a

2 2 2 2 2

1 1 1 2 a 2 a r

1 1 1

11

pound22 22

22 222

11 111

11 11

bull i bull

1 I 1 n -

11

2 11

11 11

111 11

11 11

11 1 gt1 1 1

It 111 Ml

11

11 i

I 2

M 1 2

2 2 12

1 1

I 1

1 1 1

1 1 1

1 _1

11

2 [1

gt 0E00 2000E-01

Figure 646 Plots of ajLu Ui gt 2) versus time t K +bdquo for sampling schedules (1) and (2) given in (638) plotted with corresponding symbols note optimality of the second sampling program at end of time interval shown

267

Since the error in schedule (2) is lower at the end of the interval 2 2

sampling at the limit when at t cC gt a is seen to be superior Thus extension of the scalar results to this particular vector example shows that here sampling at the limit is optimal

Naturally this is not a proof but merely a demonstration in one particular example However for all cases studied to date extension of the scalar results for the optimal management problem to the vector case has been seen to be valid further indicating that proofs for the proposed extensions in Sections 582 583 and 584 may be possishyble for the vector case

268

CHAPTER 7 SUMMARY AND RECOMMENDED EXTENSIONS OF THE MAIN RESULTS

Here are gathered the main results for the class of optimal monishytoring problem considered in this thesis with suggestions of certain areas in the theory where future expansions should be considered The format is brief since concise statements of the conclusions resulting from this study as listed at the beginning of this report are conshytained within the main chapters themselves

71 Summary

The problem of the optimal monitoring of pollutants in d i f fus ive

environmental media has been studied in the contexts of the subproblems

of the optimal design and management of environmental monitors for bounds

on maximum allowable errors in the estimate of the monitor state or outshy

put variables Concise problem statements were made in Chapter 2 see

(27) and (28) Continuous-time finite-dimensional normal mode models

for distr ibuted stochastic d i f fus ive pollutant transport were developed

in Chapter 3 see for example (337) and (340) and Figure 32 The

resultant set of state equations was discretized in time for implementashy

t ion in the Kalman F i l t e r in thf problem of optimal state estimation in

Chapter 4 see the optimal f i l t e r algorithm summarized in Figure 4 1

The theory of the solutions for problems of the optimal design and

management of environmental monitoring systems was developed in Chapter 5

The general solution of the optimal monitoring problem with bound on ershy

ror in the state estimate has been stated see (513) The general solushy

t ion for the optimal monitoring problem with bound on error in the output

estimate has also been found see (563)

269

The main results of this thesis concern the special class of optishymal monitoring problem called the infrequent sampling problem For the case of time-invariant linear stochastic diffusive systems where the maximum errors allowable in the monitored estimates are relatively large drastic simplifications in the solutions of the optimal monitorshying design and management problems are possible as set forth in all of the conclusions in Chapters 5 and 6 The final results for the optimal monitoring design problem in the case of infrequent sampling with bound on error in the state estimate are contained in Conclusion VIII The final results for the optimal monitoring design problem for the case of infrequent sampling with bound on error in the output estimate are conshytained in Conclusion XII Extensions to systems including pollutant scavenging were made results are in Conclusion XIII Extensions were made to systems with fixed boundary conditions as summarized in Conclushysion XIV The theory was found to apply for systems with emission or radiation boundary conditions in Conclusion XV which completed the exshytension in the design problem to all systems with general homogeneous boundary conditions

The optimal management problem was solved analytically for scalar systems see Conclusion XVII Though an analytical result for the vecshytor case of the optimal monitoring management problem was not found an intuitively satisfying heuristic proof was proposed (see (5196)) based upon the concept of the amount of correction made to the error in an estimate at a measurement in the scalar case found in Conclusion XVI

The general result for the infrequent sampling monitoring problem in arbitrary coordinate systems with various boundary conditions is conshytained in Conclusion XVIII

270

In Chapter 6 a considerable number of numerical examples are ofshyfered in substantiation of the theoretical results of Chapter 5 Various forms of graphical computer results serve to illustrate many of the more salient points of the theory of the infrequent sampling monitor

72 Recommended Extensions

The main contribution of this study has been to demonstrate to future resuarchers that optimal solutions for monitoring problems in large comshyplex environmental systems will likely come from the study of an imporshytant special case the infrequent sampling monitoring problem A great number of extensions and refinements are seen possible by this author this work has really only begun to scratch the surface of a large set of problems where the theory of the infrequent sampling problem may apply Some o f the more important areas for future consideration are suggested in what follows

Recent extensions nave been made by others of concepts of industrial engineering and operations research to the areas of dynamic system theory and optimal measurement system design The work of Bar-Shalom et at

[16] applies stochastic system theory to the resource allocation problem when uncertainty 1s included in the system Aoki and Toda [5 ] have conshysidered adaptive resource allocation for decentralized dynamic systems All of these areas of theory - resource allocation as It applies to optishymization of measurements stochastic control as it relates to taking noise-corrupted measurements and decentralized dynamic systems for the study of large coupled dynamic processes mdashare relavent areas for future study in the optimal environmental monitoring problem

A useful extension of the fundamental concepts of Kalman Filter theory ib to the problem of optimal pollutant surveillance in environmental

271

systems (see for example Brewer and Hubbard [23]) By using the smoothing form of the Kalman Filter (see Gelb [44] Bryson and Ho [26] and Jazwinski [65]) it is possible to construct a monitor whose purpose is to identify from measurement data the source which is injecting a harmful pollutant into an environmental region - its location strength etc Such a detectionsurveillance monitor could prove t be of great value to regional pollution control districts

Many of the mathematical procedures used in this study are subject to refinement PosMbly the critical algorithm is that of the constrained optimization of a nonlinear function of many variables The algorithm used here by Westley [127]was thought to be one of the superior gradient techniques in nonlinear programming when it was written However Westley [128] has since suggested consideration of the newer algorithms due to Abadie [i 2] using the generalized reduced gradient method as alternative and more powerful local minimization techniques In this area of the extremlzation of a function with many local extrema there is still the problem of determining whether or not the local minimum found is the global minimum There still appears to be no analytical solution to the problem of global minimization [20] Though not considered here pure random search techniques rather than steepest decent or gradient techshyniques might possess better convergence characteristics for optimization in larger dimensional spaces which would result from a y practical applicashytion 1n monitoring system synthesis a starting point for future work here could be Ksrnopp [68]

The efficient and accurate modeling of environmental pollutant transshyport has long been a problem of concern to researchers and indeed conshytinues to be As the complexity and size oT systems studied grows so

272

does the need for more efficient modeling techniques A new application of the collocation methods from the theory of partial differential equashytions has been made by Michelsen et al [94124] state-space models of exshytremely small dimension (like five or six states) have been used with greater accuracy than more routine finite-difference models of very large size (like one thousand cells) for the solution of the transport equations of a fixed-bed chemical reactor This technique could be a powerful alshyternative to the separation of variables methods used in this study in systems where analytical expressions for eigensystems cannot be found as was the case for fixed-bed reactors [39]

The general results for the infrequent sampling problem suggest poshytential application to any modeling technique for physical systems where certain dynamic terms dominate all others in the asymptotic response This is allied to the theory of systems of stiff ordinary differential equations [43] and to the area of singuar perturbations in control sysshytem design [72131] Application is thus seen to extend to mechanisms of pollutant dispersal other than just Fickian diffusion through the use of say finite-difference modeling techniques (see Goudreau [47] for comparishysons of finite-difference methods) This is thought to be a particularly fertile area for future extensions since by applying finite-difference techniques to distributed systems of various configurations tiio resultshying differential-difference equations could be cast into a form which can be diagonalized into a finite set of modal state equations (see Loscutoff [79]) these modal equations would then clecrly exhibit the ordering of the eigenvalues which Is essential to the infrequent monitorshying problem

273

Extensions are thus suggested to pollutant dispersal processes which combine diffusion with convection Such processes embrace a wide variety of environmental systems among them being air pollution river and estuary water pollution and groundwater pollution A recent study by Oesalu et al [311 shows how stochastic models for air pollution can be derived a way which lumps lt11 the nondiffusive terms in the combined transport equation into time-varying source terms and then treats the resultant problem as one in Fickian diffusion The use of such a techshynique seems to open a logical area for application of the theory assoshyciated with the infrequent sampling problem

Other applications in such extensions to air pollution monitoring conceivably include use in the cost-optimal validation of regional and global atmospheric pollutant transport models [8081] Considerable effort is being made toward modeling regional atmospheric pollutant transport phenomena Extension of the infrequent sampling ideas ot this study to such areas couid result in the cost-effective validation of such models As mentioned before application to modeling the upper atshymosphere could help in determining where and when to fly high altitude aircraft for taking air samples for global atmospheric model validashytion A likely application of the extension to surveillance monitoting systems mentioned above would be in detecting radon gas source positions and strengths in uranium mine shafts and in geothermal wells the release of radon has been coming under closer scrutiny in recent years as man has increasingly disturbed the environments where it had heretofore remained entrapped

274

Another application associated with uranium might be to the Nationshyal Uranium Resource Evaluation Program In this study tens of thousands of soil samples are to be taken in the western United States Upon deshytermining the amounts of certain trace elements contained in these samshyples this data will be used in a large pattern recognition computer program in order to learn whether the existence of such trace elements is correlated to uranium ore deposits in the areas where the samples were taken An extension of the infrequent sampling ideas might include findshying time scales over which dynamic models ol the trace element transport through environmental systems would be valid With the use of such models which would apply over say days months or years cost-effecshytive sampling programs for the identification or uraniui deposits could result

The initial application of optimal monitoring system synthesis conshycepts to river and estuary pollutant transport has been proposed by Moore [95] This author feels that extensions of the infrequent sampling problem ideas could be made there to simplify monitoring system design for aquatic ecosystems

Finally applications could be studied in the areas of atomspheric and aquatic radiation monitoring systems Applications are suggested in designing minimum-cost air sampling letworks for example in the monishytoring of atmospheric radiation levels in regions where underground nu-ciear experiments are conducted An interesting extension of the surshyveillance application suggested above could be made here in attempting to identify sources of radiation from air samples gathered by a minimum-cost monitoring network Another possible application could be to the cost-effective design of radiation detection networks for monitoring

275

groundwater radiation levels [1203 Variations of this might also inshyclude applications in the siting of nuclear power reactors and in the determination of best locations for their associated nuclear waste stor age sites In such applications the intent would be to find locations where soil conditions were such tliat in the event of leakage of nuclear waste substances into the so Jl effects to surrounding groundwater sysshytems would be minimized

All of these areas may be hypotehtical at Lest but deserve future study for the application and extension of the concepts presented in this study for the infequent sampling problem possess a great potential for improving and advancing the design procedures of cost-effective environmental pollution monitoring systems

276

APPENDIX A DISCRETIZATION OF THE STATE EQUATION

Given the linear tine-invariant system x = Ax + Bu (Al)

Takahashi [121] and others have shovm that for step size T s (t K + - tbdquo)

bdquo e4Tbdquo AT iK+1 e =K -AT KJ1 = e~Xi + e- I e - BU(T) dT

J0 (fi2)

T = t - KT

This expression is now put into two more useable forms for machine app l i shy

cation

Since y ( t ) is held constant over time in terva ls i e y ( t ) = u ( t K )

TI _fl~ ^K+l e T x K + e T e T d T BuK

= e AT K + e A T [ _ ( e - A T T JJ A -1 B u K

where the matrix exponential is given by

n=0

(ST)

(A3)

(A4)

Equation (49) is ver i f ied with (A3) and (A4)

277

In cases where the system matrix A is singular A does not exist and (A3) cannot he used Starting with (A2) an alternative exshypression is sought for (A3)

x K + 1 - + eV[ I dT f e bull eA(T-x) d T

Bubdquo

By

(A2)

A ( T - T ) dt = I + A(T - T) + -bull 92(T - t ) 2

J0 L

IT 6(T - T ) 2 ft2(T - T )

dt

2 3

- [IT] - 0 - AT 2 A 2 T 3

AT 2 A 2 T 3

-IT + TT + TF +

~ + i = e ~ T ~ x K + T |J + 2 T + i r + - - - 5SK-AT (ATT 2T+ I F

Equations (410) and (411) are ver i f ied with (A6)

(A 5)

(A6)

278

APPENDIX B DISCRETIZATION OF THE STATE DISTURBANCE STATISTICS

This Appendix detai ls the development of a simple recursion for

5 K + 1 (see DAppolito 129]) as outlined in Section 412

Leibnitz s rule may be used to demonstrate that a is a solution of

a Riccati equation Starting from the def in i t ion

t bdquo r K+1 S K + 1 = Q( t ) | = (tT)DW(T)D TJ(tT) T dx

t _ t K + l (414)

d i f ferent ia te to get

ifs(t) at J(tT)DW(T)DT|(tT) dT

+ j(tt)DW(t)D TJ(tt) T ^ | 2

- laquo(tt K)DW(t K)D TJ(tt K) T -pound ( t K )

t bdquo L

(ft (tT)Vw(T)D T j(tT) T + j(tT)DW(T)DT U | |(tT)) dT

+ SWOOP

|A(tT)D|()(T)D T j(tT) T dT

+ (tT)DW(T)D T(tT) TA T d T + DW(t)DT

279

= A (tT)DW(T)D T jCtT) T dx

[f J(tT)DW(T)D TJ(tT) T dx AT + DW(t)DT (B l )

or f i n a l l y

j fsw + QAT + DW(t)DT pound2(0) = 0 (B2)

Since g K + must sat isfy the above matrix Riccati equation matrix Riccati

equation solution methods are sought for the evaluation of (414)

F i r s t define the Hamiltonian H in terms of x and the costate vecshy

tor 5 (see Kalman and Bucy [67] and Brewer [22 ] )

i xTDWDTx - sect TA Tx (B3)

From this obtain Hamiltons equations

dx 3H _ T df = af ~

|=-i=BWSVAC Adjoin the x and vectors to obtain

- - -x -A T g X X

mdash mdash s A

1 DWD T fl sect 5 bull

(B4)

Define the (i x 2n) state transition matrix J for the system matrix A

as

280

I I i - -H

$21 22

where

j = A ttt) = I

Define (laquo x n) matrices x and such that

- A T ~ 1

L T 1

DWD |

0 I - A T ~ 1

L T 1

DWD | A 0 1 _ _

x(o) = g 0(0) = g(o) = o

(B5)

(B6)

(B7)

Make the equality

sect = 8Xgt (B8)

Differentiate to obtain

6 = qx + gx- (B9)

Substitute from (B7) to find

DWDTx + AG = fix - af iV (B10)

Since x(0) = I and since x is a state transition matrix x(t)~ exists

so that i f

9 = Ox

then

copyx1 = n CBll)

and

X 1 = Q_1n (B12)

Multiply (B10) through by x 1 and substitute (B12) to get

281

DWD T + AOx1 = a - QA T

=gt- n = Ag + QA T + DWQT CB13)

Thus by making the equality (B8) it is seen that the solution of the matrix Hamiltons equations (B7) is linked to the solution of the mashytrix Riccati equation (B13)

The solution Q(t) of (B12) can now be found The solution of the Hamiltons equations (B7) may be written

x(t) I [~ x(o)

(t) 6(0)

i ll I 12 mdash J _

I $21 4 22

Thus x ( t ) = S u ( t ) (t) = 2 1 ( t ) and

5 ( t ) = $ 2 1 ( t ) 1 1 ( t ) 1

From the form of A in (B4)

S 1 2 = 9-

With th is observation and using (B6) i t is found that

22

bull laquo 1 1 -

A$22

sect2i = BhBTJii + 622raquo

From (B17) and (B18) for T = ( t K + 1 - t K )

$11ltW = I

2 2 ( t K t K ) = I

j 2 1 ( t K t K ) -o

bdquo-6 TT

-22 - - T

0 L J

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

(B21)

282

so that

$ l i 1 = 2 J - (B22)

Since

J 1 = |e 6 T j tB23)

and

pound2 2~ = [ e 6 T J (B24)

i t is seen that

iiSi = I = 22n = L e - T J T e~TT - I- ( B - 2 5 gt Thus it has been verified that since (B18) is the adjoint of (B17)

in1 = Zzz- ( B- 2 6gt This eliminated having to use an inverse resulting in the equation sought for y

3 = 2i22- (B-27)

Thus the problem of finding n reduces from solving a matrix Riccati equation to solving for two state transition matrices $bdquo and J

The computational algorithm for finding a i s now developed The

system under study i s time-invariant with calculational step s ize

T = ( t K + 1 - t K ) so that

(6T)n

nO Z (AT)

- i n - bull ( B - 2 8 gt

From i 7) and (B18)

283

n-0

V (AT) SffllT)

Since 1 2 ( T ) = 0 (AT) must have the form

(B29)

(B30)

(AT) n

(-6TT)

I (AT)

(B31)

An expression is sought for F to be used in computing $2i I n

order to obtain a recursive relationship for F_n right multiply (AT) n

by (AT)

(-A TT) n

En ( A T )

(-AT) I Q l_

l DWDT i AT

(-A TT) + 1

-E nCA TT) + (AT)nDWDTT | ( A T ) n + 1

(B32)

From which

Define

F n + 1 = (^T)nDWDTT - pound n ( A T T ) E 0 = Q

tn n s n n

Thus the algorithm equations are

En + l= iTT[5 n M T T-F n (A T T) ] E 0

S raquo

AT -A n+1 = n+1 V A o E i -

(B33)

(B34)

(B35)

(B36)

284

2 1(T) = ) Fn (B37)

(B38)

Here k is the number of terms necessary to adequately approximate the infinite series expressions In practice it is found using a method due to Paynter (see Brewer [22])

0 K + ] = 8(Tgt = $ 2 1CT)raquo 22(T) T = (t K + - t K ) (B39) Thus the discretized form of the state disturbance covariance mashy

trix convolution (426) has been shown as the product of two state transhysition matrices obtainable with the algorithm (B35) - (B39)

285

APPENDIX C STATE AND ERROR COVARIANCE PREDICTION WITHOUT MEASUREMENTS

In this Appendix are developed relationships useful to the monitor management problem for the extension of the predicted values of the state and error covariance terms in the Kalman Filter

The monitor management scheme proposed in Chapter 5 requires the exshytension of the predicted value of the state estimate error covariance matrix over times when no measurements are taken This requires modifishycations to the basic Kalman Filter algorithm of Chapter 4 Consider the filter equations rewritten as

amp i = -K+IEKK+IT + s ^ + i lt 4 - 2 7 gt

E K [ l - SKSKJEK1 K - J

~GK = E K 1 ^ fccEH1^ + X K ] 1 t c - 2 )

For the case of prediction only no measurements are taken so set C K = 0 and (see Bryson and Ho [26] p 361) let

V K _ 1

= gt g K mdash g (c3)

so that

266

Thus for the case of no measurements the predicted error covariance matrix may be calculated iteratively as a function of its own past values and the state noise uncertainty term Q|+1-

Equation (C4) serves as the heart of the prediction process for K B K + N which is the value of the error covariance matrix predicted ahead

N steps to time t K + f but based only on the knowledge of measurements made through time tbdquo In practice a fixed time interval T s (t K + 1 - tbdquo) is chosen so that

K+1 - bull ( W t l c ) 8 lt T gt = S 8 f t T (C5)

n K + 1 = s(t K + 1 - t R V g(T) i g (c6)

(see Appendixes A and B for details) With this computational time step T it is possible to formulate an expression for Epound + N-

First note that for fixed size time steps 8 in (C6) is a constant that is

8 = 8 K + 1 = 8 J + 1 a n lt ana J- (C7)

g represents the per step increase 1n the uncertainty in the state estishymate due to the stochastic input acting upon the state Thus if the statistics of w(t) in (414) are constant that is if

H(t) raquo W ( T ) all t and T (C8)

Then from Appendix B for fixed step size n is a constant With (C5) and (C6) (C4) becomes

The recursion to obtain pound raquo + N starts from the corrected error co-variance matrix at time tbdquo Ppound and predicts ahead one-step

287

EK-H = Kr + 5- (cio)

Subsequent steps ^re taken using (C9)

eU = S E + 1 S T + 5

] $PpoundS T + a W

2K 2 + 53JT + 0- (cll)

Finally for step t K+N

The two terms in (C12) represent the free and driven response of P as time grows If A is stable the first term decreases with tirne The second term a discrete-time convolution of the forcing term Q grows with time to some steady-state value

In practice the prediction is started with (CIO) and then extended recursively using (C9) until some error limits are reached say this occurs at time t K + f ) Now 1t is required to extend the state estimate Itself to time ti+N- For a fixed tine step from Appendix A

lei (K+I 0 I lt T s (C13)

and the predicted and corrected values of the state estimate can be written

ampltbull) raquo K + SHK ^C14)

288

hon (C3) the fact that no measurements are taken results in

xpound mdash xpound _ 1 (C16)

8 K + ] bull J K _ 1 + s a K - lt c - 1 7 gt

Thus the -urrent predicted value of the state estimate may be expressed as a function of its own past values and the past deterministic inputs

In a manner similar to (Cll) the value of the state estimate preshydicted ahead N time steps is found to be

KplusmnN-1 (CIS) 0 K - J AK+N-l-n

Thus once the covariance matrix has been recursively extended ahead to time t K +bdquo the state estimate may be predicted ahead all at once with (C18)

289

APPENDIX D ANALYTICAL MEASUREMENT OPTIMIZATION

The purpose of this appendix is to demonstrate the difficulties in attempting to solve the measurement placement optimization problem anashylytically The problem involves finding the optimum measurement matrix C at a measurement time time t K + Ngtwhich minimizes some performance criterion Two criteria are considered one in which the error in the state estiriate after the measurement is to be minimized the other where the sum of estimate error and measurement cost are to be minimized Both attempts are found to fail

Dl Minimize Estimate Error

For the case the performance criterion is chosen to be

J 1 i Tr

Define T S (CP K

K+ NC T + y)

(Dl)

bull2)

and drop subscripts for now Then following Athans [11] take the total differential of J

dJ1 = dTrfp - P C T T _ 1 C P 1

df- d(pc TT 1Cp

p(dC1)T_ 1CP - PCV 1 lt(dC)PCT

+ CpdCT)gt T_1CP + PcV^dCJP

=Tr

= Tr

(D3)

290

In (D3) use was made of the chain ru le The second term may be deshy

rived as fol lows

To f ind

AY i|cPCT + y |

f i r s t l e t

XY = I

X = Y1

= S gt d(XY) = (dX)Y + X(dY) = d l = 0

= gt dX = -X(dY)Y _ 1

= Y 1(dY)Y 1

dY1 = -Y 1(dY)Y 1

Now i f

then

and f i n a l l y

Y = I CPCT + y j

d = CdC)PCT + CP(rfCT)

dY1 = - i 1 (dQ)PCT + Cp(dCTJjY1

as sought

Return to (03) and expand the second term to obtain d J i = -Tlr(laquoicT)T1poundP - E E V ^ J D E E V ^ E

- EpoundTT~1CP(dCT)T1CP + PcV^dCJB (D4)

Bringing the total differential operator d() inside the trace operator Tr[] is valid since both are linear operators so is the partial differ-

291

ential operator bull pound (bull)bull Thus in order to take the partial derivative of 0 1 with respect to the matrix C follow Athans (pound11] p 19) with the use of unit matrices EJ^ to obtain

3C Jl 3C l r [ K+NJ

ijk - EcV 1 cp(E j i )r- 1 cP + reV^E^Ey

bull Z -IikEEjirSLEu + I 1 k poundpoundr 1 E 1 j PcV 1 cPE k j

ijk bull E^PcV^PE^T^CPEy - E^PcVE^Py

= Z -WuEufaSk+ [pcT-^EiiPEYV^ ijk

[ESVsJ ly ln f EKM - [poundpoundV1JkE f jPEk j

(see [11] Eq 5-H)

- Mi JT ^PI CH + TPCT1] [pcVcpl E

PCV^PI IT^CPI E - [PCV 1 ] [PLE L~~ ~ -~JkjL~ J l k - u L~~ - J k i ^ J k - i j

Ijk +

(now with rules of matrix multiplication)

= -I_16EP + I 1 pound T E T pound T QV poundPT

+ r ^ C P i V ^ P J_1QPTPT- (0-5)

292

Noting that

P = P -1 - 1 T

1 = 1 (D5) becomes

^ bull j = ^[T^CP2 - y ^ c V w (D6)

(D6) is the relationship sought the derivation of which may seem obshyscure A more simple derivation results from making a pair of identishyties and the statement of a Lemma [ H ]

^bullTr[AXB] = A TB Tgt (D7)

3X

These follow from

Lemma I f

| Tr[AXTB] = BA

Simi lar ly

bullpound- Tr[AX] = TrfAEj j then ^ | Tr [AX] = A T

e the above formulas

dTr[AXB] = Tr|A(dX)B] = Tr[BA(dX)j

Lemma

3-L- TrfAXB] = TrJjgA tfLJ - TrfgAE-J j | [AXB = A TB T

To demonstrate the above formulas

Now apply the Lemma

AXTB = BA

293

With the use of (D7) (D6) can be obtained d i rec t ly from (D4)

as fol lows

dJ 1 = -Tr[p(dCT)T 1CP - P c V ^ d C j P c V ^ P

3 i _ _T~VDD x T-rDTnlrTp-l r D T 3C u l J = -TCPP + T CPPCT CP1

+ T^CPPcV^CP - T W

)IT~PDZ _ tv~ ImrTrp = -2 ITCP4 - T CPCT CPj (D6)

as before

Now in the measurement optimization problem we seek an extremal

in C C which minimizes J-j = Tr Pj^Jj To that end set

af J i =raquobull (deg- 8gt j V P - PcYcPC1 + vV^P = 0 (DP)

Simplify (D9) with the use of

Lemma Matrix Inversion (see [78])

For P gt 0 V gt 0

p bullbull E pound T ( p pound T + y)1 ( V 1 + s 1- 1-) bull ( D - 1deg)

To prove that th is is t rue simply mult iply both sides by the inverse of

the right-hand side and col lect terms Substituting (DIO) into (D9)

obtain

i p1 + fV-y w J i = T l c p ~ 1 ^ T - 1 - 1

= C = 0 CD11)

294

Thus the extremalIzatIon results In the value C = 0 However this is only a necessary condition and obviously corresponds to a maximum 1n the performance criterion Noting the form of J in (01) the negashytive sign in front of the second term shows that for any pound Q J j that is the extremal found 1s a maximum This corresponds to the case where no measurements are taken The value of J from (Dl) for C = 0 can be seen to be equal to Tr |pjpound[j = Tr p|+N that is the predicted and corrected covarlance matrices are equal which agrees with the case when no measurements are taken

The opposite extreme is of some interest that is the case where the size of the matrix C as given Lv Its norm grows without bound p l l bull Consider the case where C is square and nonsingular Then from (Dl) dropping subscripts we find as C bullbull ltdeg

T r |^K+M] = T r [ - K T(--~ T + iO^EJ T r P - Ppound T(fcpc TV 1cpJ

= Tr P - PC T(pound TVV 1)poundpJ Tr[P - P] = 0 (D12)

This is the result we would expect As can be seen from Eq (417) for the filter

K +N pound K + N X K + N + W ( 0- 1 3 )

the larger C K + N the more deterministic information Is contained in y K + N and the greater the s1gnal-to-no1se ratio This manifests itself 1n the variances of the estimates of the states going to zero as seen in the diagonal terms of K+u vanishing The quadratic term dominates the measurement noise covarlance V in the expression to be Inverted which allows our limiting operation to take place

295

It should be noted here that even If this analysis had led to useshyful results a major constraint is placed upon the result In that the operations of taking derivatives of traces of matrices (as 1n (D5) and (D7)) are based upon the utilization of unit matrices J which are square matrices Thus only in the case where Q is a square matrix Ie as many measurement devices as states could this analysis apply This Is a serious limitation 1n the context of studying the optimization of measurement systems

D2 Minimize Estimation Error and Measurement Cost

To alleviate the degeneracy found above let

h T r[C + poundK+NlaquoK+N]

Let T = (CPCT + V)

Then dJ 2 = dTr P + C Tgcl

= Trl-P^dC1)^

+ ffiV1 (dpound)poundcT + gg(dpoundT)li1gp

- E G Y W G J E + (dpoundT)9pound + poundTQ(dpound)l

= Trl- P(dCT)T1CP + PcVfdCJPcJj^CP

+ ESV^EC^JT^E

PcV^dCjP + (dcjgg + CTg(dC)l (D15)

296

And

j jr J 2 = -T _ 1 CPP + T 1 C P V Q V 1 GET

+ r 1 1 1 l 1 P T pound T + 9pound + 9Tc - o

= -2ltfpz - T ^ C P V I V - gc = g = l V | E - EpoundT(lt-EQT)+ i CP - gc

= I ^CP^P 1 + c V c ) - gc

= CP - (CPC T + v)gc(p + c V c ) = o

= CEP^E 1 E cpc Tgcc Tv - 1 c

+ vggp- + vgcc Ty _ 1c - cp = g (oi6)

Thus extremalization with respect to a combined performance index one which includes a weighted term for measurement cost results 1n a very complicated expression

Now operate on the above equation to obtain C I S T 9 C I 1 + QPpoundTQQpoundTv-1c + vgcp1 + vgccV c - CP = g (Di7)

Assume C exists Thus

EpoundT99 + EEVEW + pound - 1ygc + c 1ygcc Ty 1cp - P 2 = g ( D I S )

or f inal ly

p(cTgg)+ (c 1laquogccTv 1c)p + c^ygc

- E(l - pound T 9 pound pound T V 1 C ) E = 9- (D19)

297

Discussion The drawback of the above equation is that it solves for the wrong variable P K + N gt in terms of C K + N required is the opposite to solve for pound K + N as a function of E t N which is known at time K+N

The equation could be used iteratlvely to find the P which matches the P L N already known in order to fUd the C K + ~ this type of method is not desirable however

Also to get -jraquo Jg into the form of a Riccati equation as in (D19) for which standard solutions exist a necessary assumption was that C K + f J

be nonsingular This implies having as many measurements as states at each measurement time which is a severe limitation when the point of the problem included minimizing the necessary number of measurements

D3 Results

Choices of the two performance criteria J- and J 2 show that obshytaining an eXtremum analytically is very elusive No modification made by this author to the above performance criteria led to a set of equations for which an analytical solution could be found

More importantly the fundamental concept of minimizing some pershyformance criterion with respect to the whole measurement matrix pound itself seems like the wrong thing to do By this is meant that the elements of C in a general formulation of the system equations have little to do with the placement of measurement sites An exception to this would be the case of decoupled state measurement where the model could he discreti2ed in space with one sensor in each element of the finite difference reshypresentation

Another possibility would be the formulation of the system in norshymal mode coordinates In this case the C matrix has a very definite

298

structure where the sensor placements z appear as arguments of the matrix C = C(z)

The former case with a diagonal matrix C was difficult to get into a form where optimal measurement locations would result In the latter case that of normal modes a way was not found to constrain the solution to fit the normal mode form for C

Also the addition of the quadratic term in C in J above is diffishycult to understand It was meant to represent measurement cost but in problem structure here any direct connection with cost of measurement is unclear

For these reasons a more fundamental approach was decided upon that of minimizing the performance Index directly with respect to the vector of sensor positions z The problem is also to he formulated in normal modes in order to simplify computation and also to direct the measurement positions to the problem structure through the measurement matrix C(z) The minimization 1s done for various dimensions of z repshyresenting various numbers of sensors Thus measurement cost is dirshyectly related to the dimension of j

299

APPFrtDIX E NUMERICAL MEASUREMENT QUALITY OPTIMIZATION

As mentioned in Section 537 the Inclusion of the optimal selecshytion o the types of measurement sensors to depoy at a measurement time depends upon the way in which the measurement cost is defined in the original optimal monitoring problem definition

The case outlined in this Appendix deals with measurement cost which is defined to be proportional to measurement instrument quality this is the general case first proposed in the optimal monitoring probshylem statement in Section 22 This is a realistic case in which a disshy

crete valued ikgtasurement cost function could be seen to apply as a funcshytion of the specific choices of measurement Instrument accuracy which could be obtained commercially In order to include the quality of meashysurement devices in the optimal design structure at each measurement time formulate the portion of the objective function associated with measurement Instrument quality first as a oontinuoua function of the sizes of the measurement errors or variances given by the diagonal elements of the measurement noise covariance matrix y that is the terms [ V L J 1 = l2m The optimal choice of measurement instrushyment accuracies would then be related to the resulting optimal values

for the variances [V]JJraquo the best instrument accuracies would then be those commercially available discrete choices which most closely correshyspond to the optimal measurement errors of values [V] i = l2m

To obtain the longest times between required measurements it seems plausible then to form an adjoined vector for the optimization in Sec-tion 536 a vector composed of the measurement sensor position z and their variances diag [V] as follows

300

_ i SSK- I I 5 I V 3 I

v 2 2

(E l )

To include selection of sensor accuracy in the optimization simply subshy

s t i tu te the 2m-vector Cu in (E l ) for i-vector zbdquo in the def in i t ion

(544) to obtain J(^ j ) the combined objective function for measurement

position and qual i ty optimization

A corresponding minor modification to the gradient in (549) with

T defined as in (548) results in the fol lowing

^SOV^KJK) ) ] (E2)

where from the definition of poundbdquo in (El)

laquo pound 7 S lt laquo E raquo (E3)

(see Athans and Schweppe [11] equation (717)) Thus the combined gradient in (E2) can be simply seen to be

301

laquo bull ) bull

wKih)

^ i If VI [ Zdiag HI J ^ J

(E4)

an adjoined 2m-vector of terms associated with z and V Note that finding pound at the first sample under the conditions of

Conclusion VI completes the design problem for all other sample tines to yield the final result stated as Conclusion VIII in Section 537

Notice that the main objective of every optimization problem in the monitoring design problem considered thus far has been to minimize the total number of samples taken over all necessary measurement times within the time interval of interest Adding selection of measurement instrument quality to the problem probably changes the design objective to one which seeks to minimize instead the total measurement cost as first discussed in Section 22 where more accurate measurements (smaller [VL)result in higher unit measurement costs This presents a tradeoff between using numerous low accuracy sensors and fewer high accuracy meashysurement devices This restructuring of the problem could easily be carried out with constraints placed upon available measurement instrushyment accuracies of the form

Vmin laquo t V ] 1 f lt V M X gt 1 - 1 2 m (E5)

These constraints entered as bounds on the bottom half of C in the gradient minimization algorithm would lead to optimal values for ^ for the entire range of possible dimensions for zbdquo m = l2n The optimal results forc K over all ra at the first measurement time ty

could then be extended over the whole time interval to determine which choice leads to the lowest total cost according to Conclusion VII this

302

optimal choice for [][J at the first sample time must be optimal for all other measurement times completing the design

The concepts of this Appendix for the inclusion of measurement instrument quality into the optimal monitoring design problem are preshysented to indicate how such an extension might be made The details though an important part of any realistic design are not crucial to the other results for the infrequent sampling problem and are omitted in the interest of brevity

303

APPENDIX F DESCRIPTION AND LISTING OF PROGRAM KALHAN

The major computer program written for this study is PROGRAM KALMAN It contains all the necessary coding for the optimal monitoring design and management computations It is written in FORTRAN IV for a CDC 7600 computer It accepts input via a card deck named INFILE and generates an answer file OUTFILE which is given to an ordinary lineprinter Bishynary disc files for intermediate storage are generated for use by the graphics package of postprocessor programs listed in Appendix Gj these two binary files are called PFILE and TFILE A flow chart of the intershyconnections among KALMAN its input and output files and its postprocessors is shown in Figure Fl The various computer-generated figures in this report listed with the programs from which they originated are included in Figure F2

The listing for PROGRAM KALMAN is included in this Appendix A nearly sufficient number of comment cards are included to permit usage directly A detailed explanation of its use is omitted here in the inshyterest of brevity the interested user should examine SUBROUTINE INPUT (lines 402 to 535) where all input statements for the file INFILE occur

A brief description is now given of the more important routines which comprise this program KALMAN is the main routine where the Kalman Filter algorithm of Figure 41 is implemented along with the logic assoshyciated with solution of the optimal monitoring problems as given in Conshyclusions II III X and XI SUBROUTINE FVAL computes [ P pound ( Z bdquo ) ] used

~K -K ]1

in the optimizations in SUBROUTINE KEELE for the optimal design problem

SUBROUTINE GRADNT is i t s f i rs t -o rder gradient that i s ^ f - [ppound(z)]

mdash

TOFT SIGMAT MAXTIME

TF1LE

POSTSP

plusmn_ POSTPLT

Figure Fl Relationships among PROGRAM KALMAN its input and output files and its postprocessors K 9 n a

305

PROGRAM FIGURES GENERATED BY VARIOUS PROGRAMS

KALMAN 6 2 6 3 6 4 6 5 6 1 3 6 1 7 6 2 0 6 2 2 6 2 4 6 2 6 6 2 9 6 3 1 6 3 2

CONTOUR 6 2 1 6 2 3 6 2 5 6 27 6 2 8 6 3 0 6 3 5 6 4 0

6 4 3 6 44

POFT 6 6 6 7 6 1 4 6 15

PELEM 6 8 610

SIGMAT 6 1 8 6 1 9

MAXTIME 6 1 2

POSTPLT 6 H 6 3 3 6 3 4 6 3 9 6 4 1 6 4 2 6 4 6

POSTFP 637

POSTSP 6 3 8 6 45

Figure F2 L is t of computer-generated figures and the programs from which they came

SUBROUTINE CONSTR defines the l inear inequality constraints of the form

(553) used in KEELE TRPKK and DTRPKK define Tr [ppound(z K ) ] and i t s gradishy

ent also UoOd in KEELE (they are only used in the comparison of perforshy

mance c r i t e r i a found in Section 623) bUBROUTINE SS computes the check

for the approach to steady-state monitoring as in step (3) of (572)

HAXSIG finds z the position of maximum variance in the output estimate

using SUBROUTINE MUELLER [61] as a root- f inder

SUBROUTINE KEELEA is th is authors modification of the or ig inal

l inear ly constrained nonlinear programming algorithm KEELE wri t ten by G

W Westley [127] the addition of a set of random start ing vectors has

been added to the or iginal routine (see lines 986 through 1000) Subshy

routines CONDRP PROJCT CONADD CUBMIN and PRBOLC are a l l routines from

the or iginal KEELE package

306

SUBROUTINE PAYNTER finds the number of terms necessary in the matrix AT

series expansion of J = e~ the matrix exponential state t ransi t ion mashyt r i x as discussed in Chapter 4 and Appendix A SUBROUTINE STM performs

1 1 i

the actual calculation of pound + 1 T pound + and r pound + in (412) for the discrete-

time state equation I t also performs the computation for g + 1 in (414)

and (415) as suggested by DAppolito [29] and detailed in Appendix B of

th is report

A number of matrix arithmetic algorithms are included (l ines 2076

through 2178) whose use was found to greatly simpli fy the numerous matrix

computations which arose in the solutions of the monitoring problems

SUBROUTINE INVERSE (lines 2179 through 2371) is based upon the LDU deshy

composition reported in Forsythe and Moler [ 38 ] i t is recognized as an

extremely accurate matrix inversion algorithm

NOISE NOISEW and NOISEV generate normally-distributed random vecshy

tors They use FUNCTION GN which is an implementation of the polar

method of generating random deviates from a uniform d is t r ibut ion as reshy

ported in Knuth [71] FUNCTION RAND returns a uniformly-distributed

pseudo-random number on the open interval (01) i t was coded by F N

Fritsch [42] and is completely portable in that is is useable on any b i shy

nary computer regardless of i t s machine word length

UBAR and UI generate the deterministic forcing function vector u( t )

in (41) A selection of possible analytical functions of time are i n shy

cluded see the l i s t i n g for deta i ls

A number of output routines complete the program the more notable

of which are XYPLOTS and ENDPTS wri t ten by H K McCue [84 ] These

routines provide the Hne pr inter plots of T r [ P K + N ] and cC + N as functions

of time t K + N Included in th is study

307

It should be mentioned that extensions of KALMAN to handle more complex problems could be easily accomplished The eigensystem which results from the boundary conditions of the particular problem under study is specified in SUBROUTINE INPUT problems other than that of one-dimensional diffusion with scavenging and no-flow boundary conditions as coded in this program can easily be included By moving the calls to PAYNTER (line 119) STM (123) SS (124) and MAXSIG (127) inside the main integration loop in KALMAN the loop between statements 20 and 100 (lines 141 and 349) time-varying system matrices and statistics could be inshycluded To handle noulinearities the basic Kalman Filter algorithm of Figure 41 could be modified to the form of the Extended Kalman Filter with some effort (see Oazwinski [65] Theorem 81) the basic structure of this program permits such a direct extension

Future work should include the development of a more complete invenshytory of pollutant source models Besides point sources representations for distributed background level and line sources in normal model form would broaden the scope of applicability of this program

308

1 PROGRAM KALMAN I INFILETAPE2=INK ILEOUTFILETAPE3=OUTFILE 2 2 PFILE1APE4=PFILETFILETAPES=TFILE) 3 VER = 10HVER43075 4 C 5 CALL CHANGE (7HKALMANI 6 COMMON Of NINNOUTNTTYNRUNVER 7 C 8 CALL CREATE (5HPFILE10000SUT) 9 INTEGER POUT 10 POUT = 4 11 CALL CREATE (5HTF1LE I 0000SWT) 12 INTEGER TOUT 13 TOUT = S 14 C 15 DIMENSION 16 C DIMENriONS OF FOLLOWING CARDS ARE DEFINED ONLY BY PROBLEM SUE MD 17 1 AIIOI0)B(1DI0)C(1010gt0(1010)AC(1010)BC(1010)DC(1010) 18 2 M0(lOJCAPMOi1010)V(10)CAPV(1010)Wl10)CAPW(1010) 19 3 Xl0)XKMl(10)XHKMlK(l0)XHKK(l0)Y(10gtYml0)Z(10)E(l0) 20 3 COV(IO) 21 4 SIGMAV(10)SIGMAW 1 0) Gl 1 0 1 01 P( I 0 10)PP(10 10) ID( 10101 22 5 U(10)lu(10)UK(103)W1(1010)W2(1010)W3(1010)DY(10) 23 6 ZU(lOlZWIlOlWKPIllO10) 24 C DIMENSIONS ON POLL I WINS CARDS ARE DEFINED BY NUMBER OF TIME 25 C POINTS TO BE STOKED FOR OUTPUT (NT) PROBLEM SIZE IND) AND 26 C NUMBER OF INDIVIDUAL VECTORS OR MATRIX COLUMNS TO BE STORED 27 C FOR PLOTTING AND OUTPUT (NP) DIMENSIONS OF IIOUT) AND (IPLT) 28 C COINCIDE WITH NUMBER OF CHOICES FOR OUI PUT AT STATMENT 20 OF 29 C MAIN PROGRAM AND N-JMBLR OK CHOICES FOR LERUGGING OUTPUT IN DEBUG 30 7 TST(110)ST(110105) JMAXi5)NAMESTI5)NCOLSTt5) 31 8 IOUT(10)IPLT(5)XYPWl(110)XrPW2(1IOITlTLES(48) 32 DI MENSIUN WSS(10lo)SYMBERRC2) 33 DATA 5VI1BERR 3HTRP3HSIG 34 REAL MO10 35 INTEGER FMAX 36 COMMON PRC5 NMZMAXAPCAPVWKP1WSSISING 37 EXTERNAL FVALGRADNTCONSTR 38 EXTERNAL TRPKK DTRPKK 39 PI = 314159266 40 C SET SIZE OF ARRAY DIMENSIONS HERE 41 ND = 10 42 NT = 110 43 NP = 5 44 C ND = THE MAXIMUM PROBLEM SIZE TO BE FIN (LENGTH OF X-VECTOR) 45 C NT i THE MAXIMUM NUMBER OF POINTS TO BE STORED FOR OUTPUT 46 C (CAUTIONTHIS DIMENSION IS USED IN THE 3-DIMENS1ONAL 47 C ARRAY (STltNTNDNP)) THUS IT RAPIDLY ADDS STORAGE 48 C TO LENGTH OF PROGRAM) 49 C NP = THE MAXIMUM NUMBER OF VECTORS TO BE STORED 50 C WHCR NP = (4 bull ND) AS PROGRAMMED IN ORDER TO STORE 51 C THE FALLOWING(X XH E COV AND ALL M COLUMNS OF G) 52 C HERE M CAN BE AS LARGE AS ND 53 C 54 C HERE THE FOLLOWING EOUALITIES ARE MADE FOR THE CALLS TO (0UTPUT3) 55 Nl = 110 56 NJ = NO 87 NK = NP 58 C 59 C HERE I MAX THE ACTUAL NUMBER OF POINTS TO BE STORED IS SET 60 C EQUAL TO NT THE DIMENSIONS OF ASSICIATED ARRAYS IT COULD BE 61 C SET SMAILER IF OESIREO BUT UNUSED STORAGE WOULD RESULT 62 I MAX = NT 63 C 64 C SET LOGICAL INPUTOUTPUT UNIT NUMBERS HERE 05 N1N = 2 66 NOUT = 3 67 NTTY = 59 68 C INITIALIZE RUN COUNTER AND START FIRST RUN 69 NRUN = 0 70 1 NRUN = NRUN 1 71 CALL INPUT (N LM LL NTL I PLT 10UTLENGTH 72 2 T0T10TACBCCDCIUUK 73 3 NOCAPMOWCAPWVCAPVIERRORNOPOEPSKMAXTITLESND 74 4 ZZUZWZMAXERRLIMLIMITALPHANSEARCHSYMBERR 75 5 NLINFMAX IWC0NVG0ELTEPSLONRH0DELTAPFLOWERACC I EXP) 76 C 77 78 80 C SET UP CONSTANTS FOR KEELE CALLING SEQUENCE 81 C 82 83 84 NP = N bull 1

M2 = M laquo 2 NE bull= 0 NP bull = N bull INITIALIZATION CALL NOISE (MOCAPMOXNND) GENERATE NXN IDENTITY MATRIX (ID) DO 3 I - 1N DO 2 J=1N

309

91 i n n Jgt = oo 92 3 10(1I) bull 10 93 C INITIALIZE INITIAL C0NDITIOMS OF SYSTEM MATRICES USE -00 FOR 94 C THOSE WHICH ARE UNDEFINED AT T = T0 95 DO 10 I M N 96 JO 9 J=1N 97 G(IJgt = -00 96 PI I J) = CAPMOd Jgt 99 9 PP(IJ) = CAPMOd J) 100 XKMld 1 laquo XII gt 101 XKKKI I) laquo M O I D 10pound YtIgt raquo -00 103 YH(I) = -00 104 Elt1) = -00 105 Wdgt = -00 106 VI I ) = -00 107 10 CONTINUE 108 T = TO 109 K = 0 110 NOP = 0 112 C COMPUTE STATE CONTROL AND NOISE TRANSITION MARTICES FOR THE 113 C DISCRETE PROBLEM [THEY ARE AIKK-11 B(KK-l) AND D ( K K - M 1 I M C GIVEN THEIH EQUIVALENTS FOR THE CONTINUOUS CASE CACBC AND D C ) 115 f WKP1 REPRESENTS THE DISCRETIZATION OF CONTINUOUS CONVOLUTION OF 116 C CAPW1T) FOR T BETWEEN TK AND TKraquo1 WHERE CAPW(T) IS THE 117 C COVARIANCE MATRIX FOR THE MODEL STOCHASTIC INPUT W(T) M S C FORiT DETERMINE NUMBER OF TERMS TO BE USED IN TRUNCATED SERIES KK 119 CALL PAYNTER ltKKKMAXNDTEPSNOUTACND) 120 C IF PAYNTER CRITERION WAS NOT MET SET NUMBER OF TERMS 121 C IN MATRIX EXPANSION OF EXP(AT) TO MAXIMUM ALLOWED IN INPUT DECK 122 IF(KKLTO) KK = KMAX 1Z3 CALL STM (NLLLACBCDCCAPWABDWKP1KKDTNOgt 124 CALL SS (NAWKPl100EPSNSSWSSND) 125 C NOTE THAT WIDTH OF INTERVALS AND MAXIMUM NUMBER OF ITERATIONS 126 C IN F1ND1N0 POSITION Of MAXIMUN SIGMA IS PROBLEM-SIZE DEPENDENT 127 IFCLIMITE02) CALL MAXSIGISIGMAXZSTARI(5raquoNgtCONVG5Ngt 128 C 129 tRI Tpound lPOLTgtNtltlLL NTL TO Tl LIMIT 130 WRITE(TOUT)NMLLNTLTOTlLIMITERRLIM 131 WRITElPOUTXiAil J)J=IN) l=lN) 132 WRITE(POUT)(IWKPlilJ)J=lN)I=1N) 133 WRITEIPOUT)(ltWSS(l J)J=1NI l=tN) 134 WRITE I POUT) UCAPWdJ)J=tLLgtl=1LLgt 135 W R I T E C P O U T K l C A P V d J ) J=1M)1=1M) 136 IF1NTL8T0) WRITE(POUT) lt (Tl TLES1 1 J) J--1 8) I =1 NTL) 137 IFINTLGTO) WRITE(TOUT) ((TITLESIJ)J=18)I=INTLgt 138 WRITEIPOUTINOPrERRLIMDT 139 WR1TEIP0UTX (CAPMOd J) J=1N) 1 = 1 N) 140 C 141 20 CONTINUE 142 C 143 C THIS IS THE BEGINNING OF LOOP WHICH CALCULATES SYSTEM AND FILTER 144 C TIME-HISTORIES WITH THEIR RECURSIVE EQUATIONS 145 C THE LOOP STARTS AT STATEMENT 20 AND ENDS AT 100 146 C 147 C 148 C SELECT ERROR CRITERION VALUE ACCORDING TO (LIMIT) 149 C 150 IF1L1MITEQ1) ERROR = TR (PPN) 151 IF(LIMITpound02) ERROR SIGKPN IZSTARPPNND) 152 C 153 C THIS IS THE CRUCIAL CHECK OF MANAGEMENT ALGORITHMIF THE ERROR 154 C IN THE ESTIMATE EXCEEDS THE GIVEN LIMIT GO TO MAKE A MEASUREMENT 155 C IF NOT RETURN TO CONTINUE PREDICTION 156 C 167 IFIERRORGEERRLIM) GO TO 28 156 C 159 C DO THE OUTPUT FOR TIME T 160 C NOTEFIRST TIME THROUGH INITIAL CONDITIONS ARE OUTPUTTED 161 C 162 C DEFINE THE VARIANCE VECTOR ICOV) FROM THE COVARIANCE MATRIX (Pgt 163 DO 5 1=1N 164 5 COVd I = PP(I I) 165 C 166 IF UCIUT(1gtNE-Igt 167 2 CALL DEBUG (NL M LLTTOXXHGYYHEWVPPPIOUTND) 168 C 169 IFdPLTdlEQil CALL 0UTPUT3 (X3H X 0 N T TO Tl TST ST 170 2 XYPW1XYPIgt2TITLpoundSNTLJMMESTNCOLST|MAXJMAXN1NJNK) 171 IFltIPLT(2gtEQDCALL 0UTPUT3 (XHKK3H XH0NTTOtlTSTST I 72 2 XYPWIXVPW2TITLESNTLNAMESTNCOLST I MAXJMAXNINJNK i 173 F(IPLT(3gtE01) C A L L 0 U T P U T 3 (E3H EONTTOTlTSTST 174 2 XYPW1XYPU2TITLESNTLNAMESTNCOLST(MAXJMAXNINJNK) 175 IFIIPLT(4)E01) CALL OUTPUTS (COV3H00V0NTTOTlTSTST 176 2 KYPW1XYPW2TITLESNTLNAMESTNCOLST IMAX JMAX N1 NJ NK 177 lF(IPLt(5)EQ11 CALL OUTPUTS (ERRORSYMBERRILIMITl 176 1 O 1TT0TITSTST 179 2 XYPU1XYPW2TITLESNTLNAMESTNCOLSTIMAXJMAXNlNJNKI 180 C

310

let c 182 bull S3 C 184 C STORE LAST VALUE OF CAVAR1ANCE IN (P) THEN PREDICTED VALUE IN IPP 185 C 186 CALL ATOB (PP P NNND) 187 CALL AOOTBT ltP AW1 N N N ND) 18S CALL ADOTB (AWlW3NN NND) 189 CALL APLUSB IW3WKP1PPNMND) 190 C 191 C OBTAIN INPUT VECTOR OF TIME FUNCTIONS (UlITgt Iraquo1 L) FOR DETER-192 C MINISTIC FORCING FUNCTION 193 IF(LNEO) CALL UBAR(LTUIUUKNDgt 194 C 195 C GENERATE PROCESS NOISE W(T) 196 CALL NO I SEW (TCAPWWS10MAWLLND) 197 C 198 C INCREMENT TIME (T) AND ITERATION COUNTER (K) 199 T = T DT 200 K = K 1 201 C 202 C CALCULATE MODEL STATE X(Kgt CALL IT (X) 203 C 801 DO 24 IIN 205 X(lgt laquo 06 206 DO 21 J=1N 207 21 X(I) = X(l) bull AllJ)laquoXKM1(Jgt 208 IF(LEQO) 00 TO 31 209 00 22 J=1L 210 22 XII) = X(lgt BIIJ)U(J) 211 31 CONTINUE 212 DO 23 J=1LL 213 23 X(l) = X(i) bull DJ)laquoW(J) 214 24 CONTINUE 215 C STORE CURRENT (X) IN (XKM1) FOR NEXT ITERATION 216 00 2S 1-1N 217 XKMKI) a XII) 218 25 CONTINUE 219 C 220 C CALCULATE PREDICTED STATE ESTIMATE XH(K-1Kgt CALL IT (XHKM1K1 221 C 222 DO 39 I = 1 N 223 XHKMIK(I) = 0 224 00 36 J=1N 225 36 XHKMIK(I) = XHKMIK(I) bull AltIJ1XHKKltJ) Z26 IFILEQO) GO TO 32 227 DO 37 J=1L 228 37 XHKMIK(I) =XHKM1K(I) B(IJ1laquoU(Jgt 229 32 CONTINUE 230 39 CONTINUE 231 C 232 C COPY PREOICTED STATE ESTIMATE VECTOR INTO CORRECTED ESTIMATE 233 C VECTOR FOR INITIAL VALUE IN NEXT PREDICTED CYCLE 234 C 235 DO 40 llN 236 XHKK(I) = XHKM1KU) 237 40 CONTINUE 238 C 239 C 00 TO CHECK FOR VIOLATION OF ESTIMATION ERROR CONSTRAINT 240 C 241 SO TO 20 242 C 243 28 CONTINUE 245 C THE ESTIMATION ERROR LIMIT (ERRLIM) HAS BEEN REACHED 246 C IT IS NOW NECESSARV TO TAKE A MEASUREMENT OF THE SYSTEM OUTPUT 247 C IN ORDER TO OBTAIN MORE INFORMATION ABOUT THE SYSTEM STATE 248 C 249 C UNLESS TIME IS AT INITIAL VALUE BR1NQ BACK TIME TO VALUE WHEN 250 C ESTIMATION ERROR WAS LAST SATISFIED IN ORDER TO STORE AND OUTPUT 251 C BOTH THE PREDICTED AND CORRECTED VALUES AT EACH MEASUREMENT TIME 252 1FIKEQ0) 00 TO 29 253 T = T - DT 254 K = K - 1 255 29 CONTINUE 256 C 257 C WRITE NUMBER OF OPTIMIZATION (NOP) AND (PI MATRIX FOR POSTPROCESS 258 NOP bull NOP 259 260 261 C 262 WRITE(N0UT2001)N0PT 263 2001 FORMAT tlaquo1laquol2laquo) SAMPLE TIME = E103gt 264 CALL MATOUTPPNNlHPN0l 266 C 266 C (Ml IS THE NUMBER OF MEASUREMENTS TO BE TAKEN FIND THE OPTIMAL 267 C PLACEMENT OF THOSE M MEASUREMENTS THE PLACEMENT WHICH MINIMIZES 268 C THE FUNCTIONAL WHOSE VALUE IS (TR2) THE OPTIMAL LOCATIONS ARE 269 C STORED IN THE VECTOR (Zgt 270 C

311

271 C CAUTION FIRST TWO ARGUMENTS ARE IMM2) AS USED HERE BUT 272 C THEY ARE CNM) AS USEO IN (KEELE) 273 C 274 CALL KEELEA CM M2 NENLINFMAX IWZP11CONVGOELT 275 2 EPSLONRHODELTAPTRPKKDTRPKKCONSTR1 FAILFLOWERACCIEXP 276 3 NSEARCH) 277 IFIISINGEO3) GO TO 994 278 IF(1FA1LGTO) GO TO 995 279 WRITECPOUTHZCI ) 1=1Ml 260 CALL KEELEA (MM2NENL1NFMAX1W2PI 1 CONVG DELT 261 2 EPSLaNRHODELTAPFVALGRADNTCONSTRIFAILFLOWERACCIEXP 283 IFCISINGEO3) GO TO 994 284 1FCIFAILOTO) GO TO 995 285 WRITECPOUT)CZCl)1=1M) 286 C 287 C WITH OPTIMAL MEASUREMENT POSITIONS ltZ1 CALCULATE 288 C OPTIMAL MEASUREMENT MATRIX IC) = (C(Zgti 289 C 290 DO 52 l=1M 291 DO 51 J = 1N 292 51 CIIJI t C0SdJ-1)raquoPIlaquoZII)) 293 52 CONTINUE 294 C 295 C KNOWING OPTIMAL PLACEMENT (Z) OF MEASUREMENT DEVICES 296 C CALCULATE MODEL OUTPUT MEASUREMENT YltKgt CALL IT (Y) 297 C 298 r SET MEASUREMENT NOISE V(T) 299 CALL NOISEV (TCAPVVSIGMAVMND) 300 C 301 DO 30 I=1M 302 Y(I) = 00 303 DO 26 J=lN 304 26 Y (I ) = Y ( I ) 305 Yd ) = Yd) 306 30 CONTINUE 308 C CALCULATE FILTER SAIN MATRIX G(K) CALL IT (Q) 309 C 310 CALL ADOTBT (PCWlNNMNDI 311 CALL ADOTB (C Wl W2 M N M ND) 312 CALL APLUSB ltW2CAPVWlMMND) 313 CALL INVERSE (MW1W2IERR) 314 IF (IERRLTO) GO TO 992 315 CALL ADOTBT IPCW3NNMND) 316 CALL ADOTB 1W3W2GNMMND) 316 C CALCULATE CORRECTED STATE ESTIMATE XH(KK) CALL IT (XHKK) 319 C ALSO CALCULATE ESTIMATE ERROR E(K) = XIK) - XH(KK) CALL IT ltE) 320 C 321 DO 42 1=1M 322 CXH = 00 323 DO 41 J=1N 324 41 CXH = CXH laquo CdJ)XHKMtKIJ) 325 YHltI) = CXH 326 42 DYU) = Yd 1 - CXH 327 DO 44 I = IN 328 GDY = 0 329 DO 43 J=1M 330 43 GDY = GDY bull GdJ)laquoDY(J) 331 XHKKW) = XHKMlKd) + QDY 332 44 Elll gtXIII bull X H K K d ) 333 C 334 C CALCULATE CORRECTED ERROR COVARIANCE MATRIX P1KK) CALL IT ltPP) 336 CALL ADOTB ltGCW1NMNND) 337 CALL AMINSB (IDWlW2 NNND) 338 CALL ADOTBT (PW2WlNNNNDgt 339 CALL ADOTB ltW2W1W3NN NND) 340 CALL AOOTBT (CAPVGWlMMNND) 341 CALL AOOTB IGW1W2NMNND) 342 CALL APLUSB CW3W2PPNNND) 343 C 344 C FILTER AND STATE CALCULATION FOR THIS STEP IS FINISHED 345 C RETURN TO TOP OF LOOP BETWEEN STMTS 20 AND 100 TO OUTPUT RESULTS 346 C THEN CHECK TIME LIMIT AND CONTINUE SOLUTION 347 GO TO 20 346 C 349 100 CONTINUE 350 C THIS IS THE END OF PROBLEM NUMBER (NRUN) TELL THE TTY AND GO TO 351 C NEXT PROBLEM 352 WRITECNTTY 1001INRUN 353 1001 FORMATI 23H OK) 354 C 355 C WRITE I NOP) SET TO ZERO TO CLOSE OUT POSTPROCESSING 356 NOP = -1 357 WRITEIPOUT)NOPTERRLIMOT 358 C 359 GO TO 1 360 99 CONTINUE

312

361 II = -I 362 WRITEIPOUTMI 363 WRITEIYOUTIll 364 CALL EXITIO) 365 C XXX ERROR EXITS XXX 366 991 WRITEiNTTV9391) 367 9991 FORMA I ltlaquo CANNOT CREATE OUTFILE TRY AGAIN) 3GB CALL EXITIO) 369 902 WRITEtNOUT9992) 370 9992 FORMATraquo 3IN0IJLAR MATRIX IN KALMAN SAIN EQUATION 371 2 OFFENDING MATRIX IS Ml laquo ICXPXCT CAPVlO 372 CALL MATOUTP IWlMM2HW1NDI 373 C DUMP OUTPUT GENERATED BEFORE SINGULAR CONDITION OCCURRED 370 CALL 0UTPUT3 (XIOM SINGULAR) 375 WRITE(NTTY9982)NRUN 376 99B2 FORMAT128H NG-SING) 377 C THIS PROBLEM SINGULAR SO GO TO NEXT PROBLEM IN INPUT DECK 378 GO TO 1 379 993 VRtTEINOUT 9993) a60 9993 FCRHATWS2H THE PAYNTER SERIES EXPANSION CRITERION WAS NOT MET) 381 WRITEINTTY990S1NRUN 382 9903 FORMAT128H NG-PAYN) 383 C THIS PROBLEM CANNOT BE RUN SO GO TO NEXT ONE IN INPUT DECK 384 GO TO I 385 994 CONTINUE 386 C A MATRIX BECAME SINGULAR IN THE OPTIMIZATION PROCEDURE 387 C DUMP OUTPUT BEFORE SINGULAR CONDITION OCCURRED 388 CALL 0UTPUT3 IX10H SINGULAR) 389 WRITENTTY99841NRUN 390 9984 FORMAT1212H NG-SING OPT) 391 C THIS PROBLEM SINGULAR SO GO TO NEXT PROBLEM IN INPUT DECK 392 GO TO I 393 995 CONT1NUE 394 C CONVERGENCE PROBLEMS IN OPTIMIZATION 395 WRITE(N0UT999SgtIFAIL 390 9995 FORMAT CONVERGENCE PROBLEMS IN (KEELEA1 IFAIL = 12) 397 CALL 0UTPUT3 IX I OH SINGULAR) 398 WRITpoundINTTY9S8SgtNRUNIFAIL 399 S995 FORMATJ220H NG-CONV OPT 1FAIL=I2) 400 GO TO 1 401 END

402 SUBROUTINE INPUT (NL MLLNTLIPLTI8UT LENGTH 403 2 T0T1 OTABCD 1UUK 404 3 MOCAPMOWCAPWVCAPVI ERRORNOPQEPSKMAXTITLESND 405 4 ZZU ZWZMAXERRLlMLIMITALPHANSEARCflSYMBERRi 406 5 NLINFMAX1WC0NV0BELTEPSLONRHaOELTAPFLOWERACCIEXP) 407 DIMENSION IPLTIS) 408 I IOUTI10)ANDND)BINDND)CINDND)DINOND)IU(NU) 409 2 UKCND3)MOND)CAPMO(NDNO)WIND)CAPWINDND) 410 3 V(ND)CAPVINDND)TITLESi48gt 411 4 Z(NO)ZUINOgtZWINDgt 412 DIMENSION SYMBERRI2) 413 REAL MO 414 COMMON I0 NINNOUT NTTYNRUN VER 419 READ1NIN101) NLMLLNTLIPLTII)1=15)(I0UT1J)J=1101 416 2 LENGTH 417 101 F0RMATC5I10511X01)1001 I 10) 418 IF INEQO) GO T6 99i 419 IFNRUNGTI) GO TO I 420 IF I LENGTHEOO) LENGTH = 20000 421 CALL CREATE I7H0UTFILELENGTHDUMMY) 422 F I DUMMYLT0) GO TO 992 423 1 WRITEIN6UT103gtVERNRUN 424 2 NLMLLNTLIIPLTII)1 = 15)IIOUTIJ) J=110) LENGTH 425 103 FORMAT I44H10ISCRETE KALMAN FILTER SIMULATION PROGRAM A10 426 1 10H RUN NO 12 427 2 31H PROBLEM INPUT IS AS FOLLOWS 428 3 I OXIHNI OXI ML10X1HM9X2HLLOX3HNTLIXI OH IPLT 429 4 IXI OH -I0UT5X6HLENGTH5I1XI 10)IX5IX01-IX1OOI 430 5 IX110) 431 C SEE IF ANY IOUTIII IS NONZERO IF NOT SET I0UT(1gt=-1 AS A FLAG 432 C THIS IS TO SIGNAL THAT (DEBUG) IS NOT USED (DEBUG) IS MAINLY 433 C USED FOR DEBUGGING PURPOSES IT PRODUCES OTHERWISE POOR OUTPUT 434 NDEBU3 = 0 435 DO 3 I = 110 436 3 I F I 0 U T I D l E Q I ) NDEBUG = NDEBUG bull 1 437 IF(NDEBUGEQO) IOUT1 ) = - I 438 READ (NIN102) TOT1DTNOPQEPSKMAX 439 102 FOMAT 13E103I 10ElO3110 440 IF lEPSEOOOS EPS = 1 E-5 441 IF(KMAXEOO) KMAX = 100 442 WRITE(N0UT105I TOTlDTNOPOEPSKMAX 443 105 FORMAT9X2HT09X2HT19X2HDC7X4HN0PQ8X3HEPS7X4HKMAX 444 2 3I1XEI03)1X1101XE103IX110) 445 Tl = 99999999 laquo Tl _ _bdquo 446 READININ 120)NLINFMAXIWlEXPCONVGBELT EPSLONRHO DELTAP 447 2 FLOWERACC 448 120 F0RMATI4I1O7E1O3)

313

4 4 9 IF ( N T L F O O ) 6 0 TO 5 450 DO 2 1=1NTL 45t READ i N I N 1 0 0 ) ( T l T L E S f I J ) J = I 8 ) 452 100 FURMAT(8A10) 45 WRITE (N0UT108) ( T I T L E S ( I J ) J = 1 8 ) --54 100 FORMAT IX 8A10I 455 2 CONTINUE 456 5 CONTINUE 457 IF(LEO 0) 00 TO 7 458 WRITE (NOUT1061 459 106 FORMAT INPUT SEI ECTORS AND PARAMETER VALUES ARE AS FOLLOWS 460 2 I 1NPT Algt A(2) Alt3gtlaquo) 461 DO 10 l=lL 162 READ (NIN104) IU(1)(UKlt1JgtJ=l3) 463 104 rORIlAI I I 1 9X 7E1 0 3) 464 WRITE (N0UTI07) IIU(1)ltUK(IJ)J=I3) 465 107 FORMAT tl3 I 67(1XElO3)) 466 10 CONTINUE 467 7 CONTINUE 468 CALL VECINPT (MON2HM0ND) 469 CALL MATINPT ICAPMCNM5HCAPM0NO) 470 CALL MATINPT ICAPWlLLL4HCAPWND) 471 CALL MATINPT ICAPVMM4HCAPVND) 472 C 473 C PRODI FM STRUCTURE IS FORMULATED IN DIMENSIGNLESS COORDINATES 474 _bull SO 1 i-IAT 0NE-DII-ILNS10NAL MEDIUM IS OF UNIT LENGTH 475 ZMAK = I0 476 C 477 1F(L NEO) CALL VECINPT IZUL2HZUND) 478 CALL VECINPT IZWLL2H2WND) 479 CALL VECI PT(ZM1HZNO) 480 READININ 111 ) ERRLIMLI MlTALPHANSEARCH 461 lit FOFMAT(ltE103 I 10)) 482 WRITECNOUT112) NSEARCH 463 I 12 FORMAT ( 484 3 lCH NUMBER OF POINTS FOR RANDOM SEARCH INITIALIZATION INSEARCH) = 485 4 15) 486 IFCLIMITEO 1) WRITElNOUT 1 I31ERRLIM 487 113 FORMAT THIS IS A MONITORING PROBLEM OF THE FIRST KIND 488 2 bull WITH A C0NS TRAIN1 ON THE ALLOWABLE ERROR IN THE STATE ESTIMATE 489 3 THE ESTIMATION ERROR CRITERION IS THE TRACECPCKK+N)3 490 4 bull fHC CONSTRAINT ON THE ERROR IN THE STATE ESTIMATE IS FIXED AT 491 5 bullbull TRLIM bull-raquo El 0 3 laquo 1 laquo ) 492 I F I L I M 1 T E 0 2 ) W R 1 T E ( N 6 U T 1 1 4 1 E R R L I M 403 114 FORMATbull THIS IS A MONITORING PROBLEM OF THE SECOND KIND 494 2 WITH A CONSTRAINI ON THE ALLOWABLE ERROR IN THE OUTPUT- 435 3 ESIIMATE THE ESTIMATION ERROR CRITERION IS THE MAXIMUM 406 4 VALLE OVER I HE LENGTH OF THE MEDIUM Zlaquo 497 5 OF THE VARIANCE OF THE ESTIMATE OF THE OUTPUT GIVEN BY 490 6 bull SIGMA(Zgt = CT(Z) tP(KK+N)] CIZ) 499 7 bull THE CONSTRAINT IN THE ERROR IN THE OUTPUT ESTIMATE IS FIXED- 500 8 bull AT- SIGMALIM = raquo El 0 3 1 ) 501 WRITE (NOUT H O I ALPHA C02 110 FORMAT ARAMLTERS FOR SYSTEM DESCRIPTION ARE 003 2 laquo DIFFUSION CONSTANT K = IOOOE+00 5D4 3 laquo LENGTH OF MEDIUM L = 1OOOE00 505 4 SCAVENGING RATE ALPHA = laquoE103) 506 C KNOWING ZU AND ZW VECTORS DEFINE SYSTEM MATRICES AB AND D 507 PI = 31459266 506 DO 12 1 = 1 Ngt 509 DO 11 J=1N 510 11 A(lJ) = 6 511 12 A(ll) bull -(((I-1 )raquoP1 )raquolaquo2 ALPHA) 512 DO 15 1=1N 513 IF(LEOO) GO TO 8 514 DO 13 J=1L 515 B(IJ) = COS(I-1)laquoPIZU(J)gt 516 13 I Ft 1 EO 1) BltIJ) = 5 517 8 CONTINUE 518 DO 14 J=]LL 519 D(IJ) = COS((I-1)PIZW(Jgt) 520 14 IF(IEQ-I) D(IJ) = 5 521 15 CONTINUE 522 CALL MATOUTP (ANN1HAND) 523 IF (LNEO) CALL MATOUTP (BNL1HBND) 524 CALL MATOUTP (DN LL1HDND) 525 I ERROR = 0 526 RETURN 527 C ERROR EXITS 528 C I ERROR = 0 OK 529 C IERROR s -I END OF INPUT DECK RETURN TO EXIT 530 C IERROR = -2 CANNOT CREATE OUTPUT FILE RETURN TO EXIT 531 991 I ERROR = -1 532 RETURN 533 992 I E R R O K S -2 53ltt RETURN 535 END

536 SUBROUTINE FVAL (ZPI11

314

937 C RETURNS tPCKK)(Z(Kgtgt1C11) 538 C FOR USE IN MAXIMIZATION OF ERROR-LIMIT INTERCEPT TIME By 530 C MINIMIZING- THE (II) ELEMENT OF THE CORRECTED COVARIANCE MATRIX 540 C AT TIME IK) 541 COMMON PROB NMZMAXAPCAFVWKPIWSSISINB 542 DIMENSION A( 10 lol PC 10 |0gt CAPlC 10 10) WKPI 1101 0) WSS( 1 0 10) 543 DIMENSION 0lt10101 PSII(1010)2(1)Wl11010)W2(10 I 0)W3(10101 544 N D gt 10 545 F = 3I4I5926B 54E DO 12 1=111 547 DO 11 J=1N 548 II C(lJ) = C0S((J-1)raquoPIraquoZ(Igt) 549 I 2 CONTINUE 550 C FIRST COMPUTE IPSIIJ tClaquoP(K-lK)laquoCT1INVERSE 551 00 5 1AMM 952 00 2 IC=1N 553 WKIAIC) = 0 554 DO 1 101N 555 I W K I A I C ) = W K I A i C ) bull C( I A 10) P( ID IC) 550 2 CONTINUE 557 00 4 1B=IM 556 W 2 M A I B ) CAPVUAIBI 559 DO 3 IE=1N 560 3 W2C1AIB) = W2UAIB) Wl (I A I E)raquoC( IB I E) 551 4 CONTINUE 562 5 CONTINUE 563 CALL INVERSE (MW2PSIIIERR) 564 IF(IERRLTO) GO TO 991 565 C COMPUTATION OF IPIZK)(KK)1111 566 P11 = P(ll) 567 00 7 IC=tM 568 W1PI = 0 559 DO 6 1DraquoIM 570 6 W1PI = W1PI bull W1CIDl)raquoPSII110IC 571 7 PI1 = P11 - W1PtlaquoWlilC1) 572 ISINB gt 0 073 99 RETURN 574 991 1S1NG s 3 57 RETURN 576 END

577 SUBROUTINE GRADNT (Z0P11) 576 C 579 C RETURNS OCPCKKlIZCK))Jl1Igt0Z 580 C THE DERIVATIVE IF THE (11) ELEMENT OF THE CORRECTED COVARIANCE 581 C MATRIX AT TIME (K) WITH RESPECT TO THE VECTOR (Z(Kgt) 552 C 583 COMMON PROB NMZMAXAPCAPVWKP1WSSISINO 584 DIMENSION Alt1010)Plt1010)CAPVl1010)WKP1(1010)WSS(1010) 585 DIMENSION CC1010)DOC 1010)Z(1)DPI 1(1)Wl(1010)W2(10to) 506 2 W3C1010)PSI1(1010) 587 NO = 10 588 PI o 314158266 569 C 590 C FIRST COMPUTE CPSIIJ tClaquoPltK-lK)laquoOT]INVERSE 591 C 592 C GENERATE C(Z(Kgt) MATRIX (CALL IT C ) 593 C GENERATE 0C( I J)DZC I ) MATRIX (CALL IT D O 594 DO LO IlM 595 DO 19 J1N 596 C(IJgt bull COSltJ-1)PI-2(l)) 597 19 00(1J) gt -1J-1)PIlaquoSIN((J-1)laquoPIraquoZ(I)) 598 20 CONTINUE 599 C 600 DO 5 IAlaquo1M 601 DO 2 ICalN 602 WKIAIC) gt 0 603 DO 1 IDIN 6J4 1 WKIAIC) a UKIA1C) Clt I A ID)raquoPlt 10 1C) 605 2 CONTINUE 606 00 4 IB1M 607 W2lt1AIB) - CAPVlIAIB) 60S DO 3 lEolN 609 3 W2CIAIB) = W2ltlAtB) bull Wl ( I A IE)raquoCUB IE) 610 4 CONTINUE 611 5 CONTINUE 612 CALL INVERSE ltMW2PSIIlERFt) 613 IFCIERRLT0) GO TO 991 614 C 615 C COMPUTE PSIIlaquoCraquoP 616 C 617 00 7 IA=1M 616 W2CIAI) bull 0 619 DO 6 |B=1M 620 6 W2IIA 1) s W2CIA 1) PSI I (IA IBXW1 IB I ) 621 7 CONTINUE 622 C 623 C COMPUTE BRACKETED MIDDLE TERM OF SECOND MATRIX EXPRESSION 624 C

315

625 DO 12 IA=1M 626 DO 11 IC=1M 627 W3(1AIC) 3 0 628 DO 10 IB=1N 629 10 W3(IAICgt = W3(1AICgt + W1 ( I A IB) raquoDC( 10 1B1 630 11 CONTINUE 631 12 CONTINUE 632 C 633 C NOW COMPUTE THREE MATRIX TERMS IN GRADIENT 634 C FIRST TERM 635 C 636 DO 69 I IraquoIM 637 C 638 DPI 1(1 I) = 0 639 C 640 PDC = 0 641 DS 8 1A=1N 642 8 PDC = PDC bull P(l1A)laquoDC(IIIAgt 643 DP1K I 1 ) = PDCraquoW2(I 11 ) 644 C 616 C THIRD TERM EQUALS FIRST TERM SO JUST DOUBLE THE FIRST 646 C 6 4 7 D P I K I I ) bull 2 lt D P I K l I gt 648 C 649 C FINALLY COMPLETE SECOND TERM 650 C 651 DO 24 1B=1M 652 IF(IBEQII) 00 TO 22 653 POCP - W2III1)raquoW3(IBII) 654 SO TO 24 655 22 POCP = W2I1I 1 )laquoW3(I1 II ) 656 00 23 IA=1M 657 23 POCP = POCP W2(1AIgtraquoW3(lAlIgt 65B 24 DPIKII) = DPI 1(11) - PDCPraquoW2(IB1gt 659 C 660 C INCLUDE OVERALL MINUS SIGN 661 C 662 DPIKII) = -lraquoDPIKII) 663 C 664 89 CONTINUE 665 90 ISING = 0 666 RETURN 667 991 ISINQ = 3 668 RETURN 669 END 670 SUBROUTINE CONSTR 671 COMMON BAMRWH G(1020)B(20) 672 DIMENSION At 1010)Plt1010)CAPVM 1010)laquoKP1lt1010)WSS(10lO) 673 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 674 DO 1 I=1M 675 G(ll) = -I 676 B(l bull 0 677 G(IMIgt = 1 676 1 B1MI) = ZMAX 679 RETURN 680 END 681 SUBROUTINE TRPKK (ZTRP) 682 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 6B3 DIMENSION A(10I 0)WKP1(to10)WSS(1610) 684 DIMENSION PI 10 10)C[10 10)CAPV(1010)PSII(1010) 685 DIMENSION Z(1)Wllt1010)W2I1010) W3(10 10) 686 IB laquo 10 687 PI raquo 314159266 688 C CALCULATE C(Z) AND PSIKC(Z)) AND PUT IN COMMON 689 DO 2 I=1 M 690 DO 1 J O I N 691 1 C ( I J ) 3 C O S K J - I gt raquo P I raquo Z ( I ) gt 692 2 CONTINUE 693 CALL ADOTB (CPW1MNNND) 694 CALL AOOTBT (Wl6W2MNMND) 695 CALL APLUSB ltW2CAPVW3MMND) 696 CALL INVERSE (MW3PSIII ERR) 697 IFIIERRLT0)00 TO 991 698 CALL ADOTB (PSIIW1W2MMNNDgt 699 CALL ATDOTB (MlU2W3NMNND) 700 CALL AM1NSB (PW3W2NNND) 701 TRP 0 702 DO 10 l=1N 703 10 TRP = TRP W2(II) 704 ISING laquo 0 705 99 RETURN 706 991 ISINQ = 3 707 RETURN 708 END

316

709 SUBROUTINE DTRPKK CZDDZ1 710 COMMON PROB NMZMAXA PVWKP1WSS I SING 711 DIMENSION A(1010)WKP1(100)WSS(10101 712 DIMENSION P(10 10)C(10 10)CAPV(10 I 0 ) PS1Ilt10 101 713 DIMENSION Z( 1)DDZTRP(1)Wl(1010)Wpound(10101 714 2 W311010 W4(1010gtW5(i010gtW6(1010gtDClt1010) 715 ND = 10 716 PI = 3 14159266 717 C GENERATE C 718 DO 10 l = lM 719 DO 9 J=lN 720 9 C(IJ) = COS((J-l)PIZ(Igtgt 721 10 CONTINUE 722 C FIND PS II = PS I INVERSE 723 CALL ADOTB (CPWlMNNND) 724 CALL ADOTBT (WlC W2MNMND) 2S CALL APLUSB IW2CAPVW3MMND) 728 CALL INVERSE IMW3PSII I ERR) 727 IF(IERRLTOJGO TO 991 728 CALL ADOTB (PSIIWlW2MMNND) 729 DO 89 II = 1M 730 C GENERATE 0C(1J)DZ(1) MATRIX (CALL IT D O 731 DO 6 1=1M 732 DO 5 J=l N 733 S DC(IJ) = 0 734 6 CONTINUE 735 DO 7 J=l N 736 7 DCIIIJ) = -(J-l)laquoPISIN((J-1]PIraquoZCII)) 737 C NOW CALCULATE THREE MATRIX TERMS FIRST TERM (W4gt 738 CALL ATDOTB ltDCW2W3NMNNO) 739 CALL AOOTB (PW3W4NNNND) 740 C SECOND TERM (W5gt 741 CALL ADOTBT (WlDCW3MNMNO) 742 CALL APLUSBT(W3W3W5MMNO) 743 CALL ADOTB (W5W2W6MMNND) 744 CALL ATDOTB (W2W6W5NMNNO) 745 C THIRD TERM NOTE THIRD TERM = (FIRST 1ERM1T SO --ST ADD UP TERMS 746 CALL AM1NSB (W4W5W6N NND) 747 CALL APLUSBT(W6W4W5NNNDI 748 DDZTRPU I gt = 0 749 DO 12 l = lN 75C 12 DDZTRPU I gt = DDZTRP(I I) - W5(II) 751 89 CONTINUE 752 90 ISING = 0 753 RETURN 754 991 ISING = 3 755 RETURN 756 END

757 FUNCTION SIGKPN (ZSTARPPNND) 758 C FINUS 759 C SIGMA--21ZKZSTAR) = C(ZSTAR)T PP(ZK)(K ION) - C(ZSTAR) 760 DIMENSION C(10)PPC1010) 761 PI = 314159266 762 DO 1 1 = 1 N 763 1 C(I) - COS((1-1)PIZSTAR) 764 CALL XTAY (CPPCSIGKPNNND) 765 RETURN 766 END

767 FUNCTION SIGMA(Z) 768 COMMON PROB NMZMAXAPCAPVWKP1WSS I SING 769 DIMENSION A(10 10)P(10 10)CAPV(10 I0)WKP1(10 I0)WSS110 10) 770 DIMENSION C(10) 771 PI = 314159266 772 DO 1 J = 1 N 773 1 C ( J ) = C O S U J - I ) laquo P I raquo Z ) 774 CALL XTAY (CWSSCSIGMAN10) 775 RETURN 776 END

777 FUNCTION DSIGMA(Z) 778 COMMON PROB NMZHtXAPCAPVWKP1WSS1S1NG 779 DIMENSION A(I 010)P(010)CAPV(1010)WKP1(10 10)WSS( 1010) 780 DIMENSION C(10)DC(10) 781 PI = 314159266 762 DO 1 J=1N 783 CIJI = COS( (J-l )PlZ) 764 1 DCIJ) bullbullbull -( J-l )raquoPIS1NC (J -1 ]PIZ) 765 CALL XTAY (DCWISCTERMN10) 786 DSIGMA = 2sTERN 787 RETURN 788 END

317

791 XI - WMlNl5NNISf6WkpIilSSi6iWSS1010 793 2 W1(tO10)W2(10 0)SUMi10 10) 794 NSS = 1 795 1 NSS NSS+1 bdquo 796 RATIO = A(22lNSSAlt22) 797 IFCRATIOLEEPS) 60 TO 2 796 GO TO 1 BOO C 2 M N o t w I s ) STEADY-STATE MATRIX CONVOLUTION OF ltUKP1 ) 601 CALL ATOB IWKP1W2N N ND1 60 CALL -TOB (WKPI SUM N N ND) 803 DO 7 K=1 NSS 804 CALL ATOB (W2W1NNND 805 CALL ABAT I AWlW2NND) 806 CALL OPLUSB (SUI1U2 SUM N N ND) 807 7 C0N1INUE 608 CALL ATOB (SUMWSSNUND) 809 CALL MATOUTP (WSSNN3HWSSND) il 108 FORMA BTHE SNUMiSER OF 1ERMS IN THE TRUNCATED MATRIX 812 1 CONVOLUTION SERIES bdquo 813 2 FOR THE STEADY-STATE VALUE OF 1WSS) NSS = laquoI3) 814 RETURN 815 END 816 SUBROUTINE MAXSIG (SIGMAXYSTARGEPS ITER) 817 EXTERNAL DSIGMASIGMA 818 YMIN = 0 81 9 YMAX = I 620 DY = GMYMAX-YM1N) 821 YL = YMIN 822 YR = YM1N+DY 623 SUP - SIGMAIYL) 624 Y S U J = YL 825 I END = ITER 626 1 CONTINUE 827 CALL MUELLER (YFYDSIGMAYLYREPS I END IER) 828 C FINISHED WITH CURRENT INTERVAL SLIDE LiMITS OF SEARCH RIGHT 829 C CHECK FOR BOUNDARY AND GO ON 830 IFUERGTO) GO TO 13 831 C IF AN EXTREMUM WAS FOUMD IN THIS INTERVAL CHECK IT AGAINST LAST 832 C VALUE OF SUPREMUM 633 FMUEL = SIGMA(Y) 634 IFIFMUELLTSUP) GO TO 11 635 SUP = FMUEL 636 YSUP = Y 837 11 CONTINUE 838 13 CONTINUE 639 VL = YR 640 YR = YRDY 641 IF(YROTYMAX) GO TO 20 842 FR = SIGMAtYR) 843 IF(FRLTSUP) GO TO 12 844 SUP = FR 645 YSUP = YR 646 12 CONTINUE 647 GO TO 1 846 20 CONTINUE 843 C INTERVAL CYI1INYMAX) HAS BEEN SEARCHED 850 SIOMAX = SUP 651 D5IGMAX = DSIGMA(YSUP) 652 YSTAR lt= YSUP 8f3 W R 1 T E O 101 gtYM1NYMAXGSIGMAXDSIGMAXYSTAR 654 101 FORMAT (laquo MAXIMUM SIGMA SOUGHT BETWEEN YMIN - raquoE103 655 2 AND YMAX bull raquoE103raquo WITH INTERVAL WIDTH DY = laquoEI03 856 3 - SIGMAX = EI03laquo OStGMAX = E103raquo YSTAR = raquoE103) 857 RETURN 858 END

659 SUBROUTINE MUELLER (X FFCTXLIXRIEPS I END IFR) 660 C 661 C REFIBM SCIENTIFIC SUBROUTINE SUBROUTINE PACKAGE 662 C SUBROUTINE RTMI IBM SSP PROGRAMMERS MANUAL EDITION 4 1966 863 C P 217 864 i 865 IER0 866 XL=XLI 867 XR=XRI 666 X=XL 669 T0L=X 670 F=FCT(TOLgt 871 IF(F)1I61 672 I FL=F 373 X=XR 874 TOL=X 675 F=FCT(TOL) 676 IF(F)2I62

318

87 2 FRraquoF 876 C CHECK FLlaquoFR LT 0 879 IF(SIGN(1FL)+SIGN(1FR))25325 660 3 I=0 881 T0LF=100laquoEPS 682 A 1=11 883 DO 13 K=11END 864 X=5raquoXL^XR) 885 TOL=X 886 F=FCTltTOLgt 867 IF(F)5165 668 S 1 F C S I G N U FJSIGNC1 F R ) ) 7 6 7 889 6 TOL=XL 890 XL=XR 691 XR=TOL 892 TOL=FL 893 FL=FR 894 FR=TOL 8S5 7 TOL=F-FL 896 A=FraquoTOL 897 A=AlaquoA 893 IFltA-FRraquoltFR-FL)gt699 899 8 IFII-IENDJ17179 900 9 XR=X 901 FR-F 902 TOL=EPS 903 A=ABS(XR) 904 1F(A-1)111110 905 10 TOL=TOLA 906 11 F(ABS(XR-XL)-T0L)121213 907 12 |F(ABS(FR-FL)-T0LF)141413 908 13 CONTINUE 909 C END OF BISECTION 910 C ERROR RETURNNO CONVERGENCE WITHIN (1END) ITERATIONS 911 IER=1 912 14 F ( A B S ( F R ) - A B S ( F L ) ) I 6 16 15 913 C NORMAL RETURN 914 15 X=XL 915 F=FL 916 16 RETURN 917 C ITERATED INVERSE PARABOLIC INTERPOLATION 918 17 A=FR-F 919 DX=CX-XL)laquoFLlaquo(ltFCA-TOLgtltAMFR-FL)gt)TOL 920 XM=X 921 FM=F 922 X=XL-DX 923 TOL=X 924 F=FCTltTOL) 925 IFCF1181616 926 16 TOL=EPS 927 A=ABS(X) 928 IF(A-11202019 929 19 T0L=T0LraquoA 930 20 IF(ABS(DX)-T8L)212122 931 21 IF(ABS(F)-T0LF)I61622 932 22 IF(S1GNlt1F)S1GNC1FLgtgt242324 933 23 XRaX 934 FR=F 935 00 TO 4 936 24 XL-X 937 FL=F 936 XRaXM 939 FR=FM 940 GO TO 4 941 C ERRORWRONG INPUT DATA 942 26 I ER=2 943 RETURN 944 END

945 SUBROUTINE KEELEA (NMNENLINFMAXIWXINFFINFC0NV6DELT 94B 2 EPSLONRHODELTAPFVALGRADNTCONSTRJ FAIL FLOWERACC IEXP 947 3 N5EARCH) 948 C VERSION (A) OF (KEELE) (NSEARCH) MINIMIZATIONS laquonE ATTEMPTED 949 C EACH FROM A DIFFERENT RANDOM VECTOR WHOSE ELEMENTS ARE SCALED 950 0 TO LIE WITHIN OLEZ(I)LE2MAX 951 DIMENSION SC1010)GTSGlt2020)P(20gtPAR(20)PLlt20)PAlt20) 952 DIMENSION XBlt10)EXTRA10) 953 DIMENSION XINF(l6) 954 ZMAX = 1 953 REAL NORMNORM IN0RM2 9S8 INTEGER C0LI20)DEPClt20)FNUMFMAXCOLICOLJ 957 COMMON BAMRWH G(10 20)B(20) 95B C REFERENCE 9GS C 960 C PROGRAM AUTHOR 0 W WESTLEV 961 C COMPUTING TECHNOLOGY CENTER UNION CARBIDE CORP 962 C NUCLEAR DIVISION 963 C nraquoV RIDGE TENN

319

965 C 96S C 967 C 966 C 969 C 970 C 971 C 973 C 973 970 975 976 C 977 976 979 9eo 961 C 982 963 964 965 966 987 968 1 989 990 991 992 2 993 994 995 996 997 C 998 999 3

1000 5 1001 1002 1003 1004 1005 1006 1007 100B 1009 1010 1011 1012 1013 C 1014 C 1015 1016 1017 10 1018 20 1019 1020 C 1021 C 1022 C 1023 1024 1025 1026 1027 1028 30 1029 C 1030 C 1031 C 1032 C 1033 1034 C 1035 C 1036 C 1037 C 1036 C 1039 C 1040 C 1041 1042 1043 1044 40 1045 1046 1047 SO 1048 60 1049 C 1000 C 1051 1052 1053 1054

MODIFIED TO RUN AT LLL 72572 BY RFHAUSMAN JR IV IS THE MAXIMUM NUMBER OF VARIBLES ALLOWED IC IS THE MAXIMUM NUMBER OF CONSTRAINTS ALLOWED

101 IS THE LOGICAL UNIT NUMBER FOR PRINTOUT

LA3EL1 = 6H OONV LABEL2 = 10HERGENCE raquos LBLMAX = N + 1 IF(LBLMAXGT7) LBLMAX = 7 T0L1 = 1E-10 IF (IWGTO) WRITECI01 1040 ) NMNE I EXP NLINFMAXIWCONVGDELT gt EPSLONRHO DELTAP TOL lF([WEQ2)WRITE[I0t 1149) 1 SEARCH = 0 00 1 I=1N XBCI ) = X1NFM ) CALL FVAL (XINFFINF) IF(NSEARCHEQO) GO TO 5 NSEARPI = NSEARCH 1 1 SEARCH = I SEARCH 1 IFIISEARCHEQ1) GO TO 5 IFCISEARCHGTNSEARPI)G0 TO 798 ISEARM1 = [SEARCH - 1 WRITEtIOl1048)1SEARM1 GENERATE A NEW RANDOM STARTING VECTOR DO 3 I=1N XB(I ) = ZMAXXRANDCIY) CONTINUE I FAIL = 0 I LAST = 0 NBC = 0 FNUM = 0 IFRST - 0 NDEP = 0 NDEPEQ = 0 FNUM = FNUM + 1 CALL FVAHXB FB) IF((IWGTO)AND(1WNE2))

2 WRITEdOl 1050 ) FNUM FB (XB( I ) I = 1 N) IFltIWEO2)WRITE1011051)FNUMFB(XB(I)11Ngt SET THE INITIAL S TO I DO 20 I=1N DO 10 JalN S(IJ) = 0 S(II) = 1 IF (MEQO) GO TO 90 ZERO OUT THE COEFFICIENT MATRIX

DO 30 J=1M COL(J I = 0 DEPC(J) = 0 B(J) = 00 DO 30 I=1N GilJ) - 0

OALL CONSTR

ADJUST THE CONSTRAINTS TO UNIT NORM G IS THE COEFFICIENT MATRIX G(11)laquoXlt1) G(21)raquoX(2) B IS THE VECTOR OF CONSTRAINT CONSTANTS DO 60 J=1M SUM = 0 DO 40 ldeg1N SUM = SUM GI1J)raquoGlt1J) SUM = SORT(SUM) DO 50 I=1N

8(1 J) = G(l J)SUM B(Jgt = BCJ1SUM NE1 = NE + 1 NE2 = NE raquo 2 IF (HEEOO) GO TO 90

320

1055 CALL C0NADD(GTSGS1COLPPLNNBCIVIC) 1056 IF (IWGE2) WRITE1011110 ) 1NBC 1057 IF (NEEOl) GO TO 90 1056 DO 80 I=2NE 1059 C 1060 C PROJECT THE I-TH CONSTRAINT TO TEST FOR LINEAR INDEPENDENCE 1061 C 1062 CALL PROJCTIPLPEXTRASGTSGNNBCCOLIIVIC N0RM1) 1063 IF UWGT2) WRITE1011120 ) INORMlTOLI 1064 C 1065 C TEST AGAINST TOL1 FOR LINEAR DEPENDENCE 1066 C 1067 IF CN0RM1GTT0L1) GO TO 70 1068 NDEP = NDEP 1 1069 NDEPEO = NDEP 1070 DEPCINDEP) = I 1071 GB TO 60 107 70 CALL CONADDIOTSGSICOLPPLNNBC IV IC1 1073 IF IIWGE2) WRITE1011110 ) INBC 1074 80 CONTINUE 1075 NE1 = NE - NDEPEQ + 1 1076 NE2 = NE1 bull 1 1077 C 107B 0 1079 C CALCULATE THE PARTIAL VECTOR OF THE OBJECTIVE FUNCTION 1080 C 1081 90 CALL GRADNTIXBPAR) 1082 C 10S3 C GENERATE THE SEARCH DIRECTION 1084 C 1085 100 CONTINUE 108E DO 110 I = 1N 1087 110 PAI) = -PAR1) 1088 C 1089 C IF THERE ARE CONSTRAINTS IN THE BASIS THEN CALCULATE THE PROJECT1 1090 C 1091 IF (NBCEOO) GO TO 170 1092 DO 120 1=1N 1093 PLI) = 0 1094 DO 120 J=1N 1095 120 PL(I) = PL11) + S(IJ)raquoPARJ) 1096 C 1097 C COLI) = K IMPLIES THAT THE K-TH CONSTRAINT IS IN COL 1 OF BASI 1098 C 1099 DO 130 1=1NBC 1 1 00 PA I ) = 0 1101 LA = COL(l) 1102 DO 130 J=1N 1103 130 P A I D = P A I D GJLA)raquoPLJgt 1104 C 1105 C PUT THE LADRANGE VECTOR IN THE VECTOR PL 1 106 CC I 107 DO 140 Ideg1NBC 1108 PLI) = 0 1109 DO 140 J=1NBC 1110 140 PL) laquo PL(I) OTS G d J)laquoPAIJ) 1111 C II 12 C 1113 DO 150 I = 1 N 1114 PAI) = 0 1115 DO 150 J=1NBC 1116 COLJ = COL(J) Z l 5 0 bdquo P A lt P A ( 0(1 COLJ gtlaquoPLJgt

1118 DO 160 1 = 1 N 1119 160 PA(I) = PA(I) - PARI) 1 120 C 1121 C I 122 170 CONTINUE 1 123 C 1124 C 1126 C P A H 0 L D S r H pound N F 0 F 0 R T H E DOWNHILL-POSITIVE DEFINITE CHECK 1127 C P HOLDS THE SEARCH DIRECTION 1 126 C 1129 00 180 I = IN 1130 PI) = 6 1131 00 180 J=1N 132 160 PCI) = PII) bull SIIJ) laquo PAIJ) 1 133 C 1134 C 1135 C 1136 C 1138 C F D trade E N deg R M deg F trade E D R E C r i 0 N VECTOR 1139 N0RM1 a 0 1140 NORM = 0 1141 DO 190 ldeg1N H S laquolaquo K2SM I bull N degRraquo + P A ( I ) raquo laquo 2 1143 190 NORM = NORM bull Pltl)raquoraquo2 1144 NORM = SORT I NORM)

321

1145 N0IM1 = SQRT(NORMl) 1 1 46 NORM2 = NORM 1 147 BETA = 0 1146 J = 0 1149 IF (NBC EQ (NE-NDEPEC1) 1 GO TO 220 1 ISO C 1 151 C 1 I 52 c 1 153 C 1154 C 1155 J = NE1 1156 CC = PL(NEl) 1157 IF (NBCE0NE1) GO TO 210 158 DO POO I=NE2NBC 1159 IF (PL (IgtLECC) GO TO 200 1160 J = I 1161 CC = PL(I1 1162 200 CONTINUE 1163 210 BETA = 5raquoCCABS1GTSGl J 0) gt I 16-1 22U CONTI NUE 1165 IF (1WGT2) WRITE1011010 ) NORMBETA J 1166 IF (NORMLECONVGANDBETALECONVG) GO TO 710 1 167 C 1 168 C 1169 C THE PROCEDURE HAS NOT CONVERGED YET EITHER DROP THE J-TH COL 1170 C OF THE BASIS AND RE-CHECK OR STEP ALONG THE DIRECTION IN P 1171 C 1172 C 1173 IF (NORMGTBETA) GO TO 250 1 174 C 1175 C DROP THE CONSTRAINT CORRESPONDING TO MAXIMUM LAGRANGE 1 176 C 1 177 C 1173 C SINCE A CONSTRAINT IS BEING DROPPED - FORGET ABOUT ALL OF TH 1179 C PREVIOUS INEQUALITY DEPENDENCE 1 180 C 1181 IF (NDEPEQO) GO TO 240 1182 K = NOEPEO 1 1103 DO 230 I-KNDEP 1184 230 D E P C ( 1 1 = 0 1185 NDEP = NOEFFQ 1185 240 ILAST = COL(J) 1167 IF (IWGT2) WRITEt1011080 ) ILAST 1166 CALL C0NDRP(C0L J NBCGTSGPL 1C1 1 1 89 GO TO 1 00 1 90 C 1 191 C 1 192 C 1 193 C 1 1 94 0 1 195 C I 196 pound50 CONTINUE 1197 LL = 0 1198 CC = 1E+60 1199 IF I(NBC+NOEP)EQM) GO TO 320 1200 DO 310 I = 1M 1201 IF (ILASTEOI) GO TO 310 1202 IF INBCEQ01 GS TO 280 1203 DO 260 K=1NBC 1204 IF (IEQGOL(K)) GO TO 310 1205 260 CONTINUE 1206 IF (NDEPEQO) GO TO 280 1207 DO 270 K=1NDEP 1208 IF (I EQDrPClKgtgt 00 TO 310 1209 270 CONTINUE 1210 C 1211 C CONSTRAINT I IS NOT IN THE BASIS IS IT BINDING 1212 C 1213 281) C0N1 = B(l I 1214 C0N2 = 0 1215 DO 290 J=1N 1216 C0N1 = C0N1 1217 290 C0N2 = C0N2 bdquo -raquo 1216 IFC IWEC13)WRITEI 101 1000 ) IC0N1C0N2 1219 IF (C0N2EQ0 ) GO TO 310 1220 NORM = ABSfCONl) 1221 IF (NORMGT1E-141 GO TO 300 1222 IF (C0N2GT0 ) GO TO 700 t223 GO TO 310 1224 300 C0N1 = C0N1C0N2 1225 IF(C0N1 LEOE-OOeRCONl GECC) GO TO 310 1226 CC=C0N1 1227 LL=I 1228 310 CONTINUE 1229 C 320 NORM = OMlNl(1DOCC) 1230 320 NORM = CC 1231 IF(NORMGT1) NORM = 1 1232 ILAST = O 1234 C CALCULATE THE INDEX OF IMPROVEMENT C0N2

322

1235 C IMPROVEMENT IS ACCEPTED IF F(K) - F(kll GL tPSLON bull CON2 1236 C 1237 C0N2 = 0 1238 00 330 1=1N 1239 330 C0N2 = C0N2 - PARUgtlaquoPtlgt 1240 IF CIWGT2) WRITEC 1011020 ) C0N2 CO 1241 ICON - 0 1242 IF (C0N2LT0 ) 00 TO 370 1243 CPAR a -C0N2 1244 C0N2 a COM2 laquo EPSLON 1245 C 1246 C STEP TO THE LIMIT TO THE NEAREST CONSTRAINT TO CHECK FOR IMPROVEM 1247 C 1246 DO 340 1=1N 1249 340 PLC I) a XBl I ) bull NORMPCIgt 1250 FNUM o FNUM bull 1 1251 CALL FVALCPLFL) 1252 IF (IWGT2I WRITEC 1011090 ) FNUMFL CPLCI)I a IN) 1253 IF CIWGT2) WRITEClOl1030 gt 1254 IF ICFB-FLgtQEN0RMlaquoC0N2gt 00 TO 350 1255 C 1256 C 1257 C NO SIGNIFICANT IMPROVEMENT ATTEMPT TO LOCATE THE OPT ALONO 1258 C THE DIRECTION P TO MORE DEFINITION 1259 C 1261 ^ IF CIEXPEQO) CALL CUBMINCXBFBPLFLTEXTRAFVALh C0N2N0RM 1262 gt FNUMIWNLINLLGRADNTCCCPARgt 1263 IF IIEXPEQ1) CALL PRBOLCIXBFBPLFLNORMC0N2 PNFNUMFVAL IW 1264 gt NL1NLL CCFLOWERACCCPARgt 1265 IF (FNUMGTFMAX) SO TO 740 1266 IF CLLNE2) GO TO 410 1267 QO TO 370 1268 350 DO 360 1 = 1N 1269 EXT a pLCI) - XBI1) 1270 XBCI o PLC I) 1271 360 PLC I) a EXT 1272 FB a FL 1273 ICON = 0 1274 IF ICCLE1 ) ICON a 1 1275 GO TO 41O 1276 C 1277 0 NO IMPROVEMENT IN THE FUNCTION SO RESET THE S MATRIX TO 1 1276 C 1279 370 IF (IFRSTEQO) GO TO 750 1260 DO 390 I=1N 1281 DO 360 Ka1N 1262 380 StKgt a 0 1283 390 SCII) a 1 1284 IFRST a 0 1285 IF (NBCEOO) GO TO 670 1286 C 1287 C RESET GTS3 1288 C 1289 LA a 0 1290 08 400 1=1NBC 1291 10 = COLCI 1 1292 400 CALL CONADDCGTSBS10COLPPLNLAIVI0gt 1293 GO TO 670 1294 C 1295 C 129B C XB = XCKtD P = Q(K1) PLa PCK11 THEN PL a P(KIgt - SIK 1298 C 1299 C UPDATE SGTSG FOR Kl AND POSSIBLY GTSQ FOR NBC bull 1 1300 C 1301 410 CALL GRADNTCXBEXTRA) 1302 IFIIWE03)WRITECI011050)FNUMFBCXBCI ) I al Ngt 222 FIIWpoundQ2)WR1TEII011051IFNUMlFBCXBltI 11 = 1 N) 1304 IF CFNUMGTFMAXgt GO TO 740 1305 IFRST a 1 1306 00 420 lraquo1N 1307 420 PCI) a EXTRAI) - PARC 1) 1308 DO 430 llaquo1N 1309 IF ( ABSCPII))GTT0L1) GO TO 440 1310 430 CONTINUE 1311 GO TO 370 1312 440 CONTINUE 1313 C 1314 C MVL pound RESCALE THE ALFA AND THE S MATRIX HOWEVER LEAVE THE STEP SIZE 2 1 pound WSk T E8 EPi -IHUS F A L F A is SCALED UP THE S IS SCALED DOWN Wl pound fiLdeg SCALE THE S AND THE GTSG MATRIX TO SATISFY THE NORM RE-1318 C QUIREMENT 1319 C 1320 C 1321 C0N2 = NORM I 322 AF a 1 1323 IF IC0N2GEDELTAPI GO TO 450 1324 AF a C0N20ELTAP

323

- bull I O -^0 K i l l C bull

- | - gt raquo lC 1 0 S O

bull ( j) v n i i i i i i o i i r o ) A ( I I M

--V bull bull C i - l 1A

1 I ~ S(K I gt i bulllt c i CM TO s i o

bull bull I i i-C bull V i NBC bull bull bull bull K i = CTOI 1K) AF

K bull bull i rJO TO Olo -V 1 c

bull bull(bullbull K--- IA bull ) I i bullbull ) OTMi I J

- I h J - 1 N

gtbull( U i PLC I I bull bull C

gtS PLltIgtlaquo=2 ic bull L ( l ) laquo P A t l )

10 ) GO TO 370 bull bull bull bull l i CE CCOMVOraquoC0N2gt)AN0CCN3RMCON1)GTOELTgtgt GO TO

iT rLiAIN POS DEF FOR K l USE RESET 2 CASE

2 ) URITECI011100 )

W Me SltK) TO StK + 1 )

| v UW = 0 bull bull bull 0 I =7 N

HU 50 J=1N C1Jgt = S lt l J ) bull PLlt1)laquoPL(JgtC0N1

I I I - 2 N I A 1-1 Iif 80 J M L A

rraquo( i j ) raquo S ( J I )

P = C bull II-TRANSPOSE laquo Y(Kraquo1) A = VCKH ) bullbullbullT = Y ( K ) - T raquo S-M raquo (G-M-T bull S(K) G-M) - INVERSE

- ii ncfQOI GO TO 650 rori THE UPDATE SCHEME USED HERE SEE RALSTON AND W1LF VOLUME I

DO S90 1 = 1 NBC P( I I = 0 LA = COLU ) DO 590 J=IN P(l ) = P(ll bull SltJLA1 laquo PL(J) Wj i00 1 = 1 NBC PAltI) = 0 CD 600 JMNBC P A M ) = P A ( I ) bull GTS3lt I J ) laquo PltJ)

iiHZ - CJNI

X 5-0 1=1NBC IJ-IS = C0N2 + Pltl ) laquoPA( I )

i) V 1 = 1 NBC 1 W ( 1 ) = 0 laquo u0 J=1NBC

PAP l l l = FAR(igt P ( J ) raquo G T S O ( J I ) DO i 0 1 = 1 NBC

Ou eno J = I N B C O C O l l J ) = G T S B U J ) - PAU l iPARCJ I CSNS O I - W 1 1 n gt ( - U I O H l I

IF (NftC t J1 I ) tlO TO 6S0 DO 6I0 =2 NBC

LA 1~S

324

1415 1416 1417 1416 1419 1420 1421 1422 1423 1424 1425 1426 1427 1426 1429

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1480 1451 1452 I4S3 1454 1455 1456 1437 14S8 1459 1460 1461 1462 1463 1464 1465 1466 1467 1466 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1181 1482 I4B3 1404 1485 I486 1487 1468 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1S02 1S03 1504

00 640 J=1LA 640 GTSG11J) = GTSG1JI) 650 DO 660 I = 1 N 660 PARC 11 = EXTRAI)

GTSG HAS NOW BEEN ADJUSTED FOR SCK+1)

NOH IF A CONSTRAINT HAS BEEN ADDED ADD IT TO THE BASIS- 670 IF (ICONEQO) GO TO 100 680 IF (NBC EQO) GO TO 690

Cfc_V- PW5tCT^PuPElVSftfcSSScopy1NWampSlaquoK--i_ W hZ M O m i l IF (IWGT2) WRITEdOl 1120 1 LLN0RM1T0L1 3 TEST AGAINST T0L1 FOR LI NEAR DEPENDENCE IF IN0RN1GTT0L1) GO TO 690 NDEP = NliEP raquo 1 DEPC(NDEP) = LL GO TO 100 690 CALl- OONADOIGTSGSLLCOLPPLNNBC IVICgt IF UWGT2) WRITE101 I 110 ) LLN8C GO TO 100 700 LL I GO -TO S80 710 CONTINUE IF( MWGT 0) AND ( IWNE21 ) 2 WRITE1011050 ) FNUMFBCXBII)I=1N) IF(IWEO 2)WRITE I 101 I 131)( I LABEL ILABEL2) l=lLBLMAXgt IF IIWLT1ORNBCEQO) GO TO 760 WRITE1011030 gt WRITE1011140 ) DO 720 1=1NBC 10 = COLIgt 720 WRITE1011160 ) I 0(G(K10)K=l N) IF (NDEPEQO) GO TO 760 WRITEUOI 1030 ) WR I T E 5 0 ) WRI1EII0I1140 ) DO 730 l=1NDEP |0 = DEPCII) 730 WRITE1811160 I 10 (G(K10)K =1 N) GO TO 760 740 IF llWGTO) WRITE101 1 ISO ) FNUMFMAX l f A f e 760

IIWGT 750 IF 760

761

771 772

79B 799

1FAJL N T I N

2 0) WRITEilOl1190 ) CONTINUE IFlMSEARCHGTO) GO TO 771 DO 761 1=1N XINFI I 1 = XB(I ) FINf = FB GO 10 799 IF(FBGEFINF) GO TO 2 DO 772 l=lN XINFI) - XBI I ) FINF = FB I FA 1 LA = I FAIL GO TO 2 IFAIL = 1FAILA IFIWGT0gtWRITE(101I052)NSEARP1

_ _ RETL RN 1000 FORMAT1H I 102E20 I 0) 1010 FORMATUH NORM = E168 1020 FORH ~

FINFIX1NFIII1=1NI

OFHATIIH VNDEX 0F~iMPR6vEMENTElea loX laquo1HE UPPER MOUND ON STEP SIZElaquo El 88) 1031) FORhAT iH )

1040FORMAT tlHl ax laquoWraquo9KMgt 8X laquo1W IH 71I0IH04XraquoC0NVGraquo6XlaquoDELTraquo4XraquoEPSLONraquoeXraquoRH

a 4Xraquo0ELTAPlaquo7XT0L1laquo1H 6E103 I 1048 F 6 R M A T laquo ITERATION NO raquo|3 2 bull FNUM FUNCTION VALUE Z(1) - -bull 1049 FORMAT41H FNUM FUNCTION VALUE 1050 FORMATIH raquoTHE NUMBER OF CALLS TO FVAL IS I 2H t6X6E168)gt 1051 FORMAT151X7E168I22X6E1B 8) ) 1052 FORMAT BEST LOCAL MINIMUM FOUND AFTER

Zli) raquo I32H

laquo 13 TRYS IS-1060 FORMAT1H THE CONSTRAINT I 3HAS BEEN PUT IN THE BASIS

1 |H THERE ARE I5C0NSTRAI NTS IN THE BASIS NOW) 1070 FORMATIH raquoTH6 COEFFICIENTS OF THE NEW CONSTRAINT ARE 1H

I 7E16BI1H 7EI68)) 1080 FORMAT1H0CONSTRAINT15 laquo HAS BEEN DROPPED FROM THE BASIS) 1090 F0RMATI1H AFTER 15 CALLS THE MAXIMUM STEP TOWARD THE NEARES1

1 CONSTRAINT GIVES1H 7E168I1H I6X7E168)) 1100 FORMATHH laquoXXXX RESET S FOR THE POSITIVE DEFINITE FAILURE) 1110 F0RMATI1H laquoTHE CONSTRAINT raquoI5 laquo HAS BEEN PUT IN THE BASIS

325

ISOS 1 1H THERE ARE 15 CONSTRAINTS IN THE PRESENT BASIS) 150G 1120 FORMAT ( 1 HO THE PROJECTION OF CONSTRAINT I3 1607 I bull AGAINST THE CURRENT BASIS IS E168 1606 1 laquo THE TOLERANCE FOR L1N-DEP IS E168gt 1609 1130 FORMAT1H AFTER IS laquo CALLS THE CONVERSED POINT IS 1H 1510 1 7EI68I1H 16X6E168)) 1611 1131 FORMATCCH bullraquo 7tA6A10)gt 1512 1140 FORMATdH CONSTRAINT laquo 10X COEFFI CI ENTSraquo) 1513 1 150 FORMAH 1H0 1514 1 THESE CONSTRAINTS ARE DEPENDENT BN THOSE IN THE BASIS laquogt 1515 1160 FORMATdH I 55X6E168(1H 1 OX 6EI68)) 1B16 1170 FORMAT1 HOTHE S MATRIX MUST BE SCALED TO SATISFY NORMS THE 1517 1 1H NORM SCALE FACTOR IS laquoEt68) 1518 1100 FORMATI1H TOO MANY CALLS 21101 1519 1190 FORMAT1H THE IDENITY RESET USED IN SUCCESION) 1520 END 1521 SUBROUTINE CONDRPICOLJNBCGTSGPLIC) 1522 DIMENSION GTSG1 IC IOPLIIC) 1523 INTEGER COL(IC) 1524 IF JEQNBC) GO TO 30 1525 C 1526 C SWITCH VOLUMNS JNBC SWITCH ROWS JNBC 1527 C 1528 DO 10 1=1NBC 1529 CC = GTSG(INBC) 1530 GTSGIINBC) = GTSG(IJ) 1531 10 GTSGIIJ) = CC 1532 DO 20 1=1NBC 1533 CC ltbull GTSGtNBC I ) 1534 GTSGINBCI) = GTSGIJ I) 1535 20 GTSGIJI gt = CC 1536 C 1537 C CALCULATE THE NEW INVERSE 1536 C 1539 30 CONTINUE 1540 IF INBCGTl) GO TO 40 1541 NBC = 0 1542 COL1 gt = 0 1543 RETURN 1544 40 NBI = NBC - 1 1545 CC = GTSGtNBCNBC) 1546 DO 50 l=lNB1 1547 C0N1 - GTSGII NBC) 1548 DO 50 K=lNB1 1549 50 GTSG(IK) = GTSGllK) - C0N1laquoGTSG(NBCK)CC 1550 IF INBlEOl) GO TO 70 1551 DO 60 I=2NBI 1552 LA = 1-1 1553 DO 60 K=1LA 1554 60 GTSGIIK)=GTSGIK1) 1555 70 IF (JLTNB1) GO TO 80 1656 IF (JEQNB1) COL(NBI) = COLNBC) 1557 COL I NBC) = 0 1558 NBC = NBI 1559 RETURN 1560 C 1561 C ~ 1562 C 1563 C 1564 80 00 90 1=1NBI 1565 90 PLII) = GTSGIIJ) 1566 NB2 = NBI - 1 1567 DO 100 K=JNBB 1568 LA = Kl 1569 DO 100 1=1NBI 1570 100 GTSGIIK) = GTSGIILA) 1571 DO 110 1=1NBI 1572 110 GTSGIINB1) = PLII) 1573 00 120 l=lNB1 1574 120 PL(1gt = GTSGIJI) 1575 DO 130 K=JNB2 1576 LA = Kl 1577 00 130 1=1NBI 1578 130 GTSGlKl) = GTSGILAI) 1579 DO 140 1=1NBI 1580 140 GTSG(NBII) = PLII) 1581 DO 150 l=JNB1 1582 150 COL(l) = C0LII1) 1583 COLI NBC) = 0 1584 NBC = NBI 1585 RETURN 1586 END

1588 C SUBROUTINE PROJCTIPLPEXRASGTSGNNBCCOLIIVIC NORM) 1589 1590

326

1 ^91 t NTEO R lt-nt t c i n r _ ini j 159 cnii i i bull bullbull i ) bull ) f bull o i gt 1 J Tl PV I - -bullbull bullbullbull i i--RM o r TIC PROJECTION OK THE I -TH 11- i- bullbullchi^rvin i gtoiraquo 1 bull H DO 1 0 K -1 l I v O poundgt iPVK) bullbullbull U 1 w n DO 10 - - I N loOi 0 EURI ) ( T ) bull S lt K J ) G lt J 1 gt 150 no ro io i NT- I0T- PL (K) = 0 1 OO j LA = COL(K 1004 DO 20 J = l N WOE 20 PL(Ilt) = PI IK) bull bull - LA EXTRACJ) 1 500 DO 30 K= I NSC 1607 P I K ) - 0 1 toe DO 30 = bull NtC 1003 30 PCX) = PI ) O 0 (K J ) laquo P L ( J gt IG10 00 40 K - I N 1611 P L I K ) = 0 15 2 DO 40 J- I NBC 131 3 COLi - CO_l l ) 1014 -10 PLCK) - PL1K1 bull 0 KCOLJ ) laquo P ( J I I 0 i DO C 0 K- 1N 1 fi 1 6 F- IK) bull IX 1 RA K i 101 DO i ic J - M 1GK1 0 P l U = Pl - I ltK J ) P L ( J ) I Ma c 1620 C P I iOv H i P i t - i 11raquo OF THE I -TH CONSTRAINT 1021 C l o 2 imMi = 0 16 3 0 0 lt bull I N 11524 1 i-Arhl - II0PI1 H P I K ) laquo raquo 2 )52Ti i1JK- - GOUTchuRMI) 1 6 2 rCLUKN I 6 t END

1628 -OcTOi TINE C^fiAriOl GTSO S LL COL P PL N NBC I V IC) 1629 traquo - I laquo I f f S T j O C i C l r l SC IV W l P I l I P L U I 1530 Hlfr R Ot)_( |C) COLI COLJ 1631 f5tll LMRwH Glt1020)BI20) 1632 0 1633 C 1S34 C TIM f - O l l M E UPDATES THE MATRIX (G(M) - T laquo S (K ) raquo GCM) gtbullINVEF 163igt c IO IHF A IRX IOCf1lt ) -T laquo SCK) bull GCM1) ) - INVERSE WHEN THE LL 1636 C C J M M I H T IS f JT IN TtiC BASIS 1637 C 1636 C 1639 II 1 = HOC t 1 1640 COL (KIM ) = LL 1641 C 1642 C SET OF A12 1643 C IG44 00 10 l=lN 1643 Pltl) = 0 1646 00 10 J=lN 1647 10 P(I) s PCI) laquo SCIJ) GIJLL) 1648 AO = 0 1643 DO 20 I si N 1650 20 AO - AO + Q(lLL) Ptll 1651 IF IHBC fcOO) BO TO 100 I 652 DO JO I=1NUC 1653 PL(I) = 0 1654 DO 30 J = 1N 1655 COLI = COL (I ) 1656 30 PL(I) raquo PLCI) OIJCOLI ) raquo P1J) 1657 C 1658 C 1659 C SET UP -All-1 bull A2 1660 C 1661 C 1662 DO 40 I-1N3C 1663 PU ) sO 1664 DO 40 J=1NBC 1668 40 Pill bull Pill bull OTSO(IJ) s PLJ) 1666 C 1667 C COMPLETE CALCULATION OF AO 1660 C 1E69 DO 50 Is INBC 1670 50 AO - AO bull PLCII laquo PC I 1 1671 OO 60 Is INBC 1672 DO 60 JslNBC 1673 60 GT5QIIJ) = QTSOIIJ) PC I I raquo PCJ) AO 1674 IP CNdC E O l l GO TO 80 1675 00 70 |s2NBC 1676 LA = I - I 1677 00 70 J=tLA 1676 70 OTS Q U J ) sGTSGCJl)

37

1679 80 DO 90 1=1NBC 1600 GTS6IINB1I = P(1)A0 1661 90 GTSGINB1I) = GTSGlt1NB1) 1682 1 00 0TSGIND1NBU = 1 AO 1amp63 NBC = NB1 1684 RETURN 1685 END

1666 SUBROUTINE CUBMI NIXB FB PLFLPEXTRA FVAL 1 1 NLINLLGRADIITCCCPAR) 1687 SUBROUTINE CUBMI NIXB FB PLFLPEXTRA FVAL 1 1 NLINLLGRADIITCCCPAR)

1666 C 1569 DIMENSION XBC1gtPC1gtPLlt1)EXTRA1) 1 690 REAL NOFM NeRM 1 1691 1 NTFGER FNUM 1692 C 101 IS THE LOGICAL UNIT NUMBER FOR PRINTOUT 1693 101 = 3 1694 LL = 0 1695 NL = 0 1696 NORM = DST 1697 CALL GRAONTIPLEXTRA) 1696 GB = 0 1699 DO 10 1 = 1 N 10 GB = GB + PCI) EXTRA1) 1700

DO 10 1 = 1 N 10 GB = GB + PCI) EXTRA1) 1701 GA = CPAR 1702 IF (GBGTO ) SO TO 120 1703 GO TO 30 1704 20 LL = 2 1705 FNUM = FNUM NL 1706 RETURN 1707 30 IF (CCGINOFM) GO 10 80 1708 40 NORM = NORM 2 1709 DO 50 l=lN 1710 50 PL(I 1 = XBCl) bull NORM raquo PC I ) 1711 NL = NL bull 1 1712 CALL FVALI PL FE)

IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60

1713 CALL FVALI PL FE) IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60 1711 CALL FVALI PL FE) IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60 1715 IF NL IENLIN) GO TO 40 1716 GO TO 20

1717 60 CALL GRADNKPLEXTRA) 1716 GB = 0 1719 DO 70 1 = 1 N 1720 70 GB = GB bull PCI)-EXTRAI) 1721 IF CGBLEO ) GO TO 210 1722 FL = FE 1723 GO TO 120 1724 80 GA = GB 1725 Fl = FL 1726 N0RM1 = NORM 1727 C NORM = DlilNl INORMI DSTCO 1728 NORM = NORN bull DST 1729 IFINORMGTCC) NORM = CC 1730 DO 90 1=1 N 1731 90 PL(I) = XB(I) + N0RMraquoPI) 1732 CALL GRADNTIPLEXTRA) 1733 GB = 0 1734 DO 100 1=1N 1735 100 GB = GB t P(|) raquo EXTRAI) 1736 CALL FVAL1PLFL) 1737 IF I1WBT2) WRITE101 1020 ) FL NORM 1738 NL = NL bull 1 1739 IF (GBOTO ) GO TO 110 1740 IF ltFB-FLIGEN0RMlaquoC0N2gt GO TO 200 1741 IF INORMGECO GO TO 20 1742 IF CNLLTNLIN) GO TO 80 1743 GO TO 20 1744 110 A = N0RM1 1745 B = NORM 1746 GO TO 140 1747 120 A = 0 1748 B = NORM 1749 Fl = FB 1750 GO TO 140 1751 130 IF (NLGTNLIN) GO TO 20 1752 14U 2 = 3 bulllt(F1-FL)(B-AgtIGAraquoGB 1753 W = SQRT1Z-Z-0A-GB1 1754 AS = B - UGBW-ZgtCGB-GA200raquoWgt) raquo CB-A) 1755 IF (ALTASANDASLTB) GO TO ISO 1756 AS = 5gtCAlaquoB) 1787 ISO DO 160 l=lN 1758 160 PL1I ) = XBCI ) AS raquo P(l ) 1759 NL = NL bull 1 1760 CALL FVAL(PLFEI 1761 IF (IW0121 WHITE1011010 ) FEAS

IF ((FE-FB)GEASgtC0N2) GO TO 170 1762 IF (IW0121 WHITE1011010 ) FEAS IF ((FE-FB)GEASgtC0N2) GO TO 170

1763 NORM = AS 1764 GO TO 210 1765 170 CALL GRAONTPLEXTRA) 1766 2 = 0

328

1767 DO 180 l=1N 176S 180 Z = Z + ~ 1769 IF (ZGEO 1 770 A = AS 1771 GA = Z 1772 1773 1774 1776 FL raquo FE 1776 SB = Z 1777 00 TO 130 1778 200 FE = FL 1779 210 DO 220 1=1N 1780 W = PLC1) - XBCI) 1781 XB I) = PLC I 1 1782 220 PLC 1 ) = W 1783 FB = FE 1784 FNUM = FNUM NL 1785 DST = NORM 1786 RETURN 1787 1000 F0RMAT13H H E20125XE156) 1788 1010 F0RMATC3H C E20125XE156) 1789 1020 FORMATC3H E E20125XE156) 1790 END

1791 SUBROUTINE PRBOLCCXBFBPLFLDSTC0N2PNFNUMFVALIWLINMIN 1792 gt LLCCFLOWERACCCPAR) 1793 REAL NORM 1794 REAL L1L2L3 1795 DIMENSION XBC1)PC1)PLC 1 J 1796 INTEGER FNUM 179 C 101 IS THE LOUICAL UNIT NUMBER FOR PRINTOUT 17911 101 = 3 179S IF (FBLTFLOWER) FLOWER = -lE30 180D IWK = 0 1801 LL o 0 1802 NLN = 0 1803 NORM = CPAR 1804 CON =-NORM 1805 NORM = 2 bull ABS((FB-FLOWER)NORM) 1803 C RO - DMINKNORM 1 DO 5D0CC) 180V RO = 5raquoCC 1808 IFCROGT1 gt RO = 1 1809 IFCROGTNORM) RO = NORM 1610 IF CROEQDST) GO TO 20 1811 DO 10 1=1N 1812 10 PLC I I o XBCi) ROPCl ) 1813 CALL FVALCPLF1) 1814 I F CIWGT2) WRITEC 1 0 1 1 0 1 0 ) F1 R0 1815 NLN = NLN bull 1 1816 IF CNLNGELINM1N) GO TO 240 1817 0 0 TO 30 1818 20 F1 = FL 1619 30 LO = 0 1820 L I = RO 1821 FO = FB 1822 40 Rl = 5 CONROlaquoROCF1-F0+ CONRO) 1823 IF I R 1 G T 0 ) 00 TO 80 1824 C 5 0 L2 = DM1NI ( 2 D0laquoL1 L1 bull 9 9 9 I CC-L1 ) 1 1825 50 L2 = LI + 999raquoCC0-L11 1826 IFCL2GT(2raquoL1)gt L2 = 2laquoLI 1S27 60 00 70 I=1 N 1828 70 PLC I) = XBCI) raquo L2laquoP(I) 1829 CALL FVALCPLF2) 1830 IF IIWGT2) WRITE1011010 ) F2L2 1831 NLN = NLN 1 1832 IF CNLNOTLINMIN) GO TO 230 1833 IF IF2GEFI) GO TO 140 1634 LO a LI 1835 FO = Fl 183G LI = L2 1837 Fl o F2 1838 00 TO 50 1839 80 IF IR1-L1) 1005090 1840 C 90 L2 = DMIN1CR1999laquoCC) 1841 90 L2 = 999CC 1842 1FCL2GTRI) L2 = Rl 843 GO TO 60 844 C 100 D = 0MIN1C7SD0R0R1) 845 100 D = 75raquoR0 846 IFC0GTR1) 0 = Rl 847 C Rd - DMAX1 I 25D0laquoR0D) 848 R2 = 25laquoR0 849 IFIR2LTD) R2 = 0 850 DO 110 I = 1 M 851 110 PLCI) = XBCI) R2laquoPCI) 1852 CALL FVALCPLNORM) 1803 IF CIW0T2) WRITEC 1011010 ) N0RMR2 1854 NLN = NLN 1

329

1655 IF INLNGTLINMIN) GO TO 240 1856 IF (NJRMLTFO) GO TO 120 1857 LI = R2 1850 Fl = NORM 1859 I860 1661 1662 10 = R2 1863 FO = NORM 1861 GO TO 50 18o5 130 L raquo Li 1 J6E F2 = F 1 136 7 LI = R2 1860 Fl = NORM 1869 M O K = 1 1670 IF (IWKFQO) GO TO 150 1671 IF ( (FB-M ) GE 11 -CONK) GO TO 260 1672 150 JWK = 1 1373 R3 = 500-(F0CLllaquo2-L22) + F1 (L2lt2-LO2) + F2( L0laquo2-L1laquo2 1874 gt )ltF0(L1-L2) F1KL2-L0) + F 2 M L 0 - L O ) 1875 IF ( AB5(R3-Lt)LEACCL1) GO TO 260 1676 C D = DMIN1(L0+9D0CL2-L0)R3) 1877 D = LO + 9(L2-L0) 168 IFIDGlR3J 0 = R3 1879 C R4 = OMAKULO 1D0(L2-L0) 0) 1880 R4 = LO + 1ML2-L0) 1861 IF(R4LTD) R4 = D 1882 160 DO 170 1 = 1 N 18C3 170 PL() = XB(I) + R 4 raquo P U ) 1884 CALL FVAL(PLNORM) 1685 IF (IWGT2J WRiTE(1011000 ) NORMR4 1 Dub NLN = NLN bull 1 I (87 IF (NLNGTLINMIN) GO TO 240 1380 IF (R4E0L11 GO TO 260 1689 IF (R40TL1gt GO TO 210 1890 IF INCiRMLTFU GO TO 190 1891 LO = R4 T632 FO = NORM 1893 IF tKEQ2) GO TO 140 1694 R4 = 5ML1+L2) 1895 180 K = 2 1896 GO TO 160 1897 190 L2 = L1 1896 F2 = F 189S 200 LI = h 1900 Fl = NURM 1901 OO TO 140 1902 210 IF (N0RMGEF1) GO TO 20 1903 LO = L1 1904 FO = Fl 1905 GO TO 200 1906 220 L2 = R4 1907 F2 = NORM 1908 IF (KEQS) GO TO 140 1909 R4 = 5ML1+L2) 1910 r0 TO 180 191 230 IF (F2GcF1) GO TO 240 1912 Fl = F2 1913 L1 = L 1914 240 LL = 2 1915 IF UKB-F1) LTC0N2Ll) GO TO 280 1916 LL = 1 1917 DO 250 1=1 N 1918 250 P H I ) = XB(I) + L1P(I) 1919 260 IF (FDLEF1) GO TO 240 1920 FB = Fl 1921 OST = LI 1922 DO 270 I=1N 1923 D = PL(I) - XB(I gt 1924 X B U gt = P L U ) 1925 270 PL( I gt o D 1926 2^0 l-NUM - FNUM + NLN 1927 RETURN 1928 1000 J-0RMATC3H0B E25125Xpound1561 1929 1010 FORMATC3H0S E25 12 5XEl 56) 1930 END

1931 1932 1933 1934 C THIS SUBROUTINE SOLVES FOR THE PAYNTIiR TRUNCATION NUMBER K SOLVE FOR 1935 C A K SUFFICIENTLY LARGE THAT THE FOLLOWIN3 INEQUALITY IS SATISFIED 1936 C I1FACT0RlAL(k))(QraquoK)EXPCQ)ltERRQR 1937 C 1938 C REF ANALYSISSIMULATION AND CONTROL OF DYNAMIC SYSTEMS BY J W 1939 C BREWER PP100-1B2 FOR THE JUSTIFICATION OF THIS METHOD 1940 C AND MCCUE H K UNIVERSITY OF CALIFORNIA 1941 C LAWRENCE LlvERMORE LABORATORY (PRIVATE COMMUNICATION) 1942 C

330

1943 1944 1945 1946 1947 1346 1949 1950 1951 1952 1353 1154 1905 1956 1957 1958 1959 I960 1961 1962

C THE LARGEST FACTORIALS THAT ONE CAN REhVr-FNr ON A 60 pound51 T MACHINE C ARE AS FOLLOWS C 18 FACTORIAL INTEGER C 154 FACTORIAL FLOATING POINT C THIS FACT ALONG WITH IOVI ONE IMPLIMENTS THE FAYNTfriR INEQUALITY C PLACES AM UPPEK 1JOUHI IN KMAX (ASSUMING SINGLE PRECISION) C A REASONABLE VALUE IS KHAX-100 (OR FLOATING POINT FACTORIALS C

DIMENSION A(N0N0) C SET K = 0 FOR CHECK ON RETURN

K = 0 C SOLVE FOR THE LfRGFST ELEMENT IN THE A MATRIX AMAX = ABStAll1)) DO 1 I = 1 N1 DO 1 J=1NI 0=ABS(A(I J)) 1 IF(QGTAM))AMiX~Q C SCALE AMAX TCI TIG bullbullbull 1011 lif) VALUE

1 96- 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1963 1984 1985 1986 1987

Q=AMAXraquoOELTAN PERFORM THE PAYNrtfi If

AMAX=EXP(U) X1=00 XK=00 DO 2 1=1KMAX XK=XK16 X1=QXK AMAX=AMAXlaquoXI IFIAM) IL rRl- K COM) 1 MUE INECUAIi Ti T bulllt K = -1 GO TO 11

I 1 I I bull m if

CAI TY AND SOLVir

ro IO 1 [ [ 1 OT KKMAX

1 I -J f w K = I

CON 111 II RETURIt END

1968 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 20i9 SCJO

THIS Ptu M7

SPECIAL CAE THIS SUElPoUV |~ bull NO I S t R - gtpound I S

X ( K ) = - M X i GIVEN THC 11ATF 1

X(T)DOT = bull

P = 3UMMA0N I - - Q=5Utf)Ai ION R=SUNKATIJN | - i

TJ

L1A gt

or I T ALSO COI^PUTLH Tl-i bull A H lt 0 t v- WHERE

F T L D ( I ) = ( l l I X 4 U I K I -1gtlaquo0 T n - i l l C A T L D ( I ) = ( A T I ) gt I A I raquo I - I ATLI lC) bullbull i PH121 = SUMMATION 1= 0 bull ) Of bull 10i PH122 = SUMMATION I D I O bull - I u V U - WKP1(TKTK-1) = P H I 2 I ( r - r i i i l laquo T

REF D APPOLITO J A A l l r L E Al iV I I LINEAR STATIONARY CONINMCj Y5lty-k I N PP 2 0 1 0 2 0 1 1 DEC 196c AHO GELB A ( E D ) APPLIED U P T l A - c iTI MATO COURSE NOTES A SHORT COUR- C I A L M A I I r THE ANALYTIC SCIENCES CORF JIAi 1 VI I t r tDI I -

DIMENSION A ( 1 0 1 0 I B I I 0 1 0 ) 0 ( 1 0 1 0 ) P i 10 DIMENSION S ( 1 0 1 S U M ( 1 0 ) A 1 I lO CAPWI bull bull

2 PHI 21 ( 1 0 1 0 gt P H T 2 2 t O ) F T I IK t o I U I A ND = 10

I T I A L I 2 E THE MATRICES CALL ADOTBT CCAPWDFTLDN3N3Nl NDgt CALL AOOTB ( D FTLD DTLO Nl iMI N l ND) DO 2 1=1N1 DO 1 J raquo I N 1 O T L D I l J ) = DTLD(1 J ) DELTA P ( I J ) = 0 P H I 2 1 ( 1 J ) = 0 F T L D ( i j ) = 0

T I ) f L H

FINALLY

I-S K-7 l OR

l l r i r (ltgt I L I M l

331

2031 AT(I gt = A d I gt DELTA 2032 SUM(I) raquo 1 2033 Sill bull I 2034 PHI22(Igt_raquo I 2036 C 2 COMPUTE STATE NOISE COVARIANCE TRANSITION MATRIX WKP1(TKTK-1gt 2037 0 AND STATE TRANSITION MATRIX P(TKTK-igt 2038 KKM1 laquo KK-1 2039 DO 6 K=1KKM1 2040 DO 4 I=1N1 Ideg42 FTLD(IdegJ| N= (ATLDltI)laquoDTLDltIJ) - FTLOd J) AT( J) gtK 2043 3 PHI2K Jgt = PHI2HIJ) FTLDdJ) 2044 ATLOd) = AT(I)laquoATLD(I gtK 2045 4 PHI 22(1 ) = PHI22d) ATLD(1) 2046 5 CONTINUE 2047 DO 7 I=1N1 lo49 C N O T I J = S N C E A IS DIAGONAL PHI22 = (PHI22)T 2J50 6 WKPHIJ) = PH121(IJ)PHIZ2(Jgt I8I2 C 7 COMPUTE^duMffTHE INTERMEDIATE SUMMATION TIMES (DELTA) 2053 DO 15 J=2KK 2054 DO 14 I=Nl 2055 S([) = S() laquo AT(I)J 2056 14 SUMd) = SUMd) bull S( I ) 2057 15 CONTINUE loll C COMPUTE CONTROL TRANSITION MATRIX Q(TKTK-1) 2060 DO 18 I=1N1 2061 DO 17 J=1N2 2062 17 0(1J) = DELTASUM(I)laquoB(IJ) 2063 18 CONTINUE 2064 10 CONTINUE 2065 C COMPUTE NOISE TRANiTION MATRIX R(TKTK-1) 2066 DO 20 1=1Nl 2067 DO 19 J=1N3 2060 19 R d J ) = DELTASUMd ) laquo D ( I J ) 2069 20 CONTINUE 2070 CALL MATOUTP (PNlNl2HAKND) 2071 IF1N2NE0) CALL MATOUTP (6N1N22HBKNOgt 2072 CALL MATOUTP (RNlN32HDKND) 2073 CALL MATOUTP (WKP1NlNl4HWKP1ND) 2074 RETURN 2075 END 2076 2077 C 2078 2079 2080 2081 2062 20B3 2064

SUBROUTINE ATOB (ABNMND) COPIES (A) INTO ltB) DIMENSION A(1010)B(1010) DO 2 I = 7 N DO 1 J=IM B( lJ) = A d J) CONTINUE RETURN ENO 2086 2066 C 2087 C 2068 2089 pound090 2091 2092 2093 1 2094 Z 2095 3 2096 2097

SUBROUTINE ADOTB ltABCLMNND) ROUTINE PERFORMS FOLLOWING MATRIX MULTIPLICATION C(LXN) = AC-XMI BltMXNgt DIMENSION A(1010)B(1010)C(1010) DO 30 I = 1L DO 20 J bull IN C(lJ) = 06 DO 10 K e IM CdJ) = 0(1 J) AdK)laquoB(KJ) CONTINUE CONTINUE RETURN END

2098 SUBROUTINE ADOTBT (ABOLMNND) 2099 C ROUTINE PERFORMS F0LL0W1N0 MATRIX MULTIPLICATION 2100 C C(LXN) = A(LXM) BT(MXN) Sraquo2i S H E N S 2 N S -iMN) REFER TO MATRICES AFTER THEY ARE TRANSPOSED 2102 DIMENSION A(10 I 0)B(10 10)C(10 0) 2103 DO 30 I = 1L 2104 DO 20 J 1N 2105 C(lJI = 06 2106 DO 10 K = IM 2107 10 CdJ) = 0(1J) bull A(IK)raquoB(JK) 21OA 20 CONTINUE 2101 30 CONTINUE 2110 RETURN 21 1 1 END

SUBROUTINE ATOOTB (ABCLMNND)

332

pound113 C ROUTINE PERFORMS FOLLOWING MATRIX MULTIPLICATION 2114 C CU-XN) = AT(LXM) B(MKN) 2115 C DIMENSIONS (LMN1 REfFR TO MATRICES Al-TER THEY ARE TRANSPOSED 2116 DIMENSION A( 1 0 I 0) B( 0 103 C( 10 1 0) 2117 DO 30 I = IL 2118 00 20 J e IN 2119 CltIJl - 00 2120 DO 10 X = 1M 2121 10 COJ) = C(IJ) + AfKI)raquoB1KJ) 2122 20 CONTINUE 2123 30 CONTINUE 212D RETUilN 2125 END

2126 SUBROUTINE APLUSB CABCNMND) 2127 DIMENSION AC 1010)HI 10 I 0)C(ID10) 2128 DO 2 = 1N 2129 DO 1 J = 1 M 2130 I CMJ) = ACIJ) + Blt[J) 2131 2 CONTINUE 2132 RETURN 2133 END 2134 SUBROUT I igtIE AMINSB I A B C N M ND) 2 3 5 DIMENSION A l l 0 1 0 ) B l I 0 I 0 ) C I 1 0 1 0 ) 2136 DO 2 I = 1N 2137 DO 1 J = 1M 2138 1 C ( I J ) = A l l J ) - B l J gt 2139 2 CONTINUE 2IltI0 RETURN 2141 END 2142 SUDROUTIMF APLU B (A amp C N M MO) 2143 DIMtNoOH A l 1 0 1 0 ) B ( 1 0 1 0 ) C ( 1 0 1 0 ) 21(14 F PERFOIM FOLLOWING MATRIX OPERATION 2145 C C(NXM) - A(NXM) + BT(NXM) 2146 DO 2 1=1N 2147 DO 1 J=1M 2148 1 CCIJl = AIIJ) BCJ1) pound149 2 CONTINUE pound150 RETURN 2151 END 2152 SUBROUTINE ABAT IABCNND) 2153 C COMPUTES C = AraquoE-T FOR SPECIAL CASE WHERE CAgt IS DIASONAL 2154 DIMENSION A(10 1OiBiI 010)C(10 10) 2155 DO 2 1=1N 2156 DO I J=1N 2157 1 C(IJ) = AI I I )BC 1 J)AC J J) 218 pound CONTINUE 21 59 RE TURN 21 60 END

2161 2162 pound163 TR = 0 2164 DO 1 1-1N 2165 TR = TR bull AltI I gt 2166 RETURN pound167 END 216B SUBROUTINE XTAY ( X A Y Q N N D ) 216S C FINDS VALUE OF QUADRAT IC FORM Q 21 70 DI MENS I ON X ( I 0 J A ( 1 0 1 0 ) Y M 0 ) 2171 0 = 0 pound172 DO 2 J = l N pound 7 3 XA = 0 2 4 DO 1 I = 1 N 2 5 I XA = XA XI I ) A ( I J ) 2176 pound 0 = 0 + XAYltJ) 2177 RETURN 2176 END

2179 2180 C pound161 C pound162 C SUBROUTINE COMIUTFS THE INVERSE IF AN NXN REAL MATRIX (A) AND 2163 C RETURNS IT IN (AINV) (A) IS NOT DISTURBED IN THE PROCESS pound184 C GAUSSIAN ELIMINATION USING THE LU DECOMPOSITION AND pound185 C ITERATIVE IMPROVEMENT IS THE METHOD FOR SOLUTION 2186 C 2187 C 2188 C

333

Of UXiffi MrC iRiVTMr NO CLCVE (i MPLER COMPUTER SOLUTION iAIC iYS (EMS fPENlICE-HALL(1967) CHAPT 17

bulli I 9 J 1 i cgt t 2194 2 t 9f 2 1 97 bull 2U-gt 2199 praquo0lt i^Ol 203 SJ-Ofl 2 20J 220 2200 2209 2210 pound21 1 2212 2213 22)4 2215 216 2217 1 21H 2219 2220 2221 2tgt2 pound pound-223 2221 2225 2226 2227 2228 2229 C 2210 2231 2232 2233 2234 223 o 2236 2237

ON RETURN nERROR J IS THE ERROR FLAG IT SHOULD BE CHECKED I TIMOR - 0 EVERYTHING SEEMSfi OK lEMNO^ = -1 ROW WITH Ail ZfciW ELEMENTS WAS FOUND poundiFf-( = = -2 ZERO Puor ELEMENT WAS FOUND JCf oR- = -3 ITERATIVE IMPROVEMENT DtD NOT CONVERGE THE A MATRIX IS IL -CONDI nONED SUCH THAT NO SIGNIFICANT DIGITS OF THE TRJC ^OLuTlCN WERE OBTAINED IN THE ORIGINAL SOLUTION FROM SOLVE NOTE VARIABLE D MENS I ONI NG IS USED THROUGHOUT THIS PACKAGE ND - 312F Of DIMENSIONED ARHAYS IN CALLING ROUTINE r-N = T H E ACTUAL PROBLEM SIZE BEING USED (NNLEND OF COURSE)

DIMENSION Af1010)AINV(1010gtUL(1010)B(10)X(10) 2 SCALES I IQ)R( 0)OX10) ( IPS(IO) IFCNNEO1gtGO TO 10 ND = 10 CALL ntiCCMP (NN A UL SCALES IPS I ERROR ND) If- ( IEftRraquoRLTD) RETURN INDEX=1 DO 1 1=1NN iafNf-MiL iHE PROPER B VECTOR DO 2 J=1 NN B(Jgt=00 CONTINUE VOLvr FOR IMF COLUMN OF INVERSE Bt IND=X) = 1 0 CALL SOLVE (NNULBX I PSND) CALL iMFRUV (Nil A UL amp X R 3X IPS DIGITS TERROR ND) IF ( lERrtORLl 0 ~

-gtyigtMi COuUMN IN IN mdash v J=1HN AINV (JINDEX) CONTINUE INDE MNDEX+l CONTINUE RETURN SCALAR CASE CONTINUE JF(A) I 120 11 AINV = 1 A CRROR = O RETURN I ERROR = -2 RETURN END

RETURN ^E MATRIX X( J)

2P1amp SUBROUTINE prCOMP NN A ML 5 ^Al t S I PS 1 ERROR NDgt 2239 D I MEN- I ON A( ND NO UL ( Hi ND JCALF51 NO ) IPS(ND) 2240 N = NN 2241 C 2242 C INITIAL^ (PS UL AND SCALF3 2243 DO 5 I s 1N 224-1 J P S U ) s I 2245 ROWNRM a 00 2246 DO 2 J = 1N 2247 ULtIJ) = A(lJ) 2240 IF(ROWNRM-gt=Bjf UL(I J) )) 122 2249 1 ROWNRM = ABSfUL(IJ)J 2250 pound CONTINUE 2251 IF (ROWNRM) 3913 2252 3 SCALES(I) = I 0ROWNRM 2253 bullgt CONTINUE 2254 C 2255 0 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING 2206 NM1 s N-l 2257 DO 17 K = 1NM1 2250 BIG = 06 2259 DO 11 1 = KN 2260 IP = J P 5 U gt 2261 SIZE = ABSIULfIPK))laquoSCALES I IP) 2262 IF (SIZE-BIG) 111110 2263 0 BIG = SIZE 2264 IDXPIV s I 2265 11 CONTINUE 2266 IF (BIG) 139213 2267 13 IF HDXPIV-K) 141514 2263 14 J = |PS(K) 2269 IPS(K) = IPS(IDXPIV) 2270 IFSMDXP1VJ = J 2271 gt5 KP = IPS(K) 2272 PIVOT = UL(KPKgt 2273 KP1 = Kl 2274 DO 16 I = KPIN 2275 IP = I PS I I ) 2276 EM = -UL(IPKIPIVOT

334

2277 227S 2279 2280 C 2281 C 2282 2283 2284 2285 poundpound66 19 2287 2286 C 2289 C 2290 C 2291 C 2292 91 2293 2294 2295 2296

ULOPK) = -EM DO 16 ) = KP1N ULUPJ) = UHIPJ) bull EMraquoUL(KPJ) INNER LOOP USE MACHINE LANGUAGE CODING IF COMPILER OOES NOT PRODUCE EFFICIENT CODE CONTINUE 16 17 CONTINUE KP = IPSIN) IFtUL(KPN)gt bullERROR bull 0 RETURN ERROR EXITS I ERROR I ERROR I ERROR I ERROR RETURN t ERROR RETURN END

EVERYTHING SEEMED OK ROW WITH ALL ZERO ELEMENTS WAS FOUND -2 2ER0 PIVOT ELEMENT WAS FOUND -1 -1

2297 SUBROUTINE SOLVE (NNULBX[PSND) 2298 DIMENSION ULCNDND)B(NOgtXIND)IPStND) 2299 N = NN 2300 NP1 s Nlaquo1 2301 C 2302 IP = IPS(I) 2303 X(ll laquo B(IP) 2304 DO 2 I = 2N 2305 IP = IPSI) 2306 I Ml = 1-1 2307 SUM =00 2308 DO 1 J raquo 1IM1 2309 I SUM = SUM bull ULUPJ)laquoXU) 2310 H I D = BIIP) - SUM 2311 C 2312 IP = IPSCN) 2313 X(Ngt = X(NgtULt]PNgt 2314 00 4 I BACK o 2N 2315 I = NP1-IBACK 2316 C 1 GOES (N-1) 1 2317 IP bull IPS(I) 2316 IP1 = 11 2319 SUM = 00 2320 00 3 J = IPIN 2321 3 SUM - SUM bull ULCIPJ)laquoX(J) 2322 4X(I) = (X(I)-SUMgtUL(IPIgt 2323 RETURN 2324 END

2325 2326 2327 C 2328 2329 2330 C 2331 C 2332 2333 2334 C 233B 2336 2337 2338 2339 2340 2341 C 2342 2343 2344 2345 2346 2347 2348 2349 C pound350 C 23SI 2352 2353 2354 23S5 2356 2367 2388 2359 2360 2361 9 2362 C

SUBROUTINE It-IPRUV (NN AULB X RDX IPS DIQI TS IERROR ND) DIMENSION A(NDND)ULiNDN6gtBltN0gtX(N0)R(NDgt0XlNDgtIPStND) USES ABSU AMAXlti AL0G10O DOUBLE PRECISION SUM N a NN XXX EPS AND ITMAX ARE MACHINE DEPENDENT XKX EPS = 2raquoraquo(-47) ITMAX = pound9 XNORM laquo 00 DO 1 I bull lN 1 XNORM laquo AMAXKXNORMABS(X(l))) IF tXNORM) 323 2 DIBITS r -ALOOIO(EPS) GO TO 1U

3 DO 9 I TER bull I ITMAX 00 5 I bull 1N SUM bull 00 DO 4 J bull 1N 4 SUM bull SUM bull A(IJ)raquoXIJgt SUM raquo BltI) - SUM 5 R(Igt raquo SUM XXX IT IS ESSENTIAL THAT A(lJgtgtX(Jgt YIELD A DOUBLE PRECISION RESULT AND THAT THE ABOVE AND - BE OOUTLE PRECISION XXX CALL SOLVE ltNULRDXIPSND) OXNORM bull 00 DO 6 I bull IN T bull X(ll X(l) laquo XCI) DXII) DXNORK a AMAX11DXN0RMABS(X(I)-Tgtgt 6 CONTINUE IF 11TER-I) 8 78 7 DIGITS = -ALOG10IAMAX1(DXNORMHNORMEPS)) 8 IF IOXNORM-EPSltXNORM) 10109 CONTINUE ERROR EXIT

335

2363 C I ERROR = 0 OK 2364 C IERROR = -3 ITERATIVE IMPROVEMENT DID NOT CONVERGE THE A MATRIX 2365 C IS ILL-CONDITIONED SUCH THAT NO SIONIFICANT DIBITS OF THE 2366 C TRUE SOLUTION WERE OBTAINED IN THE ORIGINAL SOLUTION FROM SOLVE 2367 I ERROR = -3 2368 RETURN 2369 10 I ERROR = 0 2370 RETURN 2371 END 2372 SUBROUTINE NOISE (XBARCAPXXNND) 2373 DIMENSION XBAR(ND)CAPXINOND)X(ND) 2374 C RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS X(I) 2375 C ARE NORMALLY DISTRIBUTED ABOUT A MEAN VALUE VECTOR (XBAR) 2376 C WITH A (DIAGONAL) COVARIANCE ltCAPXgt 2377 C THAT IS 2378 C X - N (XBARCAPX) 2379 C NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX 2360 C 2381 00 10 1 = 1N 2362 10 X(I) = GN(XBAR(1)CAPX(Ilgtgt 2363 RETURN 2384 END

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2406

SUBROUTINE NOISEW (TCAPXXSIGMANND) DIMENSION CAPXINDND) XIND)SIGMAIND) COMMON I0 NINNOUTNTTYNRUNVER DATA NENTER O RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS XC I gt HAVE VARIANCE CAPXdI) CAPX BEING THE COVARIANCE MATRIX FOR X THAT IS CAPX o EIXXT) NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX XXX CAUTION XXX THIS ROUTINE HAS MEMORYUSE FOR ONLY ONE VARIABLE XX) THIS ROUTINE (NOISEW) USED FOR PLANT DISTURBANCE VECTOR (W) NOTEBY REMOVING STMT 1 BELOW THE ROUTINE WILL ACCOMODATE TIME-VARYING STATISTICS (IE CAPX(T)NECONST ETC) IF (NENTEREQNRUN) GO TO S NENTER = NRUN THIS FORM FOR TIME INVARIANT STATISTICS SUCH THAT STANDARD DEVIATIONS ARE CALCULATED ONLY AT BEGINNING OF RUN GENERAL CASE WOULD BE TO CALCULATE SIGMA(T) A FUNCTION OF TIME DETERMINE STANDARD DEVIATIONS FlhST TIME THROUGH 00 2 l=lN SIGMA(I) raquo SQRTCCAPXU)) DO 10 1 lt 1N 0 X(l) raquo GN(0SIGMA(l)gt RETURN END

2409 SUBROUTINE N8ISEV (TCAPXXSIGMANNDgt 2410 DIMENSION CAPXINOND)X(ND)SIGMA(ND) 2411 COMMON le NINNOUTNTTYNRUNVER 2412 DATA NENTER O 2413 C RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS X(Igt HAVE VARIANCE 2414 C CAPX(I1gt CAPX BEING THE COVARIANCE MATRIX FOR X THAT IS 2418 C CAPX = E(XXT) 2416 C NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX 2417 C XXX CAUTION XXX THIS ROUTINE HAS MEMORYUSE FOR ONLY ONE VARIABLE XX) 2418 C THIS ROUTINE (NOISEV) USED FOR MEASUREMENT ERROR VECTOR (V) 2419 C NOTEBY REMOVING STMT I BELOW THE ROUTINE WILL ACCOMODATE 2420 C TIME-VARYINS STATISTICS (IE CAPX(T)NECONST ETC) 2421 I IF (NENTEREONRUN) GO TO 5 2422 NENTER = NRUN 2423 C THIS FORM FOR TIME INVARIANT STATISTICS SUCH THAT STANDARD 2424 C DEVIATIONS ARE CALCULATED ONLY AT BESINNING OF RUN 2425 C GENERAL CASE WOULD BE TO CALCULATE SIGMA(T) A FUNCTION OF TIME 2426 C DETERMINE STANDARD DEVIATIONS FIRST TIME THROUGH 2427 DO 2 I=1N 2426 2 SIOMAU) bull SORTICAPXII I ) ) 2429 9 DO 10 I bull 1N 2430 10 X(I) - QN(0S10MAltl)gt 2431 RETURN 2432 END 2433 2434 C 2435 C 2436 C 2437 C 2436 C 2439 C 2440 C 2441 C 2442 2443 2444

FUNCTION GN (MUSIGMA) SUBROUTINE RETURNS A NORMALLY DISTRIBUTED (PSEUDO-) RANDOM NUMBER WITH MEAN (MU) AND STANDARD DEVIATION (SIGMA) THE ROUTINE USES (RAND()gt WHICH IS TO RETURN A (PSEUDO-) RANrampM NUMBER WITH UNIFORM DISTRIBUTION ON THE OPEN INTERVAL (01)

DATA NENTER O REAL MUSIGMA NENTER a NENTER

336

2445 pound446 2447 2448 2449 2450 2451 24S2 2453 2454 2455 2456

IF (NL-NTEREQ2) GO TO 2 VI 2 laquo RANLUKERNEL) - I V2 = 2 RANDEKERNEL) - 1 S = VI VI bull V2 V2 IF (SGE1) GO TO I

RAD = CRT 6N = sicrn RETURN GN = SIGMA NENTER - 0 RETURN

(-2 VI V2 RAD + MU

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 247S 2476 2477 2478 2479 2480 2481 2482 2483 2484 2465 2486

FUNCTION RANO (IY) ROUTINE REUIW A (PSEUDO-) RANDOM NUMBER UNIFORMLY LTI - fl- I BUTEO ON THE OPEN INTERVAL (0Tgt ROUTINE IS laquo u IABLE IE IT SHOULD WORK ON ANY MACHINE i SEE REF FOR JETAILS) REFFRITSCM F N UNIVERSITY OF CALIFORNIA LAWRENCE L I VI-MORF LABORATORY (PRIVATE COMMUNICATION) AND INTERNAL DOC -IENT NUMERICAL MATHEMATICS SECTION NOTE NO FEB 7 1973 UCLLL DATA M2 O I TWO 2 IF (M2 NE 01 SO TO 20 COMPUTE WORD SIZE OF MACHINE M = 1

10 M2 = M M = ITW0M2 IF (M GT M2) Oe TO 10 HALFM = M2 COMPUTE MULTIPLIER INCREMENT AND SCALE FACTOR u t c IIgt-gtL bull i r i i t n i IIUIH-I ii_n bull nnu IA = 8IFIX(HALFMlaquoATAN(1gt8gt + 5 IC = 2laquoFIX(HALFMraquo(05-SQRTI316gt) 1 S = 05HALFM COMPUTE THE NEXT RANDOM NUMBER

20 IY = IYlaquoIA IC IF (IY2 GT M2I IY = (IY-M21-M2 IF (IY LT 0) IY = (IYM2)M2 RAND - FLOATClY)S RETURN END

2487 2488 243U 2490 2491 2492 2493 2494 2495 496 2497

SUBROUTINE UEJAR (LTUIUUKNO) DIMENSION UKND3)IU(NDgtUltNDgt SUBROUTINE RETURNS THE INPUT VECTOR (U(IT)I=1L) IT USES OIERJAL FUNCTION Ul I I WHICH SETS EACH ELEMENT SEE (FUNCTION Ul) LISTING FOR MEANINO OF SWITCH (IU) AND ARRAY OF FUNCIION PARAMETERS (UK) EXTERNAL Ul DO 1 I=1L Ull ) = Ul(IUII) lUKNDgt RETURN END

2

2498 2499 2500 2501 2S02 2501 250-1 2505 2506 2507 2508 2509 2510 2511 251 2 pound513 2514 C 2515 3 2516 2517 C 2518 4 2510 2520 C 2521 5 2522 2523 C 2524 6 2525 2526 7 2527 2526 8

FUNCTION Ul ltIUlUKNDl U S R H U T N Ei RETURNS (Ul) AN ELEMENT OF AN INPUT VECTOR WHICH IS Abdquopound UFJlpoundM gE TME A s SELECTED BY (IU) INCLUDED TIME FUNCT ONS $ E I - T A S r f R ^ B E L 0 H PARAMETERS FOR THOSE FUNCTIONS ARE PASSED THROUGH (UK(IJ)) (I) IS THE VECTOR ELEMENT INDEX DSinBi0N U M N U 3 E N F deg R deg F 3 P A R A M E T E R S p e R INPUT |tj I S A SW|TCH TO SELECT TYPE OF FORCING FUNCTIONSEE BELOW GO TO (123456789)IUP1 ZERO ELEMENT Ul = 00 RETURN STEP INPUT OF MAGNITUDE UK(11) III =1X1111 RETURN RAMP INPUT OF 0A1N UKltI1) WITH INITIAL VALUE UK(I2) Ul = UK(I1)bull T + UKlt12) RETURN PARABOLIC INPUT HUbdquoV K 1 ) T T bull UK(I2)laquoT UK(13) RETURN AgtSIN(OMEGAraquoT PHI) INPUT Ul UKII1)raquoSIN(UK(I2)laquoT t UKII3)) RETURN GAUSSIAN NOISE INPUT WITH MEAN UK I I 1) AND STO DEV UK(I2) UI = GN lt UK ltI I )UK(12)) RETURN CONTINUE RETURN CONT1NUE

337

259 2530 2532

Rf- TURN CONTINUE RETJRN END

533 2534 25ii5 2536 2537 2530 2539 250 2541 as J 2

SU6P0UTINE MATNPT (AN MNAMEND) DIMENSION A(NDND) COMMON IO NINNOUTNTTYNRUN DO 1 1=1N READ ltNJNIOIgt ltACJJ)J=IMJ y DfllAT f 8E10 3 ) WRITK (N0UT102)NAME FORMAT ( IX A I-)- MATRIX IS) 00 C I = 1 N U f t l I t t M O U f 1 0 3 ) l-ORMAT ( IUI i X E RiiTURN END

25ltli 2 5 4 9 2 5 5 0 I O 2 5 5 1 25f 10pound 2 S M 2554 1 OCl

SUBRCJTlNf V i bull-laquo (XNNAMENDgt DIMLJVJIOI X C COHKOil M O hNOUTNTTYNRUN RiAP t NIC 10 ) fXC 1 gt 1 = 1 N ) FORMAT (poundT i 0 3) WR1 f i (NVlt I02JNAME FORMAT ( I K A 1 3 H VECTOR I S WRI7ENOUT103) lt X lt I 1 = 1 N ) TORMal ( 10lt 1 X E 1 0 3 M RETURN END

2557 SUBROUTINE MATOUTF ltANMNAMEND) 2558 LlMtMMON AiNDNO) 2559 COIIhON Q NI N N C W NT TY NRUN SSPO VRJ pound NOUT I T 1 )NAME 2561 IUI fORMAl IXA3H MATRIX IS) 2562 00 1 I=1 tN 2S-63 1 Wftl TE-NOUT I 0 2 ) ( A C I J raquo J = 1 M gt 2364 10 LirltMATl0( 1 F 1 0 3 ) ) 2$65 RL1URN 2566 END

li

SUBROUliNE VECOUTP (X N NAME ND) DIMENSION X(ND) COIMOlaquo io NINNOUTNTTYNRUN WKiIE(N0UTIC1(NAME FORMAT I1XAV13K VECTOR IS WRITE NOUT 102)(XlI 11 = 1 Ngt FORMATl IOC 1XE10 3) ) RETURN END

2570 SUBROUTINE DiiBUG (N L M LL T TO X XH G Y YH E U V P Pp I OUT ND) 257 C THIS ROUTINE USED TO GENERATE STRUNG-OUT LIST OF (ALMOST) ANY OF 2370 C THE PIVOliLEN VARIABLES AS TIME PROCEEDS IT IS MAINLY MtANT FOR lt3Araquo C OtBUGOIKi PURPOSED SINCE THE FOnM OF THE OUTPUT IS DIFFICULT TO 2560 C INTERPRET pound501 DI PENSION XI ND) XH N[l) G( NO NO) Y( ND) YH( ND) E(I-ID) W ND ) V( ND) 2562 2 PINONDIPPINDND) lOUT(lO) 2503 DIMENSION EQUALS10) 2S84 DATA EQUALS I 1 0raquo 1 C H mdash mdash - = -- 25B5 COMHON I0 NINNOUT NITV NRUN 2566 IFlIFQTO)WRIlpound(NOUT101JNRUN 256 o i roRwviormncBOouirCi OUTPUT I S AS FOLLOWS RUN 12) 2500 WRI TE(NOUT103)(EQUALS(I)1=1N) 2563 IO0 FORMATIX10A10) 2590 WRI1EIN0UTI02)T 2591 102 FORMATbull T = -E103gt 2592 0 THE CODE FOR ( 10UT( I ) 1 = 1 101 CAN BE DEDUCED FROM THE FOLLOWING 20S3 C 1EN STATEMENTS IF A OIVEN (IBUTIDI SS I ITS CORRESPONDING 2594 C VECTOR OR MATRIX IS PRINTED AT EACH TIME STEP 2595 IFUOuTI lltODCALL VECOUTP (XNIHXND) 2596 IF1I0UT 2)E01)CALL VECOUTP 1XHN2HXHND) 2597 IFIIOUT 3)EG11CALL MATOUTP GNM1HGND) 2596 IFI10UT 4EQ1CALL VECOUTP (YM1HYND) 2599 IFUOUTl 9) EQ 1 1CALL VF-COUTP (YHM 2HYH ND) 2600 IF(IOUT( 6)E01)CALl VFCOUTP (EN6H(X-XH)NO) 2601 IF(ICUT( 7)EQ1)CALL VCCOUTP (WLLIHWND) 2602 IF(IOUT( 6)EQ1JCALL VECOUTP IVM1HVND) 2603 IF1I0UTI 9)EQ11CALL MATOUTP (PNNTUPNO) 2604 IFlIOUTI101 EQ1)CALL MATOUTP (PPN N2HPPND) 2603 RETURN 2606 END

338

2607 2608 2609 C 2610 C 2611 C 2612 C 2613 C 2614 C 261 S C 2616 C 2617 C 2E18 C 2619 C 2620 C 2621 C 2622 C 2623 C 2624 C 262B C 2626 C 2627 C 2628 C 2629 C 2630 C 2631 2632 2633 2634 263B 2636 C 2637 C 2638 C 2639 2640 2641 C 2642 C 2643 C 2644 C 2640 C 2646 2647 2648 2649 26S0 2661 2652 2653 I 26B4 C 2693 C 2656 C 2697 C 2658 C 2659 C 2660 C 2661 C 2662 266Z 2664 2 2665 C 2666 C 2867 2666 pound669 2670 2671 2672 3 2673 2674 2675 A 2676 C 2677 2678 2679 2680 S 2681 6 2682 C 2683 2684 2665 2686 7 2687 C 2688 2689 2690 8 2691 C 2692 C 2693 2694 2699 1lt 2696

SUBROUTINE OUTPUTS (XNAMENCOLNTIMETOTlTST 2 XYPWIXYPWpoundTI TLES NTL NAME3T NCOLST 1 MAX JMAX NI N J NK gt ROUTINE X(Jgt N TIME TO Tl TCI) ST(IJK

1MAX JMAX(K) NINJNK

NAME NOTE

VARIABLES ARE AS FOLLOWS THE VECTOR OF LENGTH TO BE STORED FOR PLOTTING AT TIME WHERE TIME RUNS FROM INITIAL VALUE OF TO FINAL VALUE OF THE VARIOUS TIMES ARE STORED IN THE PLOTTING VECTORS ARE STORED IN ) WHERE 1 bull THE LAYER OF STORED VALUES OF THE VECTORS AT TIME T(I) J = THE ELEMENT INDEX ON X(J) AND K = THE NUMBER OF THE VECTOR STORED THUS IS THE MAXIMUM NUMBER OF POINTS tlN TIME) PER PLOT IS A STORAGE ARRAY OF THE LENGTHS OF THE K VECTORS ARE THE PHYSICAL DIMENSIONS OF THE APPROPRIATE ARRAYS IN THE CALLING PROGRAM

IS A SWITCH IT IS TO BE ZERO IF X IS A VECTOR IT IS TO BE SET TO THE COLUMN NUMBER IF X IS A COLUMN OF A MATRIX (USED ONLY IN LABELLING) IS A 3-CHARACTER HOLLERITH NAME FOR X USED FOR LABELLING (EG NAME laquo 3H XKgt IMAXLENI JMAX(KgtLENJ KMAXLENK DIMENSION X(NJ)T(NI)ST(NINJNK)JMAX(NK)NAMEST(NK) TITLES) 48 DIMENSION XYPW1tNI)XYPW2(N|gtNCOLST(NK) DATA K1 DATA 10 COMMON I0 NINNOUTNTTYNRUN IF A PROBLEM MATRIX HAS BECOME SINGULAR SO THAT THE PRESENT RUN IS TO BE ABORTED GO TO DUMP OUTPUT UP TO PRESENT TIME AND REINITIALIZE POINTERS FOR NEXT PROBLEM IFCNAMEEQ10H SINGULAR)GO TO 11 IF(TIMENETO) GO TO I INITIALIZE ROW LENGTHS FOR VARIOUS VECTORS TO BE PLOTTEDJMAX(K)) ALSO DETERMINE MAXIMUM NUMBER OF VECTORS TO BE PLOTTED (KMAX) STORE VECTOR NAMES AS THEY COME DOWN STORE (NAME) IN (NAMEST) STORE (NCOL) IN (NCSLST) TO SIGNIFY WHETHER (X) IS A COLUMN OF A MATRIX OR JUST A SIMPLE VECTOR KMAX bull K JMAX(K) bull N NAMEST(K) - NAME NCOLST(K) bull NCOL TM1 laquo TIME IF(KNEl) GO TO 8 GO TO 2 IFITIMEEQTM1gt GO TO 8 START A NEW LAYER AT NEXT TIME TM1 IS USED AS A MEMORY ELEMENT FOR SWITCHING IF TM1EQTIME THEN IT MEANS THAT THIS IS NOT THE FIRST VECTOR T( BE STORED IN THE SEQUENCE OF CALLS TO (0UTPUT3) IF TM1NETIME (BUT ACTUALLYIT EQUALS THE PREVIOUS TIME) IT MEANS (TIME) WAS JUST INCREMENTED IN THE CALLING PROGRAM SU6H THAT A NEW LAYER SHOULD BE STARTED IN STORING THE VECTORS (THUS SET K=1 1=11 AND T(HlaquoT1ME) K a 1 TM1 raquo TIME IFdNE IMAX) GO TO 7 1 IS AT THE ALLOWABLE MAXIMUM OF TIME POINTS PER PLOT UMAX) 00 THE PLOTTING DO 4 K bull IKMAX JMAXK raquo JMAX(K) DO 3 J bull 1JMAXK CALL XYPLOT CTSTI1JK)IJXYPWIXYPW2 2WMESTCK)NCOLSTIKi tlTLESNTLNRONNOUTNl) CALL TABULAR(TSTltt11KgtIJMAX(K)NJ 2 NAMEST(K)NCOLST(K)tlTLESNTLNRUNfojUTM) CONTINUE COPY PRESENT LAYER INTO FIRST LAYER FOR CONTINUATION PLOT DO G K ItKMAX JMAXK a JMAX(K) DO 9 J bull 1JMAXK SSNTINOE bullWlaquoIWltWKraquo RESET INDICES TO POINT TO FIRST PLOTTED VECTOR OF FIRST LAYER 1 bull I T(l) laquo TIIMAXI CONTINUE AT=START OF NEW LAYER (NEW TIME) INCREMENT I AND STORE T(U T(gt raquo TIME CONTINUE STORE PRESENT VECTOR X(J) INTO KTH VECTOR POSITION IN ITH LAYER JMAXK aJMAX(K) OO 10 J bull 1JMAXK ST(IJK) bull X(J) IF(TlMELTTI) GO TO 20

339

2697 IF(KLTKMAX) GO TO 20 2698 C AT THE END OF TIME INTERVAL (TOTI) FOR THE FINAL VECTOR 2699 C DO THE PLOTTING 2700 11 CONTINUE 2701 DO 18 K n 1KMAX 2702 JMAXK s JMAXIK) 2703 DO 15 J = IJMAXK 270-1 CALL XYPLOT ( T ST( 1 J K) I JXYPW1 XYPW2 205 2 NAMESTltK)HC0LSTltIOTITLESNTLNRUNNOUTNlgt 270b IB CONTINUE 2707 CALL TABULARIT ST( I 1 K ) I J M A X ( K ) NJ 2706 2 NKEOTltK1NCOLST(K| T ITLES NTL NRUNNOUTNl ) 27JM 16 COM r INUE 2710 WRITCOH 2711 WRlTElSXTd I I I 1 = 11 ) 2712 WRITE 5MSTI1 I1KMAX)1 I=1I ) 271 a C RESE1 INDICES FOR NEW PnOBLEM AS IN DATA STATEMENTS 2714 K = 1 2715 I = 0 2716 GO TO 99 2717 20 CONTINUE 2718 C ADVANCE PLOT VECTOR INDEX FOR NEXT CALL 2719 K bull K 1 2720 99 RETURN 2721 END

2722 2723 2724 2725 2726 2727 2726 2723 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

SUBROUTINE TABULAR tTXNTNNJ 2 NANENCOLTlTLESNTLNRUNNOUTNI) C ROUTINE GENERATES A TABULAR LISTING OF X(T1 X AN N-VEOTOR C ROUTINE VARIABLES ARE AS FOLLOWS C X(lJgt THE ARRAY OF N-VECTORS AS A FUNCTION OF TIME C STORED ROW-WISE C T(lgt THE CORRESPONDING TIMES FOR WHICH ELEMENTS OF X C WERE STORED C NT NUMBER OF POINTS IN TIME FOR VECTORS STORED C NA1E A 3-CHARACTER HOLLERITH NAME FOR LABELLING C TITLES(48) DESCRIPTIVE INFORMATION C NOUT LOGICAL UNIT NUMBER FOR OUTPUT C NRUN RUN NUMBER C NTL NUMBER OF TITLE CARDS C NlNJ DIMENSIONS OF X(NlNJ) AND T(NI) IN CALLING PROGRAM DIMENSION X(N1NJ)T(NI1TlTLES(48)LABEL(I 0) DO I I = 1N 1 LABEL ltI gt = NAME WRITEINOUT 101JNRUN 101 FORMATOhlRUN NO 12) IF(NTLEOO) GO TO 6 DO B I = 1NTL

5 W R I T E ( N 0 U T 1 0 5 M T I T L E S C I J ) J - l 8 gt 105 FORMAT(1X8AIOgt 6 CONTINUE

IF(NCOLNEO) GO TO 10 WRI TECNOUT 102)((LABELI II) llaquolN) 102 FORMATIIH TIMEI0(4XA31H(12IH))) GO TO 20 10 WRITEINOUT120)(ltLABELI)lNCOL)I-1Ngt 120 FORMATIIH TIME16(IXA3(HI|2IH I 21Hgtgt) 20 CONTINUE DO 2 I o INT 2 WRITE(NOUT1041TII(X1J)J=1Ngt 104 FORMATv11(1XE103)) RETURN END

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2778 2780 2781 2782

SUBROUTINE XYPLOT (XINYINNUMPTSNROWXY 2 NAMENCOLTITLESNTLNRUNNOUTND) C C REFMCCUE H K UNIVERSITY OF CALIFORNIA C LAWRENCE L1VERM0RE LABORATORY (PRIVATE COMMUNICATION) AND C PHD DISSERTATION UNIVERSITY OF CALIFORNIA BERKELEY 1979 C DIMENSION XIN(ND)YIN(ND)X(ND)Y(ND) DIMENSION POINTSIIOI gt BUTI6) Tl TLESUai IFINUMPTSLT2)G0 TO 999 C COPY INPUT VECTORS (XINYIN) INTO WORKING STORAGE (XY) DO 1 1=1NUMPTS XII) - XlNIl) Y(l) = YIN(l) 1 CONTINUE C WRITE OUT TITLE CARDS WRITEN0Ur6) 6 FORMAT1 Hi) DO 3 1=14 GO TO (301302 303303) I 301 IFILENTL1WRITENOUT3001)NRUN(TITLES(IJ)J=18) 3001 FORMAT3X9HRUN NO I22X8A10) IF( LOTNTL)WRITEINOUT 3011 gtNRUN 3011 FORMAT(3XraquoHRUN NO 12)

340

2 6 3 aaa 276U 2706 27iJ 2 0B 2 7a9 2790 2791 27 j2 2793 2794 2H 3796 2797 pound7laquoA 2799 000 D n l EU02 2603 2t04 pound609 2098 I

GO TO 3 (NRPVM IS lOU ELLMENT NUMBER (NCU- I IS COLUMN El tttetil NUMUER IF ( Y I N ) IS A

I F IS 7EK0 IF (Y IN) IS A SIMPLE VECTOR I F l I l ENTL) AND I NCOI NEO) )

2 WRI TENOUT 9n I JNAMENROVNCOL ( T ITLES( 1 I FORM- r O X A 1 1M( 12 1H 12 IIIJ 2X 8A10)

I K ( I L E N T L 1 AND (NCQL EQ 0gt ) 2 WRlTElNOUT JuSairAMENrrOW (TITLESC I J ) J =

bull- FORMA I ( 6 r A3 1 H ( I 2 1 H I 2X SAI 0 ) I F l I OTNVI I AND (NCOI NE0I I

2 U R I l t l TOUT -02C) NAME NROH NCOL I r-OfraquoMA- C3y A3 I H i 12 1H 12 1H)gt

t r i l l O T N I L ) A 0 INCOL E O O l ) 2 WRI rEltHOUTltC2ClN4MENReU

GO TO 3 I F t I I E N T L ) WRI TECI0U1 3031 ) i T I T L E S I J ) J = l

I bull 5RMA I I 1 5X DA 10 gt IFl I Xl NTL)WlaquoITE(IMUT5) CONTINUE

3Y THE Y AXIS

COLUMN OF A MATRl J)-1=18)

C-IO bull - gt v r FOF MAX 2 f gt 1 0 1 = 1 poundbullbullgt 1 2 0 C O N T I N U E 2 0 1 2 JJ-l 2 f t 13 YNAX V 1 ) 2 t t l 4 DO 10 J - l N U K P T S

H Y ( J ) L E Y M X ) G O TO 10 i 3 1 5 DO 10 J - l N U K P T S H Y ( J ) L E Y M X ) G O TO 10

at- i e Y N A X = Y ( J I t 1 J J = J bull t i 1deg now n r-iUE B 1 1 I I I T MOE A 2 0 t - Y ^ Y I J gt lt f f i x lt = X i I 1 xiti Y ( I ) - Y lt J J ) t ^ f ^ j M M X ( J J ) pound 0 Y ( J J ) = Y Y

Xlt J J l - X X pound b G l = M 1 2 r 7

i 1

i F ( 1 r J N U ^ I J n 3 0 TO 3 H GO TC 2 0 -( NT 1 NUE

CO 0 bull V t K u P ttNfWU OF X AND Y gt( J I XM 1 H bull X ( 1 ) F t 3 M A gt - - X lt 1 ) 2 r j 3 YltHN = Ylt 1 J lt j [ IAX -V ( 1 ) f V j 1)0 a l laquo l H L I P T S 2ampLgt6 I F ( 1 1 ) L r X M I N X M I N - t X d ) 2 0 j 7 raquo F ( X lt i raquo ( gt I M A X ) X M A X - X ( I ) 2 f 3 0 F ( Y ( 1 IUTYHtN)YMIN=Y(J) laquoJ9 I F ( Y U ) C I Y M A X ) Y M A X = Y a ) rraquo lt- j

( tT C O N T I N U E

f T THE S N U P O I N T S ^ f t f l 2 C A L L E M D r i S X h l N X M A X ) ipoundraquo 3 C A L l t l D l T S t Y M l N Y M A X )

H A I f U F I X AMD t E L Y C A L l t l D l T S t Y M l N Y M A X )

H A I f U F I X AMD t E L Y Zi - laquo i U T L X - lt X N X - X i laquo M N gt 1 0 0 0 2^ iG D F i Y i y M A A - Y M l N i 5 0 0 7 1 U f--rM i E I H i - P L O T bullbullbull 3 KK bull AB r ( AC i r i D E L X I o i f I S t2 l Flt0 = 0 ( - j I F ( I X N I N L L 0 Cigt A N D l 1- iAX 3E 0 0 ) ) I 2 E I 21 1 1 C O U N T = 1 0 2 pound ^ 2 L I S T = 1 a w Q Q t o g ^ - 1 ( i l 2 8 5 4 X l = l aoamps Z 2 - Y M A K - X U D E L Y 2 6 5 E - Y 7 1 - Y pound + D E L Y 2 0 5 7 1 A A = 0 2 0 8 0 l i ( ( Y 2 1 0 E 0 0 ) A N D ( Y Z 2 L E 0 0 D I A A = 1 2 0 0 9 0 0 1 0 J = 1 1 0 1 2 6 6 0 1 0 1 P Q I N i S ( J ) = 1 H 2 a c i 1 F ( 1 C O U N T N E 1 0 raquo G 0 TO 105 2 8 G 2 0 0 1 0 6 J - 1 1 0 1 2 2 G 6 3 1 0 6 P 0 I N T S ( J ) - 1 H 9 6 r t 1 0 5 C O N T I N U E 2 t ) 6 5 P O I N T S t 1 ) = 1 H 2 8 6 6 P a I N T S ( 2 1 ) = 1 H 2 6 6 7 P 0 1 N T S ( 4 1 ) = 1 H 2 laquo 6 B P O I N T S C 6 1 I s l H 2 0 6 9 P Q N T S ( 6 1 I s l H 2 8 7 0 P O I N T S t 1 0 1 1 = I H 2 6 7 1 I F I I Z f R O E Q 1 ) P G I N 1 S ( K K ) = 1 H I 2 3 7 2 I F ( I A A N E 1 1 G 0 TO 1 3 7

341

2R74 116 26a 1 37 2676 2577 1 02 2070 2679 21100 26BI 260 2r33 2r0l 1 10 2PH5 2606 260 2CJ8 1 1 1 20O9 2690 1 12 2691 2692 2893 2P94 2e95 1 13 2696 109 289 7 2690 2099 2900 2901 121 2902 2903 122 2904 2905 202 2906 999 2907 2906

2909 2910 C TH1 2911 C 2912 C 2913 c 2911 0 2915 c 2916 2917 2918 2919 pound920 r CHt 2921 2923 2924 2925 1 2926 2927 2926 2929 2930 2931 pound932 2 2933 C DEL 2934 2935 2936 5 2937 2936 2939 29-10 10 2941 2942 2943 2944 1 1 2gt145 20 2946 294 7 2946 2949 2950 2951 2952 2963 29S-1 C XXM 2955 2D56 2957 2956 32 2959 33 2960

101 1

COIN I I NUE YLOW-- tMAX XI DELY CON NJE l f ( l S r BTNUMf T t ) t3 igt TO 110 IFIYvLISTJ LI YLOWGO TO 110 K M X L I ST ) -XMIN) DFLX+1 0 I 0 I N T 3 I K ) = 1IIX L IST = L I S T M GO TO 102 CONTINUE IF ( I COUNTpound0 10 )00 TO 112 ICeUNT=ljUNTl WRI rElNOUT I 11 1(POINTSJ) J=l101) FORMATliXI01A1) GO TO 100 CON I INUE YY=YLOWgtDELY ICOUNT=I I F ( ( Y Y S T - I O E - 9 ) A N D I Y Y L T 1 O E - 9 ) ) Y Y = 0 0 WR PKNOUT 1 13) YY 1P01NTSlt J ) J = 1 1 0 1 ) FORMAT(2XEll 42X101AI ) CON)1NUE DO 121 116 Jt I - I - 1 BUT(I)=XN1N200DELXlaquoXI bdquo_ _ bdquo IF( (BUT( I) LT 1 OE-9) gtND BUI C I ) GT -1 OE-9) )BUTlt I 1=00 CONTINUE WRITElNOUT 122)(BUTJ)J= I 6) FORMAT 10X6(E103 1 OX) ) WRITE INCUT 202) FORMAT 1 51 ( 20h I ME I 01 MENS 13NLLSS)) CONTINUE RETURN END

REFMCCUE H K UNIVERSITY OF CALIFORNIA LAWRENCE LIVER1WRE LABORATORY (PRIVATE COMMUNICATION) AND PHD DISSERTATION UNIVERSITY OF CALIFORNIA BERKELEY 1978

bdquobdquo ~ -- bdquobdquobdquobdquo 25050075 10 I 1 1 25 1 SO 1 75 220025030035040045050607080901001112 5 315I 752025303540455060 708090100 OK XMINXMAX TERMS 1FIXMINNEXMAX1G0 TO 1 XMINXM1N-I0 XMAX=XMAXraquoI0 00 TO 999 CONTINUE OEL=XMAX-XMIN IFIDELOT00)60 TO 2 XX=XMAX XMAX=XMIN )MIN = XX 1 EL=-DEL CONTINUE IS POSITIVE AT THIS POINT VALUE1 0 IFIDELLE10)00 TO 10 CONTINUE IFIDELLTVALUEIGO TO 20 VALUE-VALUElaquo100 60 TO 5 CONTINUE IFIDEL GEVAlUE)GO TO 11 VALUE=VALUEraquo0 I GO TO 10 VALUE-VALUEIOO CONTINUE XX=XMINVALUE IXX=XX XX=IXX XX=XXlaquoI00 XXMIN=XMINlaquo10 0VALUE -XX XXMAX-XMAX100VALUE-XX 1FIXXM1NE000)00 TO 30 1FIXXM1N LTOOIGO TO 35 IN IS POSITIVE DO 32 1=238 AAA = A U ) IFIXXMINLTAAA1G0 TO 33 CONTINUE 1 = 1 -I XXMIN = AII I

342

pound961 GO TO 90 2962 35 CONTINUE 2963 C XXMIN IS NEGATIVE 2964 XXMIN=-XXMIN 2965 DO 36 1=238 2966 AAA=A(I) 2967 IF(XXMINLTAAA)GO TO 37 2968 36 OONT1NUE 2969 3 XXMIN=-A(I) 2970 30 CONTINUE 2971 IF(XXMAXEQ00)G0 TO 40 2972 IFCXXMAXLTOOIGO TO 45 2973 C XXMAX IS POSITIVE 2974 00 42 1=236 2975 AAA=A(1) 2976 IF(XXMAXLEAAA)G8 TO 43 2977 42 CONTINUE 2970 43 XXHAX=A(I) 297S GO TO 40 2960 45 COMT1NUE 2981 C XXMAX IS NEGATIVE 2982 XXMAX=-XXMAX 2983 00 46 1=238 2984 AAA=A(t) 2985 IF1XXMAXLEAAA1G0 TO 47 2986 46 CONTINUE 2987 47 1 = 1-1 298B XXMAX=-A(I) 2989 40 CONTINUE 2990 C SOLVE FOR NEW END POINTS 2991 XMIN=(XXtXXMIN)VALUE100 2992 XMAX = I XXtXXMAX) raquoVALJE100 2993 999 CONTINUE 2994 RETURN 2995 END

343

APPENDIX 6 DESCRIPTIONS AND LISTINGS OF POSTPROCESSOR PROGRAMS

All of the postprocessor programs listed in this Appendix have as their sole inputs the binary (unformatted) intermediate disc files PFILE or TFILE generated by PROGRAM KAIMAN see Figures Fl and F2 for their relationships to KALMAN and their own output files

CONTOUR generates contour plots of the surfaces [Ppound(Z)] at all measurement times tbdquo The idea for the format of the plots was taken from Case Study 26 in McCracken [83] the coding was this authors own

POFT computes and plots surfaces for Tr[P^ + N(zbdquo)] for increasing values of time tK+ The particularly efficient algorithms for the evalushyation of the trace function as in subroutines FVAL anci PVAL are called to the readers attention the amount of computation involved in generatshying the (51 x 81) point grids in these contour plots grows enormously with the size of the problem such that computational efficiency is of prime importance in their generation

PELEM plots the contour surfaces of the diagonal elements of the co-variance matrices [poundD(z K)] i = lgt2 n They show the decomposishytion of the trace of that matrix which led to the fundamental result for the infrequent sampling problem of Conclusion II

SIGMAT plots the family of curves for aj+bdquo(zpoundz) as functions of the position z in the one-dimensional medium for a set of consecutive times tK+N = ^K t K + Y K + 2 Y bull bull ) bull w n e r e Y is selected at the teletype This routine was instrumental in showing the asymptotic movement of the position of maximum variance in the output estimate with time see (654)

if MAXTIME was used to compare the two performance criteria Tr[P^(zbdquo)] and [Pp(Z|)] It showed that minimizing the trace at the time of the

344

measurement is not optimal whereas minimizin its first element is optishymal for large time

POSTPLT is used in various places to plot families of curves as functions of time resulting from multiple runs in KAIMAN Doing graphishycal displays with such a postprocessor that is a program which opshyerates on data generated by another (usuallyNlarger) program was found to have a number of programming and computationaladvantages Among

them were small program size ease of execution and versatility

K s-P0STFP was used to plot sections through the lPj(zbdquo)X surfaces in the study of the sensitivity of the optimal monitoring probIenV-resuIts to dimensionality of the model used ir the monitor

POSTSP plots o^(zjz) as functions of z for monitor models of vari- N

ous dimensions Numerous extensions of the programs listed here can be conceived

Among them is the use of the various plotters in conjunction with other programs the basic plotting routines are quite versatile in that sense In the case of the contour plots where the dimension of the measurement vector y must be m = 2 an obvious refinement is to replace the general purpose matrix inversion package with a simplified algorithm for invershysion of the statistics matrix

[4J1 s P ( K + N K + N ( S K ) ( trade ) T + ] V

in the covariance matrix correction algorithms for these cases T K + N is

a (2 x 2) matrix

345

P R C U W 1 [ O N T O I K ( P F I L E T A P F 3 = - f F I L E J 0 0 U T T A P E 3 = C 0 U T ) C A M - H A N O r ( pound H t - C J C A L I fct fiZtAHCQVi 4 0 0 Q U S W T ) N I N - 2 (OUT = 3

n m N f i - r i A t c I O I p lt i o i 0 ) C A P V ( I O I O J W K P I d o i o gt w $ S ( i o i o ) M I N I Ni u N CAPWt 1 0 1 0 ) M K h T f iV 7 L U M f 1 0 ) iMgtlaquo = 1 0 ti-(-iOH F R W N M lt - M A X A P C A laquo WKP1 W S S I S I NG

IIKE l lt 1 0 N r i 5 l 8 1 ) X ( 2 gt J S t l 9 gt S L 1 N E ( amp 1 ) S Y f 1 B C 9 ) D A T A 1H I H I J I I j 1 H 2 1 H 1 H 3 1H H 4 1 H 1 H 5

2 1H 1 H 6 1 H 1 H 7 1 H 1 H 8 1 I I 1 H 3 1 H WAT A o V P n i l 1 H 2 I M S 1 H - 1 1 H S 1 H S I H 7 1 H 8 1 H S l i I bull i U - i - j I I T I L 3 1 4 laquo J ( P P F M 5 1 ) f c O A L pound H ( 5 I ) S C U E V ( 1 1 ) S A M P L E ( 1 0 ) CAit MM 1 1 U 1 1 H I H + 4 - 1 H I H + ^ J - I H 1 H 4 laquo 1 H raquo H + 4 1 H

1 bullbullraquo 1 H H + 4 raquo 1 H 1 H 4a 1 H 1 H 4 raquo I H 1 H 4 1 H 1 H + n - C f l i F t - V I O H t C + 1 I 0 H I OH 0 9 +

P 4 - I O H 0 H 0 8 + 4 1 0 H 1 D H 0 7 + C - - 0 1 0 1 1 0 6 + J 2 1 0 H 1 0 H C Z C K J 1 2 4 TOM 1 0 H 0 5 + bullJ 4 1 C H 1 0 H 0 4 + 4 1 0 H 1 0 H 0 3 + G 4 raquo i O M I O H 02 + 4 1 OH j l O H 0 1 + 7 4 - O K 1 0 H 0 0

H A i - C V KV f l H O O 6 H 0 1 S H 0 2 S H 0 3 k W O 0 1 1 0 5 8 H 0 6 8 H 0 7 Q H O S Clt --gt) i l T H l 0

OAf gt n i L 7 - O H ^ L R O E T H 1 flhriRSl B H S E P O N D 6 H 7 H I R D e H F O U R T H P 6 h r I T T H OHS I X f H 4 8 H S E V E N T H 6 H E I Q H T H J 8 H N I N T H

D l T - l T i r i M L1DRM181 ) CAT A 111 H M I H 7 11-1 1 H 7 I H 1 H+ 7 - 1 H 1 Hlt 7 laquo 1 H 1 H+ 7 H

d l H v 7 laquo ) H 1 M - 7 x ) H 1 ^ 7 1 1 1 1H + 7 1 H 1 H + 7 1 H H

X M I N CAr i - r i l w

P L O T L I M I T S

laquoH- i laquo I M l N II N I L 1 0 T l L I M I T i r bull M L 7 ut ro to JI9 I T A M bull i l t H ( i l l J J 1 - 1 N gt 1 = N gt bull T i i gtti bull n K p i ( ) = i r bull U i N )

i M i I V W l | J ) J M N ) U l K ) M n bull ilt | j i 1 J l f = l U raquo i = - L L gt rltr lt - 1-lM t t W I V i I n bull - M ) laquo 1 M J I F i l h bull O J R ALraquo- N1M) lt r M L K S ( bull J J ) J lt 1 8 ) I - l N T L J

O H i 1MUE-K L - r - ) W n i l O - T L h P u M LIT 11 r-O II u) nn io duoo fit Af t ( N I N j n P l | J ) J = 1 N ) l = l N ) ( F i - N C - U 0 gt r F - 0 ( p H N ) T O U M i I 1 = 1 H ) I f d N o i (it C ) R i - O i N I N M pound L X i M ( I I = t M ) X ( 1 ) = X M I N ( 2 1 - V M 1 N C A L L VAL I X r M I N l K i A K - I K I N 0 0 pound I - I N r T 1 M I I H l - O f J T U L Y ltKltpound) E B M C A L L Y X ( f t bull-bull YM1M ( I - I l laquo O Y DO - I N A P I - I i ) bull x i i N + t J - i ) raquo n x

i UL r-VAL f X F i | J ) ) I F l T I I J l L l f M l f U F M I N - f U J ) n i igt r v r r A ) r M A x = F ( I J gt I o n I H L E f O H i l N U E Of ~ L f M A K t - C U N I N L N O p i l N O P ) WRI i F i i M O U l 1 0 1 ) 1 ( T I T L E ( I I ) bull I 8 ) S A M P L E ( N 0 P P 1 raquo

pound ( T 1 T L E S ( 2 J 1 J - I a ) FOfJMA ( bull I 0 gt C O t n O U R P L O T O F [ P ( K K ) ( Z lt K ) gt ] H A S A F U N C T I O N O F -

2 L 2 i K lt ] H O R I Z A N b [ Z I K U 2 V E R T 9 X T I M E E 1 1 4 1 3 I I X U A 1 0 O X A f - M E A S U R E M E N T A M X 3A ) 0 bull ) WPI lFHOjl IC7JDDRH 1 UIW1 T l I O X 0 1 A 1 S X 1 6 ( I H = ) ) h O K t O O I = K N V P 1 DO 9 J = l N X P 1 DO 5 K = l N L

36

59 21 100 201 101 102 22 103 202 104 105 23 106 203 107 103 24 109 204 110 111 25 112 1 13 20 1 14 206 115 1 16 27 1 17 207 1 18 119 120 121 260 122 123 28 124 125 203 126 127 128 29 129 30 31 32 350 33 34 35 35 235 36 37 36 38 39 37 40 237 41 42 38 43 238 44 4S 39 48 239 47 48 40 49 240 50 01 42 52 242 S3 94 43 SB 243 se 57 44 58 244 09 SO 45 SI 245 62 S3 47 laquo4 247 85 86 48 67 248 68 69 50 70 250 71 72 51 73 74 52 7S 100C 78 77 78 2S3 79 bull 0

lFliFMINlaquoKlaquoOFgtGTFWl-H-l)gt00 TO 6 CONTINUE SLINEIJ) = SIK1 I F l l F - N Y P 1 1 - l J D E O F M l N I S L I N E ( J ) = 1Hlaquo I F I I F I N Y P 1 M - I J M E Q F M A X ) S L I N E I J ) = 1H0 CONTINUE I F lt I 0 T 7 ) 0 0 TO 280 GO T 0 1 2 1 2 2 2 3 2 4 2 5 2 6 2 7 ) 1 WRITE(N1JUT201gtSCALER|I gt SL1NEBDRI Igt F 0 R M A T I A I 0 8 1 A 1 A I 8 X CONTOUR LEVELS) GO TO 1000 WRI(E(MOOT202)SCALEH1 IgtSLINEBDRI1gt F0RMATIA1061A1A18X AND SYMBOLS) 00 TO 1000 WRITE INCUT2031SCALEHI1)SLINEBORI1) FORMATA1081AlA18X16lt1Hraquogt) GO TO 1000 WRITEIN0UT204)SCALEH(I)SLINEBDRII) F0liMATIA108IA1A10XlaquoSYMB LEVEL RANGE) GO TO 1000 WRITEINOUT203)SCALEH(11SLINEBDRtI) GO TO 1000 WRITENOUT206JS0ALEHII)SLINEBDRII)FMAX FORMATA1061 A1A16X4H (0)Ell4) 00 TO 1000 WRITElNOUT207)SCALEHlt IgtSLINEBDRII) FORMATA1081A1A16X 16ilH-gtgt NSKIP a 1 NLEVEL = 9 GO TO 1000 IFIGT34)G0 TO 350 GO T0(282829)NSKIP FLEVEL a FM1N 2raquoNLEVELraquo1-NSKIPXDF WRITE(N0UT208ISCALEHII)SLINEBDRlt i) FORMATAI08IA1AI8Xlaquo IlaquoA1laquo)laquoEl I NSKIP = NSKP1 OO TO 1000 NSKIP = 1 NLEVEL = NLEVEL - 1 URITENSUT207)SCALEH(I)SLINEBOR1I SO TO 1000 LINE = 1 - 3 4 30 T0I35 3637 3839 40 36 42 43 4445 36 47 48 44 50 51 52) LI NE WRi TElt NOUT235)SCALEHII ISLINEBDRII) FMIN FORMATA1081A1At6X4H (a)Ell 4) SO TO 1000 WRITENOUT203)SCALEH(I)SLINEBORI) GO TO 1000 MRITECN0UT237gtSCALEHlt1)SLINEBDR(1gt FORMATCA1061A1AI 8XESTIMATION) GO TO 1000 WRITEINOUT238gtSCALEH(IlSLINEBDRI1) F0RMATltA10atA1A18XERROR CRITERION) 00 TO 1000 WRITENOUT239)SCALEH11gtSLINEBURII I FORMATCAIO 81 A1A1 8X bullCONSTRAINT raquo) SO TO 1000 WR1TECN0UT240gtSCALEH(IgtSLINEBDRI1)ERRLIM F0RMATIA1081AIAI12XEI14gt 00 TS 1000 WRITEIN0UT242ISCALEHI)SLINEBDRII) FORMATIAIOBIAIAIBXSOURCE NPUTraquo) 00 TO 1000 WRITENOUT2431SCALEHI)SLINEBDR(1) F0RMATlA1OBlAIA18XaC0VARIANCE CW)gt) 00 TO 1000 WRITE(NOUT244gtSCALEHltI)SLINEBDRI) F0RMATCA10B1A1A1) GO TO 1000 WRl-|E(NOUT245gtSCALEHU ) SLI NEBDRI I gtCAPWI1 1 ) FORMATltA10eiAlAI8XC Ell4laquola) OS TO 1000 WRITElNOUT247)SCALEHI1ISLINEBDRI) FORMAT tA1081 Al A1 6XMEASUREMENT) GO TO 1000 WRITE(N0UT248)SCALEH(I)SLINEBDRI1) F0RMATIA10S1A1A18XERROR COVAR [V]) 00 TO 1000 WRITEINOUT280)SCALEH(I)SLINEBDRII)CAPV(1IgtCAPVI12) F0RMATIA1LB1AlA1laquoXtF93 4XFBamp]bullgt GO TO 1000 WRITEtNOUT 2 5 0 ) 3 C A L 6 H I I S L I N E B 0 R U gt C A P V 1 2 D C A P V I 2 2 ) GO TO 1000

i - _ raquo WRJTEINOUT203)SCALEHltI ) SLINEBDRI I ) 1000 CONTINUE

UNITEINOUT1O7IB0RH WRITEINOUTZ83)3CALEV F 0 R M A T I 9 X 1 1 A 8 5 1 X [ Z I K ) ] I gt ) CALL MATOurf ( e N N IHPNOUT10) GO TO 3

347

181 99 CALL EX1TU) 182 END 183 SUBROUTINE FVAL ltZPI1) 184 C SEE PROGRAM KALMAN FOR THIS ROUTINE 185 END 186 SUBROUTINE HATOUTP (ANM NAME NOUT NO) 187 DIMENSION AINDND) 188 WRITEINOUTIOIjNAME 189 101 FORMATC10XA4I3H MATRIX IS) 190 00 1 1=1N 191 I WRITE(N0UT102)CAltIJ)JIM) 192 102 FORMATIIOX10CE103IX)) 193 RETURN 194 ENO 195 SUBROUTINE INVERSE INNAAINVI ERROR) 196 C SEE PROGRAM KALMAN FOR THIS ROUTINE 197 END

198 SUBROUTINE DECOMP ltNNAULSCALESIPSI ERRORND) 199 C SEE PROGRAM KALMAN FOR THIS ROUTINE 200 END 201 SUBROUTINE SOLVE (NNULBXIPSNO) 202 C SEE PROGRAM KALMAN FOR THIS ROUTINE 203 END

204 SUBROUTINE IMPRUV (NNAULBXRDXIPSDIOITSIERRORND) 205 C SEE PROGRAM KALMAN FOR THIS ROUTINE 208 END

348

1 PROORAM POFT (PFILETAPE2=PFILEPTOUTTAPE3aPT0UT) 2 C SET CNPLOT) TO THE NUMBER OF THE MEASUREMENT FOR WHICH THE CONTOUR 3 C PLOTS ARE DESIRED (I 2) SET IT TO ZERO (0) IF PLOTS 4 C ARE DESIRED AFTER ALL MEASUREMENTS CAUTION THERE ARE (UMAX) 6 C PLOTS ASSOCIATED WITH EACH MEASUREMENT EACH SPACED [KNSDTgt 5 C UNITS OF TIME AFTER ITIKI) FOR EACH MEASUREMENT GETS COSTLV 7 CALL CHANGE lt2HP) 8 CALL CREATE (SHPTOUT40000SWT) 9 NIN = 2 10 NOUT = 3 I I NTTY bull 59 12 OIMENSION A ( I O l O l W K P K I O 10 ) CAPM10 ) 0 ) P ( I O 10) 13 OIMENSION CAPWI10101 14 OIMENSION WSSIIOIO) 15 DIMENSION Z0UMd6gt 16 ZMAX bull 10 17 COMMON PROB NMZMAXPCAPVISINO IB COMMON PR0B2 AWKPIOTT 19 C 20 DIMENSION F ( 5 1 8 1 gt X ( 2 ) S ( 1 9 ) S L I N E I 8 I gt S Y M S ( 9 gt 21 DATA S IH 1 H 1 1 H 1 H 2 I H U I 3 1 H 1 H 4 I H I H 5 22 2 IH 1 H S I H 1 H 7 1 H 1HB1H 1 H 9 1 H 23 OATA SYMB 1 H I 1 H 2 1 H 3 | H 4 1 H 5 1 H 6 1H7 IHB1HS 24 OIMENSION T I T L E S 1 4 8 ) B 0 R ( 5 1 ) SCALEH(31 I SCALEVd I ) S A M P L E ( 1 0 ) 25 OATA BDR 1Hraquo 4raquo I H 1Hraquo 4 I H I H t 4raquo I H IHlaquo 4laquo I H 1Hraquo 41H 26 2 H 4 laquo 1 H 1 H ^ 4 - 1 H 1 H laquo 4 laquo 1 H 1 H 4 laquo I H I H raquo 4 raquo 1 H I H 27 OATA SCAIEH10H 1 0 bull 4 laquo 1 0 H 10H 6 9 gt 28 2 4laquo10H | 0 K 6 8 4 1 0 H 1 0 H 6 7 2 9 3 4laquotOH I O H 0 6 2 laquo 1 0 H 1 OH C Z ( K ) ) 2 30 4 IOH I O H 0 3 bull 31 5 4 I 0 H IOM 0 4 raquo 4 1 0 H 1 0 H 0 3 laquo 32 6 4 I 0 H 1 0 H 0 2 laquo 4 1 0 H 10H 0 1 bull 33 7 4gt10H IOH 0 0 bull 34 OATA SCAIEV 8 H 0 O 8 H 0 1 8 H 0 2 8 H 0 3 35 2 SHO4 8H0S BH06 OHO7 8H08 36 3 6H09 3H10 37 OATA SAMPLE 8HZER0ETH 38 1 8HFIMST 8HSEC0ND 8HTHIRD 8HF0URTH 39 Z BHFIFTH 8HSIXTH 8HSEVENTH 8HEIQHTH 40 3 8HNINTH 41 OIMENSION B0RHIamp1) bullbull IHraquo7laquo1H1H7IH1Hraquo7laquo1H1Hraquo7-IH 1Hraquo7laquo1H1H7raquo1HIH7-IHIHi 42 OATA B0RH1H71H 43 2 1Hraquo 71H1Hraquo71H 44 NL bull 19 43 NX = 80 16 NY = SO 47 NXP1 = NX bull 1 48 NYPI raquo NY bull 1 SET CONTOUR PLOT LIMITS u XMIN o O Bl XMAX o ZMAX 02 YMIN bull 0 B3 YMAX = ZMAX 84 DX bull (XMAX - XMIN1NX SB OY (YMAX - YMIN1NY 66 NTTY n 39 57 WRITEINTTY20011 50 2001 FORMATbull NPLOT KNS I I MA 59 READ(NTY2002)NPLOTKNS I I MAX 60 2002 FORMAT(31|0gt 61 R E A O ( N I N I M M L L N T L T O T 1 L I M I T 62 R E A O I N I N K I A I l J ) J laquo 1 N I t gt 1 N I 63 R E A O C N I N H I W K P W I J I J l N I U l N ) 64 R E A D ( N I N ) ( ( W S S ( I J ) J = I N gt I = 1N) 65 REAO(NINj((CAPW( J ) J a l L L ) 1 = 1 L L gt 66 R E A D ( N N I ( ( C A P y ( | J l J l M I U l K ) 67 I F ( N T L G T O ) R E A O ( N I N ) ( ( T l T L E S ( I J ) J = 68 3000 CONTINUE 69 READ(NIN)NOPTERRLIMDT 70 I F I N O P L T O ) QO TO S3 71 R E A 0 ( N I N I ( lt P ( 1 J ) J t l N ) I M N I 72 IF(NOPGTO)REAOlt lt I N ) i Z D U M d 1 I 1111 73 IF(N0POT0)KtAD(iilN)(ZDUM(l ) 1=111) 74 IF(NPLOTEOO) 00 TO 30D1 73 IF(NPLOTOTNOP) 00 TO 3000 76 3001 CONTINUE 77 N0PP1 bull NOP I 78 I I bull 0 79 3 CONTINUE 80 NS = KNSI I 81 TP = T laquo NSDT 82 X(l) XrtlN 83 X(2gt o YMIN 84 IFdl EODI CALL FVAL(XFMIN) 85 IFdlOT01 CALL PVAL(XFMINNS) 86 FMAX o FMIN 87 DO 2 l=lNYP1 8U C XII) HORIZONTALLY XI2) VERTICALLY 89 X12J raquo YMIN bull (l-l)laquoDY 90 DO 1 J=1NXP1

349

91 92 93 94 95 96 1 87 2 96 99 100 101 101 102 103 104 I0S I0S 107 10 100 109 110 lit 112 9 113 6 114 1 iS

l i e 9 117 M B 1 19 21 120 201 121 122 22 123 202 124 125 23 126 203 127 128 24 129 204 130 131 25 132 133 26 134 SOS 135 136 27 137 207 138 139 140 141 280 142 143 26 144 149 208 146 147 146 29 149 1S0 1BI 192 390 193 IS4 35 IBS 235 196 107 36 isa IBB 37 1E0 237 161 162 38 163 238 164 163 39 166 239 167 166 40 169 240 170 171 42 172 242 173 174 43 179 243 176 177 44 176 244

XIII = XMIN bull ltJ-1gtDX IF(IIEQO) CALL FVAL (XFIIJ)) IF (llGTO) CALL PVAL (XFCIJ)NS) IFIFIlJ) LTFMINIFMIN raquo FIIJ) IF(F(IJ)GTFMAX)FMAX = F(IJ) CONTINUE CONTINUE DF o (FMAK - FMIN)NL WRITECNOUT 101 )TP (TITLESI J) Jraquo18)T(TlTLES(2J)Jraquol6) 2 NSSAMPLE t N0PP1 ) F0RMAT(I10XCONTOUR PLOT OF TRACECP(KKraquoN)(Z(Kgt)J AS laquo 1 -FUNCTION OF

2 bull tZ(K)ll HORlz [Z(KI12 VERTlaquo9XlaquoTKgtNgtlaquoE114 3 I 1 X 8 A I 0 9 X T I K gt = E 1 1 4 1 I X B A 1 0 9 X laquo N bull laquo I 3 4 bull STEPS A F T E R 100XAraquoMEASUREMENTgt

WRITEINOUT 107)BOTH FORMAT) 10X 81AI 9 X 1 6 1 1 H O ) 0 0 1000 I NYPl DO 9 J M N X P I DO 6 K M NL I F I I F M I N raquo K laquo D F gt G T F ( N Y P I laquo 1 - I J ) ) Q O TO t CONTINUE S L I N E I J I bull S I K ) I F K F l N Y P W l - I J I I E Q F M I N l SLINEltJgt raquo 1Hraquo I F C i n N Y P H l - l J H E Q F M A X ) SU INE(J ) bull 1M0 CONTINUE I F 0 T 7 I Q 0 TO 280 GO T 0 1 2 1 2 2 2 3 2 4 2 9 2 6 2 7 ) I W R I T E C N 0 U 2 0 l s C A L E H l I S L I N E B D R I ) F 0 R M A T ( A 1 0 B 1 A I A I 8 X CONTOUR LEVELS) 0 0 TO 1000 WRITE1NOUT202)SCALEH( I ) SL INE BDRltI) FORMAT(AI0eiAlAl8Xraquo AND SYMBOLS) 00 TO 1000 WRITE(N0UT203)SCALEHltI)SL1NEBDRI1) F0RMAT(A108IA1A18X 16(1 H O ) 00 TO 1000 WRITE(NOUT204)SCALEHI)SLINEBORI1 I FCRMAT(A1081A1A18XSYMB LEVEL RANGE) CO TO 1000 WRITEIN0Ur203)SCALEH(I)SL1NEBDR(I) 00 TO 1000 WRITEltNauT206)SCALEH(lgtSLINEB0RCIgtFMAX rORMAT(AIO6IAlAI8X4H (0)El 14) 00 TO 1000 WRITEINOUT207)SCALEH(I)SLINEBDR(I) FORMAT(A1081A1A18X16(IH-gt) NSKIP = 1 NLEVEL = 9 SO TO 1000 IFCI OT34)00 TO 380 00 TO(282829)NSK1P FLEVEL raquo FMlN bull C2NLEVELraquo1-NSKP)DF WRITE(N0UT206)SCALEHIIISLINEBDS(I)SYHB(NLEVEL)FLEVEL FORMATA1081A1A16X ltA1)E11 4) NSKIP NSKIP CO TO 1000 NSKIP bull 1 NLEVEL raquo NLEVEL - t WR|TEtN0UT207)SCALEH(l)SL1NEBDRUI OO TO 1000 LINE I -34 OS T0(39 3637 38 3940 38 42434449 3b 474844SO91S2)LINE WHITENOUT23S5SCALEHII)SLINEBDRI1gtFMIN F0RMATIA1081AIA1laquoX4H (laquo)Elt4) GO TO 1000 WRITEIN3UT203gtSCALEH(1)SLINE80R(II 00 TO 1000 WRITE(NOUT237)SClaquoLEM(I)SLINEBDR(I) FORMATA1061A1A16XESTIMATION) SO TO 1000 WRITECNOUT23S)SCALEH(I)SL1NEBDRI) FORMATA1081A1A1laquoXERROR CRITERION) OO TO 1000 WRITEINOUT39)SCALEHltIgtSLINEBDRII) FORMATA1081AIA19XCONSTRAINT laquoraquogt 00 TO 1000 WRITE(N0UT240gtSCALEHltI)SLINEBDRlI)ERRLIM FORMATA108IA1AI1SXEl 14) SO TO 1000 WRITENOUT242)SCALEH(1ISLINEBDRII) FORMAT I At 061AlA18XSOURCE INPUT) 00 TO 1000 WRITE1N0UT243)SCALEH(I)SLINEBDRI) FORMAT(AlO6lMA16X COVARIANCE tWJraquogt OO TO 1000 WRITEINOUT244gtSCALEH(1)SLINEBORI) FORMATIAI061A1AI) OO TO 1000 WRITEINOUT245ISCALEHII)SLINEBDRI)CAPWi11)

3S0

1laquo1 245 F0RMATltA10 8 IA1 A1 8X laquo [ laquo E 1 l 4 laquo ] a ) 182 0 0 TO 1000 183 47 URITEltNOUT247)SCALEH(l gtSLINEBORltI 1 164 247 FORMATCAIOSIAIAISX MEASUREMENT) IBS GO TO 1000 1SB 48 WR1TE(N0UT248)SCALEHUgtSL1NEBDRI I ) 187 248 F0RMATCA1081A1A18XlaquoERR0R COVAR CV1 = laquo1 188 00 TO 1000 189 SO WRITEltNOUT2S0)SCALEH(1)SLINEBDRI1JCAPVCll)CAPV(I2) 190 250 F0KMATltA10B1A1AIBXlaquo|laquoFS34XF36raquo]laquogt 191 00 TO 1000 192 51 WRITEltN0UT250)SCALEHU) SL INEBDRUgtCAPVlt2 l ) C A P V ( 2 2 gt 193 GO TO 1000 194 52 WRITE(NOUT203)SCALErll l ) SLINE BDRU ) 199 1000 CONTINUE 19B WR1TE(N0UT107)B0RH 197 WRITE(N0UT253)SCALEV 198 253 FORMAT 9X 11A8 SIXlaquo[ZCKgt]Ibullgt 199 CALL MATOUTP (PNN1HPNOUT10) 200 CALL EMPTV(NOUT) 201 1 1 = 1 1 1 202 1FII I LE UMAX) SO TO 3 203 F(NPLOTEOO) GO TO 3000 204 99 CALL EXIT 209 END

208 SUBROUTINE FVAL (ZTRP) 207 COMMON PROB NMZMAXPCAPVISINO 200 DIMENSION P(1010)C(1010)CAPVlt1010)PSII 11010) 209 DIMENSION Z(I)Wl(1010)W211010) W3lt10 10) 210 NO = 10 211 PI gt 314159266 212 00 12 1 = 1ft 213 DO 11 J=1N 214 II C(IJ) = 6oSltltJ-l)laquoPIZUgtgt 219 12 CONTINUE 216 C FIRST COMPUTE IPSII1 [ClaquoPltK-1K)laquoCT1INVERSE 217 DO 5 A deg l n 218 DO 2 I C raquo I N 219 W K I A IC ) bull 0 220 00 I | 0 gt I N 221 1 M H I A I C I bull W K I A I C ) bull C U A ID )raquoPt 10 ICgt 222 2 CONTINUE 223 00 4 IBraquo1M 224 W2IIAIB) raquo CAPVUAIB) 225 DO 3 |E=1N 22B 3 W2UA IB) = W2(IAIB) WlIIAIE)laquoCCIBIE) 227 4 CONTINUE 228 B CONTINUE 229 CALL INVERSE CMW2PSIII ERR) 230 IF(IERRLTO) OO TO S91 231 C COMPUTATION OF TRCPCZK)ltKKgt1 232 TRP = 0 233 00 10 lAIN 234 TRP o TRP bull PIIAIA) 23B 00 7 ICIM 236 U1PI gt 0 237 DO 6 IDolM 235 6 UIPI = W1PI 239 7 TRP bull TRP -240 10 CONTINUE 241 I SI NO bull 0 242 99 RETURN 243 991 ISINO 3 244 RETURN 245 END

246 SUBROUTINE PVAL (ZTRPNS) 247 C CALCULATES TRACE(PIKKNS)) FOR INS) TIME STEPS ltDTgt BErcND (TIME 24S COMMON PROB NMZMAXPCAPVISINO 249 COMMON PR0B2 AWKPIOTT 250 DIMENSION P11010)CAPVI1010)Alt1010)WKP1C1010)Z(2) 251 DIMENSION CI10I0)PS1I(1010)PKPI11010) 252 DIMENSION W1lt1010)W2(1010)W3(10 10) 253 PI bull 314109266 254 C 258 C FIRST UlTH THE VECTOR OF MEASUREMENT POSITIONS CZ) FIND THE 256 C CORRECTED COVARIANCE MATRIX IW2) FROM THE LAST VALUE OF THE 257 C PREDICTED COVARIANCE MATRIX (P) UN COMMON) AT TIME (TIME) 2S6 C 259 0 0 12 l = 1M 260 DO 11 J J I (J 261 I I C ( I J ) a COSMJ-1 lPIgtZlt t ) ) 262 12 CONTINUE 263 C 264 C NEXT COMPUTE [PSII 1 on CCraquoPCK-1 l laquoCT1 INVERSE 2ES C 266 DO S lAIM

351

267 DO 2 I C raquo 1 N 268 W 1 I A I C ) bull 0 269 DO t 10= 1 N 2 7 0 1 W W I A I C ) raquo W K I A 1 C 1 bull CltI A I D ) raquo P 1 I D 1 C gt 271 2 CONTINUE 272 DO 4 IB1M 273 W2IIAIB) raquo CAPVIIAIB) 274 DO 3 |EdegN 275 3 W2(IAIB) W2(IAIB) bull W1CIAIE)laquoC(IBIE) 276 4 CONTINUE 277 S CONTINUE 276 CALL INVERSE (MW2PSIII ERR) 279 IFIIERRLTO) GO TO 991 260 C 261 C COMPUTE CP(KK)) MATRIX BUT FIND ONLY DIAGONAL ELEMENTS 2B2 C TO BE USED TO INITIATE TRACE CALCULATION 263 C 264 DO ID I AIN 385 PKPIIIAIAgt PltIA1A) 286 00 7 IC=IM 287 WIP1 =0 266 00 6 ID=1M 269 6 U1PI = W1PI laquo UI(IOIA)PSII(IDIC) 290 7 PKPKIAIA) bullgt PKPKIA IA) - W1PIlaquoWI(IC I A) 291 10 CONTINUE 292 C 293 C COMPUTATION OF TR[PIKKNS)] 294 C PREDICT THE COVARIANCE MATRIX AHEAD (N3gt STEPS IN TIME 295 C COMPUTE ONLY THE DIAOONAL ELEMENTS SINCE THE TRACE IS REOUIRED 296 C 297 00 16 K=1NS 298 DO 19 lolN 299 15 P K P K I I ) = A lt l I M P K P M I l ) raquo A C I l gt WKP1 lt I I ) 300 16 CONTINUE 301 TRP o 0 302 DO 17 I a 1N 303 17 TRP = TRP bull PKP1 (1I) 304 ISINQ = 0 305 99 RETURN 306 991 I SING o 3 3D7 RETURN 308 END

309 SUBROUTINE MATOUTP (ANMNAMENOUTND) 310 DIMENSION A(NDND) 311 WRITE1N0UTlOllNAME 312 101 FORMATlt20XA41OH MATRIX IS) 313 DO I I=1N 314 1 WRITEINOUT 102HACI J) Jlaquo1 M) 315 102 F0RMATI20X10E103) 316 RETURN 317 END

318 SUBROUTINE INVERSE (NNAAINVIERROR) 319 C SEE PROGRAM KALMAN FOR THIS ROUTINE 320 END

321 SUBROUTINE DECOMP (NNAULSCALESIPSI ERRORND) 322 C SEE PROGRAM KALMAN FOR THIS ROUTINE 323 END

324 SUBROUTINE SOLVE (NNULBXIPSNO) 325 C SEE PROGRAM KALMAN FOR THIS ROUTINE 326 END

327 326 C 329 SUBROUTINE MPRlV (NN A ULBXRDX IPSOIGI TS IERRORND) SEE PROGRAM KALMAN FOR THIS ROOTINE END

352

1 PROORAM PEIEM (PF1LETAPE2=PFILEHE0UTTAPE3degPE0UT1 2 C SET (NPLOTI TO THE NUMBER OF THE MEASUREMENT FOR WHICH THE CONTOUR 3 C PLOTS ARE DESIRED (1 2) SET IT TO ZERO (0) IF PLOTS 4 0 ARE DESIRED AFTER ALL MEASUREMENTS 5 CALL CREATE (5HPE0UT40000SWTgt S NIN bull 2 7 NOUT bull 3 S NTTY bull SS 9 DIMENSION AttO10gtWKPt(1010)CAPV(1010)Plt1010) 10 DIMENSION CAPWMOtO) 11 DIMENSION WSSdO 10) 12 DIMENSION ZDUMI10) 13 ZMAX bull 10 14 COMMON PROS NMZMAXPCAPV1SIN3 15 C IS DIMENSION F(B1SI)X(21S(19)SLlNE(ei)SVMBI9) 17 DATA S 1H 1HI1H IH21H )H31H 1H41H 1HB 18 2 IH JtHBIH iH71h 1HB1H 1H9IH 19 DATA SVMB (HIIM21H3lH4IH51HS 1H7IHB1H9 bull0 DIMENSION TITLESlt48)iBDR(Bt)SCALEHltai)SCALEVlt111SAMPLE(10) 21 OATA BDR IH4laquoIH)H4laquoIH1H4laquoIH1H4raquoIH1H4raquo1H 22 2 1H4raquo1H 1H4laquo1H11Hlaquo4laquo1M1Mlaquo4raquoIH1Hraquo4laquo1H1Hraquo 23 DATA SCALEH10H l04laquo10H 10H 09 Z4 2 4gt10H 10H 08 raquo4laquo10H 10H 07 bull 25 3 4raquo10H 10H 08 raquo2laquo10H 10H tZtK)J2 26 4 10H 10H OB bull 27 5 4gtI0H 10H 04 bull4raquo10H 10H 03 28 6 4gt10H 10H 02 bull4laquo10H 10H 01 bull 29 7 4laquoI0H IOH 00 bull 30 DATA SCALEV SHOO 8H01 8H02 BHOO 31 2 BH04 8H05 laquoH0laquo 8H07 8H08 32 3 OHO9 3H10 33 DATA SAMPLE 8HZER0ETH 34 I 8HFIRST 8HSECON0 BHTH1RD 8HF0URTH 35 2 8HFIFTH 8HSIXTH 8HSEVENTH 8HEIGHTH 3B 3 8HNINTH

37 DIMENSION BDRHtSII 38 DATA BDRH1H7raquo1HIHraquo7laquo1H1H7raquo1HIH7laquo1HIH7laquo1H 39 2 1Hraquo7raquo1H1Hlaquo7laquo1H1H71H1H7laquo1H1H7laquo1HIH 40 NL raquo 19 41 NK a 80 42 NY o 50 43 NAPI bull NX bull 1 44 NYP1 NY bull 1 49 C SET CONTOUR PLOT LIMITS 48 XMIN O 47 XMAX = ZMAX 48 YMIN bull 0 49 YMAX raquo ZMAX 50 OX = (XMAX - XMIN1NX 51 DY = (YMAX - YMIN1NY 52 NTTY raquo 59 53 WRITE(NTTY2001) 54 2001 FORMATa NPLOTgt 55 READ INTTY2002)NPLOT 56 2032 FORMAT(IIO) 87 READ(N NINMLLNTLTOTlLIMIT 58 REAO(N N1(AUJgtJlaquoINI1-1N) 59 REAO(N NKIWPIIIJ) Jlaquol N)IbullINgt 60 REAO(N N)((WSS(IJ)J=1NgtIlaquo1N) 61 REAO(N NH(CAPW(1Jgt Jdeg1 Li) lraquo1LLgt 62 REAOtN N)((CAPV(IJ)JraquoIM1Iraquo1M) 63 IF(NTLOTO)REA0(NINgt((T|TLESIIJ) JJI8)|a|NTL) 64 3000 CONTINUE 65 RpoundAD(NIN)NOPTERRLIMDT 66 IF(NOPLTO) 06 TO 99 67 READ(NINU(Plt I J ) JMNgt llaquo1N) 68 IFltNOPQTOgtREAD(NINgt(ZOUM(l)1=1Ml 69 IF(N0p3TO)REA0ltNIN)(ZDUM(l) 1=1 Ml 70 IFtNPLOTEQOl 00 TO 3001 71 IF(NPLOTQTNOP) 00 TO 3000 72 3001 CONTINUE 73 N0PP1 raquo N0Plaquo1 74 1 1 = 0 75 3 CONTINUE 7J K M ) bull XMIN 77 X(2) a YMIN 78 IFUIEOO) CALL FVAL (XFMIN) 7S IF(IIOTO) CALL PVAL(XtIFMINgt 80 FMAX = FMIN 81 DO 2 lalNYPI 82 C X(l) HORIZONTALLY Xlt2gt VERTICALLY 83 X(2) a YMIN (1-1gtraquo0Y 84 DO I JlaquoINXP1 85 X(1gt a XMIN bull (J-1UDX 68 IF(IIEQO) CALL FVAL (XFltIJgt) 87 IFIIIOTOI CALL PVAL(X llFUJ)) 98 IF(F(IJ)LTFMIN)FMIN raquo FllJJ 89 IF(F(IJJ0TFMAX1FMAX laquo F(IJgt 90 1 CONTINOE

353

95 100 96 97 96 99 100 101 101 102 103 104 105 100 107 10 109 109 110 1 1 1 1 12 5 1 13 6 114 1 IS 1 16 9 117 118 1 IS 21 120 201 121 122 22 123 202 124 125 23 126 203 127 126 24 129 204 130 131 25 132 133 26 134 206 135 136 2 T

137 207 136 139 140 141 280 142 143 10 144 14a 700 146 147 146 29 149 ISO 151 152 350 153 1S4 35 155 pound35 156 157 36 158 159 17 16Q -37 161 162 38 163 238 164 165 39 166 239 167 168 40 169 240 170 171 42 172 242 173 174 43 17S 243 176 177 44 178 244 179 180 45

CONTINUE DF t IFMAX - FMININL IF II1E00) WRITE CNOUT100) T(TlTLES(IJ)J18gtSAMPLEltN0PP1gt 2 ltTITLESr2J)Jraquo18I FORMATbullI10XC0N13UR PLOT OF TRACEPIKKraquoNgt(Z(K))1 AS raquo 1 FUNCTION OF 2 [ZIKgtJ1 HORIZ CZIK112 VERT9XTIMEEl 1 A 3 l1X8A109XAa iKEASUREMENTl1XeA10gt IF (llGTO) WRITE (N0UT101) T ( TITLES I J I J 18) SAMPLE(N0PP1 ) 2 lt T I T L E S ( 2 J ) J = l 6 gt I I l l

FORMATOI IOX CONTOUR PLOT OF TRACECP(KKN) ( Z ( K ) ) I AS 1 FUNCTION O F 2 bull t Z lt K ) ) 1 HORlZ I Z ( K ) 1 2 VERT9X T I M E El 1 4 3 I I X e A I 0 9 X A 8 M E A S U R E M E N T 1 1 X 8 A 1 0 9 X 4 E L E M E N T 1 2 1 2 laquo ) raquo gt

WR1TEIN0UT107JBDRH FORMAT 10X61A1 9X 16lt 1H3gtgt DO 1000 m N Y P I D9 9 J l NXPI 0 0 5 K raquo l N L I F I I F M I N K O F I G T F ( N Y P I I - I JDOO TO 6 CONTINUE SL1NE(Jgt = SIK) IFC(FINYP1raquo-1J))EO FMIN) SLINE(J) 1H IFIiFINYPIH -I J I I EOFMAXI SLINECJ) 1H0 CONTINUE IPC I QT 7gtG0 TO 280 GO T0I21222324252627)I WRITEiNOUT201ISCALEHII I SLI NEBDRU ) FORMATIAIOetAlAIBX CONTOUR LEVELSI 60 TO 1000 WRITE IN0U1202ISCALEHII ISLINEBDRltI) FORMATIAIOBIAAI8X ANO SVMBOLS) GO TO 1000 WRITE(NOUT203)SCALEH(llSLINeBOR(lI F0RMATIA1081AI Al 6X 161 IH) ) GO TO 1000 WhlTE (N0UT204lSCAIEMI)SLINE60R(I) fGRNAUftlOeiAlA16XlaquoSYMB LEVEL RANOEgt GC TO 1000 WRITpoundltNa120nKCALEHI I I SLI NE BDRlt I ) GO 10 1000 mP 11 El NC1UT206 gt SCALEHtl)SL1NEBDRC t ) FMAX FORMSTAIO01A1A1BX4H (01 E H 4) 00 TO 1000 WRI re N0LlT207)SCALEH( I gt S L I N E B 0 R lt I ) F0liMAT(A1081AlA18X 1611H-U NSKIP raquo I NLEVEL 9 60 TO 1000 IF 11 GT 34)00 TO 350 00 TO(282829)NSKIP FLEVEl = FMlN lt2laquoNLEVELlaquo1-NSKIP)DF WRITE(NOUT20B)9CALEHfI)SLINEBOR(11SYMB(NLEVEL1FLEVEL FORMATA081AlAI8X 1gtA1)E114) NSKIP - NSKIP GO TO 1000 NSKIP = 1 NLEVEL - NLEVEL - 1 WRITFINOUT207)PCALEM( I 1SLINEBOR(Igt GO TO 1000 LINE I - 34 GO T0(3536373839403642434445 364748 44505152)LINE WRITE(N0U1235ISCALEH(I1SLINEBORII)FMIN FORMATAtOeiAlAIex4H 1)El 141 GO TO 1000 URITE1N0UT203)SCALEH(I ISLINEBDR(I) W3 TO 1000 WRI|EIN0UT237)SCALEM(IgtSLINEBDRII) F0KMAT(A061A1A1OXEST I MAT ION) GO TO 1000 WR|TtiN0UT238)5CALEM(lgtSLINEBDRII) FORMATA1081AIAIBXERROR CRITERION) OO TO 1000 WRITEINOUT239ISCALEHII ISLINEBDRII) F 0 I M A T ( A 1 0 B I A I A I 8 X laquo C 6 N S T R A I N T =bull) GO TO 1000 WR1TEINOUT240)SCALEH1I)SLINEBDRC1)ERRLIM FORMAT(AIO81 A)A1 I2XEII4) GO TO 1O00 WRITE(NOUT242)SCALEHltI)SLINEBOR(I) FORMAT(A1081A1A18XSOURCE INPUT) OS TO 1000 WR I TE lt NOUT 243) SCALEH (I I SI I NE BDRlt I ) FORMATAIO81AlAl8XC6vARIANCE [Wlraquogt 00 TO 1000 WRITECNOUT244)SCALEH(I)SLINEBDRI I F0RMATIA1081AIA1) GO TO 1000 WRITENOUT 245ISCALEH I gt SLII-BDR( I gt CAPWC 11)

354

1raquo1 245 F0RMATtA)081A1Al8)traquot raquoE1I4laquoJ) 162 GO TO 1000 1S3 47 WRITEINOUT247I3CALEHIIgt3L1NEB0Rlt1gt 184 247 F0RMATltA10elAlAI0XMEASUREMENTlaquogt IBS 00 TO 100D 1laquo8 48 WRITEINOUT248)SCALEH(I)SLINEBDR11 ) 187 248 F0RMATCA10 81A1A18XERROR C6VAR CV1) 188 00 TO 1000 188 SO WR1TElNOUT2a0gtSCALEHII)3LlNEB0Rtl)CAPV(l1)CAPVII2gt ISO 200 F0RMATCA10 BlAl A1BX[laquoFO34X FB4laquo)bullgt iai oo TO IOOO 192 B1 WRITEINOUT250gtSCALEH(I)SLINE8DR(IgtCAPVI21gtCAPVI22gt IB3 OO TO 1000 104 02 WRlTEINaUT203)SCALEHltIgt9LINEBDRltI) 155 1000 CONTINUE 108 WRITEINOUT1071BDRH 197 WRITEINOUT253)SCALEV 198 293 F0RMATI9XI 1AOOIXtZIKgt11gt 1SB CAIL MATOUTP IPNNIHPNOUT10) 200 CALL EMPTY(NOUT) 201 I I laquo I I bull 1 202 IFltI I IEN) 00 TO 0 203 IFINPLOTEQO) 00 TO 3000 204 99 CALL EXIT 205 END 206 SUBROUTINE FVAL IZTRP) 207 C SEE PROGRAM NEWPT FOR TH1S ROUT INE 208 END

209 SUBROUTINE PVAL (ZI IPI I) 210 C RETURNS (llll)TH ELEMENT OF (PIKraquoIK1)) 211 COMMON PROS NMZMAXPCAPVISINO 212 DIMENSION PI 10 10)Clt1010)CAPVI10 10)PSIIlt1010) 213 DIMENSION Zlt1gtWTlt1010SW2l1010)W3tl610gt 214 ND bull 10 2IB PI bull 314IS926S 213 DO 12 ldeg1Mj 217 DO II JraquoIN SIB II CIIJ) a COSlltJ-tgtlaquoPIraquoZII)gt 215 12 CONTINUE 220 C FIRST COMPUTE tPSI I ) tClaquoPltK-1K)raquoCTJINVERSE 221 00 5 IAgt1M 222 DO 2 I C= I N 223 WH jAIC) bull 0 224 00 I I Da 1N 225 1 H11IAIC) raquo WHIAIO bull OUA IOXPIID IC) 226 2 CONTINUE 227 DO 4 16=1M 228 W2I1AIB) a CAPVIIA IB) 229 DO 3 lE=lN 230 3 W2ltIAIB) a W2(IAIB) bull W1(IAtElaCCIBIE) 231 4 CONTINUE 232 B CONTINUE 233 CALL INVERSE (MW2PSIIIERR) 234 IFCIERRLT0) OO TO 991 235 C CALCULATION OF tP(ZK)IKK)11 I 233 PI I P(1111) 237 OO 7 ICraquo1M 238 W1PI raquo 0 239 00 6 IDraquo1M 240 e U I P I laquo W I P I laquo w H i D i n p s i m o i c ) 241 7 Pll deg Pll bull W1PIgtUIIICII) 242 ISINO a 0 243 99 RETURN 244 991 I SI NO a 3 245 RETURN 24B END 247 SUBROUTINE MATOUTP (ANMHAMENOUTND) 241 DIMENSION A(NDND) 249 WRITEINOUTIOilNAHE 250 101 FORMAT26xA413H MATRIX IS) 251 DO 1 l-lN 252 1 HRlTE(N0UT102XAtlJ)Ja1M) 253 102 FORMAT120X10E103) 254 RETURN pound50 END

256 SUBROUTINE INVERSE (NNAAINVIERROR) 287 C SEE PBOBRAM KALMAN FOR THIS ROUTINE 256 END

355

2Braquo SUBROUTINE DECSHP INN A M SCALES IPS IERRORND) 260 C SEE PROGRAM KALMAN FOR THIS ROUTINE Z01 END

28S SUBROUTINE SOLVE INN UL B X IPS ND) 283 C SEE PROGRAM KALMAN FOR THIS ROUTINE pound04 END

2Bs sect5lt5yiIHbdquo l3 p RyY IH NltjHV-j tA5iHJ r 8gt D I O I T S ERROR ND) BB7 END

rsvanuv i i MC bull n r n u v i n i l m uu ttf r n w n SEE PROGRAM KALMAN FOR THIS ROUTINE

356

1 PROGRAM SIGMAT ltPFILETAPE2=PFILES8UT TAPE3=S0UTgt 2 CALL CHANGE C2HHS) 3 CALL CREATE lt4HS0UT40000SWT) 4 NIN raquo 2 8 NOUT raquo 3 6 DIMENSION SIGZdOl IZdOl ) 7 DIMENSION A(I0 10) P O O 10) CAPVdO 10) WKP1 d O lOlWSSdO 10) 5 DIMENSION CAPWtlO10) ZUUMdO) Tl TLES(48gt 0 ND raquo 10 10 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 11 XNAME = 10HP0SITI0N Z 12 YNAME = I0HS1G(ZKlaquoNgt 13 PNAME = 10HTIME TKraquoN 4 ZMAX 1 0 15 XMIN deg 00 16 XMAX ZMAX 17 NX c 00 10 NXP1 NXraquoI 19 DX e (XMAX-XMIN)ZNX 20 NTTV bull 63 21 WRITE1NTTY1001) 22 1001 FORMATbull NPLT3 NSKIPgt) 23 RCADINTTY1002)NPLTSNSK1P 24 1002 F0RMATlt2I0) 20 READ(NIN)N MLL NTLTO T - L I M I T 26 READir i lN I I l A ( l J ) j i | N l = l N ) 27 R E A D I N I N X W K P I d J ) J M N gt I = 1 N gt 28 R E A D I N I N I U W S S l J ) J = 1 N ) I = 1 N ) 29 R E A O l N I N M I C A P W d J ) J u l LC ) I = 1 L L ) 30 REAON INM(CAPVd J ) J raquo I M gt 1 1 M 1 31 IFINTLGT0 gtREADC NI N M C TI TLES d J) J= 1 8 gt I deg 1 NTL) 32 9 CONT1NUE 33 REAO(NININOPTERRLIMDT 34 I F ( N O P L I O ) GO TO 99 35 R 0 lt N I N M P d J gt J raquo l N ) l raquo 1 N gt 36 f INOr lSTOgtREAoiNINgtlzDUMd l l gt 1 m 37 I F lt N 0 P O I 0 gt R E A 0 ( N I N ) ( Z D U M lt I ) I raquo 1 M ) 38 FHIN bull SIGMA ( 0 ) 39 FMAX = FMIN 40 DO 3 I I O N P L T S 41 PVALUE = t laquo ( I l - l ) laquo D T laquo N S K I P 42 DO 1 I - 1NXP1 43 Z ( l ) XMIN bull lt1 -1 )laquoDX 44 S I U 2 I I ) - S I G M A I Z d gt) 45 I CONTINUE 46 CALL MULTPLT C Z SIGZ I I XNAME YNAME PNAME PVALUE Tl TLES NTL NOUD 47 DO 2 K-lNSKIP 48 2 CALL APATW (APWKPINND) 49 3 CONTINUE 60 11 laquo -1 61 CALL MUL1PLT (ZSIGZI IXNAMEYNAMEPNAMEPVALUETlTLESNTLN0UT1 62 GO TO 6 63 99 CONTINUE 64 RVALUE = (US8I1 IlWKPII 11gtlaOT 66 YNAME = I OHS GMMWSS) 6D PNAMt laquo 10HT1ME TO SS 57 DO 101 ldeg1N 68 DO 100 J = IN 39 100 HIJI i WSSIIJ) 60 101 CONTINUE 61 C ZERO OUT FIRST ELEMENT OF (WSS) 62 Pd I) = 00 63 00 102 lalNXPI 64 Z(l) bull XMIN bull (l-l)aDX 65 SIG^I|) bull SIGMA(Z(I)) 66 102 CONTINUE 67 1 1 = 1 68 CALL MULTPLT (2SIOZI IXNAMEYNAMEPNAMEPVALUETlTLESNTLNOUT) 69 II = -1 70 CALL MULTPLT ltZSIGZ I IXNAMEYNAMEPNAMEPVALUETlTLESNTLNOUT) 71 CALL EXIT 72 END

73 FUNCTION SIGMAIZ) 74 C SEE PROGRAM KALMAN FOR TIHIS ROUTINE 75 END

78 SUBROUTINE APATW (APWNNDI SD DIMENSION A d O 10)Plt 0 lOIWdO 10) 81 DO 2 1=1N B2 DO 1 J=1N 83 I P(IJ) laquo A d l)laquoPdJ)laquoA(JJgt bull W d J ) 64 2 CONTINUE

357

87 SUBROUTINE NULTPLT (XINYINNXNAMEYNAMEPNAMEPVALUE 08 2 TITLESNTLNOUT) 89 DIMENSION XlN(101)YlN(101)X(1010gtYC1010)PARAMI10) 90 DIMENSION TITLESI48) 91 MAXPTS o 101 02 IFINLTO) 00 TO 90 93 NUMPTS = NlaquoMAXPTS 9lt1 NPLTS = N 98 PARAMI Ngt = PVALUE 9G DO 1 1=1MAXPTS 97 II = IN-I(MAXPTS bull I 96 XltI I) = XINI1 I 99 YlI I) = YINII) I oo i com i NUE 101 RETURN 102 90 CONTINUE 103 CALL PARALST IXYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 104 2 TITLES NTLNOUT) 106 CALL PARAPLt (KYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 106 2 TITLESNTLNOUT) 107 RETURN 100 END

109 SUBROUTINE PARALST (XYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 110 2 TITLE-SNTLNOJT) II I DIMENSION X(1010)Y(10IO)PARAM(IO)SYMBOL(10)EQUALS(11)TERMlt11) 112 DIMENSION TITLpoundS(48gt 113 DATA EQUALS 11laquo 10H========== 114 DATA SYMBOL 1H01H11H21H3H41H51H61H71H81N9 1 IS IFINTLEQO) 00 TO 2 116 DO 1 I= 1NTL 117 I WRITEINOUT101)I TITLESIJ)J1laquo) 118 101 FORMAT1IX8A10) 119 2 WRITEINOUT102IPNAMF1PARAMI)1=1NPLTS) 120 102 FORMATbull TABULAR LIST OF PLOTTED PARAMETRIC CURVES 121 2 A1010I1XE103)) 122 NPLTSPI = NPLTS1 123 WRITEINOUT101)IEOUALS(I)1=1NPLTSPI) 121 104 F0RMAT(A10101IXAID)) I 25 WRITE1NOUT 103)(SYMBOLI) 1bull1NPLTS) I2J 103 FORMATIPOSITION Z bull 10SIOiZKA1bullgt bullgt) 127 WRITEINOUT 104)(EQUALSI)=1NPLTSP11 126 DO 6 1=1101 129 TERMI1) = XII) 130 00 4 J = l N P L T S 131 4 T E R M I J laquo l l raquo Y K J - 1 I raquo I 0 1 1 ) 132 5 HRITE1N0UT1 06MTERMIK) K = I NPLTSP1 ) 133 106 FORMAT(tl0310(1XEI03)gt 134 RETURN 136 END

136 SUBROUTINE PARAPLT ltXYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 137 2 TITLeSNTLNOUT) 138 DIMENSION XI I 010)Y1010)SI 1010)PARAM10) 139 DIMENSION SYMBOL10) 140 DIMENSION TITLESI48) 141 DIMENSION POINTS101)BUT(6) 142 DIMENSION SSTI1010) 143 DATA SST 101bullIHO 101laquo1H1101bullIH2101bullIH3 1011H4 101raquo1H5 144 2 101IH6 I011H716U1H8161IH9 145 DATA SYMBOL 1HD 1HI 1H2 1h3 1H4 1H5 t-IS 1H7 1H8 1H9 146 DO I 1=1NUMPTS 147 1 SI I) = SSTI) 146 IFINUMPTSLT2100 TO 999 149 C WRITE OUT TITLE CARDS 150 WRITEINOUT6) 161 6 FORMATIH1S 152 DO 3 1=14 153 00 TO (301302302302)I 15D 301 IF(ILENTL) WRITEINOUT2001)YNAME(TITLESilJ)J=18) 155 2001 FORMATI3XA102X8A10) 156 1FIIGTNTL) WRITE1N0UT2002)VNAME 157 2002 FORMATI3XA10I 158 00 TO 3 159 302 1FI1 LENTL)WR1TE(N0UT2003)ITITLESII J) J=l8) 160 2003 FORMATI5X8A10) 161 IFII OTNTL) WRITE1N0UT5) 162 3 CONTINUE 163 URITEIN0UT5I 164 5 FORMAT1H 1 165 C 166 C Rt-ORDER B THE Y AXIS 167 C 166 C SOLVE FOR MAX

358

169 1=1 170 20 CONTINUE 17f JJ=M 172 YMAX-YIM 173 DO 10 J=INUMPTS 171 IFIYIJILEYMAXIGO TO 10 175 YMAX=Y(J) 176 JJ=J 177 10 CONTINUE 170 C INTERCHAN8E 179 YY=Ytl) 160 XX=X(I) 1S1 SS = S U ) 182 YCI)=YtJJ) B3 X(Igt=X(JJ) 184 Sill bull S(JJgt 185 Y(JJ)laquoYY I8G XltJJ)raquoXX 187 S(JJ) = SS 188 1raquo11 189 IFIIEONUMPTS)00 TO 30 190 GO TO 20 191 30 CONTINUE 192 C SOLVE FOR MINMAX OF X AND Y 193 XMlNuXtl) 191 XMAX=XC1) 195 YM1N=Y(1) 196 VMAX=Yltgt 197 00 2 1 bull= 1 NUMPTS 19B IFIXII)LTMINJXMINraquoX(I ) 199 IFIXd gtGTXMAX)XMAXraquoXC1gt 200 IF(Y(IILTYH1N)YMINYU) 201 IFltY(l)OTYMAX)YMAX=YltIgt 202 2 CONTINUE 203 C RESET THE END POINTS 204 CALL ENDPTSIXMINXMAX) 20B CALL ENDPTS(YMINYMAX) 206 C CALCULATE DELX AND DELY 207 DELXMXMAX-XMINV1000 208 DELY=(YKAX-YMINgt500 209 C GENERATE THE PLOT 210 KK=ABS(XMIN) 0ELX1 0 211 IZEROO 212 I F ( ( X M I N L E O O ) A N D C X M A X G E 0 0 ) gt I Z E R 0 = 1 213 IC0UNT=10 214 L1ST=1 215 00 100 1=1 51 2 1 6 XI=I 217 YZ2=YMAX-XIraquoDELY 218 V lti =YZ2raquo0ELY 219 IAA=0 220 IF ICYZ1 G E O 0 ) A N D lt Y Z 2 L E O O gt gt I A A = l 221 00 101 J 1 1 0 1 222 101 POINTSCJgt=lH 223 lF( ICOUMTNE10gteO TO 105 224 DO 106 1 = 1 1 0 1 2 225 106 P O I N T S ( J ) deg l H 226 lOt CONTINUE 227 POINTS( 1 )raquo1H 228 POINTS 21)=IH pound29 POINTSI 411=1H 230 OINTS( 61gt1H 231 gt01NTSI B1)gt1H 232 P O I N T S 1 0 1 ) laquo I H 233 1FCIZEROE01IPOIMTS(KKgt=1H1 234 IFIIAANEIIGO TO 137 235 DO 136 J1101 236 136 POINTSIJIOH-237 137 CONTINUE 238 YLOHaYMAX-KUDELV 239 102 CONTINUE 240 IFIL1STGTNUMPTSIG0 TO 110 241 IFtYltLIST)LTYLOW)QO TO 110 242 K=(X(LIST)-XMIN)DELX10 243 POINTS(K) - S(LIST) 244 LIST=LISTraquo1 245 GO TO 102 246 IIO CONTINUE 247 IFCICOUNTEQ10)00 TO 112 248 ICOUNT=ICOUNTraquot 248 WR1TEIN0UT 1 I I XPOINTS(J) J=1 101) 250 111 FORMATIBXI01A1gt 251 GO TO 100 252 112 CONTINUE 253 YY=YL0W8ELY 254 ICOUNT=1 255 IFlt(YYQT-10E-9)ANDIYYLT1OE-9))YY0O 256 WRITEltNOUT1131YY ltPOINTSIJ)Jraquo1101) 257 113 F0RMATI2XE1142X101A1) poundiS 100 CONTINUE

359

239 00 121 I-16 260 XIraquo1-1 2G1 BUT(I)raquoXMINraquo200raquoDELXraquoX1 262 IFlt(BUngtLT10E-9gtAND CBUTCI ) ST -I OE-9) )BUT( I ) 00 263 121 CONTINUE 264 WRITEtNOUT122)I BUT(J)J=16) 268 122 FORMAT10X6IE10310Xgtgt 266 WRITE(NOUT26o4)XNAME 267 2004 FORMATlt61XA10gt 26B WRITECNOUT3000IPNAME((SYMBOLI)PARAM(I gt gt 1 = 1 NPLTS) 269 3000 FORMAT1IXl8ilaquo=laquo)raquo PARAMETER VALUE 270 2 raquo AND SYMBOLIXl8ltlaquoraquoraquogtraquo SYMB raquoAl0IX18Craquo-laquo) 271 3 10( laquoA1raquo) raquoE114)gt 272 WRITEltN0UT6gt 273 999 CONTINUE 274 RETURN 270 END

276 SUBROUTINE ENOPTS(XMINXMAX) 277 C SEE PROGRAM KALMAN FOR THIS ROUTINE 278 END

360

1 PROGRAM MAXTI ME (PF1LETAPE2=PFILEMOUTTAPE3=M0UTgt 2 CALL CHANGE lt5HMAXT) 3 CALL CREATE I4HMOIJT 1 OOOO SWT) 4 N1N = 2 5 NOUT = 3 6 ND = io 7 DIMENSION A(1010P(1010)CAPVI1010)WKPllt1010)WSSC1010) B 2 CAPWdO 10)CAPNO(1010)1TlME(110)TRPltll6)PPI10 10) 9 3 ZSTC102 10gtTITLES(48gt 10 READNlN)NMLLNTLTOTlLIMIT 11 READltNIN)(ltAI1JgtJ=1Ngt=1Ngt 12 REA0ltNIN)lt(WKP1(IJ)J=1N)1=1Ngt 13 READCNINXCWSSCl J) J=1 N)1=1N) 14 READININUCCAPWCI J) J=1LLgt =1LLgt 15 READCN1N)(CCAPVClJ)J=lM)i=lM) 16 lF(NTLGTO) PEADCNIN)((IITLESCIJ)J =18)I=1NTL) 17 REAOCN1N)NOPTERRLIMDT IB READ(NIN)C(CAPM0CIJgtJ=1N) t = lN) 19 3 CONTINUE 20 READCNIN)NOPTERRLIMiJT 21 I F ( N O P L T O ) GO TO 4 22 READCNINHCPCI J ) J= 1 N ) 1 =1 N) 23 READ(NIN)ltZSTCI2N0P)1=1Mi 24 READCNINKZSTCIlNOP)1=1M) 25 C NOTEOROER OF STORAOE OF OPTIMAL ZK-VF-CTORS IS REVERSED THAT 1 26 C ZKlaquo FOR TRACE INDEX COMES OUT OF KALMAN FIRST BUT 13 STORED 27 C IN ZST(I2NOP) WHEREAS ZK FOR PI 1 INDEX COMES OUT SECOND 28 C AND IS STORED IN ZSTCI1NOP) ALL THIS TO PLOT PUU THEN TRACE I 29 C BUT IS STORED IN ZSTC11NOP) 30 C ALL THIS IN ORDER TO PLOT P11 FIRST THEN TRACE HERE 31 GO TO 3 32 4 CONTINUE 33 DO 50 I 1=12 34 IFI1IEQ1) WR1TECN0UT102) 35 102 F0RMAT(1 CRITERION NUMBER 1 PLOTTED WITH SYMBOL (1) 36 2 MINIMIZE tP(KK+N)]11 WITH RESPECT TO Z(K)laquo 37 3 laquo K T TRPgt 38 IFUIEQ2) WR1TECN0UT103) 39 103 FORMATlaquo CRITERION NUMBER 2 PLOTTED WITH SYMBOL 12) 40 2 MINIMIZE TRACECPCKKNgt] WITH RESPECT TO Z(K) 41 3 laquo K T TRP) 42 NOP = 0 43 CALL ATOB(CAPMOPNNNDgt 44 CALL ATOBCCAPMOPPN NND) 45 T = TO 46 K = 1 47 20 CONTINUE 48 TEST = TR(PPN) 49 IF(TESTGEERRLIM) GO TO 28 50 TIME(K) = T 51 Tnp(K) = TEST 52 WrtlTECNOUT101gtKTTEST 53 101 FORMATCII02E103) 54 IF(TGTTI) GO TO 45 55 1FCKE0110) GO TO 45 56 T = T bull DT 57 K = K + 1 56 CALL ATOB ltPPPNNND) 53 CALL PREDICT (ApWKPlPPN ND) 60 GO TO 20 61 26 CONTINUE 62 IFCKOT1) T = T - OT 63 NOP = NOP bull 1 64 CALL CORRECTCZSTUUNOP)PCAPVPP S1NGNMNDgt 65 GO TO 20 66 45 CONTINUE 67 XI I = 1 I 68 CALL MULTPLT (TIMETRPI IK10HT1ME TKN 1OHTRPIKKraquoN) 89 2 10H CRITERIONXiiTITLESNTLNOUT) 70 50 CONTINUE 71 11 = -1 72 CALL MULTPLT [TIMETRP I IK 1OHTIME TKN 1UHTRPCKKN) 73 2 1PH CRITERION XIITITLESNTL NOUT) 74 CALL EXIT 75 END 7C SUBROUTINE PREDICT (APWPPNND) 77 DIMENSION AC 1010)PC 10 16)WC1010)PPlt1010) 78 C PERFORMS THE ONE-STEP PREDICTION 79 C PP = ltAPA-TRANSPOSE) bull W 80 C WHERE A IS A DIAGONAL STATE TRANSITION MATRIX 81 DO 2 I = 1 N 82 00 1 JMN 83 1 FPUJ) = ACI I H f l l J I U I J J) bull W(I J) 84 2 CONTINUE 85 RETURN 86 END

361

SUBROUTINpound CORREOT(ZPCAPVPPI SI NONHND) DIMENSION P(10 10)Clt1010)CAPV(1010)PS1I(1010)PP( 1 0 10) DIMENSION Z(1)W1(1010)W2[1010)W3(1010) PI = 3 14159266 DO 12 I=1M DO 11 J-1N 0(1 J) - COSKJ-1 )PIraquoZ(Igtgt CONTINUE [CraquoP(K-K)CT]INVERSE 97 DO pound IC=I^N 96 Wl(IAIC) = 0 99 U 1 |D1K 100 1 WK1AIC) = MKIAIC) bull C(I A 1D)laquoPlt1DICgt 101 2 CONTINUE I OS DO 4 1 B= 1 M 103 WZMAIB) = CAPVdA IB) 104 DO 3 IE-1N 105 3 W2(IABgt - W2IIAIB) Wl ( I A E)raquoClt IB IE) 106 4 CONTINUE 107 5 CONTINUE 108 CALL INVERSE (MW2PSI1IERR) 109 IF(IERRLTO) 00 TO 991 110 C COMPUTE FULL ltP(ZK)(KKJ) MATRIX 111 DO 10 IA=1N 112 DO 7 10=1M 113 W3(IACgt = 0 114 DO 6 10=1M 115 6 W3(IAIC) = W3(]A[Cgt bull Wl(IDI A)laquoPSI1(ID IC) 115 7 CONTINUE 117 00 9 IB=1N 1 IB W2(IAIB) = P(IAIB) 119 DO ( IEgt1n 120 euro U2IIAIB) = W2(AIB) - W3ltI A IE)W)(1EIB) 121 PPUAIB) = U2UAIB) 122 S CONTINUE 123 10 CONTINUE 124 ISINS = 0 125 99 RETURN 126 991 I31Ne = 3 127 RETURN 126 END

129 SUBROUTINE ATOB (ABNMND) 130 C SEE PROGRAM KALMAN FOR THIS ROUTINE 131 ENO

132 FUNCTION TR(AN) 133 C SEE PROGRAM KALMAN FOR THIS ROUTINE 134 END

135 SUBROUTINE INVERSE (NNAAINV I ERROR) 136 C SEE PROGRAM KLMAN FOR THIS ROUTINE 137 END

I3S 139 C 140 END

141 SUBROUTINE SOLVE (NNULB X I PS ND) 142 C SEE PROGRAM KALMAN FOR THIS ROUTINE 143 END

141 145 C 146 END

147 SUBROUTINE MULTPLT (XNY[NNNPTSXNAMEYNAMEPNAMEPVALUE 148 2 TITLESNTLNOUT) 149 C SEE PROGRAM S1GMAT FOR THIS ROUTINE 150 END

151 SUBROUTINE PARAPLT(XYNPLTSNUMPTSNEACHXNAMEYNAMEPNAMEPARAM 152 2 TITLESNTLNOUT) 153 0 SEE PROGRAM SIGMAT FOR THIS ROUTINE 154 END 155 SUBROUTINE ENDPTS(XMINXMAX) 156 C SEE PROGRAM KALMAN FOR THIS ROUTINE 157 END

362

1 PROORAM POSTPLT ltTFILETAPE2=TFILEPPOUTTAPE3=PP0UTgt 2 CALL CHANGE C3HPPgt 3 CALL CREATE (5HPP0UT10000SWT) A N I N = 2 B NOUT o 3 6 DIMENSION YNAMEC2)PNAMEC2) 7 DATA YNAME 1OHTRtPKK+N]10HSIG(KKNgt e DATA PNAME IOHTRACELIM IOHSIGMALIM 0 DIMENSION T1MElt110gtXTC110)TITLES(48) la II raquo 1 1 CONTINUE READlt NIN)NMLLNTLTO T1 LI Ml T ERRLIM IF(NLTO) 00 TO 50 1FCNTLGT0)READ(NIN)(CTITLESlt1 JgtJ=18gt 1=1 NTL) READltNIN)NPTS 6 READltNINMTIME(1) I=1 NPTSgt 7 READININHXTCI gt U 1 N P T S gt S WRITEltN0UT101)YNAME(LIM1T) IIPNAMECLI MlT)ERRLIMYNAMEtLIMIT) - 101 F0RMATO1raquo PLOT OF raquoAIOlaquo VERSUS TIME PL0TTE6 WITH SYMBOL 2 laquo ESTIMATION ERROR LIMIT laquoA10laquo = laquoE103 3 laquo TIMEraquoA10gt 00 2 1=1NPTS 2 WRITECN0UT102)TIMElt1)XT(Igt 102 F0RMAT(2E103gt

CALL MULTPLT T IME XT I I NPTS lOHTlMiT TK+N 2 YNAMEltLIMlT) PNAMEltLiMIT) ERRHMTlTLSSNTLNOUT

1 1 = 1 1 + 1 GO TO 1

50 11 = - 1 CALL MULTPLT (TIMEXTI INPTS 1CHTIME TKN 2 YNAMEILIMT)PNAME(LIMIT)ERRLIM TITLESNTLNOUT) CALL EXIT END

SUBROUTlNE PARAPLTtXYNPLTSNUMPTSNEACHXNAMEYMAMEPNAMEPARAM iEE PROGRAM SIGMAT FOR THIS ROUTINE END

40 SUBROUTINE ENDPTS(XMINXMAX) 41 C SEE PROGRAM KALMAN FOR THIS ROUTINE 42 END

363

i PROGRAM POSTFP [PFILETAPE2=PF1LEFPCUTTAPE3=FP0UTgt 2 CALL CHANGE C3HraquoFP) 3 CALL CREATE C5HFPOUT1OOO0SWT) 4 DIMENSION 2(10)X(I 10)FXlt10) 5 COMMON PROB NMZMAXAPCAPVWKPIWSSISINO 6 DIMENSION Alt1010)Plt1010)CAPVC10lO)bKP1ClO10)WS3lt1010) 7 DIMENSION CAFWi1010) 8 DIMENSION TITLESI4agt 9 NIN = 2 10 NOUT = 3 I I NTTY = 59 12 YNAME = 10HCPCKKgt311 13 PNAME = 10HDIMENS NS 14 DZ = 001 15 ZMAX =10 16 1 WRITECNVTY1001) 17 1001 F8RMATlraquotZ(Kgt32=raquogt 18 READCNTTY002)Z(2) 19 1002 FORMATCE103) 20 IF(Z(2)LTO) GO TO 99 21 REWIND NIN 22 1 1 = 1 23 3000 CONTINUE 24 READltNINgtNMLLNTLT0T1LIMIT 2 5 I F ( N L T O ) GO TO 5 0 26 R E A D lt N I N ) lt C A lt I J gt J = l N ) 1 = 1 N 27 R E A 0 C N I N ) C I W K P I C 1 J gt J = 1 N ) l = l Ngt 28 READCNINHIWSSCI J ) J = 1 N gt l = 1 N gt 29 R E A D ( N I N gt ( I C A P W ( l j S J = 1 L L gt l = l L L ) 30 R E A D ( N I N ) ( ( C A P V ( I J ) J = 1 M ) 1 = I M ) 31 I F C N T L 0 T 0 ) R E A 0 lt N 1 N H I T 1 T L E S lt I J ) J raquo 1 8 ) 1=1NTL) 32 READ(NINgtNOPTERRLIMDT 33 READCNINMCP(IJ)J = IN)I=1Ngt 34 DO 5 1=1101 35 Z(1) = (I-1)DZ 3S X(l) = Zltgt 37 CALL FVALCZFXI1)) 38 5 CONTINUE 39 WRITElt NOUT101)Zlt 2)NN 40 101 F0RMATCraquo1laquolaquo PLOT OF [P(KK)]11 FOR CZ(K)]2 = laquoE103 41 2 raquo VERSUS I-0S1710N [ZtK)]l FOR MODEL DIMENSION NS = laquoI2 42 3 raquo PLOTTED WITH SYMBOL (laquo11raquo)raquo 43 4 raquoCZ(K)1 [l=CKKn1laquo) 44 CALL MULTPLT ltXFX I I1011OHtZCK)J 1 45 2 YNAMEPNAMEZC2)TITLESNTLNOUT) 46 II = II bull 1 47 GO TO 3000 48 50 CONTINUE 49 CALL MULTPLT (XFXI II 0110HCZIK)11 50 2 YNAMEPNAMEZC2)TITLESNTLN0UT1 51 30 TO I 52 99 CALL EXIT 53 END

54 SUBROUTINE MULTP-T ltXIN YIN NNPTSXNAME YNAME PNAME PVALUE 55 2 TITLESNTLNOUT) 56 C SEE PROGRAM S1GMAT FOR THIS ROUTINE 57 END 58 SUBROUTINE PARAPLTCXYNPLTS NUMPTS NEACHXNAMEYNAMEPNAMEPARAM 59 C SEE PROGRAM SIGMAT FOR THIS ROUTINE SO END

61 SUBROUTINE ENDPTSCXMINXMAXgt 62 C SEE PROGRAM KALMAN FOR THIS ROUTINE 63 END

64 SUBROUTINE FVAL CZPll 65 C SEE PROGRAM KALMAN FOR THIS ROUTINE 66 END

70 SUBROUTINE DECOMP ltNNAULSCALES I PSI ERRORND) 71 C SEE PROGRAM KALMAN FOR THIS ROUTINE 72 END

73 SUBROUTINE SOLVE CNN ULBXI PSND) 74 C SEE PROGRAM KALMAN FOR THIS ROUTINE 75 END 76 SUBROUTINE IMPRUV ltNNAULBXRDXIPSDIOlTSIERRORNO) 77 C SEE PROGRAM KALMAN FOR THIS ROUTINE 78 END

364

1 PROGRAM POSTSP CPFILETAPE2=PFILESPOUTTAPE3=SPOUT) 2 CALL CHANGL lt3HSP) 3 CALL CREATE (5HSP0UT1O00O SWT) 4 DIMENSION ZltI 0)XIIIOJFX(I 10)PBUMC10101XOUMlt10) 5 COMMON PROB NMZMAXAPCAPVWKP1WSSISINO 6 DlMEMS IOPI A(10 lOJPI 1010gtCAPV(10 101WKPI(10101WSSlt1010) 7 DIMENSION CAPW11010) 8 DIMENSION TITLES(4 1S) S N1N = 2 10 NOUT = 3 11 yNAME = 10HSIGMA2(Z) 12 PNAME = 10HDIMENS NS 13 DZ = 001 1A ZMAX = 1 0 IS 1 CONTINUE IS REWIND NIN 17 1 1 = 1 1laquo 3000 CONTINUE 19 HEAD C Nl M) N M LL NTL TO Tl LI Ml T 20 IF(NLTO) copy6 TO 50 21 READININX ltAdJ)J=1N)l = lNgt 22 REA0(NIN)((WK|1U J I J= I N) U l Ngt 23 READ(NIN)((WSS(I J) J=I N) l= l N) 24 READltMNH(CAPWI1J)J=1LLI U I L L ) 25 READINlNHICAPVdJ)J=1 M)1=1Ml 2S IFfNTLGTOlREAOCNINldTlTLESd J ) J=1Bgt 1 = 1NTL) 27 REAtXNINlNOPTERRLlMDT 28 HEAOCNlNldPDUMd J) J=IN) l = lN) 29 RLADIN1NgtN0PT (ERRLIMDT 30 READ(NINMltPdJ)J=1Ngt I = 1N) 31 READltNIN)(XOUM(I)1=1M) 32 READ(NIN) (XDUMd) 1 = 1M) 33 3 CONTINUE 34 READCNIN)NOPTERRLIMOT 35 IF(NOPLTO) 00 TO 4 36 READ(NINI((PDUMdJ)J=1N)I=1N) 37 READiNINKXDUMdgtl=1Mgt 38 READININMXDUMd ) 1 = 1M) 39 GOTO 3 40 4 CONTINUE 41 DO 5 1=1101 42 I d ) = lt1-1gtraquoD2 43 laquo(ll = Zll) 44 FXd) = SISMAIZd )) 45 5 CONTINUE 46 CALL MULTPLT (XFX I 1101lOHIZ(K)11 47 2 YNAMEPNAMEZlt2gtTITLES NTL NOUT) 48 II = I I + 1 49 00 TO 3000 50 50 CONTINUE 51 WRITEINOUT10IINN 52 101 FORMATraquo1- PLOT OF SI0MAgtraquo2(Z)gt 53 2 VERSUS POSITION Z FOR MODEL DIMENSION NS = laquoI2 51 3 = PLOTTED WITH SYMBOL ltlllaquogtraquogt 55 II = -1 56 CALL MULTPLT (XFX I 1 101lOHCZ(K)31 57 2 YNAMEPNAMEZlt2)TITLESNTLNOUT) 58 CALL EMPTY(NOUT) 59 99 CALL EXIT 60 END 61 FUNCTION SIGMAC2) 62 C SEE PROGRAM SIGMAT FOR THIS ROUTINE 63 END

SUBROUTINE MULTPLT (XINYINNNPTSXNAMEYNAMEPNAMEPVALUE SEE PROGRAM SIGMAT FOR THIS ROUTINE END SUBROUTINE PARAPLTIXYNPLTSNUMPTSNEACHXNAMEYNAMEPNAMEPARAM 2 TITLESNTLNOUT) SEE PROGRAM SIGMAT FOR THIS ROUTINE END

SUBROUTINE ENDPTSIXMINXMAX) SEE PROGRAM KALMAN FOR THIS ROUTINE END

365

REFERENCES

1 Abadie 0 Ed Integer ana Nonlinear Programrning Application of the GRG Algorithm to Optimal Control ProblemsNorth-Holland 1970 pp 191-211

2 Abadie j gt t poundd integer and Nonlinear Prograirming Numerical Exshyperiments with the GRG Method North-Holland 1970 pp 529-536

3 Aoki M Optimization of Stochastic Systems Academic Press 1970

4 Aoki M and J R Huddle Estimation of the State Vector of a Linear Stochastic System with a Constrained Estimator IEEE Trans on Automatic Control Vol AC-12 No 4 1967 pp 432-433

5 Aoki M and M T L i Optimal Discrete-Time Control System with Cast for Observation IEEE Trans on Automatic Control Vol AC-14 No 2 1969 pp 165-175

5 Aoki M and H Toda Parameter Adaptive Resource Al location Problem for a Decentralized Dynamic System IEEE Trans on Automatic Control Vol AC-20 No 2 1975 pp 192-200

6 Arnold L Stochastic Di f ferent ia l Equations Theory and Appl i -cations Wiley 1974

7 Athanc H On the Determination of Optimal Costly Measurement Strategies for Linear Stochastic Systems Automatica Pergamon Press Vol 8 1972 pp 397-412

8 Athans M The Matrix Minimum Pr inc ip le Information a nd Control Vol 11 1968 pp 592-606

9 Athans Ht et aU Suboptima) state Estimation for Continuous-Time Nonlinear Systems from Discrete Noisy Measurements Proc of the 1968 Joint Automatic Control Conference pp 364-377

10 Athans M and P L Falb Optimal Control Mc Graw-Hill 1966 11 Athans M and F C Schweppe Gradient Matrices and Matrix Calcushy

lations Massachusetts Institute of Technology Lincoln Laborashytory Technical Note 1965

366

12 Athans M and F C Schweppe Optimal Waveform Design via Control Theoretic Concepts Information and Control Vol 10 1967 pp 335-377

13 Atre S R and S S Lamba Optimal Estimation in Distribute Processes Using the Innovations Approach IEEE Trans on Automatic Control Vol 17 No 5 1972 pp 710-712

14 Ballinger D G Instruments for Water Quality Conitoring Environmental Science and Technology Vol 6 No 2 1972 pp 130-133

15 Bar-Shalom Y A Cohen and R E Larson Modeling and Optimizashyt ion of an Effluent Pollution Surveillance System Proc of the IEEE Conference on Decision and Control 1974

16 Bar-Shalom Y et al Application of Stochastic Control Theory to Resource Allocation Under Uncertainty IEEE Trans on Automatic Control Vol AC-19 No 1 1974 pp 1-7

17 Bensoussan A Optimization of Sensors Location in a Distributed F i l te r ing Problem Proc of the International Symposium on the S tab i l i t y of Stochastic Dynamical Systems Coventry England 1972 pp 62-84

18 Berg P H and J L McGregor Elementary Partial Di f ferent ia l Equations Preliminary Edition Hoi den-Day 1964

19 Berkovec J W A Method for the Validation of Kalman Filter Models Proc of the 1969 Joint Automatic Control Conference pp 488-493

20 Beveridge G S G and R S Schecter Optimization Theory and Practice McGraw-Hill 1970

21 Breazeale G Jand L E Jones Digital Adaptive Sampling Proc of the 1971 IEEE Conference on Decision and Control pp 381-382

22 Brewer J W Control Systems Analysis Design and Simulation Prentice-Hall 1974

23 Brewer J W and H Hubbard Mathematical Optimization ot the Monitoring and of the Surveillance o Fickian Diffusion (Research Proposal private communication) 1974

367

24 Brewer J W and S F Moore Monitoring An Environmental State Estimation Problem ASME J of Dynamic Systems Measurement and Control 1974 pp 363-365

25 Byrne G D and A C Hindmarsh A Polyalgorithm for the Numerishycal Solution of Ordinary Differential Equations Univ of California Lawrence Livermore Laboratory Report UCRL-75652 974 ( to appear i n ACJA Trans Hath SofolaquoareU

26 Bryson A E Jr and V-C Ho Applied Optimal Contrcl B la isde l l

1969

27 Cooper C- A and N E Nahi An Optimal Stochastic Control Probshylem with Observation Cost Proc of the 1970 Joint Automatic Control Coherence pp 723-728

28 Coppel W- A Stability and Asymptotic Behavior of Dfferential Equations Heath 1965

29 DAppolito J A A Simple Algorithm for Discretizing Linear Stationary Continuous Systems Proc of the IEEE Vol 54 No 12 1966 pp 20102011

30 Denham U F and J L Speyer Optimal Measurement and Velocity Correction Programs for Midcourse Guidance AIAA Journal Vol 2 1964

31 Ueslau A A L A Gould and F C Schweppe Dynamic Estimation of Air Pollution IEEE Trans on Automatic Control Vol AC-19 No 6 1974 pp T04-910

32 Desoer C- A Notes for a Second Course on inear Systems Van Nostrand Reinhold 1970

33 Draper N R and W G Hunter Design and Experiments for Parameshyter Estimation in Multiresponse Situations Biometrikg Vol 53 No 3 and 4 pp 525-533

34 Duff G F and D Naylor Differential Equations of Applied Matheshymatics Wiley 1966

35 Dwyer H A and T J Petersen Tine-Dependent Global Energy Modeling J of Applied Meteraquoroloqy Vol 12 No 1 1973

368

36 Epes A G A Distributed Parameter Model of Mans Impact on the Radiation Properties of the Global Environment MS Thesis Department of Mechanical Engineering Univ of Caifomia Davis 1972

37 Fleming W H Functions of Several Variables Addison-Wesley 1965

38 Forsythe 3 E and C B Moler Computer Solution of Linear Algeshybraic Systems Prentice-Hall 1967

39 Fcss A S Department of Chemical Engineering Univ of Cal i forshynia Berkeley (private communication)

40 Frbberg C E Introduction to numerical Analysis Addison-Wesley

1969

41 Freeman H Discrete-Time Systems Wiley 1965

42 Fr i tsch F H Univ of Cal i fornia Lawrence Livermore Laboratory (private communication)

43 Gear C W Numerical I n i t i a l Value Problems in Ordinary Dif ferenshyt i a l Equations P r e n t i w H a l l 1971

W Gelb A Ed Applied Optimal Estimation MIT Press 1974

45 ijndbole S S Kalman F i l te r ing with No A Priori Information About Noise - White Noise Case Ident i f ica t ion of Covariances IEEE Trans on Automatic Control Vol AC-19 No 5 1974 pp 561-563

46 Goldberg E i (Convenor) Marine Pol lut ion Monitoring Strategies for a National Program U S Department of Commerce (NOAA) 1972

47 Goudreau G L Evaluation of Discrete Methods for the Linear Dynamic Response of Elastic and Viscoelatic Solids PhD Dissertation Department of Civil Eng1ni-raquoring Univ of Calishyfornia Berkeley 1970

48 Gura I A An Algebraic Solution of the State Estimation Problem AIAA Journal Vol 7 No 7 196S pp 124Z-1247

369

49 Gura I A Extension of Linear Estimation Techniques to Nonlinear Problems J of the Astronautical Science^ Vol XV No 4 1968 pp 194-205

50 Uura I A and A B Bierman On Computational Efficiency of Linear F i l ter ing Algorithms Automatica Pergamon Press Vol 7 1971 pp 299-314

51 Gura I A and R H Gerstein Interpretat ion of n-Dimensional Covariance Matrices AIAA Journal Vol 9 No 4 1971 pp 740-742

52 Gura 1 A and L J Hendrikson A Unified Approach to Nonlinear Estimation J of the Astronautical Sciences Vol XVI No 2 1968 pp 58-78

53 Hausman R F J r Function Optimization on a Line Segment by Golden Section Univ of Cali fornia Lawrence Livermore Laborashytory Report UCIO-30002 1971

54 Hausman R F J r Univ of C l i f o rn ia Lawrence Livermore Laborashytory (private communication)

55 Herring K D and J L Helsa Optimum Measurements for Int imat ion IEEE Trans on Automatic Control Vol AC-19 No 3 1974 pp 264-266

56 Hersh R R The Effects of Noise on Measurements Made in a Disshytr ibuted Parameter System MS Theris Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1972

57 Hindmarsh A C GEAR Ordinary Di f ferent ia l Equation System Solver Univ of Cali fornia Lawrence Livermore Laboratory Report UCID-30001 Rev 3 1974

58 Hindmarsh A C Linear Multistep Methods for Ordinary Di f ferent ia l Equations Method Formulations S tab i l i t y and the Methods of Nordsieck and Gear Univ of Cali fornia Lawrence Livermore Laboratory Report UCRL-51186 1972

59 Hisiger R S An Investigation into a Measurement Uncertainty Principle for a Distributed Parameter System Driven by Noise MS Thesis Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1971

370

60 Hsia T C On a Unified Approach to Adaptive Sampling System Design Proc ot the 1972 IEEE Conference on Decision and Conshyt r o l PP- 618-622

61 IBM System360 Scient i f ic Subroutine Package Programmers Manual Version I I I Fourth Edit ion International Business Machines Corporation White Plains New York 1968

62 IEEE Special Issue on Linear-Quadratic-Gaussian Problem IEEE Trans on Automatic Control Vol AC-16 No 6 1971

63 Inglehart S C and C T Leondes On the Computational Advanshytages of Stagewise-Optimal Observers IEEE Trans on Automatic Control Vol AC-19 No 2 1974 pp 147-149

64 Jazwinski A H Adaptive F i l t e r i ng Automatica Pergammon Press Vol 5 1969 pp 475-485

65 Oazwinski A H Stochastic Processes and F i l ter ing Theory Academic Press 1970

66 Kaiman R E A New Approach to Linear F i l ter ing and Prediction Problems Trans of the ASHE J o r Basic Engineering Series D Vol 82 1960 pp 35-45

67 Kaiman R E and R S Bucy New Results in Linear F i l te r ing and Prediction Theory Trans of the ASHE J of Basic Engishyneering Series D Vol 83 1961 pp 95-108

68 Karnopp D C Random Search Techniques for Optimization Problems Automatica Pergamon Press Vol 1 1963 pp 111-121

69 Karnopp 0 and R C Rosenberg Analysis and Simulation of Mul t i -por Systems MIT Press 1968

gt0 Karreiran H F Ed Stochastic Optimizaton and Control In t roshyduction to Stochastic Optimization and Control by S E Dreyfus Wiley 1968 pp 3-23

71 Knuth D E The Art of Computer Programming Volume 2Seminumerishycal Algorithms Addison-Wesley 1969 pp 103-108

377

72 Kokotovif P V and W R Perkins (Convenors) Singular Perturbashytions Order Reduction in Control System Design Proc of a Special Symposium at the 1972 Joint Automatic Control Confershyence (published by the ASHE)

73 Kramer L C and M Athans On Simultaneous Choice of Dynamic Conshytrol and Measurement Strategies for Stochastic Systems Proc of the 1972 Joint Automatic Control Conference pp 176-181

74 Kramer L C and M Athans On the Application of Deterministic Optimization Methods to Stochastic Control Problems IEEE Trans on Automatic Control Vol AC-9 No 1 1974 pp 22-30

75 Kushner H J On the Optimum Timing of Observations for Linear Control Systems with Unknown Initial State1 IEEE Trans on Automatic Control Vol AC-9 No 2 1964 pp 144-150

76 Lange R University of California Lawrence Livermore Laboratory (private communication)

77 Leondes C T and L M Nov-ik Reduced-Order Observers for Linear Discrete-Time Systems IEEE Trans on Automatic Control Vol AC-li No 1 1974 pp 42-46

78 Leondes C T Ed Advances in Control Systems Kalman Filtering Techniques by H W Sorensen Academic Press 1966 pp 219-292

79 Loscutoff W Modal Analysis and Synthesis of Linear Lumper1 -Parameter Systems PhD Dissertation Dept of Mechanical Engineering Univ of California Berkeley 1968

80 Mac Cracken M C ei at Annual Report Department of TransporshytationCI matlc Impact Assessment Program Univ of Califorshynia Lawrence Livermore Laboratory Reports UCRL-51336 UCRL-51336-74 m d UCRL-51336-75

81 Mac Cracken M C at at Initial Application of a Multi-Box Air Pollution Model to the San Francisco Bay Area Pro of the 1972 Joint Automatic Control Conference pp 694-700

372

82 Mac Robert T M Spherical Harmonics Pergamon Press 1967 83 He Cracken D D FORTRAN with Engineering Applications Wiley

1967

84 Mc Cue H K Jr Stabilization of Distant and Local Power System Disturbances by Optimized Field Control PhD Dissertation Dept of Electrical Engineering and Computer Sciences Univ of California Berkeley 1975 (and private communication)

85 Heditch J Stochastic Optimal linear Estimation and Control McGi-aw-HllT 1969

86 Mehra R K Approaches to Adaptive Filtering IEEE Trans on Automatic Control Vol AC-17 No 5 1972 pp 693-698

87 Hehra R K Maximum Likelihood Identification of Aircraft Pashyrameters Proc of the 1970 Joint Automatic Control Confershyence pp 442-444

88 Hehra R K On the Identification of Variances and Adaptive Kalman Filtering Proc of the 1969 Joint Automatic Control Conference pp 494-505

89 Mehra R K On-Line Identification of Linear Dynamic Systems with Applications to Kalman Filtering Proc of the 1970 Joint Automatic Control Conference pp 373-382

90 Meier L Combined Optimal Control and Estimation Proc of the Third Allerton Conference on Circuit and System Theory 1965 pp 109-120

91 Meier L Ill et at Dynamic Programming for Stochastic Control of Discrete Systems IEEE Trans on Automatic Control Vol AC-16 No 6 1971 pp 767-775

92 Meier L Ill et al Optimal Control of Measurement Subsystems IEEE Trans on Automatic Control Vol AC-12 No 5 1967 pp 528-536

93 Heirovitch L Analytical Methods in Vibration MacMillan 1967

373

94 Michelsen M L H B Vak i l and A S Foss State-Space Formushylat ion of Fixed-Bed Reactor Dynamics Industr ial and Engineershy s Chemistry Fundamentals Vol 12 No 3 1973 pp 323-328

95 Moore S F The Application of Linear F i l t e r Theory to the Deshysign and Improvement of Measurement Systems for Aquatic Enshyvironments PhD Dissertation Dept of Civ i l Engineering Univ of Cal i forn ia Davis 1972

96 Murray-Uasso M A The Modal Analysis and Synthesis of Linear Distributed Control Systems PhD Dissertat ion Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1905

97 Nahi N E and I M Weiss Bounding F i l te rs in the Presence of Inexactly Known Parameters Proc of the 1971 IEEE Conference on_Decision and Control pp 154-159

98 NATO jYOC of the AGARD Conference No 68 1970

99 Petersen T 0 A Numerical Study of the Planetary Boundary Layer with an Analysis of Parameter Sens i t iv i ty PhD Dissertat ion Dept of Mechanical Engineering Univ of Cal i forn ia Davis 1975

100 Pl iska S R Optimal Observations for Minimum Variance F i l t e r i ng IEEE Trans on Automatic Control Vol AC-19 No 1 1974 pp 79-80

101 Prado G ObservabilityEstimation and Control of Distributed Parameter Systems PhD Dissertation Dept of Electr ical Engineering Massachusetts Inst i tu te of Technology 1971

102 Preston A and P C Wood Monitoring the Marine Environment Proc of the Royal Society of London B 177 1971 pp 451-462

103 Radcl i f fe C W and W J Comfort Constrained Minimization of a Function of Many Variable Univ of California Lawrence Livermore Laboratory Report UCRL-51577 1974

104 Relquam H A Method for Optimizing Pollutant Emissions -in an Airshed Atmospheric Environment Pergamon Press Vol 5 1971 pp 57-64

374

105 Sage A P Optimum Systems Control Prentice-Hall 1968 106 Sano A and M Terao Measurement Optimization in Optimal Process

Control Automatica Pergamon Press Vol 5 1970 pp 705-714

107 Sauer G J and J L Melsa Stochastic Control with Continuously Variable Observation Costs for a Class of Discrete Nonlinear Systems IEEE Trans on Automatic Control Vol AC-19 No 3 1974 pp 234-239

108 Scharf L L and 0 L Alspach On Stochastic Approximation and an Adaptive Kalman Filter Proc of the 1972 IEEE Conference on Decision and Control pp 253-257

109 Schulz D G and J L Melsa State Functions atid Linear Control Systems Mc Graw-Hill 1967

110 Schweppe F C Radar Frequency Modulations for Accelerating Targets Under a Bandwidth Constraint IEEE Trans on Military Electronics Vol MIL-9 No 1 1965 pp 25-32

111 Schweppe F C and D L Gray Radar Signal Design Subject to Simultaneous Peak and Average Power Constraints IEEE Trans on Information Theory Vol 12 No 1 1966 pp 13-26

12 Seinfeld J H A Textbook on Environmental Monitoring (to be published Circa 1975)

113 Seinfeld J H Optimal Location of Pollutant Monitoring Stations in an Air Shed Atmospheric Environment Pergamon Press Vol 6 1972 pp 847-858

114 Seirfeld J H and W H Chen Estimation of Parameters in Partial Differential Equations from Noisy Experimental Data Chemical Engineering Science Pergamon Press Vol 26 1971 pp 753-766

115 Seinfeld J H and W H Chen Optimal Distribution of Air Pollushytion Sources Atmospheric Environment Pergamon Press Vol 7 1973 pp 87-lt3

116 Seinfeld J H and L Lapidus Computational Aspects of the Optishymal Control of Distributed-Parameter Systems Chemical Engishyneering Science Pergamon Press Vol 23 1968 pp 1461-1483

375

117 Shoemaker H D and G B Lamont Optimal Measurement Control Proc of the IEEE Conference on Information and Control 1971 pp 624-625

118 Sneddon I N Fourier Transforms He Graw-Hil l 1951

119 Soeda T and H Ishihara Application of Kalman F i l te r ing Method and N-Observability Principle to the Prediction of the Atmosshypheric Pollution Levels Tokushima University and Takamatsu Technical College Japan (date unknown)

120 Stone R Univ of California Lawrence Livermore Laboratory (private communication)

121 Takahashi Y M J Rabins and D H Auslander Control and Dyshynamic Systems Addison-Wesley 1970

122 The Analytic Sciences Corp Course Notes mdashA Short Course on Kalman F i l t e r Theory and Application The Analytic Sciences Corporation Reading Mass 1969

123 Timothy L K and B E Bona State Space Analysis An Introducshyt i o n He Graw-Hil l 1968

124 Vak i l H M L Michelsen and A S Foss Fixed-Bed Reactor Conshyt ro l with State Estimation Industrial and Engineering Chemshyis t ry Fundamentals Vol 12 No 3 1973 pp 328-335

125 VandeLinde V D and A Lavi Optimal Observation Policies in Linear Stochastic Systems Proc of the 1968 Joint Automatic Control Conference pp 904-917

126 Wells C H Application of Modern Estimation and Ident i f icat ion Techniques to Chemical Processes American Inst i tu te of Chemshyical Engineers J Vol 17 No 4 1971 pp 966-673

127 Westley G W A Linearly Constrained Nonlinear Programming Algoshyr i thm Oak Ridge National Laboratory Report ORNL-4644 1971

128 Westley G W Oak Ridge National Laboratory Oak Ridge Tenn (private communication)

129 Wilkenson J H Rounding Errors in Algebraic Processes Prentice-Ha l l 1963

376

130 Wlshner R P et at A Comparison of Three Non-Linear F i l t e r s Automatics Pergamon Press Vol 5 1969 pp 487-496

131 Young J W Modal Simpli f ication of a System of B i la tera l ly Coupled Diffusive Elements With Applications to Global Atmospheric Pollutant Transport Problems PhD Dissertat ion Dept of Mechanical Engineering Univ of Cal i forn ia Davis 1974

mr

Page 2: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …

Cy

NOTICE This report was rcpared asan account or work sponsored by the United States Government Neither the United States nor the United States Energy Research laquoV Development Administration nor any of their employees nor any or their contractors subcontractors or their employees makes any warranty express or implied or assumes any legal [lability or responsibility for the accuracy completeness or usefulness of any information apparatus product or process disclosed or represents thst Its use would not infringe privately-owned rights

Printed in the United States of America Available from

National Technical Information Service U S Department of Commerce

I 5285 Port Royal Road Springfield Virginia 22151

P r i c e Printed Copy $ Microfiche $225

Pages 1-50

51-150 151-325 326-500 501-1000

NTIS Selling Pr i ce

bull $400 $545 $760

$1060 $1360

HOTICE

copy t o

- f t

a i l - i gf

LAWRENCE UVEPIORE LABORATORY UnmsityotCaHorr^VmmmCalifarigtW550

UCFSL-51837

TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL MONIYOPING

THE INFREQUENT SAMPLING PROBLEM Kenneth D I lcnetitel

(Ph D T h e s i s )

Ms da te June 1975

then cinplorm miklaquo

tubibi oi iltipraquoiuibiLigt fu urriilnnof inraquo ciai-

prooia disdoird tu rrpiri

TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL MONITORING

THE INFREQUENT SAMPLING PROBLEM

Kenneth D Pimentel University of California Lawrence Livermore Laboratory

Livermore California

ABSTRACT

An environmental monitor is taken to be a system which generates estimates of environmental pollutant levels throughout an emironmental region for all times within a time interval of interest from measureshyment data taken only at discrete times and only at discrete locations in that region This study addresses the following optimal environshyment monitoring problem determine the optimal monitoring program mdash the numbers and types of measurement devices the locations where they are deployed and the timing of those measurements mdashwhich minimizes the total cost of taking measurements while maintaining the error in the pollutant estimate below some bound throughout the time interval of interest

Diffusive pollutant transport in distributed environmental systems is treated with the method of separation of variables to obtain a set of stochastic first-order ordinary differential state equations for the process Techniques of optimal estimation theory are applied to this set of state equations yielding a set of matrix estimation error co-variance equations whjse solutions are used in accuracy measures for the resulting estimates in the synthesis of optimal monitors

ii

The main results are associated with the infrequent sampling probshylem If the estimation error constraints imposeJ upon the monitor are sufficiently lax the solution for the optimal monitoring program results in relatively long times between required measurements This leads to drastic simplifications in the solutions of the problems of optimally designing and sequencing the measurements where only certain terms in the solutions of the estimation equations are found to effect the reshysponse for large time This dominance of certain asymptotic terms is seen as a potential area for future application in more complex environ-bullintal pollutant transport problems

Owing to the ease in their interpretation numerical applications for one-dimensional diffusive systems are included to illustrate the main results though all the results are shown to generalize to the three-dimensional case Considerable use of graphical computer output is made which clearly exhibits the features of the infrequent sampling problem An extensive list of references in areas relevant to the optishymal monitoring problem completes this report

TABLE OF CONTENTS

Page

TITLE PAGE i ABSTRACT ii ACKNOWLEDGMENTS viii DEDICATION xii LIST OF CONCLUSIONS xiii NOMENCLATURE xiv CHAPTER 1 INTRODUCTION 1

CHAPTER BACKGROUND AND PROBLEM STATEMENT 7 21 Background 7 22 Problem Statement 1

CHAPTER 3 NORMAL MODE MODELS FOR DIFFUSIVE SYSTEMS 19 31 Separation of Variables for the Diffusion

Equation 23 32 One-Dimensional Diffusion 25

321 No-Flow Boundary Conditions 26 322 Fixed Boundary Conditions 33

33 Two-Dimensional Diffusion 35 34 Three-Dimensional Diffusion 40

CHAPTER 4 MODEL DISCRETIZATION AND APPLIED OPTIMAL ESTIshyMATION 42

41 Discretization of the System Model 43 4 1 1 The Systen Model Equations 43

412 The System Disturbance Stat is t ics 46 42 Optimal Estimation - The Kalman F i l t e r 47

421 Optimal Estimation 4 7

2 2 Summary of F i l t e r A l go r i t hm SO

CHAPTER 5 OPTIMAL DESIGN AND MANAGEMENT OF MONITORING

SYSTEMS 52

51 Monitoring and the Kalman F i l t e r 5 2

52 One-Dimensional Piffusion with No-Flow Boundary Conditions 5 6

iv

CHAPTER 5 (Continued) 53 The Design Problem for a Bound on the Error

in the State Estimate 57 531 The Infrequent Sampling Problem 57 532 The Effect of a priori Statistics 66 533 Fixed Number of Samplers at Ech

Heasurment and Fixed Error Limit 70 534 Variable Number of Samplers 73 535 Analytical Measurement Optimization 74 536 Numerical Measurement Position Optishy

mization 77 537 Numerical Measurement Quality Optishy

mization 82 54 The Design Problem for a Bound on the Error

in the Output Estimate 84 541 The Minimax Problem 84 542 Determination of the Position of Maxishy

mum Variance in the Output Estimate 94 55 Diffusive Systems Including Scavenging 98

551 The Infrequent Sampling Problem 100 5 6 One-Dimensional Diffusion with Fixed Boundshy

ary Conditions 105 57 Extension to Monitoring Problems in Three

Dimensions Systems with Emission Boundshyary Conditions 112

58 The Managemeit Problem 122 581 Optimality in the Scalar Case 123 582 Extension to the Vector Case mdashArbishy

trary Sampling Program 132 583 Extension to the Vector Case - Infreshy

quent Sampling Program 133 5E4 Suggestion of a Heuristic Proof for

the Vactor Case 136 59 Extension to Systems in Noncartesian Coordishy

nates General Result for the Infrequent Sampling Problem 138

CHAPTER 6 NUMERICAL EXPERIMENTS 142 61 Problems in One-Dimensional Diffusion with No-

Flow Boundary Conditions 143 62 Problems with Bound on State Estimation Error 157

621 Asymptotic Response of State Estishymation Error 157

v

CHAPTER 6 (Continued) 622 Optintality of Measurement Locations 176 623 Comparison of Performance Criteria 176 624 Effect of Instrument Accuracy 178

63 Problems with Bound on Output Estimation Error 180 631 Asymptotic Responses of Output Estishy

mation Error 188 632 The Effect of a priori Statistics 192 633 Problems with a Fixed Number of Samplers

and Constant Error Bound i99 634 The Effect of Level of Estimation Error

Bound upon the Optimal Monitoring Probshylem 209

635 Examples of Various Levels of Bound upon Output Error 210

636 The Effect of Time-Varying Error Bound upon the Optimal Measurement Design 218

637 The Effect of Time-Varyir^ Disturbance and Measurement Statistics upon the Optishymal Monitoring Design and Management Problems 223

638 Variable ruirher of samplers 227 639 Sensitivity o Results for the Infrequent

Sampling Problem to Model Dimensiorslity 231 6310 Problems Including Pollutant Scavenging 249 6311 Problems with Multiple Sources 257

64 Optimality in the Management Problem 265 CHAPTER 7 SUMMARY AND RECOMMENDED EXTENSIONS OF THE MAIN

RESULTS 268 71 Summary 268 72 Recommended Extensions 270

APPENDIX A DISCRETIZATION OF THE STATE EQUATION 276 APPENDIX B DISCRETIZATION OF THE STATE DISTURBANCE

STATISTICS 278 APPENDIX C STATE AND ERROR COVARIANCE PREDICTION WITHOUT

MEASUREMENTS 285

Vi

APPENDIX D ANALYTICAL MEASUREMENT OPTIMIZATION 289 Dl Minimize Estimate Error 289 D2 Minimize Estimation Error and Estimation

Cost 295 D3 Results 237

APPENDIX E NUMERICAL MEASUREMENT QUALITY OPTIMIZATION 299 APPENDIX F DESCRIPTION AND LISTING OF PROGRAM KALMAN 303 APPENDIX G DESCRIPTIONS AND LISTINGS OF POSTPROCESSOR

PROGRAMS 343 Gl Program CONTOUR 345 G2 Program POFT 348 G3 Program PELEM 35^ G4 Program SIGMAT 356 G5 Program MAXTIME 360 G6 Program POSTPLT 362 G7 Program POSTFP 363 G8 Program POSTSP 364

REFERENCES 365

vii

ACKNOWLEDGMENTS

Many people in a variety of situations have contributed to my doctorial program Academicians colleagues fellow employees and supervisors and members of my family To all of these and more go my gratitude and sincerest good feelings

To John Brewer who started it all for me in automatic controls as an undergrad at Davis this stuff sure beats gear design To the Faculty at Berkeley thank you all Yasundo Takahashi tried to teach me what a state vector was just when I thought I had it he added noise and everything got stochastic To Robert Steidel who helped with my Masters and introduced me to that Lab out there in Livermore To Joseph Frisch who got me the job in the Controls ab and the TAship thanks so much To Dan Mote and Bob Donalu^on out there in eigenspacemdash it finally sank in To Charles Desoer and William Kahan for the clarity which came through their rigor

To the Faculty at the Davis Campus which somehow when I got back was no longer the University Farm my gratitude Dean Karnopp cleaned up my head about systems with one causal stroke Walt Loscutoff not only conveniently graduated from Berkeley so I could have his TAship but he also conveniently went to Davis where I could watch him on TV and have him hulp with my orals

To Charles Beadle and Mont Hubbard who helped with the manuscript thank you for your many hours which might have been more amusingly spent I truly appreciate your help

And then full circle back to John Brewer who has been a continual source of fascination inspiration perspiration frustration and

yiii

resuscitation you are a thesis advisor and friend par exoellenae Your patience understanding and nurturing have not all gone for naught Thank you so very much as I look forward to a long continuing potentially mellower relationship

Howard McCue by far deserves the most thanks of all my colleagues He sat through more baloney poked holes in more theories but learned more about computers from me than anybody else And look where it got you Howard sure do love those computers dont you Thanks too tc Larry Carlson Steve Johnson and Frank Melsheimer for making those days at Berkeley what they were And special thanks to Jerry Alcone for findshying it in his heart to graduate so I could have his office you still owe me a handball it the back too Alcone And at Davis thanks to Steva Moore and Jeff Young who sewed the seeds for a lot of what came from this study

Thanks to the many at Lawrence Livermore Laboratory who have seen fit to employ me while finishing my education Wally Decker and Walt Arnold as Department Heads in Mechanical Engineering have supprted me far beyond what I ever expected I sincerely intend to pay back in my career at the Lab Gene Broadman as Division Leader has helped in ways which mark M m as one of the best in my book John Ruminer and Jerry Goudreau were just the kinds of supervisors we needed great ones

And then there was is and ever shall be Gerry Wright He put up with me put me down got put down and got fed up Hope he forgives Howard and I someday for going back for his Masters Sincerely thank you for all your help Ger all of it for its always been considerable

1x

To Chuck Mi l le r Nort Croft Al Cassell and Gail Dennis did you hear

the one about t h i s Portagee who finished school I knew you hadnt

And f i na l l y to Mildred Rundquist She is no secretary no t yp is t

no c le r ica l type She is a typographical ar t is t - -pure and simple The

i s j s and ks are hers The equations are a l l hers Even some of the

figures are hers And with a l l that my respect appreciation and f r iendshy

ship w i l l always be hers Thanks M i l

To the people of th is country through the United States Energy Research

and Development Administration thank you for your support To the people

of the State of California through the University of Cal i fornia and the

Lawrence Livermore Laboratory my gratitude extends Thank you a l l for

making th is research possible

To Dr Justin Simon a special f r iend in a special way thank you

for your encouragement your kicks i n the mdash your understanding and the

lack of i t Yob now and I know how important a l l this was for me to do

You are the best at what you do and I or we may s t i l l r i p o f f your leaded

glass some day

To my parents who thought i t never could be done i t s done Thank

you for everything you gave me

To ray mother- and father- in- law youve always been there and that s

always counted Your encouragement is ever appreciated I know what f i n i sh shy

ing th is means to you and Im proud that Im able to give i t

The approach of the conclusion of my doctoral studies has prompted a

wide variety of responses from those closest to me From my daughter

Jennifer whos almost f i ve I missed you today From my son John

x

whos almost three Daddy don go wurk anymotmdashstay home now

And from my wife Janet who alone knows how old she rea l ly i s I

dont believe i t Thank you Hunny for always being there and yes

i t is done Now whered you want that pool

DEDICATION

for Jyp PhD

LIST OF CONCLUSIONS

Page

Conclusion I 60 II 64 III 64 IIIA 78 IV 69 V 69 VI 71 VIA 71 VIB 218 VIC 224 VID 224 VII 73 VIII 84 IX 90 X 90 XI 92 XII 94 XIII 105 XIV 112 XV 121 XVI 127 XVII 132 XVIII 1 4 1 XIX 247

Conjecture A 137 B 140 C 230

xU

NOMENCLATURE

Symbol Description

A ( t ) A Continuous-time dynamic system matrix

B ( t ) B Continuous-time deterministic input d is t r ibut ion

matrix

C( t ) C Continuous-time measurement matrix

Cbdquo Discrete-time time-varying measurement matrix at

bullbull time t K

cpound The optimal measurement matrix at time t

C(zK) Measurement matrix as a function of the vector z K of measurement positions at time t bdquo

C Generalized modal capacitance D( t ) D Continuous-time stochastic disturbance d i s t r i shy

bution matrix

pound bull bull Unit matrix with ( i j ) t h element equal to one

~ J and a l l other elements zero

F Pollutant mixing ra t io

G K + Kalman gain matrix at time t R +

I Ident i ty matrix

J Performance cr i te r ion

J(t) First monitor performance criterion estimation error in optimal state estimate at time t

Jbdquo(ct) Second monitor performance criterion value of pollutant concentration estimation error at that point c in the medium where it is a maximum at time t~

K Diffusion coef f ic ient discrete-time index f ina l

value of a discrete-time summation index

L 2L Length of a one-dimensional di f fusive medium

M n Covariance matrix for i n i t i a l state

Symbol Description

N Final value of a discrete-time summation index

P Region in space over which pollutant transport problem is defined

Pbdquo Corrected state estimation error covariance ma-~K t r i x at time t conditioned upon a l l past measureshyments including the measurement at time t

1 P K + 1 Predicted state estimation error covariance matrix

at time t^ +-| conditioned upon a l l past measurements up to ard including the measurement at time t K

v -K+N^-K Predicted state estimation error covariance matrix

at t i ire t K + f j conditioned upon a l l past measurements up to and including the last measurement at time t( and a function of the measurement matrix at timt t bdquo

p ( t ) P Continuous-time state estimation error covariance

matrix

R Generalized modal resistance T Discrete-time integration step-size T r F i rs t monitoring error constraint maximum allow-

able error in the estimate of the monitor state vector

Tr Ppound + N(zj) j Predicted value of the trace of the state estima-l ~ N - t ion error covariance matrix at time t |^ + N condishy

tioned upon a l l past measurements up to and includshying the optimal measurement at zjlt at time t K

V( t ) V Continuous-time measurement error covariance matrix

W(t) W Continuous-time state disturbance covariance matrix

X A matrix used in derivations

Y A matrix used in derivations

c Scalar measurement coefficient used in optimal management problem derivations

c(c) c Readout vector mapping modal states into pollutant concentration at point pound in space

Symbol Description

e Base of natural logarithms (= 271828 ) surshy

face emissivity coeff ic ient

e T Exponential of the matrix [AT]

e Unit vector with i th element equal to one and a l l other elements zero

e (z) Eigenfunction associated with the nth eigenvalue

evaluated at position z

f Stochastic pollutant source term in the transport equations

g Deterministic pol lutant source term in the transshy

port equations

h Emission boundary condit io coeff ic ient

i Vector or matrix element index

j Vector or matrix element index m The dimension of the noise-corrupted measurement

measurement error and measurement position vectors y R y K and z K

j u Mean value of i n i t i a l state

n Discrete-time summation index

n The dimension of the^state and optimal state e s t i shymate vectors x K and x K

p Scalar state estimation variance used in optimal management- iroblem derivations

p The dimension of the deterministic input vector a(t)

r The dimension of the stochastic state disturbance vector w(t)

t Continuous value of time t K The Kth discrete value of time i Convolution of deterministic input vector over the

time interval EtKt|+j

xv 1

Symbol Description u(t) y Continuous-tine deterministic Input vector v K Discrete-time measurement error vector at time tj y(t) v Continuous-time measurement error vector -K+l Convolution of the stochastic disturbance vector

over the time interval [ t K t K + 1 ] w(t) w Continuous-time stochastic disturbance vector x Derivative with respect to time of the state

vector x x K Discrete-time state vector at time t K

xpound Corrected value of the optimal state estimate at time t|lt conditioned upon all past measurements inshycluding the measurement at time t x[ Predicted value of the optimal state estimate at time t K +i conditioned upon all past measurements up to and Including the measurement at time tbdquo x(t) x Continuous-time state vector x(t) x Optimal estimate of continuous-time state vector vbdquo Discrete-time noise-corrupted measurement vector bull at time t K

y(t) y Continuous-time noise-corrupted measurement vecshytor

z Position in a one-dimensional diffusive medium z Position of maximum error (variance) in the estishymate of the pollutant concentration over all values of 7 In a one-cffmenslonal medium zbdquo Discrete-time measurement position vector at time

zj Vector of optimal measurement positions at time t K

z Vector of deterministic input point source loca-~u tlons

xvll

Symbol Description Vector of stochastic disturbance point source loca-

w tions

0 o Zero matrix or vector

a Pollutant scavenging parameter r K + 1 r Time-invariant discrete-time stochastic disturbance distribution convolution matrix for the fixed time step T = (t K + 1 - t K) A K Amount of correction to scalar state estimation varshyiance for a measurement at time t K used in the opshytimal management problem derivations ATr Amount of correction to the trace of the state estishymation error covariance matrix for a measurement at time t|( used in the optimal management problem derishyvations S(t-x) Dirac delta function Kj Kronecker delta function

e A convergence criterion 5 Position coordinate vector for a point in a region

P in a diffusive medium n An intermediate transformation variable 0 A matrix used in certain derivations Eigenvalue or separation constant u Terms involved in determination of eigenvalues for

n emission boundary conditions pound(t) 5 Pollutant concentration at point z in space at

time t (Ct) Optimal estimate of pollutant concentration at

point c In space at time t 4bdquo(z) 5i Discrete-time pollutant concentration at point z

K and time tbdquo

xvlli

Symbol Description

I ( z ) L Optimal estimate of discrete-time pollutant corcen-K t ra t ion at point z and time t

5 (z) I n i t i a l pollutant concentration as a function of bull0

ulim

posit ion z in the medium

= 314159

p A convergenc measure

a 2 ( c t ) Variance in the optimal continuous-time estimate of pol lutant concentration at point z in space at time t

ol(z) Variance in the optimal discrote-time estimate of the pollutant concentration at point z and time h

0 ^ J M ( Z I ^ Z ) Predicted value of the variance at time t K + N in the K N ~ K discrete-time estimate of the pol lut ion concentrashy

t ion at point z conditioned upon measurements up to and including the last measurement with posit ion vector z K at time t K

deg K + N ~ K Z Predicted value of the maximum value over a l l values of z of the variance in the pollutant concentration at time t K + r j conditioned upon a l l past measurements up to and including the optimal measurements at zj at time t K

oK(zJz) Corrected value of the maximum value over all values of z of the variance in the pollutant concentration at time t K conditioned upon all past measurements including the optimal measurements at z at time t K

o Second monitoring error constraint maximum allowshyable error in the estimate of the pollutant concenshytration anywhere in the medium Time used in certain definitions and derivations

An intermediate matrix used in various derivations Scalar measurement error variance used in optimal management problem derivations

xix

Symbol Description

C i gt Time-invariant state t rans i t ion matrix for the ~- ~ f ixed time step T 5 ( t K + 1 - t K )

( t K + t bdquo ) Time-varying state t rans i t ion matrix between times t K and t K + 1

X A matrix used in certain derivations

C + i t I Time-invariant discrete-time deterministic input d is t r ibu t ion convoution matrix for the f ixed time step T = ( t K + t K )

g bdquo + a Discrete-time convolution of the continuous-time state disturbance covariance matrix W(t) over the interval L i t K + - | J

a The discrete-time matrix convolution of the matrix N g K + where N terms in the series are included

a The l i m i t of the discrete-time matrix convolution SS pound2 as N approaches i n f i n i t y with i t s (1 l)-element

to zero

ltD Scalar state disturbance variance used in optimal management problem derivations

- Approximately equals = Identically equals or is defined as gt Greater than raquo Much greater than

lt Less than lt Less than or equal to lt Proport^irtf to or goes like Approaches or goes to - raquo Implies or infers

d [ - ] Total d i f fe ren t ia l operator

g r [ bull ] [ bull ] Derivative with respect to time of the variable in brackets

Symbol Description _3_ 3c

_i 3C

a

diag [bull]

EL-]

min

min max Z K Z

Partial differentiation of a variable with respect to the scalar c Partial differentiation of a variable with respect to the vector c

Partial differentiation of a variable with respect to the matrix C A vector whose elements are the diagonal elements of the matrix enclosed in brackets Expectation operator for a random variable vector or matrix Limiting operation as N approaches infinity Maximum over all scalar values of z Minimum over all vector values of z K

Simultaneous minimum over all vector values z K and maximum over all scalar values z

n=l Tr[-]

bullh

n-l

N r j

Summation from 1 to N over all values of the index n

Trace operator of the matrix enclosed in brackets The 1th_ element of the vector enclosed in bracket [a]^ 1s also denoted a The (ij)th element of the matrix enclosed in brackets [A] 1s also denoted A ^ Transpose operation for a vector or matrix Inverse operation for matrices

A matrix with (ll)-e1ement equal to u and all other elements zero

A matrix with (ll)-element equal to zero and all other elements equal to the elements of the matrix A

xxl

Symbol Description

6 o -cj

A diagonal matrix

p gt 0 The matrix pound i s posit ive def in i t i ve

ltbull I n f i n i t y

CHAPTER 1 INTRODUCTION 1

The problem of the optimal monitoring of pollutants in environshymental systems concerns the minimum cost estimation of pollutant levels throughout a region while maintaining the errors in the estimates within a given bound The optimal monitor synthesis problem considered in this thesis logically separates into the two monitoring subproblems of optimal design and optimal management Optimal monitoring system design includes the specification of a model for the physical system the choice of measured variables measurement devices and their spatial distribution in the medium The optimal management problem concerns finding the best sequencing of measurements in time to result in the minimum cost sampling program The optimal monitor is then defined as that solution of the design and management problems together which results in the minimum cost measurement program necessary to maintain the error in the pollutant estimate below a given bound over the time interval of interest

This is a departure from most studies in the optimization of systems with cost for observation in that use is not made of a comshybiner performance criterion which typically consists of the time integral of a weighted combination of measurement cost and estimation error Insteid in this study advantage is takrn of the separation of the design and management problems whose two solutions separately determine the characteristics of the measurements at the required sample times and the timing of those measurements themselves Thus estimation error is not minimized but rather bounded in a

2

fashion which corresponds with actual applications where legal limits are placed upon allowable errors in the pollutant level estimates in environmental monitors It 1s bounded In such a manner that the minimum total number of samples is necessary over some time Interval resulting in the minimum cost monitoring program

The separation of the monitoring design and maiagement problems was proposed by Brewer and Moore [24] Moore [95] has considered application of such corcspts to the area of aquatic ecosystems where the Extended Kalman Filter 1s applied to the highly nonlinear equashytions of the dynamics of population growth of aquatic constituents This thesis instead concentrates upon strictly linear processes in the hope that the mathematical simplifications possible there may be extendable to the nonlinear case in future studies In the optimal estimation of the state vector of a linear discrete-time stochastic system the Kalman Filter [66] provides a particularly elegant computational solution The two equations for prediction and correction of the associated state estimation error covariance matrix have been conjectured by Brewer and Moore [24j as containing the key to the solution of the management problem it is shown here that they indeed do lead to a problem structure which results In the optimal solution of not only the management problem but to that of the design problem as well

Owing to the anticipated complexities of the optimizations assoshyciated with the various parts of the monitoring problem advantage 1s taken of the simplicity of the separation of variables technique in the theory of linear partial differential equations In obtaining orshydinary differential equation models for distributed systems (see Berg

3

and McGregor I18J) In reducing the resulting state spaces for such normal mode models to spaces of finite dimension the quantitative methods recently developed by Young I131J 1n atmospheric modeling greatly extend the area of applicability of such analytical techniques In particular nonhomogeneous anisotropic media may be handled by the spatial discretization of the medium Into component subregions over which constant average values for system parameters are sufficiently accurate Component coupling by the use of pseudo-sources to make up for differences in the normal mode submodels is the key factor given by Voung which allows for the simple approximation of the dynamic reshysponse of large varied distributed environmental systems The existshyence of these techniques underlies the studies 1n this thesis in their extension to large scale practical problems in environmental monitoring

With the use of a finite-dimensional normal mode state model the resultant continuous-time state equations are discretized in time for use in the Kalman Filter The natura of the Kalman Filter is now well known 1n its applications in the aerospace field Recent applishycations in more diverse areas (see for example the special issue 1n IEEE [62]) have established It as a powerful tool of broad scope 1n the field of system estimation Its numerical advantages over other optimal estimation techniques (well documented 1n Gelb [44]) make it the logical choice for use in environmental monitoring systems where processes of Interest may dictate the use of huge models to obtain desired levels of spatial arid temporal resolution in the results

4

The main results of this thesis concern the special class of monishytor addressed In the infrequent sampling problem This case is charshyacterized by high levels of allowable pollutant estimation error which result in relatively long periods between required sample times These long times between samples allow the transient terms involved in the growth of the uncertainty in the pollutant estimates to reach steady-state values so that only asymptotic solutions of the estimation error covariance equations need be considered in the design and management problems This drastically simplifies the solution of the monitoring problem for the case of infrequent sampling

Applications of the theory developed here are seen to arise in any environmental or other dispersive system where the dynamics of the disshypersal of the pollutant or variable involved is dominated by diffusion and where convective transport can be ignored This rules out its use in air quality monitoring systems on a regional basis where convection typically dominates diffusion in pollutant transport by a ratio of 301 [76] However as developed by others cited in Young 1131] models of pollutant transport on a global scale are often based upon diffusion as the dominant mechanism of dispersal In fact examples in Young indishycate that the normal mode modeling techniques mentioned earlier can be successfully applied to global atmospheric modeling where only diffusion is included as the dispersion mechanism

An interesting extension of the results of this thesis might be to a study involving assessment of the climatic impact of flying a fleet of SSTs upon the protective ozone layer in the atmosphere (see for exampls Mac Cracken et al [80]) In such an application knowing where and when to best sample atmosphere pollutant levels could greatly

5

facilitate validation of numerical atmospheric models in initial applishycations and greatly reduce long-range monitoring costs upon implementashytion of such a program

Groundwater systems seem to be a probable area of application as indicated in what follows though no experimental verifications have been attempted Systems involving heat transfer by conduction which involve stochastic heat sources could find application for the theory of the infrequent sampling problem For example in nuclear reactor cooling systems a central control computer could be time-shared to consider only the best sites for temperature measurement in the walls of the pressure vessel over time

The need for better environmental monitoring has been described in the literature [4695102] typical measurement costs have been tabulated [14] Propagation of uncertainty in distributed systems has been considered in some detail 15659101] Related studies using other approaches do not address the monitoring problem either as it separates into the design and management problems or with the drastic simplifications which arise in the infrequent sampling problem (see the work of Seinfeld [113] Seinfeld and Chen [114115] Seinfeld and Lapidus [116] Reiquam [104] Bensoussan [17] Soeda and Ishihara [119]) Thus there is a naed for improvement of the synthesis procedures for monitoring systems in large scale environmental problems

The thesis is organized into seven chapters and seven appendices to keep things even Chapter 2 summarizes work by others in germane problem areas and defines the scope of the present study Chapter 3 develops briefly the normal mode modeling technique of the application of the method of separation of variables Chapter 4 deals with the

6

time-discretization of the associated f in i te set of continuous-time

ordinary differential state equations and summarizes the more salient

features of Kalroan Fi l ter Theory Chapter 5 presents the main theory

associated with the infrequent sampling problem punctuated with conshy

clusions as they can be made Application and demonstration of the

analytical results of Chapter 5 are made in the numerical examples of

Chapter 6 in which more conclusions are seen to follow In Chapter 7

the main results for the optimal monitoring problem for the case of inshy

frequent sampling are collected in summary and possible extensions for

future study indicated Some of the more routine analytical developshy

ments as well as al l of the computer program listings are gathered

in the appendices A rather extensive l i s t of references relevant to

the optimal estimation monitoring and measurement system design probshy

lems completes this document

7 CHAPTER 2 BACKGROUND AND PROBLEM STATEMENT

This chapter begins with a suiroary of representative work done by others In fields of Importance to the environmental monitoring problem An attempt Is made to present a reasonably complete survey of pertinent literature in the hope that future researchers may benefit from the sources this author has utilized

The broad area of optimal measurement system design is then narrowed greatly in scope as it applies to problems In certain classes of environshymental pollutant transport The problems of the optimal design and management of environmental quality monitoring systems are finally stated in the contexts of two cases for bound on the allowable error In either the monitor state or the monitor output estimite

21 Background

The major topics of concern in the study of environmental monitorshying systems in this thesis include the following mathematical modeling in dispersive environmental systems the numerical treatment of certain classes of partial differential equations the stability and asymptotic solutions of systems of ordinary differential equations optimization of a function of several variables deterministic dynamical system theory stochastic system theory and optimal estimation optimal measurement sysshytem design in lumped and distributed parameter systems and finally monishytoring system synthesis for environmental applications

Considerable Interest has been turned to problems In the dispersal of pollutants In environmental systems in recent years Some typical contributions 1n the areas of the atmospheric sciences include the modelshying of air pollutant transport on a regional basis [81 J the climatic

8

impact of f l y ing a f lee t of SSTs in the upper atmosphere I80J studies

1n the parameter sens i t iv i ty of models of the planetary boundary layer

[3599J and studies of models of the global transport of pollutants

[36131] In one recent study by Young [131J the classical methods of

applied mathematics were successfully applied to the solution of global

pol lutant transport problems in a unique way that takes advantage of

analytical results available fo r certain classes of part ia l d i f fe ren t ia l

equations By the expansion of solutions for such equations in i n f i n i t e

series form followed by quant i tat ively meaningful truncation of those

serious solut ions approximate solutions for otherwise Targe d i f f i c u l t

problems can be obtained This procedure involves coupling together

solutions for problems in adjacent subregions to e f f i c i en t l y approximate

the response in larger areas The theory for such Fourier-type expanshy

sions is now well established [183482118J but the unique extensions

made by Young possess the potential for applying classical normal-mode

analysis long associated with problems in the mechanics of l inear solids

[9347] to a far braoder class of problems including environmental

pollutant transport in nonhomoqeneous anisotropic media

This author follows Young in the application of normal-mode technishy

ques to problems in the solution of the dynamic equations of environmental

pollutant transport Such methods y ie ld f i n i t e sets of ordinary d i f f e r shy

ent ia l equations whose solutions form time-varying mul t ip l iers for the

spatial mode shapes which comprise the normal mode solut ion bond graphs

are seen to of fer a concise graphical representation of such normal mode

models (see for example Karnopp and Rosenberg [6S]) The study of the

numerical treatment of systems of ordinary d i f fe ren t ia l equations is a

fundamental part of the solution of the monitoring problem when using

9

the normal mode approach recent advances 1n the numerical solution of general nonlinear time-varying possibly stiff ordinary differential equations are typified by the work of Gear [43] Hindmarsh [5758] and Byrne and Hindmarsh [25] Analytical treatments can be found in Coppel [28]

In the case of linear time-Invariant ordinary differential equashytions the class involved in the infrequent sampling problem considered in this study the powerful techniques of linear system theory can be used (see for example Desoer [32] Takahashi et at [121] Brewer [22] Freeman [41] Timothy and Bona [123]and Schultz and Helsa [109]) In the actual implementation of algorithms associated with the solutions of such linear systems certain topics in matrix theory in numerical analysis prove to be useful [3840129] Involved in the optimal design problem in monitoring system synthesis are the problems associated with the optimization of a function of several variables Beveridge and Schechter [20] is found to be an excellent reference in this area while Fleming [37] provides a more firm background in the theory of a function of several variables A gradient routine by Westley [127] was chosen for the constrained minimization of the nonlinear objective functions associshyated with the optimal design problem Such gradient methods are conshytrasted for example with the work of Radcliffe and Comfort [103] in which constrained direct search methods are presented which do not involve the use of derivatives of the objective function gradient methods are found to offer computational advantages over direct search methods in their application to the optimizations involved in the optimal design problem In the particular problems of finding the position of maximum uncertainty in the pollutant estimate for the monitoring problem with

10

bound on error in the output estimate root finding methods for finding zeros in the derivative of the expression for the error were found to be superior to direct search methods for such scalar maximizations (see Hausman [5354])

The field of optimal state estimation in stochastic dynamic system theory is well developed in what it offers for vhe solution of the optishymal monitoring problem Gelb [44122]makes a particularly lucid presenshytation of the more practical topics in applied estimation theory the original work of Kalman [66] and Kalman and Bucy [67] still stand as basic reference material for the concepts involved Sorensen (in Leondes [78]) presents a concise introduction to Kalman Filter techniques Meditch [85] also presents a clear development of the optimal filter Aokr [ 3] contains a considerable amount of material concerned with speshycial topics in stochastic system theory as does Sage [105] Jazwinski [65] is sufficiently complete in its rigor to serve as one single refershyence in the area of stochastic processes and filtering theory for more fundamental material in the theory of stochastic differential equations including a particularly rigorous development of the Kaliran-Bucy Filter see Arnold [ 6]

The Special Issue of IEEE Transactions on Automatic Control Decemshyber 1971 dealing with the Linear-Quadratic Gaussian Problem [62] ofshyfers an extensive collection of topics in optimal estimation theory It Includes a well edited bibliography which should be a basic resource to any researcher 1n this field The proceedings of a special confershyence sponsored by NATO [98] summarizes many military and aerospace apshyplications of estimation theory

11

There are many special topics In estimation theory which could prove of Importance In future extensions of the work in this thesis to practical applications in nonlinear systems Of them adaptive filtershying 1s of particular importance see the work of Mehra [86878889] Jazwinski [64] Berkovec [19] Godbole [45] Nahi and Weiss [97] and Scharf and Alspaeh [108] Extension to nonlinear estimation are conshysidered in Wlshner et aZ[130] Athans et al [9 J Hells [126] Gura [49] and Gura and Hendrikson [52] Moore uses the Extended Kalman Filshyter as cited earlier in his work on the monitoring problem [95] As well as Moore others have examined the effects of using an imprecise model in the optimal filter upon the performance of optimal estimation schemes among them are Jazwinski [65] who considers the area of filter divergence at length Aok1 and Huddle [4 ] Leondes and Novak [77] and Inglehart and Leondes [63]

The area of theory most closely allied to that of the optimal monishytoring problem is known variously as optimal estimation with cost for observation optimal measurement system or subsystem control or the opshytimal timing of measurements Aoki and Li [ 5] were among the first to address such problems along with Meier [909192] Athans uses his Matrix Minimum Principle [ 8 ] along with the work of Schweppe [11] in an application in continuous-time systems this work is strongly based upon direct extensions of optimal control theory (see Bryson and No [26] or Athans and Falb [10]) Schweppe [12110111] has made developments of op timal measurement strategies in radar applications Denham and Speyer [30] did some early work in midcourse guidance Kramer and Athans [73 74] have made recent rigorous contributions to the mathematics associated with the combined optimal control and measurement problems along with PIiska [100]

12

Other studies Involving the optimal timing and use of measurement data include Kushner [75] Breazeale and Jones [21] Sano and Terao [106] Hsia [60] and Dreyfus [70]

Some of the most germane references found in the area of optimal measurement system design include Cooper and Nahi [27] Sauer and Melsa [107] Vande Linde and Lavi [125] Herring and Melsa [55] Shoemaker and Lamont [117] and Soeda and Ishlhara [119]

Studies which concentrate on monitoring and measurement system optishymization in distributed parameter systems include the work of Seinfeld [112113114115116] Draper and Hunter [33] Reiquam [104] Bensoussan [17] Atre and Lamba [13] Murray-Lasso [96] and Prado [10lJ

Bar-Shalom et al [is] consider monitoring systems much like those considered here but for a far more general class of problem Moore [95] and Brewer and Moore [24] serve as the inspirational basis for much of what is developed in this thesis

22 Problem Statement

Consider a region into which pollutants are being injected by a colshylection of deterministic and stochastic point sources Two problems in the monitoring of the pollutant levels in that region over time are conshysidered in this study

First suppose that measurements are required of pollutant levels for the purpose of closed-loop control in which case feedback signals are to be constructed to control seme of the amounts of pollutant being emitted into the medium An example might be thermal pollution near a power station where it is required to optimally monitor temperatures in the surrounding area for the purpose of closed-loop control of the mean

13

power level Assuming that a model can be constructed for the dynamics of the pollutant dispersal in the form of a finite set of first-order orshydinary differential equations whose solution forms the state vector for the model of the process (see Desoer 132]) It is well known that the mean square length of the error between the state vector and the esshytimate of the stochastic state vector fs given by the trace of the estishymation error covariance matrix for such a stochastic process as a funcshytion of time (see Kalman [66]) Thus if it is required to minimize the mean square error 1n the estimate of the stochastic state vector a suitshyable choice for the performance criterion for the optimal monitor with bound on maximum allowable error in the state estimate is

J(t) = Tr[p(t)] (21) where

P(t) = E (x(t) - x(t))(x(t) - x(t)) T ( )

is the estimation error covariance matrix for the optimal estimate S(t) of the state x(t) both of dimension n at time t E[-J denotes the exshypectation operator applied to the random argument and (bull) denotes the transpose operation Here

n

Tr[A] = T [A]^ (23) n=l

is the trace function The notation [ALj means the (ij)Jh_ element of the matrix A

Second suppose legal limits are placed upon the maximum error in the estimate of the pollutant level itself allowable at any time anyshywhere 1n the medium This case represents a problem of practical interest where a monitor might be used on-line to detect infractions of legal pollutant concentration levels in some airshed or watershed

14

Let the concentration of a pollutant of interest as a function of space and time bt denoted by Ut) Define

5(ct) = c(c) T x(t) (24) where x(t) as before is the state vector of dimension n of pollutant dispersal in the region is the coordinate position vector of the point where the concentration pound is being calculated and where c(c) is a vector (typically of eigenfunctions in the spatial coordinates c for the case of normal mode models) which maps the state x into the concentrashytion at the point pound In this application the function of the monitor is to provide an estimate (st) of pound(ct) such that the maximum error between the pollutant concentration and its estimate is maintained below a given constraint or bound for all times of interest and throughout the medium spanned by t Thus a measure of the uncertainty or error in the estimate of the pollutant level at some point c anywhere in the medium is given by the variance in the estimate C(t) denoted by a (ct)

Derive using (22)

o 2(Ct) B E (c(st) - C(t)) Z

= E ^(5) T(x(t) - x(t))c(c) T(x(t) - x(ty

- E[jc)T(x(t) - x(t))(x(t) - x(t) )Tc(s)J

= c ( 5 ) T E[(x(t) - x(t))(x(t - x(t))TJc(c)

= ztflMsty- lt 2 - 5 gt Thus the variance in the estimate of the pol lutant concentration i t s e l f

also termed the monitor output anywhere in the medium can be expressed

d i rec t ly in terms of the monitor state estimation error covariance mashy

t r i x P(t) and the readout vector pound() Hence a logical choice for a

15

performance criterion for the monitoring problem with bound on maximum allowable error in the output estimate is

J 2(ct) = a2(poundt)

= max a (t)

= max c(c)TPCt)c(c) 5 = StffytM) (2-6)

where C is the position of maximum variance in the estimate of uie pol shy

lutant concentration or output at time t

Thus the two estimation error c r i t e r i a to be considered here are

given in (21) and (26) for the optimal monitoring problems with bound

on state and output estimation error Once an error c r i te r ion is seshy

lected in a given problem the requirements of the optimal monitoring

system design problem are to select the optimal choice of monitor model

complexity the optimal number and qual i ty of measurement devices to deshy

ploy and their optimal locations in the environmental medium fo r a l l

measurement times tlaquo over the time interval of interest The added reshy

quirement of the problem of optimal monitoring management is to select

the optimal measurement times t K such that together with the results for

the optimal design problem the minimum cost monitoring program is found

which maintains the chosen estimation error c r i t e r ion within i t s bound

throughout the time interval of interest

This is a somewhat d i f ferent approach from those taken in the o p t i shy

mal design of systems with measurement cost by previous authors Athans

[ 7 ] defines a scalar cost functional which is a l inear combination of

the tota l observation cost and the mean square error in the estimate of the

variables of interest As in a l l problems with such combined performance

16

criteria most of which are direct extension1 of the original concepts of optimal control relative weighting parameters are required amongst the cost and estimation error terms to make the criteria adjustable to the needs of a specific problem (see Bryson and Ho [26] or Athans [10] regarding the concepts of optimal control See Athans [7] Kramer and Athans [73] Athans and Schweppe [12] Meier et al [92] Shoemaker and Lamont [117] Cooper and Nahi [27] Sauer and Melsa [107] Vande Linde end Lavi [125] Kushner [75] Sano and Terao [106] Dreyfus in Karreman [70] and particularly Aoki and Li [5] for examples of work in the area of optimal system design with measurement cost) The choice of such weighting parameters inevitably complicates the measurement system deshysign problem Particularly in applications in the environmental area combining the minimization of costs associated with measuring a process with the minimization of a measure of the errors made in the estimation of the variables in that process does not seem to address the correct problem In any practical implementation legal limits would be placed upon estimation errors allowable in the pollutant estimates On the other hand the use of a combined performance criterion typically admits arbitrarily high estimation error levels at certain points in time since the objective of the optimization is to minimize the time integral of the performance criterion not its instantaneous value Thus the minimization of a performance criterion involving the time integral of a weighted combination of measurement cost and estimation error is not solving the right problem in the context of an environmental monitor

Thus the separation of the optimal monitoring problem into the problems of optimal design and management leads to a problem structure which conforms better to the requirements in actual applications than

17

do those which come from the application of principles of optimal conshytrol with combined quadratic performance indices

If at all measurement times the cost of making a measurement of a given quality is a constant then the total cost of the required monishytoring program over the time interval of interest is directly related to the number of times a measurement of a given quality has to be made scaled by some cost weighting factor which is typically a function of the accuracy of the measurement instrument involved Roughly speaking then the total cost of the whole monitoring program is an increasing

function of the total number of individual samples which must be taken over the time interval of interest in order to maintain the value of the selected estimation error criterion within its bound over that entire time interval With this assignment of measurement cost as a function of measurement instrument accuracy then the two optimal monitoring probshylems to be considered in this study are defined as follows

The Optima] Monitoring Problem of the First Kind -Find the optimal number and quality of measurement deshyvices their optimal locations in the medium and the opshytimal measurement times such that the total cost for the measurements required to maintain the estimation error in the state of system below a given bound over the time interval of interest is minimized (27)

The Optimal Monitoring Problem of the Second Kind -Find the optimal number ana quality of measurement de-vices their optimal locations in the medium and the opshytimal measurement times such that the total cost for the measurements required to maintain the maximum estimation error in the pollutant concentration anywhere in the meshydium below a given bound over the time interval of inshyterest is minimized (28)

Notice that in the above problem definition the choice of model complexity for use in the monitor - the order of the model and perhaps certain aspects of its structure mdash has been excluded It is reintroshyduced later in Chapter 6 in a sensitivity analysis of monitor performance

18

as a function of the number of normal mode states retained in the series solution approximation for the dynamic equations involved

In what follows the problem stated in (27) or (28) are equivashylents referred to as the optimal monitoring problems with bound on error in the state or output estimate respectively

The next chapter considers normal mode models for pollutant transshyport which result in sets of first-order ordinary differential equations of the initial value type these are commonly known in system theory as continuous-time state equations (see Desoer pound32])

In Chapter 4 these continuous-time state equations are discretized in time (see Freeman [41]) for computational implementation and for use in the Kalman Filter in the optimal estimation problem In Chapter 5 attention is finally returned to consideration of the monitoring problems stated above

19

CHAPTER 3 NORMAL MODE MODELS FOR DIFFUSIVE SYSTEMS

The transport and dispersal of a particular pollutant in some reshygion P can be described by the following partial differential equation

K = 5 F + p P $ F laquoF + f + 9 O-1) where

F = mixing ratio of pollutant (grams of pollutant per kilogram of medium)

f = gradient operator y = local velocity of medium

p = mass density K = diffusivity coefficient

a = scavenging rate coefficient

f = stochastic pollutant source term (grams pollutant per unit time per kilogram of medium)

and finally g = deterministic pollutant source term (same units as f)

The terms of the right-hand side of (31) represent respectively (1) forced convection (or advection) (2) Fickian diffusion (3) environmental degradation (or scavenging) of pollutant from the region (4) stochastic and (5) deterministic pollutant production within the region

For some environmental media particularly the atmosphere the propshyerties p and K vary in space and time In some cases (31) will not be an accurate description where K may also vary with direction of diffusion andor the scavenging term may require a far more complicated description The above equation describes the transport of only a single pollutant species F if more than one pollutant is being considered an equation

20

like (31) is required for each one where more terms may be necessary to describe chemical reactions among the various pollutants if they exist Another case where (31) may be an incomplete description is with a meteorologically or hydrologically active pollutant one which can change the energy balance of the medium an example is a pollutant whose presshyence effects optical properties within the region For this latter case the full enevgy and momentum equations of fluid mechanics must be augshymented to (31) to complete the mathematical description of pollutant dispersal [3536] Thus modeling pollutant transport in general is seen to involve a great deal of analytical difficulty

While approaches to the solution of (31) typically evolve from the use of finite difference methods [808199] the extensions of modal analysis techniques proposed by Young [131] to pollutant transport probshylems will be used in this study The powerful results which come from the application of normal mode analysis are felt to extend directly to finite difference models as will be suggested at the end of this report thus use of normal mode models is not a real restriction

In order to gain insight Into the mathematical relationships involved in monitoring the dispersion of pollutants in time and space consider a more tractable simplified version of (31) namely

| | = wh - a + f + g (3)

where 5 - concentration of pollutant (grams of pollutant per

cubic meter of medium) The simplifications adopted in using (32) 1n place of (31) include the following mass density p is assumed to be constant which allows the use of concentration instead of mixing ratio as the dep3ndent variable

21

when the fluid can be assumed incompressible spatial variation of the diffusivity K is negligible and advection is dominated by diffusion as the principle mechanism of transport

Since (32) is linear in pound and since the main emphasis of this study iraquo upon the stochastic nature of its solution the deterministic source term may be eliminated since its effects could be added later to the stochastic solution by the method of superposition The result is

fsect = ltregh - a + f (33) This equation forms the basis for this study It is the stochastic difshyfusion equation including scavenging written in arbitrary coordinates (it should be noted that (33) equally well describes stochastic heat transfer in solids including radiation to the surroundings)

The above assumptions mean that applications of the results which follow to problems in atmospheric pollution are remote at best However (33) is sometimes used for long time scales in global atmospheric studies (see references cited in [131]) In such cases C is interpreted as the pollutant concentration averaged over mixing times sufficiently long that local wind velocities can be viewed as small scale effects of large scale eddies However application of the results to be developed around (33) are thought to be possible in groundwater systems or thgtse surface water systems for which local velocities are small

It should be noted that spatial variation in the density and difshyfusivity can be reintroduced into the problem to extend the results of this work to inhomogeneous anisotropic regions This can be done by dishyviding the region P into component subregions in each of which the asshysumption of constant p and K Is a reasonable approximation Young pound131]

22

has shown that by coupling such component submodels together low order models of relatively high accuracy are able to be formed

For now ignore the inclusion of poll tant scavenging in the transshyport equation It will be introduced later as 1t effects the results for the optimal monitoring problem for diffusive transport alone in Chapshyter 5 Thus with this final simplification the stochastic partial difshyferential equation governing Fickian diffusion results

|| = K7 25 + f (34)

Various methods exist for solving (34) but owing to its simplicity and useful areas of application the method of separation of variables will be used to convert (34) into an infinite expansion of ordinary difshyferential equations ir time whose solutions multiply related eigenfunc-tions in space Study has been made of the number of terms to retain in the expansion for adequate accuracy [131] Determination of this number will not be of concern here though its importance will be demonstrated by example in Chapter 6

Development of a finite set of continuous-time state equations of the form

amp = ampS + B (35) y = Cx + V (36)

from the application of the method of separation of variables to (34) is followed by developments for problems with media of various dimensions in the remainder of this chapter More rigorous theory regarding the separation of variables technique 1s summarized and referenced in [131]

23

31 Separation of Variables for the Diffusion Equation

Here the solution of the inhomogeneous stochastic di f fusion equation

(34) in arbi t rary coordinates is expressed as a f i n i t e set of normal

mode state equations of the form (35) with the use of the method of

variatiOTi trf parameters fcee Berg and fttftrego-r [ I S ] p 152)

Begin by considering the homogeneous counterpart to (3 4) namely

sectsect = KV2C (37)

Assume a solution for of the form

5(Pt) = x(t)e(P) (38)

where P is some point in the medium P Substitute th is into (37) to

obtain

x(t)e(P) = Kx(t)72e(P) (39) or

m=^- raquobullraquogt The left-hand side is a function of t and the right-hand side is a funcshytion of P so that for arbitrary P and t both must equal a constant the so-calle separation constant or eigenvalue Choose this constant to be -X so that the following separated equations result

i(t) + Xx(t) = 0 (311) V 2e(P) + | e(P) = 0 (312)

The equation in time (311) Is already seen to be in the form sought 1n (35) The spatial equation (312] 1s the Helmholtz equation which together with the boundary conditions for the medium forms an eigen-problem over P the region of interest The resultant eigenfunctions e (P) can be used to form bases for solutions of (37) assume a solution of the form

24

C(Pt) = 2 ^ x n(t)e n(P) (313) n=l

Substitute this into the inhomogetieous diffusion equation (34) to obshytain

oo oo

) i n(t)e n(P) = K ^ x n(t)7 2e n(P) + f(Pt) (314) n=l n=l

The eigenfunctions are distinguished by the property of orthogonality which can be stated as

[ 0 n + m ebdquo(P)em(P) dp = (315) rebdquo(P)em(P) dp -

n = m the integration occurring over the whole region P Use th is property in

(314) together with (312) to obtain

E i n ( t ) 1 e nlt P gt e n P gt - - laquo ] [ M ^ e n lt P V P gt d

+ f (P t )e m (P) dp (316) JP

The orthogonality then reduces (316) to the following set of first order ordinary differential equations

+ I f(Pt)ebdquo n(tgt deg -xM + I W^K^ dp (317)

The integral in (317) is the contribution to the nth mode due to the source term f(Pt) If f(Pt) can be expanded in a series of eigenfuncshytions it can be given by

25

f(Pt) = ) f n ^ n ^ - ( 3- 1 8 )

Multiply by e m(P) integrate over the region and apply orthogonality again to obtain

f fn(t) = f(Pt)en(P) dp (319)

Jp

where fbdquo(t) is the modal input for the ntjn_ differential equation Thus wit 19) (317) may be written in the compact form

xbdquo(t) = - y n ( t ) + f n(t) n = 12 (320)

This infinite sequence of ordinary differencial equations is known as the set of normal mode state equations and together with the mode shapes given by the eigenfunctions e n(P) they comprise the normal mode solution in (313) of the inhomogeneous diffusion equation (34)

The remainder of this chapter will concern forms for the eigenfuncshytions e (P) the spatial side of the problem This will involve solving for the eigenfunctions once the coordinate systems are specified and boundary conditions given Thus finding e n(P) the eigenvalues n and solving for the source terms fn(P) will be considered next for a range of different problems Solving for the time response x (t) will be apshyproached in Chapter 4

32 One-Dimensional Diffusion

Here w i l l be considered the problem of di f fusion in a one-dimensional

medium Classical ly th is is the problem of heat conduction between two

i n f i n i t e paral lel f l a t plates The problem also embraces that of po l lu t shy

ant d i f fusion where d i f f u s i v i t y constants dominate in one coordinate

26

direction only Consider then the system described schematically as

follows

bullgt f rtrade w l

^1 Sources f rtrade 1 r 1 t ~ J

Measurements

2 f

2L gt

- i gtJ Measurements

2 f

- 2 laquo^ 2 f

Figure 31

321 No-Flow Boundary Conditions - For the system of length 2L

described 1n Figure 3 1 the following specifies the related i n i t i a l -

boundary value problem

Bpoundjfcjabdquo K 3fpoundi5ja t f ( 2 l t t g ( 2 gt t )

dz-

gjC(0t)=0 5fc(2Lt)s0j

CUO) = bdquo

f^zt) ^ W l ( t ) ^ z - zw y

E[w(t)j = 0

EJytJw^T)] = W6(t - T)

f 2 ( z t ) H bdquo 2 ( t ) laquo ( z - z W z )

E w 2 ( t f = 0

(321)

(322)

(323)

(324)

(324A)

(324B)

(325)

(325A)

27

Erw2(t)w2(T)J = W2 laquo(t - T) (325B)

g i ( z t ) = u^t) oz - z u (326)

Thus the system represents diffusion in a one-dimensional medium of

length 2L and diffusivity K with no influx or efflux of the diffusing

substance at the ends The in i t ia l condition throughout the medium is

chosen as a constant 5 Q There are two stochastic point sources f j at

z = z and f at zbdquo with zero means and constant covariances given by W-l lt- Wn

W and W respectively One determnistic source of strength u^(t) acts

a t z - y Measurements y j ( t ) and y 2 ( t ) are taken at points z 1 and z Expresshy

sions ior these measurements in terns of the resulting system of normal

mode state variables are sought

As in (313) begin the analysis by assuming a solution of (321)

of the form CO

pound(zt) =2__ x n(t) cos ((n - 1) j f z) (327) n=l -

Substitute this into (321) to obtain

xbdquo(t) cos ((n-Dfz) n=i

n=l + f(zt) + g(zt) (328)

Right-multiply by cos Um-1) - z) integrate over the length of the medium and invoke the orthogonality of the eigenfunctions to obtain

28

2 r2L 2Lx n ( t ) = - (n - D 2 i | | x n ( t ) + f ( z t ) cos ( j n - 1) ^ z)dz

+ g (z t ) cos f ( n - 1) g f z ) dz n = l (329) 4=0

2 f 2 L

Lxbdquo( t ) = -(n - D 2 f - x n ( t ) + f ( z t ) c o s N n - 1) j f z ) dz

+ g(z t ) cos ( (n - 1) j f z)dz n = 2 3 ( 3 3 0 gt 4=0

The above may be generalized into one in f i n i te set of f i r s t -o rder ordinary

d i f fe ren t ia l equations in state-space form f i r s t by making the def in i t ions

n = 1 ^L 2L (n-l) zCTr2

n = 2 3 ^mdash (331)

(n-l)2lt7T2

With these definitions the complete normal mode solution for the one-dimensional stochastic diffusion equation equation (321) may be written as the sequence

n ( t ) = bull rr n ( t ) + r I f ( z t ) c o s ( ( n - ^ i f z ) d z

+ ^ - g (z t ) cos f (n - 1) g f z j d z n = l 2 n 4=0 ^ (332)

Thus the concentration pound(zt) is found by solving the modal equations (332) and substituting nto the ssumed solution (327) To do this

29

the solution must fit the initial condition so that

s0

CO

bull ) x n(0) cos((n - 1) ^ - z )

For this case it is easily seen that

x(o) = e 0

x n(0) = 0 n = 23

(333)

(334)

Point sources are the most straightforward types of inputs to represhysent in normal mode form (see Mac Robert I 8 2 ] p 124) The stochastic and deterministic sources are transformed as follows

2L

z=0 f^zt) cos ((n - 1) gf z)dz

-r (t)laquo(2-zH)cos(n-l)fz)dz

i(-raquopound) w(t) n - 12 (335A)

Similarly for f(zt)

-2L J - j f 2 (z t ) cos ((n - 1) 2Tz)dz

n -4=0

c i c o s f t n - l j ^ z ) w ( t ) n 12 (335B)

The deterministic term is

30

J- g(zt) cos((n - 1) z) n -4=0

dz

- | ^ c o s ( ( n - l ) ZL z u J u ^ t ) n = 12 (336

If the infinite series in (313) and (327) are truncated after term ngt the retained modal equation may be written as follows

0 deg Kit

O -lt-D2

1 traquo (ltraquobullgt if s )

(337)

bull with initial condition x^O) x7(0)

xbdquo(0)

(338)

The noise-corrupted measurements

1 c o s ^ z ) cos ((n-1) ^ Z l )

1 c o s ( z 2 ) cos((n-l)jf2 z) (339)

31

In summary the stochastic initial-boundary value problem (321) - (326) las been transformed through the method of separation of variables into a truncated sequence of first order ordinary differential equations (337) with initial conditions (338) Measurements made of the system are exshypressed as in (339) These equations comprise the state and output equations which may be written as

x = Ax + Dw + Bu (340)

y = S + v (36)

As in equation (34) most of the examples of interest here will exclude terms like gu in (340)

Once the truncated sequence of normal mode state equations is deshytermined the resulting pollutant concentration at any point z in the medium for any time t may be found as follows

e(zt) = Y x n(t) cos ((n - 1) |f zj ( 3 4 1 )

Finally insight into the structure of the finite normal mode model of the one-dimensional diffusion process may be gained by portraying relashytionships (337) (338) (339) and (341) in a bond graph [69] see Figure 32 The table at the bottom of the figure defines the functional relationships involved in the coefficients b c and d these are in actuality all modulated transformer elements

32

DETERMINISTIC b SOURCE

1

1 tt

1 -Hyendeg 1 trade NOISV

MEASUREMENTS

A h H yen 0

bdquoltbull

bull laquo ^ 5 ^ 7 l rs ((bull ) f((-gt5f-0 raquoraquo(laquobullI ffr) I ((-I) ^i)

Figure 32 Bond graph of normal mode state measurement and output equations used In the monitoring problem

33

322 Fixed Boundary Conditions - Consider the initial-boundary value problem

M | laquo t i K pound s ^ t i + f ( z gt t ) C 3 i 4 2 )

UOt) = 0 6(2Lt) = 0 (343) S(z0) = 0 (344) f(zt) = w(t)6(z - z w ) (345)

E[w(t)] - 0 (346) E[w(t)w(t)] = WS(t - T ) (347)

The essential difference from lthe problem in Section 321 is in the nature of the boundary conditions The so-called fixed boundary condishytions of (343) are referred to as the Dirichlet conditions by others (see Berg and Mc Gregor [18] Section 36) They represent the physically rare situation where the pollutant concentrations at the ends of the medium are fixed to some specified source levels as functions of time here those levels are arbitrarily chosen to be zero This difference manifests itself in the form for the eigenfunctions e (z) and eigenshyvalues x n

In this case assume a solution of (342) of the form

C(zt) = ) x n(t) sin (n bullpound z Y (348)

Substitute (348) into (342) r ight mult iply by sin ( m ^ f z ) integrate

over the length of the medium and invoke orthogonality to obtain

2 f 2 L

L n t ) = - n 2 bull x n ( t ) + f ( z t ) s i n ( | | pound z) dz (349) Jz=0

34

As before generalized modal resistances and capacitances may be defined n = 12

4L T~ST iTKir

Thus the general modal state equation 1s

(350)

Vgt - bull i bullltgt+ J_ fltzlaquogts1n ( n poundz)dz-(3-51gt The general solution (348) must satisfy the initial condition or

00

e(zo) = o =2_ V 0 ) s i n ( if z C 3 5 2 )

from which n=l

xbdquo(0) = 0 n = 12 (353) The stochastic forcing term 1s treated in a manner similar to (335A) for the case with no-flow boundary conditions

If the Infinite series in (348) is truncated after tern n the fishynite set of normal mode state equations results as follows

lb

o

44 o

laquo bull $ [bullsin (ST)

raquoltt) (354)

Note that the major difference in the dynamics between systems with no-flow at the boundaries (as In Section 321) and systems with fixed boundary concentrations (as in this section) is In the first element of

35

the matrix A In the former it is zero in the latter it is less than zero This implies that the initial condition of the first mode of the problem with no flow at the boundaries will remain unchanged in time whereas that of the fixed boundary concentration problem will vanish for large time This difference is central to the considerations of Chapter 5

33 Two-Dimensional Diffusion

Consider the diffusion of a pollutant in a thin flat three-dimenshysional volume For simplicity consider the region to be of rectangular shape with sides of lengths 21^ 2L 2 and 2L 3 in the C 5 Zraquo a n d 3 c o ordinate directions as shown in Figure 33

Figure 33

If the vertical height 2L 3 is small in comparison to the horizontal dishymensions 2L 2 and 2L 3 the gradient of the pollutant concentration In the C direction can be neglected so that the average concentration In the vertical direction can be assumed for the concentration throughout the vertical dimension for any horizontal location

36

Two dimensional di f fusion applies to such a simpl i f ied model Conshy

sider the case of di f fusion in a homogeneous medium with no-flow boundshy

ary conditions and with r stochastic point sources at various locations

in the medium The init ial-boundary value problem in two dimensions may

be wr i t ten for th is model as fol lows

3 2C(gt) 3 2 5U t ) N

H ( S t ) at

36(Ct)

1

3euro(t)

t) bdquoVg(pound

1 raquolaquo1 + f ( s t ) (355)

0 5 = 0 1 = 2 L r

- g ^ mdash - 0 C2 = 0 5 2 = 2L2i (356)

pound(50) = pound 0 (357)

E[w(t)] = 0

E t y U J w ^ T ) ] = W^t t - T ) 1 = 12 r (358)

The no-flow boundary conditions (356) correspond to the case which has interesting practical applications where many such models may be coupled together to span a larger possibly inhomogeneous region The initial pollutant concentration throughout the medium is chosen to be a constant in the initial condition (357) for simplicity r individual stochastic point sources each located at I = c I are described by the ~ wi [ w i wi^J relationships in (358)

The separation of variables of this two-dimensional initial-boundshyary value problem proceeds much like the one-dimensional case However in this case owing to the inclusion of two spatial dimensions the

37

eigenfunctlons 1n the general case (313) w i l l be products of independent

functions of the two space variables as follows

laquolaquonltSgt E en(laquolgtemltS2gt c o s (J 1 5q-laquo l ) c o s ( ^ h ^ ( 3 - 5 9 )

Thus assume a solution for (355) of the form

5 ( ~ C t ) L L x nm ( t e trade ( pound )

n=l m=l

= Z J Xtradegt(t) cos ( J - gt 217 1 ) ( j 1 1 ^ ^ lt 3 - 6 deggt This is a direct extension of the one-dimensional form in (327)

Applying the same techniques used in the one-dimensional problem leads to the following resultant normal mode problem formulation for the two-dimensional case (for details see Voung [131] p 76 Duff and Nay-lor [34] p 148 Mac Robert [81] sect 13 and particularly Berg and He Gregor [18] Chapter 10)

Define the generalized modal resistances and capacitances v and C as In (331) where v 1s either n or m as in (359) and u 1s either 1 or 2 to correspond with coordinate Ci or cbdquo as follows

R v C v

v = 2 3

2 L U

v = 2 3

(v - 1 ) Z L T I 2 2 L U

v = 2 3 (v - I )2KTT2

2 L U

(361)

As in the one-dimensional case substitute the assumed solution S(jt) given in (360) into the differential equation (355) right-multiply by eigenfunction e U ) integrate over the medium and use orthogonality

38

Transform the i n i t i a l condition (357) in a manner similar to (333) and

(334) and the set of igt stochastic point sources as was done in (335A)

Truncate the double- inf in i te series solution in (360) to include n terms

in each coordinate direct ion in order to obtain the following f i n i t e set 2

of n normal mode state equations

11

21

x n x21

X l bull -feyen7) nl

x l 2 bull(yen7 + yenF) 12

m 0 - ( bull ) xnn

1717)() i ^ - c ) ^ ^ ^ ) -

laquopoundcos ( F S) yenTeos ( )cos (fc S j

^-^)r)-fgt^0

w(t)

w 2(t)

raquobdquo(t)

(362)

with initial condition given by

39

Xbdquo10) x 2 1(0)

Vllt 0 )

x2(0)

x (0) o

(363)

For m noise-corrupted measurements y = Cx + y (36)

as in the one-dimensional case the measurement equation is written as follows

(D(i) raquoraquo(j^raquo2l)ltraquo(5q)

^bull )5frlaquoi) c 0 ( lt ^S)

Lw bull i

gt 2 1it)

bull

2

v

(364)

In the state equation (362) the position of the i t | i point source is

written as

(365)

where the components in each coordinate direction and c are as in

40

Figure 33 Similarly for the jth measurement position in the measureshyment equation (364)

i 5 gt (366)

also as shown in Figure 33 (do not confuse the subscript j with time indices used in later chapters here locally z^ means the vector of the coordinates of the jth measurement position)

The result is that the two-dimensional diffusion problem results in sets of normal-mode state and measurement equations which are directly related to those in the one-dimensional problem The only differences are that here SHOTS of the eigenvalues occur in the diagonal A matrix and products of the eigenfunctions occur in the C and D matrices The order of the system ie the number of states retained goes as the product of the number of modes retained in each coordinate direction Thus for the same number of modes n for each coordinate to obtain accuracy in the solution comparable to that for n modes in the one-dimensional prob-lem a total of (n) modes must be included in the two-dimensional model Dimensionality thus grows as the number of modes in one dimenshysion to a power equal to the number of space coordinates describing the domain of the medium in the problem

34 Three-Oimensional Diffusion

The results for the two-dimensional case can be extended directly to three-dimensional regions In applicable coordinate systems (see refershyences listed in Section 33 for conditions under which this extension is possible) In this case solutions may be assumea to be products of

41

eigenfunctions in the three spatial coordinates and may be written degdeg to traquo

( 5 t = L Z L x i w r ( t ) e n^lgt e bdquoA 2 gtM 3gt- lt 3- 6 7gt n=l m=l r=l

TII details of the development are identical to those in the two-dimenshysional case and lead to the same forms for the A D and C matrices in (362) and (364) except that the diagonal elements of A are sums of eigenvalues for eigenfunctions in three not two coordinate directions and the elements of D and C are triple products of the one-dimensional eigenfunctions Dimensionality of the resultant system of state equations goes as (rc)

Three-dimensional examples are included in the discussion of monishytoring systems in Chapter 5 where the development is carried further

It should be pointed out that the method of separation of variables used in normal mode analysis applies in other coordlante systems as well (eg cylindrical and spherical) See any of the references cited in Section 33 for their development

42

CHAPTER 4 MODEL DISCRETIZATION AND APPLIED OPTIMAL ESTIMATION

The purpose of this chapter 1s two-fold First the continuous-time normal mode state equation models of Chapter 3 are transformed into disshycrete-time recurrence relationships for use in the Aalman Filter The statement of these discretization methods is separated from the continushyous-time model development of the previous chapter since they stand alone and can be applied to a variety of modeling techniques which reshysult in systems of first-order ordinary differential equations In addishytion to the normal mode modeling techniques developed above they would for example apply equally well to uncoupled differential-difference models resulting from applying modal analysis [79] to finite-differshyence models [47] or to models resulting from using collocation methods [94] Thus the discretization methods outlined here are general and form a logical connection between the more familiar theory of continuous-time dynamic processes commonly associated with distributed system modelshying and the theory of discrete-time dynamic systems where the majority of applications have been limited to the fields of control system and aerospace system analysis and synthesis

Second the optimal estimation problem is defined and its solution with the Kalman Filter is stated While details of its development are referenced in the literature a concise summary of an algorithm combinshying the simulation of the response of the model of a physical process with all necessary calculations for the optimal estimation is included at the end of this chapter

43

41 Discretization of the System Model

411 The System Model Equations - The systems under considerashy

t ion are typ ica l ly modeled with sets of continuous-time f i r s t -o rder

ordinary d i f fe rent ia l equations of the form

x = Ax + Bu + Dw (41)

y = Cx + y (42)

where the etatietios of the i n i t i a l state x (0 ) disturbance vi(t) and meashy

surement error v ( t ) are given by

E[x(0j ] = m 0

E[x(0)x(0) T ] = M 0

E[w(t)] = Q

E[w(t)w(x)T] = W(t)6(t - T ) (43)

E[v(t)] = o

E[y(t)v(T)T] = y(t)s(t - x)

E[x(0)w(t)T] = 0

E[x(0)y(t)T] = 0

E[w(t)v(T)] = 0 (43)

The discrete-time counterpart of the above is

~ X K+1 = SW^K + ~ J K+1 + raquoK+1 W-laquo)

K+1 = SK+I^K+1 + X K +1 bull W-Sgt

where the dr iv ing functions are defined by

44

J^+l raquo(t K + 1t)B(t)u(t) dt (46)

~K+1 K+1

j(t K + 1t)D(t)w(t) dt C47)

These two terms are convolutions of the deterministic and stochastic inshyputs and ) the state transition matrix defined by the matrix differshyential equation

I = Araquo (tt) = I (48)

In the above the system matrices A B C and p may be functions of time For the time-invariant case however certain simplifying obsershyvations and approximations may be made Let the time step be fixed ie T = (tv+i (bull) a n d obtain (see Appendix A)

amp1 MlVTV-efiT-I+AT + p - t ^ j mdash (49)

-K+l I)AB

T ( I + 2T CA1) + 57 (AT)2 + )sect (410)

= T(J + 2J-(AT) + 3I (AT)2 + )D (411)

With these definitions i t is possible to discretize the problem which

results in a form necessary for the Kalman Filter The discrete form of

the state equation becomes

K+1 amp1laquoK + amph + poundK+SK- ^ J 2

45

Here it is assumed that the input terms u K and w are sampled at time tbdquo and held constant over the interval ti t lt tv+i t n a t isgt

u(t) = u(t K)

laquo(t) = w(tK) t K lt t lt t K + r (413)

This assumption reduces the calculation of the convolutions for u bdquo + 1 and

w K + in (44) given by pound46) and (47) to the far simpler matrix-vector

mult ipl icat ions in (412) above This is possible since the matrix ser-

ies for K and r pound + in (410) and (411) are analy t ica l ly exact expresshy

sions for the convolutions when the variables are sampled and held as in

(413)

The matrix series in (49) - (411) are c lear ly impossible to evalushy

ate exactly The truncation of those series to a pract ical balance beshy

tween accuracy and computational load has been suggested by H M Paynter

(see Brewer [ 22 ] Ch 8) The number of terms k retained in the series

is found as a function of the maximum size of the elements of the matrix

[AT] A bound on the size of the remainder in the series is used to deshy

termine where the series should be truncated Standard integration

techniques (e g Runge-Kutta or l inear multistep methods) are not used

here under the assumption that i f the time stepsize T = ( t j + - t K ) is

su f f i c ien t ly small smaller than the smallest character ist ic tiroes in

the system response then the accuracy of the truncated series approxishy

mation w i l l be suf f ic ient for the purpose of th is study

46

412 The System Disturbance Stat is t ics - I t can be shown

(Jazwlnski [65 ] p 100) that the convolution w K + 1 of the stochastic

variable w(t) in (47) 1s i t s e l f a zero-mean white Gaussian sequence

with covarlance matrix given by

0 K + 1 1 K+1

= I ( t K + 1 t ) 0 ( t ) W ( t ) D ( t ) T 5 ( t ^ t ) 1 d t (414)

This term represents the increase in uncertainty in the estimate of the system state over the time interval T = (t K + - tbdquo) due to the stochastic disturbance term w(t) as in (41) This term is used in the error co-variance equations in the Kalman Filter in the next section

W(t) is a deterministic quantity so the integral in (414) does not involve a stochastic integrand However its numerical integration in general is still far from trivial For this reason a recursive method for the evaluation of amp + 1 will be used a method which closely follows the truncated series approximations for bdquo + + 1 raquo and I V developed in Appendix A

The development of the algorithm to compute Q+ is detailed in Appendix B The method involves differentiating gbdquo + in (414) with respect to time resulting 1n a matrix Riccati equation Hamiltons equations are then found for the Riccati equation which are then solved as a state transition equation Partitions of its state transition mashytrix are shown to comprise the resultant expression for fi An iterative numerical technique (see DAppolito [29]) is used in the actual implemenshytation

47

Suffice it to say here that a method is used to find state transishytion matrices $ and $bdquo (see Appendix B) such that

OK+1 = 2lt T )$22 ( T ) T- lt 4 - 1 5 )

42 Optimal Estimation -The Kalman Filter 421 Optimal Estimation mdash State estimation in dynamic systems

is covered widely in the literature Various developments of the Kalman Filter for optimal estimation can be found in Kalman [66] Kalman and Bucy [69] Sorensen in Leondes [78] Sage [105] Bryson and Ho [26] Heditch [85] Jazwinski [65] and 1n an extensive Bibliography in IEEE [62]

The reader is referred to any of the above for analytical derivashytions of the Kalman Filter equations The emphasis here is upon their implementation taking advantage of properties peculiar to the models being used in this study

The optimal estimation problem and its solution in the Kalman Filter are now described Given is the discrete-time dynamical system described by the following difference equations

raquoK+1 bull K +1K + amp1laquoK + 4lK C416)

K+1 =poundK + 1K + 1 + X K + T laquobullgt

Here x K is an n-vector u an p-vector w an r-vector and y K and v R

raquoi-vectors The vectors x w and v are white normally distributed ranshy

dom vectors with the following statistics

48

ECs 0] = m Q E Xo So 3 gt pound [ K ^ = 2 E KSj = y^Kj

E t y ^ = 2 E K J = Vty

E o KKJ = Q E _5o raquoK = 2raquo

E raquoK l j bull 9-

(418)

A notational convenience will be that for a normally distributed random vector 5 with mean value p and covariance Z pound is described as follows

K N(uZ) (419) The recursive linear estimation problem for the system above is to

determine an estimate x K of the state x at tj that is a linear combinashytion of an estimate at t| and the measurement y K which minimizes the expected value of the sum of the squares of the errors in the estimate that is that estimate which minimizes

$-$-$bullbull (420)

I t has been shown (see Kalman [66]) that the following comprises a

f i l t e r which generates the best estimate in the mean-square sense of

(420) of the state of the stochastic system (416) - (418)

The predicted error covariance matrix PJ+1 is defined by

K+1 x K

~K+1 K+1 ) (K+1 ~K+lJ (421)

and represents the error in the predicted estimate 3pound + 1

o f X K + 1 a t K+1

based upon measurements up to and inc lud ing y K a t t bdquo and i s given by

~K+1 5K + 1 poundK$K+I + 8 K + r (422)

49

Eg ^ H0- (423)

Note in equation (422) that Q K +i 1s the uncertainty in the estimate due to the stochastic input w(t) acting over the interval tbdquo lt t lt tK+- in the state equation (41) This is discussed 1n Section 412 and at length in Appendix B This is pointed out here since many references for the Kalman Filter assume a discrete form for the stochastic input which 1s sampled and held as in (413) and (416) In those cases the so-called disturbance distribution matrix r+ in (416) comes Into the preshydicted error covariance equation as follows

EK+1 = K+1EK$K+1 + ^ K + l ^ K + T

where Wbdquo is the sampled value of the disturbance covariance matrix W(t) at t = tbdquo in (43) In this thesis since the system being studied is continuous in nature equation (422) will be used instead

The Kalman gain for the optimal filter may be shown to be

K T f K T j 1

-K+1 = EK+l-K+l[K+lEK+l-K+l + -K+lj bull ( 4 2 4 gt

The predicted state estimate at time t K + knowing measurements at times up to and Including t K is

amp1 4l~K + amp1-V lt-25) laquoS = bull (426)

The corrected state estimate at t K + 1 including the measurement at

raquopound bull amp 1 + ~GK+1 ffK+1 fiK+l8K+l] bull ( 4 2 7 gt

time t| + is

50

And finally the corrected error covariance matrix at t bdquo + 1 given statistics of the measurement at t bdquo + 1 is

E pound I bull [l bull - G K + I pound K + I ] E K + I [ I - SK+IpoundK+I ] T + sectK+I~ V K + IsectK + I T - lt 4- 2 8gt

An alternate form of the above can be shown to be

$ 1 - [ l bull e K + ipound K + i ]~ p K + r (4-zraquo)

Each form has Its own advantages as will be shown in the next chapter Note the choices for the initial conditions for the covariance equashy

tion (423) and the state estimate (426) They are precisely those given for the system itself in (418) This 1s the best Information available about the initial state to use 1n the filter It turns out that if knowledge of these initial conditions 1s Imprecise the effect upon the later values of the state estimate diminishes as new measurements are processed

422 Summary of Filter Algorithm - For convenience the system simulation equations and Kalman Filter equations are listed together as in Figure 41

The equations 1n Figure 41 are sufficient to both simulate a physical system((416) and (417)) when the actual system cannot be used and to compute the filter calculations themselves The computational cycle 1s as 1n the figure Time is initialized to zero K = 0 and each equation computed Upon completion of one cycle time 1s Incremented and the recursion 1s carried out again until the final time of interest is reached

SI

K+I = K+I2K + ampISK + TK+ISK- 5O bull N(Sto ftgt (416)

ampi - slampW + 9 m bull E - Ho (422)

^K+1 deg EK+1~K+1 poundK+IEK+IpoundK+I f poundK+IJ (424)

K _ 4K JK VK JO K+1 ~K+1 K + iK+lV 0 3 0

(425)

poundK+I = SK+I^K+I + XK+I (417)

jK+1 _ K - r c Jit -| K+1 K+1 raquoK+1 L~K+1 K+lIC+lJ (427)

Etrade [l - SK+IpoundK+I]EK+I[I - sectK+IpoundK+I] T + S W S K + I sect K + I T (428)

Figure 4 1 System simulation aad Kalman Fi l ter computation

52

CHAPTER 5 OPTIMAL DESIGN AND MANAGEMENT OF MONITORING SYSTEMS

The purpose of this chapter is to propose a method of solution for the monitoring problem as stated in Chapter 2 The models for various processes considered in Chapter 3 are discretized using the methods of Chapter 4 for computation in the Kalman Filter The structure of the filter is studied in the context of the monitoring problem in order to obtain a set of monitoring design and managment equations Properties of these equations are examined in detail to yield the optimal solution for the monitoring problem for the case of time-Invariant systems with constant source and measurement noise statistics and time-invariant estimation accuracy constraint Numerical examples to illustrate the conclusions follow in Chapter 6

51 Monitoring and the Kalman Filter

As stated in Chapter 2 two variations of the monitoring problem arise in practice The first is to maintain the error 1n the estimate of the state of the system beow some bound over the complete time intershyval of interest The emphasis on limiting the error in the estimate of the state arises in the use of that estimate In closed-loop state feedshyback applications where high accuracy in the state estimate is of primary importance The second variation in the monitoring problem is to mainshytain the error in the estimate of the output the system variable itself everywhere in the medium below some bound throughout the time interval of Interest The system variable could be pollutant concentration radiation level temperature etc The thrust behind maintaining high

53

accuracy in the knowledge of the system variable cones with application in the detection problem where it is required to know to some degree of certainty where and when a pollutant concentration exceeds a legal limit

Both of these variants can be approached within the structure of the Kalman Filter As described in Chapter 4 the filter provides an optimal estimate of the state of a linear stochastic prrcess optimal in the sense that the expected mean-square error between the estimate and the state Itself is minimized Thus when taking a measurement of an actual physical system the Kalman Filter uses the information obtained In the measurement 1n the best way 1n order to update the estimate of the state The discrete-time recursive nature of the filter provides a fertile structure from which the solution to the monitoring problem can grow

In either case with a bound on state or output estimate error the basic structure of the problem is the same to take the fewest total number of samples over a given time interval in order to maintain the error in the estimate within some bound This says nothing about the number of samples to be made at each measurement time whether or not that number changes from measurement to measurement whether sample locashytions move from measurement to measurement just that when the time inshyterval is over the least number of samples were necessary to insure the accuracy of the estimate

As summarized 1n Figure 41 the first step 1n the Kalman Filter algorithm 1s to Initialize the estimate of the state vector and state estimate error covarlance matrix (from (426) and (423)) The state esttate and its error covariance matrix are then predicted ahead one

54

step in time 11416) and (422)) Sefore each measurement the Kalman gain 1s computed (424) Next a measurement 1s made of the process Itshyself (417) which starts the correction phase of the algorithm The new information from that measurement 1s used to correct the estimate of the state (427) and the statistics associated with the measurement are used to correct the error covariance matrix (428) Finally the time is incremented and the new corrected values are used to reinitialize the prediction equations at the beginning of the algorithm so that the algoshyrithm may be repeated for the next cycle

This sequence of predicting taking a measurement correcting preshydicting taking another measurement etc was the original calculational form of the Kalman Filter (see Kalntan pound66]) Since then applications to guidance and orbit determination for example have resulted in splitting apart the prediction and correction phase allowing for reshycursive prediction of many cycles before a measurement is taken and its corresponding correction made pound301 [44] [65] Moore [95] has shown how this splitting applies In use of the Extended Kalman Filter in monishytoring system design for nonlinear aquatic ecosystems (see Jazwinski [65] for detailed discussion of the Extended Kalman Filter) Thus separating the prediction and correction of the estimate has been suggested as a beginning for the solution to the optimal monitoring system design and management problems (see Brewer and Moore [24] and Brewer and Hubbard [23])

Suppose then that the Kalman Filter algorithm is initialized as usual but instead of taking measurements at each cycle sampling 1s deshyferred until it 1s absolutely necessary to gain more information about the actual system throufh a measurement in order to mlt- intain the error 1n the estimate within some bound This seems like an approach which

55

would logically lead to the fewest number of samples over a given time interval but in fact the optlmaltty of sampling only at times when the error limit is reached is difficult to prove Since it can be shown that for certain special cases the minimum cost measurement program is to sample only when the estimation error is at its limit assume for now that the optimality of such a sampling schedule extends to all cases in order to proceed in the development of relationships for the optimal deshysign problem defer until later proof of the fact that sampling at the limit is the optimal solution of the management problem

Once the bound is reached it is necessary to take a measurement A major phase 1n the monitoring problem is at hand that referred to as the design problem [24] At a measurement time the design problem seeks to answer the following questions

1) What is the best number of samples to take for this measurement

2) What are the best types of samplers to deshyploy

3) Where are the best sites in the medium at which to locate the samplers

The term bes appears in all these questions but best Is what sense In the context of the monitoring problem here posed best can only mean In the manne- which will lead to the fewest total number of samples being taken over the entire time Interval of interest Thus if the assumption of the previous paragraph is true that is if it 1s optimal to sample at the estimate error limit only then the goal of the design problem should simply be to answer (1) (2) and (3) above such inat the time when the error bound is next reached is maximised Then if at each measurement the time to the next measurement is maximized overall the number of measurement times should be minimized

56

However this doe not take into account changing numbers of samshyplers at various measurements For now ignore this part of the problem in order to establish firm results about the case where the same number of samplers are used at each measurement time deferring until later remarks about the general problem

Thus the result in the solution of the design problem also solves the management problem that of the optimal timing of the measurements With this framework established for solution of the monitoring problem first the case of bound on error in the state estimate is considered then that of bound on error in the estimate of the system variable or

output will be dealt with

52 One-Dimensional Diffusion with No-Flow Boundary Conditions

A most important recent application of normal mode analysis is the bilateral coupling of diffusive elements (see Young [13TJ) Throjgh simshyplifying infinite order normal mode models in a quentitative manner it is possible to approximate the characteristics of an inhomogeneous medium by coupling together homogeneous models This is done by assuming no-flow or Neumann boundary conditions at the junctions and introducing pseudo-sources to account for resultant differences The technique readily extends to multiple space dimensions and is thus very powerful

With the practical importance of this technique established [131J the case of ore-d1mens1onal diffusion with no-flow boundary conditions is a fundamental system to consider 1n optimal monitoring system design and management This case is used as the basis for all the theoretical developments in the following sections For completeness extensions and applications of the results to other diffusive systems are considered in the last sections of this chapter

57

53 The Design Problem for a Bound on the Error in the State Estimate

531 The Infrequent Sampling Problem - In the statement of the recursive linear estimation problem in Chapter 4 the Kalman Filter was stated to be that filter which minimiz 5 the mean-square length of the error vector between the estimate of the state and the state itself of a linear stochastic system That is for all times tbdquo it mirimizes

Notice from (420)and (429) that the covariance matrix is defined by (

EK~K+1 ~K+V~ K+l K+l ltamp]bull lt5-)

that is at time t K + the covariance matrix just after the sample is K+l given by PK+-i- It can be seen from the aDOve that

^K+l bdquo YfcK+l W E ^ x ^ - x K + v ) [ ^ - x R + 1 ) I - T r | p mdash I (52)

Thus in order to minimize the mean-square length of the estimation error vector for a measurement at time t+ that measurement should oe chosen which minimizes the trace of the corrected covariance matrix Thus the choice of a convenient scalar performance index for the probshylem of maintaining the error in the state estimate within some bound is to use the tvaae of the estimation error covariance matrix

Returning then to the requirements of the design strategy of the last section it is necessary to choose a measurernt so that in this case the time when the trace of trie covariance matrix next reaches its

limit will be maximised This might be thought to be the same thing as finding that measurement which minimizes the trace of the covariance matrix at the time of the measurement but as will be seen these are not necessarily equivalent To study the evolution in time of the

58

trace of the covariance matrix repeat the equations for the predicted

and corrected covariance matrices

pK+1 ~K+1

where

[l - sect K + 1 pound K + l ] pound K + 1 [ l - sect K + l S K + l J + 5 K + 1 V K + 1 G K + 1

T (428)

sectK + I - ~ P U K + I [ S K + I amp I S K + I + K + I ] lt 4- 2 4gt Use (424) and (429) to obtain

Note that the two forms for p^Jj (428) and (53) can be shown to be equivalent (see Sorensen [78]) Both are listed since It Is u n shyknown that the former is superior computationally from an accuracy point of view 1n that it tends to preserve the pos1t1ve-def1n1teness of the covariance matrices better (see Aoki [ 3 ] ) but the latter is much simpler to manipulate analytically Thus (53) rill be used 1n all the analysis involved in the solution of the monitoring problem and in any numerical gradient algorithms resulting from that analysis whereshyas (428) vriU be used directly In the filter calculations themselves

To make the problem tractable constrain the range of the problem as follows

Assumption Only systems of the form (340) will be considered tthere the eyetem matrix A aontrol matrix g and disturbance matrix D are all time-invariant and c laquo where the disturbance noise oovarianos matrix W and measurement noise oovarianae matrix V are aonaiant

With this assumption initialize the algorithm at time t Q by setting the

covariance matrix in (422) to tfQ Then predict to time t to get

Pdeg = j H 0 j T + n (55)

59

where the subscripts have been dropped owing to the condition of assumpshytion (54) and $ for a fixed time step Is given 1n (49) Next it is necessary to check to see if the error limit which may be called Tr_ has been reached That 1s 1s

TS lrlim

I f not advance in time to t 2 and predict ahead again

Edeg bull laquoET + 5

Check again

I f not

$ZM$ + 4flraquo + Q (56)

[4 TrIBI gt Tr I i f f l

Edeg - JE 2V bull 0

2 0 2^ T

bull t39(jS3 + S 2S Z + 3 T + 8gt (57) Assume that fter K steps the limit is finally reached From Appendix C (57) can be generalized to the form

bull f sn-VlT eS - raquo bull gt s^V 1 bull (58)

It is now necessary to make a measurement Apply (53) to obtain for the measurement at time t K

Note here that from assumption (54) y 1s a constant thus no subscripts but Q K 1s net Q K 1s what 1s available to change 1n the design of the

60

measurement to be taken It is again to be chosen to maximize the time over which prediction may take place before the limit on the trace of the predicted covariance matrix is reached at the next measurement That is find Q K at time t K such that N is maximized where

DK ANbdquoKN T An-l nn-l T K 1 M

pound K + N EK + gt 4 Si (510)

and (511)

In developing a strategy for the choice of Gi to maximize N the properties of (510) the matrix solution of the linear matrix recurshyrence (422) are now considered Since the recurrence is linear In P its solution may be decomposed into the zero-input response and the zero-state response these terms are more commonly known as the homogeneous or unforced and particular or forced solutions in differential equations or dynamic system theory The first term in (510) is seen to involve only the initial state of the covariance matrix just after the sample at time t K the zero-input response The second term the zero-state response has nothing to do with the covariance at time t K and involves only the strength of the disturbance noise ft An observation can thus already be stated

Conclusion I The selection of C K at time t K to maximize t ^ the time of the next measurement is solely a function of PR and not the forcing function (CI)

This can be seen by rewriting (510) as follows

61

T T pound K + N ( C K ) - J N E pound ( G K ) N + ) n 10raquo B 1 bull (512)

Here it is seen that the predicted value of the covariance matrix at time t K +bdquo is a function of the measurement matrix back at time bdquo However only the first of the two terms in the expression for the predicted co-variance matrix involves that measurement matrix

Thus in order for t bdquo + N to be as large as possible before condition (511) is met it is required that the trace of the covariance matrix at time t K + N be minimized by the appropriate choice of the measurement matrix at time tbdquo This presents a formidable problem in the general case The general solution might be approached through the use of dyshynamic programming or through a direct search algorithm structured as follows

(1) Pick in sone manner Q|q (2) Predict ahead to time t K + N using (512) until (3) Tr[PJlt + N(C K i)] gt T r J i n

(4) Store N in N return to (1) (5) Stop when convergence to largest possible Nj Is assured (513)

Such a procedure could be quite costly to execute since it is a direct search technique rather than a technique for which an analytical expresshysion for the gradient of the objective function cn be found Also each evaluation of the objective function that is the finding of each Nj when (3) 1s satisfied Involves carrying out the solution of the mashytrix equation (422) N ( times (It should be mentioned that since the interest here is only in the trace only the diagonal terms of (422) need be computed each time but this 1s still costly nonetheless)

Since an algorithm of the type In (513) is cumbersome at best seek more concise solutions for the problem in (510) and (511) To do

62

this more information ci the structure of the process Involved Is necesshysary that is more knowledge of the forms of $ and Q Suppose the sysshytem which $ represents is a one-dimensional diffusion process with no-flow boundary conditions see Section 321 for such a system Suppose that the problem 1s formulated in normal modes so that the system matrix from (337) 1s given as

o A =

KIT

o bull lt - I ) 2 F

(514)

Thus for this time-invariant system matrix i ts state transition matrix

for the time step T = ( t K + 1 - t K ) according to (49) is given by

O

pound laquo T

Kn2

T ~~7 4LZ

o -0-1) ^ T

(515)

Notice that with the ordering of the eigenvalues in the system matrix in (514) the diagonal elements of laquo written t^ exhibit the following property

11 raquo 11 1+1 1+1 bull ^ deg l23n-l (5 where n I s t h e number of states retained in the normal mode mode and is thus also the dimension of the square matrices 6 and Choice of

63

a normal mode model has resulted 1n this unique relationship in (516) which allows drastic simplification of the optimization problem in (510) and (511)

Expand equation (510) to obtain

pK

tnlv iwl nraquo1

ML fir1

C517)

From the form of (517) using property (516) shows that for N large

the first term of (510) 1s given by

(518)

1 and j i- 1

64

Thus for N sufficiently ^rge all that 1s left of the homogeneous term 1n (610) at time t K + [ ) U -ie first element of g at time t R This result together with Conclusion I yields

Conclusion II For N large the following are equivalent r bdquo - (1) Find C K which minimizes Tr[EK+N(CK)J i (2) Find CKwh1ch minimizes ^ ( C K ) J CII)

From the discussion just after (512) 1t 1s obvious now that the choice of pound K gt for the optimal measurement matrix at time t K can be stated as

Conclusion III For (Llarge to maximize t|lt+N the time when Tr|E^+H(CK)J gt Tr j i m choose cj at time t K which minimizes ( E R ^ K O H (CIII)

Thus for the asymptotic case of N sufficiently large so that (518) applies within some tolerance level the monitoring problem is solved Such an infrequent sampling program may well apply to many physical sysshytems where the dynamics of the transient response are fast in comparison to the time between samples The above conclusions reduce the monitorshying system design problem to one of minimization of the (ll)-element of P in (59) a procedure for which writing the gradient of the objecshytive function is straightforward

In order to more fully understand the nature of the solution (510) consider the second term the zero-state response in (510) and (517) This term is a matrix convolution of the disturbance covarlance matrix Q and the statf transition matrix 4 As such it possesses qualities of convolutions of other linear processes Write the general element for the second term of (517) as

8 l l 5 l a i j L l W l a n d j ^ l (519) n=l

65

From property (516) 0 gt lt 1 1 + 1 Recognizing the products (ijtj) in the convolution term 1n (517) as conmon ratios in geometric progressions the element of the matrix convolution may be seen to apshyproach the limit

L n d j f 1(5-20)

Thus a l l the elements in the second term of (517) go to steady-state

constants as N gets large except the f i r s t which grows monotonically

as a ramp with slope [ f l j i i

Thus (510) may be wri t ten schematically as

+ pK -K+N

o c a sS

(521)

where the (1l)-elements of the matrices are shown partitioned from all the other elements of those matrices- this 1s a notatlonal convenience used throughout what follows From (521) the simplified relationship for the trace can be written as

[CCeK^^K^NMll^r^J Tr|P^bdquorc^| - |P)(Cbdquo)| + H[BJi + Tr| 8 I- (522)

The meaning of Conclusion II becomes clear In that changing the nature tbdquo by char

only through P K lt G K ) J it at time t K + N Then

(523)

of the measurement at time tbdquo by changing C effects the value of Tr P pound T N ( Q K ) only through P K lt G K ) J f o r N sufficiently large Also say the equality in (511) is just met at time t K + N gt Then

(523) can be used to demonstrate Conclusion III From (520) and with

66

a as defined In ( 5 2 1 ) 1 t Is seen that for various choices o f Cbdquo in SS - K

( 5 2 3 ) T r rn ] remains Invar ian t so long as N remains s u f f i c i e n t l y l a r g e LSSj

Thus In the equality In (523) the f i rs t two terms on the right-hand

side always sum to a constant and as CK 1s chosen to minimize IPKCK)J

N 1n the second term Is maximized Conclusion I I I 1s thus seen to hold

whenever the limit 1n (518) 1s approached

A graphical depiction of the relationships 1n (522) and (523) 1s

shown In Figure 51 In Figure 51A a representation of a typical plot

of the ful l trace of P over tine is shown while 1n Figure 5IB the eleshy

ments of the asymptotic approximation In (522) are drawn Writing the

trace of the matrices In (517) obtain

-W=fe]bdquo+[4^ [44 laquo[laquobdquo bull m2zEfv~) + bullbullbull+ r^yr lt5-24gt

As N grows large (524) t~-t to (522) but during the Initial transient period the last terms of both lines of (524) are going through changes These changes account for the approach to the asymptotic slope near time tu In Figure 51A

Notice how If a different choice of C K results In a smaller value of | P K ( C K ) 1 Figure 5IB that the start of the plot would be transshylated downward with the same offset of Tr[(jJ to result in a longer time

SS interval before the limit Trlim 1s reached again

532 The Effect of a priori Statistics - Choice of H Q and m Q

in the filter equations (416) and (422) has come under considerable study ever since the introduction of the Kalman Filter Much effort has gone Into identifying these terms in actual applications and consider-

67

Tr[ppound+H]

T r [ $

(A) Actual response

Trlpound]

Vim

T-reLj

gt _ T1i

raquo - T 1 M

(B) Asymptotic approximation

Figure 51 Schematic representation of the basic relationships In the Infrequent sampling problem

68

able time spent in assessing the sensitivity of the results to lick of knowledge of the Initial statistics Attention 1s now turned to these topics within the framework of the above results for the case of Infreshyquent sampling

It 1s required to find the effects that various values for M Q the matrix of 1mt1al uncertainties 1n the estimate of the state xX have upon the optimal measurement system design poundbdquo for che first measurement at time tbdquo For the case of bound on (58) It is necessary to sample when at time t For the case of bound on error in the state estimate from

bull [ p 0 K ] c T r [ V T + ^ J n 1 S J n l T gtbull ^ U m - lt 5 - 5 gt

n=l

If K lo sufficiently large at the f i rs t sample so that (518) approxishy

mately applies then (525) may be written as

[]u Mil + T [

s^ l r t i m ( 5 2 6 gt

as 1n (523) Thus only the (lf)-element of matrix H Q 1s of any signishyficance 1n the first sample for K sufficiently large Furthermore sines Tr[ f ] is a constant for various choices of H Q the remaining two

SS terms 1n the left-hand expression of (526) sum to a constant over all choices of M_ To deduce the significance of this write out the mashytrices for (525) in a manner similar to (521)

K Pdeg = $K tyfV 1 (5-27)

n=l for K large (518) allows (527) to be written as

69

]11 K[n ] n 0

pdeg - + +

o O a is

(528)

Note that 1f (520) applies then a par t icu lar ly important result fo l lows

namely that the ( l l ) -element of the predicted covariance matrix at the

f i r s t measurement time is given by

K L K ^ I l laquoSn)= laquowst (529) no natter what HQ may be

For the measurement i t s e l f E K i s used in the following expression

Pdeg - PdegC iyK+v]$- (530)

But from (528) since for K large a is f i xed and since (529) holds is

making the optimum choice C of C^ 1n (530) Is independent of the Inishytial error covariance matrix H Q but directly related toTr which is summarized in the following

Conclusion IV For K large determination of the optimum measurement matrix C K at t K 1s determined by the error limit Trlim and is independent of HQ (CIV)

Conclusion V For K large the only effect (jg has upon the monitoring program is in determining with T r z f m the time of the first measurement t K (CV)

Thus if the constraint T r ^ in (525) Is such that (518) and thus (526) hold choice of the Initial condition for B 0 is of little imporshytance However in practical applications the better approach to the identification of the a priori statistics is to concentrate analytical efforts upon the identification of only the (11)-element of Mg and not ujon identifying the full matrix in cases where the simplifying approxishymations of the infrequent sampling problem apply In this manner a better estimate of the first state should be possible for the same

70

analytical effort leading to a longer time before the first sample is necessary

533 Fixed Number of Samplers at Each Measurement and Fixed Error Limit - Thus far little has been said about the number of sampling devices to be deployed at each measurement time Consider here what happens when the same number of samplers m is to be used at each meashysurement Consider further the case when the error limit placed upon the uncertainty in the state estimate Tr m is the same throughout the problem

Suppose a sample has just been made at time t K In order to study the optimal designs which arise-at different measurement times consider the next two sanples which occur at times t|+N and t K + N + f ) Since T r J i m

1s constant If both N- and N 2 are large in the sense of (518) obtain the following conditions at the two sample times

^ U j ap()] n

+ Wi + T r s f lrnlt r K+N I r K+N lt

gt Tr lim

(531)

(532)

Since Tr[ 8] is the same for both measurements for the case of the

equality in both (531) and (532) I t is seen that

[i$o]n bull W T = p(eK + N l) + NgCfl (533) 11

Now if the full matrices In (532) are written out obtain

r p

K + N l l - PK+N N 2 r s j u

0 1 ^ Jl1 + 1 + N 2

O O ss

(5-34)

71

Substituting N 1 for N in (5211 comparing with C534) and using (533) leads t o

K+N it K + l E K + N = ER+N +N N l a n d N2 s u ^ 1 c 1 e n t 1 y large (535)

Thus the predicted covariance matrices at each sample time must be equal

The corrected coyarJance xoatrices just after both samples magt then he

written from (53) as follows

K+N p -K+N

laquo[c PK C C V T + V T V PK (c (536A) LfK+N^K+N^tyiK+N JJ SK+tl^KtH^K

l + N 2 raquo K+N bdquo K+N bdquo T

l+Nj^K+N+N2 ) EK+NJ+NJ^K+N ) EK+N^NJ^K+N ]poundK+N+N 2

r K+N T 1-1 K+N v [EK+NJ+N^K+NJ+NJI^K+N^K+NJ+NJ + -J ^ K + N + N K + N N J pound K + N )bull

(536B)

By recognizing that the two predicted covariance matrices are equal from (535) equations (536) lead to the most important result for the monishytoring problem

Conclusion VI For the infrequent sampling moni-toring problem with a fixed number of samplers and conshystant error 11mlt the optimal design of the monitoring system - the optimal number of sensors and their placeshyment - need only be done once for the same design is optimal for all other measurement times (CVI)

Also from (535) and (536) can be seen Conclusion VIA In the optim) monitoring probshy

lem measurement times are equally spaced (CVIA) These relationships ara Illustrated in Figures 52A and 52B The firsv curve represents a typical trajectory of the full trace while the second the asymptotic approximation Since P pound + N = E K + N + N bull t h e resulting optimal measurement matrices pound K + N and C K + N + N must be the same

72

r K + N I T l ~ p

r + +

^mdash Time

N [g]

(B) Asymptotic approximation

Figure 52 The infrequent sampling problem with fixed number of samshyplers and constant error bound

73

534 Variable Number of Samplers - The case where the number of samplers to be deployed at each measurement time may vary 1s 1n general quite difficult However in cases where (518) applies the case of infrequent sampling results can be obtained If the error limit Tr is constant over the time interval of interest then the result derives immediately from Conclusion VI

Conclusion VII For the case of infrequent sampling the optimal number of samplers to use may be found by reshypetitively solving the optimal design problem for CJJ at the fi rst measurement over the range of gt=1 tc m-n sam-plers then extending the results over the full time intershyval to find which C^ as a function of m leads to the fewshyest total number of samples The optimal number of samshyples to take at each measurement time is the same for all measurement times (CVII)

Thus for infrequent sampling the optimal number of samplers to use is seen to be constant at each measurement and that optimal number can be found in a computationally straightforward manner at the first measureshyment time

Even though the optimal number of samplers to use at each measureshyment is a constant it is important to note that at any specific sample time the optimal number of samplers to use is independent of the number used in the other samples This can be seen by comparing (531) and (532) as was done in (533) If m samplers had been used at time tbdquo

in the left-hand side of (533) m+ could have been used at time t K + bdquo in the right-hand side Since for the case of the equality the two suras in (533) must be equal if the dimension m K of the measurement on the left-hand side were smaller than u+u on the right-hand side then in general P K would be larger than PixJ a n d simultaneously N smaller than N Thus in the case of infrequent sampling at the sample time t K + N in (531) the value of the covariance matrix Ppound +bdquo for use in (536A) to determine C^ + N at time t R +bdquo is no longer truly a function of CJ nor

74

of mK Its dimension This 1s so since the sumnEjSCcj) + f t g^ - l in

(531) is a constant i f CjS changes so wil l N to maintain the sum at

that constant Thus since Trig] in (531) 1s fixed and since the SS

Cher two terms form a constant the trace Tr K 1 ~K+Ni o n t h e l e f t - h a n d

side is determined only by the error limit itself T r ^ Hence P pound + N

for N- large does not directly depend upon C K even though such a funcshytional relationship is implied by writing P pound + N (cpound) Thus various numshybers of samplers could be used at different sample times However it is only in considering the solution over the full time interval of inshyterest that the overall optimum is seen to be the use of the same number of samplers at each measurement This concept is demonstrated at length in the example in Chapter 6

535 Analytical Measurement Optimization - Thus far the optimal monitoring problem posed in Section 52 socialized to the casii of bound on error in the state estimate has been found to be equivalent to the minimization of Pj^(CK) as a function of Q K in Conclusion III Little has been said however about the actual determination of ct the optishymal choice of Cbdquo which minimizes the objective function Pu(Cbdquo)

~K L~ KJn As is well known analytical methods of obtaining extrema are supeshy

rior to numerical methods wherever analytical methods exist (see Beveridge and Schechter [20]) Analytical solutions to extremization problems usually exist however only for very special cases A fortushynate situation arises in the present case since some work has already been done in dealing with extrema and derivatives of the trace functional (see Athans and Schweppe [11] and Athans [8 ])

Pursue an analytical solution of the optimal design problem which with the simplifications of Conclusion III may be stated as follows

75

Find the optimal measurement matrlc C K such that lE^K^n 1S m1n1m1zed- C 5- 3 7)

This Is minimization of the first element of the corrected covariance matrix after a sample at time tbdquo over all choices of possible measureshyment matrices C K Analytical methods exist for approaching an allied problem which may be stated as follows

Find the optimal measurement matrix C K such that Trrj^(CK)] is minimized (538)

As shown in Conclusion II these are not the same problems (538) is minimizing the trace at the time of the eample whereas by Conclusion II (537) is equivalent to minimizing the trace for times far beyond the

aample time However techniques for the solution of (538) could prove to be applicable to (537)

Motivated by the computational efficiency of an analytical solution an attempt is thus made to solve

3 7 TK)]-9- lt 5- 3 9gt The notation in (539) means taking the partial derivative of the trace of P K ( pound K (a scalar) with respect to pound (a matrix) This concept has been developed by Athans and Schweppe [11] and applied to a similar probshylem by Shoemaker [117] In order to find the stationary matrix solution of (539) extensions of concepts of finding extrema in ordinary calshyculus are made to the case of scalar valued functions of a matrix

Consider the system starting at time t Q For a measurement at time t K seek C K such that using (59) in (539)

76

As detailed in Appendix D the result is

C = 0 (541)

This can be seen to correspond with the case of taking no measurements such that the extremum found in (540) is actually a maximum not a minishymum An initial attempt was made at constraining the range of C in such minimizations with the method of Lagrange multipliers with no success

more study is still needed of such analytical techniques One study is currently underway by Shoemaker I117J in which restricted classes of probshylems are treated through the use of analytical techniques such methods were not found to be appropriate for use in this study since they require n measurements at each sample time a severe restriction

Alternate performance indices to that used in (540) yield matrix equations whose solutions are not known so that the analytical approach with the trace function is not found to be fruitful see Appendix D

It can be shown that attempting to solve the more germane problem of finding Cjl in (537) such that

(542) 3CJ [~K(poundK) 11 also results in sets of equations for which solutions are not known An even more appropriate optimization problem might be to maximize the time itself between required measurements For the discrete-time formulation used here however this is equivalent to finding

where N is the number of timesteps between samples Solutions to this problem were pursued but led to less conclusive results since due to the discrete nature of N many choices of C resulted in the same maxishymum value for N Thus the analytical approach though instructive in

77

the erea of matrix calculus is abandoned as a means of solving the monishytoring problem (see Appendix D for details of gradient matrices for the trace function and its calculus)

536 Numerical Measurement Position Optimization - In the last section attempts were made at analytical minimization of TrIP KCbdquo)I or E K ^ K M W 1 t n respect to the matrix Q R itself A fundamental question underlies extremization of measurement functionals directly with respect to the elements of the measurement matric Cbdquo once Q K is found how is it related to the vector of actual optimal sensor locations in the medium z K None of the studies of measurement system optimization found in the literature adequately addresses the optimal measurement design problem from the point of view of optimal placement determination

The normal-mode formulation of the diffusion problem is introduced as a means of tying together Q K and z For the case of one-dimensionai diffusion with the no-flow condition at the boundaries from (339) write Q K as a function of z as follows

1 cos^z) cos(2fz) co((n- 1)^2)

1 cos^Zg) cos(z^-z2y COS((K - 1) 2^2) poundLzK) s

( laquo )

(543)

Thus C K is a continuous function of zK so that all the conclusions deshyveloped thus far apply with pound(z K) substituted for C_K and for minimizashytion with respect to zbdquo Instead of Cbdquo

For example with the use of C(z) as defined in (543) Conclushysion III may be written as follows

78

Conclusion IIIA For N large to maximize t K + N the time when TraquoTE|(+N(C|[ZK)))gtTIpoundWII choose that z K at time t K which minimizes [P^Ctzj^))] (CIIIA)

Consider the problem of the minimization of the scalar-valued objecshytive function pSfc(z K)) of a vector z R Such problems hae received considerable attention (An adequate coverage of the various techniques may be found in Beveridge and Schechter [20]) The monitoring problem where the allowable positions of the samplers are constrained to H e sonewhere within the region of the medium suggests consideration of ton-strained optimization techniques There are various types of constrained minimization methods methods requiring use of only the objective function itself (so called direct methods) methods which require the objective function and its gradient (first-order gradient methods) and those which 1n addition require the Hessian of the objective function (second-order gradient methods) Sscond-order gradient methods are often the fastest of available methods [l03] Thus in the interest of numerical efficiency such second-order methods are considered

Define the objective function of interest to correspond with Conshyclusion IIIA

JltKgt -= [edegK - E K pound T ( laquo K ) ^ K gt $ V + x T ^ e S ] - lt5-44gt As shown by Athans and Schweppe [11J for the case of the trace operator TrlO the total differentia am) trace operators are linear so that

(see Appendix D) d Tr[X] = Tr[dX] (545)

Similarly in (544) what may be called the []^-operator is also linear being a linear part of the trace so that

d [ X ] n = [ d X ] n (546)

79

From Appendix D

Define dX1 = -XHdX) 1 (547)

T 5 |c(z K)PdegC T(z K) + VJ (548 (546) (547) and (548) are used with (544) to find the gradient of the objective function which may be written as follows

^W-LiESfe^r E^

^SEfeOVfer^] (5-49gt

where the unit vector e H [00100] the l in the ith element Thus the gradient of J( K) may be written analytically in a straightshyforward manner Note that the inverse need be cc-mputed only once per evaluation of the gradient and that 1t is an (n x m) matrix not an (w x laquo) matrix Usually the number of measurement sensors m 1s smaller than the number of states in the model n so that this inversion is computationally manageable (As a historical note this quality of Inverting the smaller (m x m) matrix was one of the important features inherent 1n the practical utility of the Kalman Filter see Jazwinski [65])

For the second-order gradient of J ( J K ) known as the Hessian adopt for the time being the following notation

(1) Drop the time subscript K the tildas and the funcshytional relationship so that C = C(j K) P H gdeg

lt2gt c i s S 7 S ( 8 K )

lt3gt c i j E 8 i 7 5 i 7 G ^ - lt 5- 5 0gt

80

With (550) differentiate the ith element of (549) with respect to the jth element of zbdquo to obtain the UraquoJ)th element of the Hessian as follows

ra^ijj bull -[C^VCR - K^fclW+ c K c T ) T l c p

- P C V 1 lt(c1)cT + CP(C|)gtTYCJ)P

+ PCT T 1 ^ ^ ) - P^CJJT^CJ^CVCP

+ P C V 1 (C^PC 1 + C P ^ ^ T V C J J P C V C P

- PCV 1 (C 1 J)PCV 1 CP - PCT1(C)P(CT)T1CP

+ P c V ^ P c V 1 ^(cJPC 1 + Cp(cj)gtT CP

- PCV^CJPCV^CJP - P(CJ)T1CP(C])T1CP

+ P C V V ^ P C 1 + CP^JOT^CP^JJT^P

- PCTT1(c i)p(rI)T1CP - P c V c P ^ c J ^ C P

+ P C V C P ^ T 1 (C^PC 1 + CP^JHT^CP

- PcVcP^TjT^cJpJ (551)

This represents only one term if the m x n Hessian matrix which would be given by

where L is a unit matrix The computational efficiency of second-order gradient methods is seen

to be lost in the horrendous task of defining the Hessian of the objective function and for that reason first-order gradient methods are nought

81

Before going on to first-order gradient methods a word about direct search methods 1s in order While in general less efficient than gradishyent techniques direct search methods possess the distinction of not reshyquiring an analytical expression for the gradient an important practishycal advantage This is of significance first since it permits a user to proceed much more rapidly from his problem statement to its coded form for numerical solution Secondly and more importantly the vast majority of physical problems do not admit the writing of an analytical expression for the gradient so that for those problems direct search methods are all that is available An interesting example of a direct search technique is that due to Radcliffe and Comfort [103] j R w nich Powells unconstrained conjugate directions minimization procedure withshyout derivatives [l03] is extended to the case including nonlinear equality and inequality constraints However in the monitoring problem it is a straightforward process to define a gradient of the form (549) so that first-order gradient methods are preferred over direct methods for their computational efficiency

The algorithm chosen for finding the minimum of J( K) in (514) was written by G W Westley and is named KEELE [127] It is an algorithm to find a loaal minimum of a function of many variables where the variables are subject to linear inequality andor linear equality constraints It represents an extension of a Davidon variable metric procedure reported by Fietcher and Powell [127] using gradient projection methods (see Rosen [54]) to include the case of linear constraints

Note how in the monitoring problem it is necessary to constrain the ranges of the variables so that resultant monitoring positions bear physhysical significance to the problem statement Note also how only linear

82

not nonlinear constraints are required each of the elements of zl must satisfy a constraint of the form

0 lt z lt 2L i = l2m (553)

where the one-dimensional medium 1s of length 2L Note how this algorithm and all gradient algorithms seek only

local not global minima The only way known to approach solution of the global minimization problem is by solving a sequence of local minishymization problems starting from different initial guesses until some meashysure indicates probable convergence to the global minimum (see Beveridge and Schechter L20]raquo p 499 and Radcliffe and Comfort [i03]P- 3) For this reason KEELE has been modified to include random initialization of the starting vector zbdquo This technique has beer found to yield satisshyfactory results provided a sufficient number of random starting points is used 1n each attempt at finding a global minimum in J()

Thus within the probability that the best local minimum found is the global minimum the optimal positioning of the m samplers at any time tbdquo is considered solved

537 Numerical Measurement Quality Optimization - The last quesshytion left to answei at a measurement ltime 1n the design problem of Secshytion 51 is what types of sensors to deploy at a samnle Consider the filter equations of relevance for a measurement at time tbdquo

y K laquo C(z K)x K + y K (554)

Ppound = Pdeg - PdegC(z K) Tfc(z K) PdegC(z K) T+ yj C(z K)Pdeg (555)

83

h PdegCCz K) T|c(z K) P^ (z K ) T + VJ (556)

As presented in Chapter 4 the noise-corrupted measurements 1n (554) are

characterized by mean vector and covariance matrix given as follows

E[vK]i o

M Thus the additive measurement noise forms a sequence of zero-mean white Gaussian random vectors with covariance given by V To conform to this problem structure the only variables lnft to determine in specifying the sensors at a measurement are the strengths of the noise terms in vbdquo as defined by their covariances tha elements [V]^ of the covaHsnce matrix y From the theory of random variables if the measurements in (554) are made with independent sensors the elements of ybdquo the individual random errors among the samples taken will be uncorrelated For this case V is a diagonal matrix which leaves only the specification of the m Elements [JfJlfi i = 1raquo2gt bullbulllaquoampbull The diagonal elements of y may DO interpreted as the mean-square values of the errors in each of the m samples Thus their sizes 4re inversely related to the quality of the measurement inshystrument used so that if a high quality sample is desired for tybdquo] 4 gt then

mdashK 1

OfJii should be small and vice versa Thus if the sole objective In the solution of the monitoring probshy

lem is to minimize the total number of samples necessary over the entire time interval the optimal choice of measurement instruments is clearly that choice which leads to the most accurate measurement - use the highest accuracy sensor available If on the other hand the more meaningful

84

measure of minimizing the total monitoring program cost is to be used in the overall optimization a more complicated problem structure results Contributions to the total cost could include costs associated with every sample that is taken a quantized cost range associated with available measurement instruments of various accuracies etc Tradeoffs result between taking a large number of low accuracy measurements and a small number of high accuracy measurements at a sample time

Though this aspect of the total problem is an important part of the complete optimal design it is left for later study with an outline of the structure of its inclusion within the infrequent sampling problem framework given in Appendix E

What is clear from the conclusions so far is that once the optimal choice of measurement instruments is made for one sample that choice is optimal for all other samples which leads to the final result for the monitoring design problem with bound on error in the state estimate

Conclusion VIII For the case of infrequent samshypling the complete solution of the optimal monitoring design problem with constant bound on error in the state estimate - the determination of the optimal number of samplers to use at each measurement their optimal locashytions and the optmal choice of measurement instrument accuracies -may be obtained at the first measurement time with the same design being optimal for all other measurement times (CVIII)

54 The Design Problem for a Bound on the Error in the Output Estimate

541 The Minircax Problem - The second form of tha monitoring de-siqn problem is considered in this section It is required to make the fewest measurements possible over the time interval of interest while maintaining the error in the estimate of the pollutant concentration itshyself the output within some bound everywhere in the medium This is a

85

more complex situation than that of maintaining the error in the state within some bound the pollutant concentration over the whole region must lie within the error constraint so that the entire region must be conshysidered when testing for violation of the constraint

At time t let the pollutant concentration at a point z in a one-dimensional diffusive medium of length 2L be given by

pound K(z) = c(z) Tx K (558)

where the vector c(z) for the scalar output C K(z) is much like the meashysurement matrix Q(zbdquo) for the veotor measurement ybdquo in (543) and is given by

poundz)T - lcos pound zjcos ^ 2 ^ z J c o s ((n-1) jfj- (559)

Equations (558) and (559) are formalizations of the s2Hes expression in (341) and can be seen schematically in the bond graph in Figure 32 The pollutant concentration at any point is thus simply the sum of the modal concentrations at that point in the medium

Equation (558) applies for the estimated pollutant concentration from the filter as well and may be written as

C K(z) = amp(z) Txdeg (560)

where xbdquo is the value of the state estimate predicted to time tbdquo from time t n (see (C18) in Appendix C) it is required to maintain the error in this estimate to be within some bound Since K(z) is a scalar random variable an expression of the error between the estimate 5 K(z) and the actual value pound K(z) in the mean-square sense is the variance in the estishymate The variance in the estimate of the output in (560) is found to be

86

O 2K C Z ) ^ E [ ( pound K U ) - 5 K U ) ) 2 ]

-=|w Tft-^)(sw TiS-J) T] = E [ e ( z ) T ( s O - x K ^ x K T c ( 2 ) ]

5 S(z)TPdege(z) (561) where the last line follows from the definition of the predicted covari-ance matrix equation (421) Thus at time tbdquo associated with the estimate of the pollutant concentration at any point i given by K(z) is its variance o(z) a measure of the error in that estimate which is merely a function of the predicted state estimate error covariance matrix whose properties are by now well established

Since the monitoring problem with a bound on the error in the outshyput stipulates that everywhere in the medium at all times over the time interval of interest the fewest number of measurements must be made to keep the error in the output below a limit the concern is with checking the maximmi value of the variance ot(z) for all z over the length of the medium as time goes on to find when the error limit is reached The asshysumption is as it was for the problem with bound on error in the state estimate that at the time when the error in the estimate of the output reaches its limit a measurement should be made That measurement should be made so that the time before the error limit is next reached is maxishymized extension of the local optimal design for one measurement period to the overall time interval is assumed possible the proof of which will be considered later in Section58 dealing with the optimal management problem

87

Suppose at time tbdquo the variance In the estimate of the output at some point z in the medium is in violation of the error limit defined as

degUmgt t h a t 1 S gt

a2K(z) gt 4bdquo (562)

It is required to make a measurement at time t K that will result 1n the longest possible time say t K + N when the error limit is reached again This will occur when at some point z in the medium the maximum value of the variance over all other locations in the medium exceeds the limit This suggests the following algorithm for finding the optimal measurement design at time t R that will result in the longest time t K + p | when another measurement is necessary

1) Select in some manner a measurement design at time t K and make a measurement

2) Predict ahead to time t K + 1 31 Find the position z of the maximum variance

max a ( z) z K+l 4) Test for violation of the error limit

max o~ (z) gt c z K+l K m 5) If violated go to (6)

If not violated increment time one step and return to (2)

6) Store the time when the limit was violated 1n N

7) Check for convergence to the global maximum t K + N If not satisfied return to (1) reinitialize time to t K and select a different trial meashysurement If comergemce has accwrved the optimal deshysign is that which resulted in largest N^ the longest time tbdquo N - call it t K + N (563)

Such a direct search technique would be costly to implement The effishyciencies of gradient techniques do not apply since a gradient of the obshyjective function (which would literally be N- the time to the next meashysurement) with respect to the measuremsnt design variables cannot be

expressed analytically Thus more information 1s sought from the strucshyture of the problem to avoid using direct search methods

As in Section 537 exclude for now the choice of measurement instrushyment accuracy from the monitoring design problem Consider only the choice of the number of samplers m to be used in the measurement at time tbdquo and their optimal locations which are the elements of the ra-vector z Then the algorithm (563) may be concisely written as a minimax problem as follows

Find min max abdquobdquo (zbdquoz) gt a bull (564) z z K +N ~K ^m

In general such a minimax problem is quite difficult requiring advanced techniques of mathematical programming for its solution However in the case of infrequent sampling the solution of (564) is virtually complete in the earlier results of this chapter

In order to solve (564) from the definition of crpound(z) in (561) obtain the following

deg K + N M = s( Z) Tepound + N(S | fkltz) bull s( 2 ) T

K ) bullpound nV nl

( ) lt 5 6 5 gt

where

EKSK) bull bull $ ( Z K ) T [ C ( Z K ) P deg C ( Z K 7 bull v] 1 C ( K )Pdeg ( 5 6 6 )

is the corrected error covariance matrix jus- after the first measurement at time t K as a function of C(-) of zbdquo in (543) Expand (565)

T N (z K z) - c(z)TJNp|J(zKgtN c(i) t S ( z ) T V n W 1 pound(z) (567)

n=T

to find the same combination of zero-lnp t response and zero-state response that was found in equation (510)

89

For the physically interesting case of no-flow boundary conditions

in one-dimensional d i f fus ic the eigenvalues of A in the state equation

(41) lead to the ordering of the terms in J given by property (516)

For N sufficiently large conditions (518) and (520) are satisfied so

that (567) may be written as matrices to show

bdquo2 M a[ -(pound0 bullbullbull] M

[l co5(^z) ]

[ raquobull(poundlaquo) bullbullbull]

li[n]

O

o

1

J (ft)

Kir2)

a ss

bull()

(568)

from which the most important result for the monitoring prohlem with bound on output error derives for N sufficiently large

4^KZY [amp)]bdquo + N t 8 ] H + Slaquo 2gt T| Spound^) (5-69) Notice that In the asymptotic case for N sufficiently large even though 2

a +jj at time tbdquo +bdquo is a function of both zbdquo the positions of the measureshyment devices at time tbdquo and z the location in the medium where the varishyance is being tested at time t K + N the functional relationship tepcviateA

90

into Independent functions of each argument The selection of measure ment positions z K Is seen to effect only | E K U K ) exactly as 1t did 1n the problem with bound on state error (see equation (5-22)) The location z In the medium where a^ + N Is being tested effects only the variance associated with the steady-state terra of the matrix convolution of the input disturbance statistics here the matrix 8 was defined 1n (520) and (521) The second term on the right-hand side of (569) N [ g ] 1 1 ( represents the increase in uncertainty in the estimate of the first mode which has a constant value throughout the medium and thus 1s a function of neither zbdquo nor z

This may be summarized as follows Conclusion IX For infrequent sampling the varishy

ance in the estimate of the pollutant concentration the output of the monitor at time t|lt+N separates into indeshypendent functions of the measurement positions at time t|lt and of the pollutant concentration position at time K+N- (CIX)

Returning to the minimax problem stated in (564) application of Conclusion IX leads to the following fortuitous result

Conclusion X For infrequent sampling the followshying problems are equivalent () Find z at time t|lt and z at time t|lt+N such that

(2) Find z at time t K and zat time t K +f| such that m j I - K ^ K U H + N[~-1n + T pound ( z ) T deg e ( z ) - aim- (c-x)

- K gt- SS This result reduces the solution of the monitoring design problem from the oi-|etely unmanageable task of (563) to the relatively simple comshybination of two separate problems in minimization and maximization Solushytion of the former 1s Identical to that treated 1n the monitoring problem with bound on error 1n the state estimate as detailed in the section on

91

numerical measurement position optimization Section 536 Finding zpound

Ni 1s minimized results in the smallest con-at time t such that tribution due to the initial covariance at time t K to the variance in the output at time tj + N

Solution of the latter problem the maximization of the variance due to the steady-state convolution matrix at time t bdquo + N is developed in the following From (517) and (521) an expression for the variance associated with the zero-state or forced response in (567) may be exshypanded as matrices as follows

N

S(z)7Y bull n W - l T c ( z ) = s ( z ) W ) bull lmdash1 I f

[ laquo(i0-raquo] flu poundWbdquoX oX^n -

iPl n i

1

amp) (570)

bull J As before

N

^^ijL^w^^j ( s - 2 deg) n=l s s

so that every element of the matrix convolution in (570) approaches its steady-state value as N becomes Urge except the first which grows as a ramp with slope [nJii- Thus for N large

A T S ( z ) T J11 S(z) H[8]bdquo + c(z) T c (z) (571)

n=l

92

It is to be emphasized that as the limit in (520) is approached the variance associated with the matrix convolution (571) separates into a t1me-vary1ng term and a term which is a constant Thus for N sufficiently

9 large the only term involving z in the expression for oj+N(zz) is not

a function of time and can be precalcylated independently of the actual time that che error limit cC is reached in (564) This separates de-termnization of the maximum over z of a^ + N(zbdquoz) from the actual value of N and thus t|+Nraquo provided only that N is sufficiently large for (520) to apply

The relationships in Conclusion X are portrayed graphically in Fig-ure 53A and B Figure 53A depicts the actual evolution of a with time whereas 53B shows the asymptotic relationships of (569) The important point is that the last term in (569) the term involving z has the same

maximum as a function of z at each sample so iony as the number of time steps between each pair of samples is sufficiently large Thus

Conclusion XI The position of the maximum varishyance in the estimate of pollutant concentration at the time each measurement is required in the monitoring problem with bound on error in the output is independshyent of time provided the time between measurements is sufficiently large and is thus the same position at every measurement (CXI)

The procedure for the solution of the infrequent monitoring problem with bound on error in the output estimate is as follows

(1) At time t|( solve for the optimal measurement posishytions Z|( such that

(2) Compute ffilusing the relationships LSSJ

[4-T^te bull - bull [raquo]bdquo-

93

mjn max o K + N( Kz)

max CT^(Z)

(A) Actual response

Time

min max o^iz^z)

Time (B) Asymptotic approximation Figure 53 The Infrequent sampling problem with bound on error in the

output estimate

94

(3) Find N large enough that the infrequent sampling approximations appiy that is so that

[sL^LW^^^ and j f 1 (4) Find z the position where the variance approaches its steady-state maximum where

ltbull = max c(z) T a c(z) SS z S~S~ (5) For the pair (zpoundz) predict the solution to time

lK+N w n e r e

(6) Reinitialize time tv = t^+Nibull and return to (1) for next measurement t W (572)

All of the results for the monitoring problem with bound on error in the state estimate apply here as well permitting statement of the final result for the monitoring problem with bound on error in the outshyput estimate

Conclusion XII For the case of infrequent sam-pling the complete solution of the optimal monitoring design problem with bound on error in the output estishymate mdash the determination of the optimal number of samshyplers to use at each measurement their optimal locashytions the optimal choice of measurement instrument accuracies and the position of maximum variance in the output estimate at each measurement mdashmay be obtained at the first measurement time with the same design being optimal for all other measurement times (CXII)

542 Determination of the Position of Maximum Variance in the Outshyput Estimate - In the solution procedure (572) steps (3) and (4) must be developed First from the form of

1 bull n gt 22 raquo 22 bull Kn gt deg ( 5 7 3 )

as seen in (515) Thus in the determination of the number of terms necessary 1n the computation of the matrix convolution [ft] In (3) from N (570) and (520) the critical terms In the matrix those which approach

95

the i r steady-state values slower than a l l the others can be seen to be

[ n ] 1 9 and [pound2 ] 5 1 where from (570) N u N

(574)

As a measure of how rapidly the series in (574) grows as N increases deshyfine

4N-1 4N-1 plj 4A vao

as the ra t io of the contribution to the series for [ f iL- dnp to seep N N 1 J

compared to the contribution from step 1 in the series Thus a meaningful

check for approaching the steady-state value of the convolution is to

f ind N su f f i c ien t ly large that

P^j lt E i j = 12 n i = j f l (576)

where c 1s some practical convergence c r i t e r i on

Since Q I t s e l f is a covariance matrix (see Appendix B) i t is posishy

t i ve -de f in i te hence [8 ] i o = telov T n u K 1 l c a n D e readi ly seen from

(573) (574) and (575) that the series for terms [Q3 and poundpound ] grow N e K i x

more slowly than a l l the others (excluding of course M bdquo ) since N

p12 p21 gt p1j a 1 1 o t h e r ( 1 j ) ( 5 7 7 )

Thus a convenient measure for the convergence

Um [n] = [n] ltdeg 8 SS

is simply to find for just the second element of 2 2 that value of

N such that for some convergence accuracy e

N-1N- 4N-1 N 11 raquo22 22 S-2 c - bdquogt Plraquo - ~mdashZ A mdash 09 e- (578) It n22 22

96

Thus for the infrequent sampling approximations to apply within some

tolerance e at least N time steps must occur between sample times so that

steady-state conditions are adequately approached

In order to f ind the maximum in step (4 ) that i s f ind z such that

c(z) 52 c(z) is maximized an analyt ical approach is f i r s t sought Since SS ~

the problem is a simple extremization of a scalar-valued function of a

single variable elementary calculus techniques apply so that for some

value of z K a necessary condition for an extremum is

From Conclusion IX and (569)

(580)

a f lt amp f l M - 3 F | ^ n

+ ^ S bull poundU)T|s amp(z

i s ( z ) T ) | E ( 2 ) t c ( Z ) T | ( i c ( z ) ) SS SS

Recalling that since U is a covariance matrix

0 = 8 gt

SS SS

so that

al 0 K + N M S 2 ( l l^) )8 e (z )

Thus

S(z) 1 l cos( ^ z j cos^2 ^ z ) |

pound^J = 0 2 f s 1 n ( 5 f z ) - 2 2 f - s i n ( 2 ^ z )

97

M N ( M gt 2 poundpound-ltbull-i [(i - H c o s Ibull 2 taj ( 5 8 )

i-i j - i

2 For an extremum in vt N(zz) set (581) to zero from which it is seen clearly that for finding the solutions of (579) analytical methods are

of little nee

The numerical solution of (579) using (581) and (569) however is straightforward Since the derivative can be so concisely written it is well known that solving for the roots of (579) then checking the value of the function (569) at each root so as to classify each extrema in order to arrive at the global maximum is superior to direct one dimenshysional search methods (such as golden section or Fibonacci search) which do not employ derivatives (see [20] and [53]) Thus any of the widely available root solving methods for nonlinear equations could be suitable for the determinization of z at the maximum cf crK+N(Z|z) (see foi exshyample [61])

55 Diffusive Systems Including Scavenging

Return now to the original problem of monitoring diffusive pollutant dispersal including anvironmental degradation or scavenging of the pollutshyant The relevant transport equation from (33) is given as

| | = KV 2 - a + f (582)

where a is a smaller parameter This equation describes di f fusion in an

arbi t rary homogeneous region P where the small term -a accounts for the

scavenging of the pol lutant from the medium The scavenging term is

typ ica l ly much smaller than either the source or di f fusion terms and

usually leads to a slowly-changing component in the system response

98

Application of separation of variables to the homogeneous form of (582) leads to the following state and Helmholtz equations

x(t) + tt + )x(t) = 0 (583)

7 2e(P) + pounde(P) = 0 (584) Comparison with equations (311) and (312) for the case of simple difshyfusion the case in (34) with a E 0 shows that the only difference in the associated eigenproblem i In the rates of response in the time equashytion The equation regarding the spatial response is identical with that for the case of simple diffusion Thus all the eigenvalues are seen to be shifted by the same amount a the value of the scavenging parameter itself

Notice that nothing has been said that restricts this result to specific coordinate systems boundary conditions etc It 1s a general relationship between the eigensystems of (34) and (582) Thus the modal state equations for the case with scavenging may be written

n(t) = -(Xn + oe)xn(t) + f n(t) n = 12 (585)

where f bdquo ( t ) is the modal input to mode n (see (319)) Comparison of

(585) with (320) for the case of simple di f fusion shows that the probshy

lem with scavenging changes the response of the system with no-flow

boundary conditions to that of a problem which l ies somewhere between

simple di f fusion with no-flow boundary conditions and simple di f fusion

with f ixed boundary conditions I t would seem from what we have seen in

the infrequent sampling problem thus far that for the cases where a

is small in (582) extensions of the ear l ier results of th is chapter to

the problem including scavenging should be possible

99

Another way of seeing how the inclusion of the term -aE in (582 effects the structure of the eigenproblem associated with (582) can be shown by reconsidering the one-dimensional example of Section 32 Conshysider here only the homogeneous response Thus the problem may be stated as follows

bull^tl K 3 ^fi - g(zt) (586)

M|Mi0 ^f^EOi (587) SfzO) = 5 0(z) (588)

Now make the transformation (see Mac Robert [82] p 33) S(zt) = n(zt)eat (589)

Substitute (589) into (586) to obtain

nfzt)^-] + ^ ^ - B a t = K i ^ f L e- a t - an(zt)e-at (5

which reduces to ^1=K^ (691)

3 t 3z 2

But the eigensystem for (591) given boundary conditions (587) is just that for the problem of simple diffusion already discussed in Section 32 from which the homogeneous solution may be written as

^3 - K ( n - l ) 2 ^ nizt) = 2 ^ x

npounddeggt e 4 L cos f(n - 1) J zj (592) n=l ^

where the initial conditions for the modes are given by

100

x n(0) bullr n(z) cos (n - 1) 2L y dz (593)

Sibstitution of (593) into (589) then yields the important result for the case including scavenging

- _K(n-l) 2-Lt S(zt) = e 0 1 ^ xn(0) e 4 L cos Un-1) ^ zj

n=l CO

n=l (0) e

K(n-l) 2 _ C 4L 2 + ltxgtt ((n-l)^z) (594)

Thus the solution to the problem including scavenging has exactly the same eigenfunations as the case without scavenging and a set of shifted eigenvalues each of whose elements is just that of the problem without scavenging shifted by an amount a

551 The Infrequent Sampling Problem - Consider a one-dimensional diffusive system described as follows

Source

Measurements i

1 2

Figure 54

-S(zt)

2Llt - raquo bull

at S z i (595)

101

3z U 32 bull

S(zo) = 5 0

f(zt) = w(t)6(zw bull bull z )

(596)

(597)

HvWh = 0 E[w(t)w(r)] = Wlaquo(t - T ) (598)

After s impl i f icat ion of the series solution of the homogeneous probshy

lem in (594) to a f i n i t e number of terms n i t can be seen from the

form of (337) for the problem without scavenging that the fol lowing set

of modal state equations resul ts

1

- ( $ bull )

o

o

(bdquo-bdquo=pound)

a

w(t) (599)

f COS (lt-gtlaquoraquo) |

102

with in i t ia l condition

x(0) = [ 5 0 0 0 ] T (5100)

The measurement equation is exactly that of (339) for the case with no scavenging

Thus comparison of the dynamic matrix for the case with no scavshyenging in (337) with that in (599) for the inclusion if the a-term shows the one major difference for the Infrequent sampling problem In the former [ A ] ^ = 0 while In the latter [ A ] ^ = -a + 0 Thus the first modal state variable will fn general exhibit a relatively slow reshysponse governed by the term e The effect of the initial condition x(0) will decay at that rate whereas it remained constant in the case with no scavenging This leads to differences In the asymptotic propshyerties of the solutions which are developed in the following

Consider the time discretization of (599) The state-transition matrix laquo given in (48) for the A matrix in (599) is

o m o 4 - ) 2 S + a gt

(5101)

where the integration step T s (t K + - t K ) Assume as before that the problem starts at time t- with initial estimation error covariance mashytrix given by tf0 Assume further that at time tbdquo the estimation error constraint is reached so that a measurement is necessary at time tbdquo It

103

Is required to design the measurement by finding the optimal measurement position vector zt so that the time when the error constraint 1s next reached 1s maximized

Consider the evolution of the predicted estimation error covarlance matrix with time after the sample at t R

nl Expand the above as matrices as was done for the case with no scavenging in (517) to obtain

amp amp ) bull fetoiMi [ilaquo

M

nSl T5t B H

CS3bdquo nraquoi

(5103)

104

Now 1f a in (595) is su f f i c ien t ly small then the diagonal elements of

J cal led ^ i = 1 2 n w i l l be related in (5103) by the fol lowshy

ing ordering property

^N N 1 gt $j| raquo bdquoj2 gt ltjgtN gt 0 (5104)

Using (5104) the matrices in (5103) may be approximated by the follow- ing expression for N large

-K+N(-Kgt

[dtei

o

[Q] v 6 2 ( n- igt u

O 8 ss

(5105) Comparison of (5105) with (521) for the case with no scavenging shows the expected result that here the asymptotic matrix solution approaches that of just the (11)-element of th matrix with time plus the steady-state matrix n due to the forcing function

SS For the monitoring problem with bound on error in the state estimate

from (5105) the trace of the estimation error covariance matrix Is given by

N

Tr[EK-Hl(sK 3 - [ E K ( S K J l + Kill Y l i n 1 gt + T r [ | s J ( 5- 0 6 )

n=l which is similar In form to (522) for the problem without scavenging The only differences H e in the first two terms on the right hand sides of (522) and (5106) Both pairs of terms describe the response of i p K l I with tirno i n the former case the response is that of a fm$]]

w1th time ramp with slope [fl]- starting at efegt] bullvv In the latter case the

11

105

response starts from the same value but then slowly approaches a finite steady-state value in the limit as N + laquo much like all the othar terms do in the matrix The main difference is that the (11)-element of P K + N ( z K ) grows much much slower to its final value than all the other

K elements of P D + N ( z K ) this is the result of requiring the scavenging parameter a to be small leading to property (5104)

A graphical depiction of the trace of (5102) and its asymptotic approximation in (5106) is shown ii Figure 55 Comparison with Figshyure 52 for the case with no scavenging shows the difference in the asshyymptotic responses

For the monitoring problem w h bound on error in the output esti-mate using the form for Ppound+N(poundK) in (5105) in the equation (568) deshyveloped earlier leads to

N

lt 4 N amp gt Z ) a [K(4U + I83bdquo Y bull i i ( n 1 ) + e ( ) T

S V ( Z ) - ( 5 1 0 7 )

n=l Comparison of (5107) with (569) for the case with no scavenging shows the same asymptotic properties as exhibited in the problem with bound on error in the state estimate above which leads to the general result for the problem with scavenging

Conclusion XIII For diffusive systems with scavengshying all the results for the infrequent sampling problem for normal diffusion apply directly so long as the scavengshying parameter is sufficiently small (CXIII)

56 One-Dimensional Diffusion with Fixed Boundary Conditions

Consider the case of a one-dimensional diffusive system with the pollutant concentrations at the ends of the medium fixed at known values throughout the time interval of interest This case was modeled in

106

Tr[P]

Tr[P2]

(A) Actual response

(B) Asymptotic approximation Figure 55 The infrequent sampling problem for systems with scavenging

compare to Figure 52 for systems with no scavenging

107

Section 32 2 Such systems are of much lesser practical Importance than those with ho-flow boundary conditions since It 1s difficult to find many physical situations of any significance where fixed end conditions occur (see Brewer [22] and Young [131])

For such a system the following state and measurement equations apply

x = Ax + Dw y = Q + X

where from (356)

4|Z

A i

o - 4 KiT 5

O -ltraquo)2 K pound 4

D 2

E = raquo(poundl) s 1 n( 22Ti)

Sfff (bullgt)

(5108) (5109)

(5110)

From tne definition of A above and 4 1n (48) and (49) the state transishytion matrix for fixed boundary concentrations is given as follows where the time step T = (t K + - t|A

108

4llt o

raquoST -44 (511)

r 2 Kn T

4L Z

Comparing this transition matrix with that from the case for no-flow boundary conditions (see (515)) shows how the fundamental difference in the two normal mode expansions effects the dynamical responses of such systems In the case with no-flow boundary conditions [] = 1 whereshyas for the case with fixed concentrations at the boundaries 0 lt [Jl lt 1

This difference manifests itself in ways which effect both the monishytoring problems with bound on error in the state and output estimates Consider the predicted covariance matrix equation from time tbdquo to time

S-K+N A M I Pbdquo +

n=l

$ V From (5111) l e t

M = A l l

Then (510) may be expanded as f o i l ows

12

(510)

(5112)

109

[laquo

[lto [4 fll B1

n1 n=1 (5113)

Comparing (5113) with (517) for the case with no-flow boundary condishytions shows that the properties of first elements of both matrices in (517) which proved to be crucial to the simplicity found in the infreshyquent sampling problem do not hold in the case with fixed end concentrashytions

However as in the case with scavenging notice that owing to the ordering of the eigenvalues in the A matrix in (5110) there is a corre sponding ordering in the elements of such that for Pbdquo+ in (5113)

gt A N gt 0 1 gt (f^ gt lttgt22 (5114)

Notice from the matrix A that for the first two terms 4X 1 X 2 (5115)

so that the second mode decays four times faster than the first Thus the two dominant eigenvalues are widely enough separated to proceed with apshyproximations for an infrequent sampling problem

Use (5112) in (5113) to obtain 1 1

amp

o

Braquongt bulli- )

O (5116)

no which is exactly the same result as in (5105) for the case with scavshyenging The trace of (5116) follows the form of (5106) for the scavshyenging problem so that for the monitoring problem with bound on error in the state estimate all the results for the infrequent sampling probshylem apply Trajectories for Tr[ppound + N(zpound)] would appear similar to those for the problem of no-flow boundary conditions including scavenging as shown in figure 55 the rate of approach to steady-state for the (11)-element of P pound + N would be faster if X 1 for this problem is larger than a

in the former problem For the monitoring problem with bound on the error in the output

estimate the case of fixed boundary conditions causes a confusing relashytionship in the minimax problem for finding the location of maximum varishyance in the output estimate From the approximation for P pound + N in (5116)

LEHlt

o [sln(^z) sin ( i r f ) ] ISA

o

sin (tpoundj

sin k plusmn )

[1laquo(poundraquo) m (]pound) - ]

8 ss

sin ( JT )

sin (2 j f ) (5117)

I l l

where c(z) Is derived from the def in i t ion of pound (z t ) in (348) Thus

for N large

V ^ T + sin yz]_ ZJL8J-- ^ bull s~ s~

n=l

which is of the form

0JJ+N(2Kraquo Z) = a ( 2 K z N ) + e^ z N gt + E 2 ) (5119A) = a(z K)|3(zMN) + B(z)6(N) + E( Z ) (5119B)

It is required to find zjj and z such that for N large

4^1) = JjJ T degK+N( ZK Z)- (5-120) From the separation of functions in (5119B) it is clear that finding zt should be done exaotly as before that is

Find zj at t K such that [ t ^ ) ] bdquo = [ ^ Jin ^ ^ It would appear that knowing zpound the optimal measurement positions

for the measurement at time tlaquo one could then substitute its value dishyrectly into (5118) to solve for the position of maximum variance z at time t K + N- However as seen 1n (5119B) the terms (a 8 y) and (B 6) are functions of time t K + N gt such that the relationship between (agy + 86) and (e) in (51198) is always changing A general statement of a separashytion principle like (569) for systems with no-flow boundary conditions cannot be made for the case with fixed boundary conditions However if more knowledge exists about the specific problem under study for example if in (5118) [n] raquo [ Q ] i j i and j f 1 then the term (Blaquo) In (5119B) may dominate the right-hand side of that equation for N large such that

112

for such a special case

T C K+N(K Z ) = trade X s i Z [ t z

What is clear about the general case is that the minimax problem in (5120) simplifies to (1) finding z in the minimization in (521) as before then (2) evaluating the position z for the maximum oy +bdquo(z Kz ) in (5118) iteratively as N increases until for some t R + N o^ + N(z^z) gtcC The latter procedure is greatly simplified using the approximashytions of the infrequent sampling problem as can be seen by comparing the simplicity of the expression for aj + N in (5118) with the complicated

V

expression that would have resulted had the full matrices for P K + [ in (5113) been involved instead

Thus results for the infrequent monitoring problem with no-flow

boundary conditions extend with restrictions to the case with fixed boundary conditions

Conclusion XIV For N large all the results for the infrequent sampling problem with no-flow boundary conditions with bound on error in the state estimate extend to the case with fixed boundary conditions The results for bound on error in the output estimate do not all extend to the case with fixed boundary conditions in general however application of the infrequent samshypling problem approximations does drastically simplify solution of the functionally interdependent minimax problem to the solution of two independent problems in minimization and maximization (CXIV)

57 Extension to Monitoring Problems in Three Dimensions Systems with Liiission Boundary Conditions

As a means of demonstrating the power of the results for the infreshyquent sampling problem consider extensions to diffusive systems in three dimensions examples of applications might include pollutant transshyport in estuaries or bays and radiation level detection in settling basins

113

or in groundwater systems Suppose there is a rectangular three-dimenshysional region into which known stochastic sources are injecting pollutshyant In the case of bay estuary or settling basin systems the upper surface of this region would interface with the earths atmosphere whereshyas in groundwater applications the upper surface of this hypothetical region could coincide with the local level of the water table The reshyquirement of the problem is to place the fewest number of sampling stashytions at the best locations on the surface of the region taking the fewshyest number of samples over a given time interval in order to maintain the error in the estimate of the concentration ttceoughout the three-dimenshysional volume below a given bound This is an interesting variation of the general problem in three dimensions where sources may occur anywhere in the volume but measurements are required to be taken only on one surshyface of the volume

The validity of the description of pollutant transport in such sysshytems by the use of Fickian diffusion has not been thoroughly studied However it seems reasonable to assume that if small enough subregions which may be called components are considered thtn coupling large numbers of such component subregions together each of which is governed by its own diffusion equation could result in a system of submodels which could be used to model a large possibly inhomogeneous anisotripic medium Thus this example is presented for its conceptual interest as a starting point toward a more sophisticated approach to solutions for pollutant monitoring problems of this type

Assume the component subregion is described schematically as in Figure 56 One of the v generalized sources w ^ t ) is shown somewhere in the volume with its position vector defined as

114

Figure 56 Three-dimensional component subregion for a three-dimensional monitoring problem

115

Sw S 1 L M 2 3 Sw S K c w laquosw t 1 = 12 P (5122)

One of the set of m generalized measurements y is shown on the surface with its position given by

2j S [ Z V Z V 2 L 3 ] T J = 12 m (5123)

If the size of the rectangular region 1s sufficiently small the dif-fusivity throughout the medium may be approximated as a constant The boundary conditions of the submerged surfaces are chosen to be of no-flow type so that other such components may be coupled together in order to approximate inhomogeneous material properties over larger regions (see Young [131] Chap 3)

At the upper surface of the component the assumption is made that a no-flow boundary condition adequately models the characteristics of the pollutant exchange across the upper boundary of the region In problems involving transport of a volatile soluble contaminant in water systems (like DDT or disolved radioactive wastes) this assumption could be changed for instance to include emission of the pollutant into the atmosshyphere at the earths surface An approximate model of such emission is Robins boundary condition (see Berg and He Gregor [18] Sections 36 and 49 Mac Robert [82] p 28 and Duff and Naylor [34] Section 73) The only difference such a modification makes in the normal mode analysis is in the eigensystem which results for the coordinate direction which 1s similar in form to that for no-flow boundary conditions but has intershyesting conceptual differences (see 118] Section 49)

Suppose the initial pollutant concentration throughout the medium i given by the function 5 0(c) Thus the initial-boundary value problem for this system is defined as follows

amp bull (

bull bull bull Cj raquo 0 e - ^

K2 2 deg 0raquo 2 = 2L 2

c 3 = 0 3 = 2 L 3

c(co) H e 0 i Ml

116

t)t (5124)

(5125A)

(5125B)

(5125C)

(5126)

iMiltgtlte - s )^ - s 2 ) 6 ( c 3- s 3 gt E^tt)] = 0

E[w(t)w(T)] = W6(t - T ) i = 12 r (5127) The no-flow boundary conditions are specified for all surfaces by

(5125) The initial condition as a function of the spatial coordinate vector 5 is given in (5126) while the stochastic point sources with their statistics are described in (5127)

The essential difference between this problem and the two-dimensional case treated in Section 33 is in the extension to eigensystems in three dimensions and the resultant increase in dimensionality as mentioned in Section 34

Begin the analysis by assuming a solution in separated variables of the form

^ bull ^ L I L L W ) wsgt pound=1 nR n=l

mM e U l gt e m ( 2 en^3gt- ( 5 1 2 8 gt Jt=l m=l nlt

117

From the one- and two-dimensional problems 1n Chapter 3 elgensystems for

the coordinates C 1bull amp 2 and 3 given boundary conditions (5125) can be

w i t ten down Iranedlately as follows

h TT~ 4 = 12 (5129A) 11

(5129B) e l(5 1) = cos U - 1) mdash- c I

= R T m = l 2 (5130A) m m

e m (c 2 ) = cos ( m - l j j j - e j (5130B)

=^4~ bull n = 1 2 (5131A) n n

e n k 3 ) = cos ( n - l ) ^ - 3 (5131B)

The generalized modal resistances and capacitances the Rs and Cs above

are exactly those given for the two-dimensional case in (361) As before

substitution of C(ct) in (5128) into the differential equation (5124)

right-multiplying by eigenfunctions integrating over the volume and apshy

plying orthogonality results in the following generalized normal mode

state equation

fat14 Jf bdquo lt 5 t ) cs ( lt ) a q e 0 c ( - n pound ) C 0 S (ti1gt i ^ W r (5132) The initial conditions for x(t) are found as follows from (5126) and

(5128)

~] ~=LLL x raquo c o ) e U i gt ^ ^J- ( 5 1 3 3 )

xf npl n=l If CQ(C) 1S expandable 1n a triple Fourier series then x J l m n(0) is given

N

118

as Allows (see Mac Robert [82] p 43)f

r Z h r 2 4 r 2 L 3 W deg gt bull r r r o(-5) e i ( igt ^ eM d 3 d t2 d i (5134)

m n -^bullo-tj-o-tj-o

where the eigenfunctions are given in (5129) through (5131)

The stochastic point sources are transformed into modal inputs in a

similar fashion

r c V f (5 t ) efc) ^ ( ^ e n U 3 )d 3 d 2 d i

tradeltXs2H3) where treating the point sources as distributions the eigenfunctions in (5135) are evaluated at the coordinate positions of the ith point source

Truncating the triple Fourier series in (5128) and retaining n terms in each results in a set of state and measurement equations entirely anashylogous to those for the two-dimensional problem in Section 33 The dishyagonal element for A for the (ijk)-th equation is

bull^--jk4i+S ( 5 136 )

so that the eigenvalues of the three-dimensional problem are simply the

sums of those for one-dimensional problems written in each of the three

coordinate directions Similarly (see (362) and (364)) the elements

of the D and C matrices are merely triple products of the eigenfunctions

Thus the similarity with the two-dimensional case is well established

Notice that in the discretization of the elements of A from (5136)

and Table (361) [A] = 0 so that ct^ = 1 thus all the results for

the Infrequent sampling problem with no-flow boundary conditions extend

(laquo i = 12 (5135)

119

directly to multidimensional regions Thus regardless of the dimensionshyality of a region 1f no-flow boundary conditions exist at all boundshyaries the monitoring problem may be treated in a straight orward manner with thp techniques of the infrequent sampling problem

Consider the Inclusion suggested earlier of the emission of pollutshyant into the atmosphere at the surface of the component subregion at C = 2L A model for such emission (see Mac Robert [82] p 28) ibdquo given by the following homogeneous boundary condition

3(Ct) 33

bull+ h[e(poundt) - C 3(c rC 2)] = 0 5 3 = 2L 3 (5137)

where pound is the pollutant concentration in the atmosphere over the surshyface = 2Ltaken to be constant over time Thus the atmosphere acts like a pollutant source with constant concentration pound) h is a constant relating the emlsslvity of the surface e to the diffusivity within the component subregion by

h 5 eK (5138) Berg and Mc Gregor([18] Section 49) show that the eigensystem for a one-uimensional system with a no-flow boundary condition like (5123C) at C = 0 and a boundary condition with emission of the form (5137) at -g = 2U can be described as follows

V ^ = (n - D s r + V n = l2 (5139A)

e n(5 3) = cos (5139B

where J T must be a positive root of the transcendental equatio ^ tan (213^)= h (5139C)

ion

120

A graphical solution of (5139C) shows that there is an ordering of the roots y T 1 such that for u

gt p gt P 2 gt gt p n gt u n + 1 gt gt 0 (5139D)

For example for 2L 3 = 1 and h = 01

n 1 2 3 4 5

03111 31731 62991 94333 125743 (5139E)

Thus it is found that an ordering in this problem exists such that for

V 0 gt A gt Xj gt n = 12 (5139F)

Since the eigenvalues for the three-dimensional problem are the sums of those in eigenproblems written in the three independent coordinate dishyrections 5 c 2 and cbdquo from (5136) it 1s seen that if an emission boundary condition is used at s = 2L 3 the crucial first eigenvalue in the A matrix is given by

Xlll = (deg + 0 + v 2J (5140) 2

where p 1S the first eigenvalue for the modified elgensystem (5139) This leads to an ordering for the matrix elements such that

1 gt n gt 2 2 gt (5141)

so the the concepts developed for the infrequent sampling problems for the cases with fixed boundary conditions and scavenging apply here as well It should be noted that since P 1 gt 0 the first eigenfunction 1n (5139B) will be a function of c 3 so that the minimax problem possesses

121

the modified separation property of (5119) for the case of fixed bound ary conditions Thus the case of practical interest accounting for emisshysion at a boundary is seen to fall within the framework of the infrequent sampling problem

Conclusion XV For N large the results of Conclushysion XIV tor the case with fixed boundary conditions are seen to extend to regions with emission or radiation boundary conditions (CXV)

Another interesting point about the structure of this type of monishytoring problem is that pven though the dynamic response of the process must be computed for the entire region 1n three-space the measurement position optimization is constrained to a two-dimensional subspace that is to the surface

C 3 = 2L 3 (5142)

This reduces the domain of the optimization considerably and emphasizes the power and versatility of constrained optimization techniques In Section 536 a first-order gradient technique with linear constraints was described In the context of the problems of this section the power of such a technique is demonstrated in being able to express the requireshyment (5142) directly as an equality constraint upon the domain of 5 3 in the optimization

In the application to groundwater problems a more practical problem scatement might be to constrain measurements to be taken anywhere down to a depth e below the upper surface of the component subregion that is to a depth E below the water table This form of a constraint is readily placed upon the domain of the optimized variables as follows (see (553))

For the position of the jth measurement device require that z -J3

the element of z^ in the 5 coordinate direction be limited to (2L 3 - e) lt Zj lt 2L3 j = 12m (5143)

122

the form of a constraint for the optimization algorithm must be z s W lt 5 - 1 4 4 gt

thus decompose the single inequality constraint in (5143) into two of the form (5144) to obtain

zi 2 L 3 -

- Z j lt (2L3 - c) (5145)

Thus the subspace for the measurement posit ion optimization consisting

of a layer of depth e beneath the surface of the region is entered into

the optimization algorithm as two simple inequali ty constraints on the

elements z given in (5145) J 3

Thus formulation of a three-dimensional pol lutant monitoring probshy

lem over a homogeneous region with various boundary conditions amounts

to a straightforward extension of the methods used for one- and two-dishy

mensional problems In addi t ion confining the admissible region for

optimal monitor placement is a natural application of constrained op t i shy

mization techniques

58 The Management Problem

Thus far consideration has been given solely to the problem involved 1n the design of a measurement - the number and quality of measurement sensors and where they should be placed - in order to minimize the total number of samples necessary over some time interval It is the requireshyment on the other hand of the management problem to determine at what times within that time interval the measurements should be made in order to minimize the total number of samples necessary overall

123

It is desired to prove that the optimal management program is to

sample only when the error criterion for the state or output estimate

has reached its limit In general this is a difficult fact to establish

Results are clear for the scalar case however and (algebraically tedishy

ous) constructive proofs for a system with only two normal mode states

and one measurement device indicate that such a sampling program is also

optimal for the vector case However obtaining a comprehensive proof

that sampling only at the limits is optimal for multidimensional normal

mode representations remains an elusive task Heuristically the verishy

fiable resilt for scalar systems still seems to be extendable to the

multivariable case as will be shown

581 Optimality in the Scalar Case - Consider a scalar system whose Kalman Filter covariance equations (see Chapter 4 Figure 41) can be reduced to

(5147)

where ui and v are the disturbance and measurement noise variances p is the variance in x and c is the scalar measurement coefficient

Assume the process starts at time t Q In order to deduce the optishymal sampling program compare the two following monitoring programs which correspond to sampling at the error limit (2) and sampling before-the error limit is reached (1)

(1) Predict to t 1 sample at time t] and predict ahead to tfj (2) Predict to t N then sample (5148)

The optimality of one program over the other will be established after time t K + N by the determination of which of the two has the smaller

bdquo K + 1

= PK+1 v

PK+I = PK+1 PK+I C K+I + v

124

variance p since both wil gtve used the same number of measurements (one each)

a starting point make the assumption that the characteristics of the measurements at the two times (specified by cjL and v in (5147))

2 are the same The more general case where v can vary and c at t in

2 the first measurement program and cf at t N in the second may be differ-

2 2 2 ent is commented upon later Thus for now let ct = cz H c at both samples Case (1)

(A) Predict from t Q to t

0 J- j p1 = Sgt MQ + lto

(B) Sample at t

1 = P V

h = P pdegc 2

+ v

= (ltj2u0 + u) = (ltj2u0 + u)

_ ($ 2 u Q + u ) c 2 + v

(C) Predict to t^ N-l

pj = ( 2 ) N _ 1 P ] + 2 I n=l

-) laquo

(5149)

(5150)

(5151)

Case (2)

(A) Predict to t N

Pbdquo = () bullN Z n-l (bull ) i

n=l

( V bull pound (V

(5152A)

(5152B)

125

(B) Sample at t N

N 0 W+ (5153)

It is required to show that in (5148) program (2) is optimal (which is an analogous case to sampling at the limit in the monitoring problem when pH gt p 7 an error limit) This can be shown by finding conditions under which

(5154)

To illustrate the relationships involved in the optimality of such a monitoring program consider Figure 57

P

P N lt P N

Figure 57 Relationships involved in scalar optimal manageshyment program

126

The optimality of case (Z) is verified if after both programs have included one measurement after time tK+f- the variance for case (2) is below that of case (1)

In order to prove (5154) proceed as follows Consider the amount of correction A to the variance p at a sample as the difference between the predicted and corrected values at the sample time From Figure 57 then define

Al - (P bull P i ) lt 5 1 5 5

A N a (pdeg - p|j) (5156)

t wil be shown in what follows that if pj is a monotonically increasshying function of t K then

(PN gt P) bull (AN gt A l ) - ( G- 1 5 7) Then predict A ahead in time to tbdquo to show

(AN gt A) -ofy gtpjj) (5158)

which proves (5154) Finally it is necessary to show that if sampling at t N is superior to sampling at t then for all times t N + R after t

( P J gt P K ) - ( P J + R gt P NN

+ R (5-159) i

F i r s t consider the evolut ion of p pound + bdquo a f t e r a measurement a t time

bdquoK PK+N ( bull ^ bull ^ ( bull V V

n=l

where if the measurement after tbdquo is the first measurement

P K pK pdegc 2 + v

(5160)

(5161)

127

Since pdeg gt 0 and c Z gt 0 in (5161)

gtl lt Pdeg (5162) that is the variance in the estimate is (expectedly) decreased at a measurement In general the variance or uncertainty will grow beshytween measurements or at least it will under certain conditions upon

K 2 the combination of pj^ lttgt and ltu in (5160) those conditions which are of interest in the monitoring problem Thus restrict the study here to systems which possess monotonically increasing values of predicted varishyance as shown in Figure 57 Hence require that

(5163) Next consider the corrections in (5155) and (5156) To deduce

the inference in (5157) from (5149) through (5153) find

PNdeg gt P-

A - P - P

-5

V -0 2

V L J

V

I 2 + V

(5164)

(5165)

To find conditions under which

A N gt A 1 (5166)

substitute (5164) and (5165) into the above cross multiply by the

denominators aid collect terms to obtain

[(PS)2Plt2 bull ( P ^ ] gt [(-fif bull (ptfv] (5167)

from (5157) and (5167) follows Conclusion XVI For the scalar case of the monishytoring management problem and for problems with increasshying uncertainty 1n the state estimate between sample times the amount of correction made to the predicted variance In the state estimate Is an Increasing funcshytion of the predicted value of the variance at the time of the measurement (CXVI)

128

This concept of the comparison of the amounts of estimation error corshyrection at different measurement times Is suggested in a later section as the basis for a proof in the extension of these results to the vector case

In order to prove (5154) establish now the inference in (5158) Referring to Figure 57 and using (5151) and (51528) obtain

n 0 J PN PN (bullJ-pfL L

n=l V ) m

N-l

bull c 2 ) N - ] P E ^ V

However for a stable system

i i 1

[ P N - P N ] S V Thus by construction from Figure 57

[ gt gt l] [Pi gt P]

7 N-l i V 9 I1

() Pi + gt ( ) ltraquo n=l

bullA]

from which (5158) follows Finally to demonstrate (5159) for case (1) in (5148)

Plaquo+R

ft o R i 9 n-l

= ( ) Pf| + ) ( ) I n=l

(5168)

(5169)

(5170)

(5171)

(5172)

and for case (2)

129

n=l from which (5159) is obviously seen to follow regardless of the value

o o of ltr Hence if pfj gt p ^ m gt some error limit sampling at the limit is seen to be optimal at the sample time and optimal thereafter Thus in the scalar case (2) is the best monitoring program

o Notice how no restrictions were placed upon 4 lto or v except that the system must be stable and to and v as variances must be positive Thus Conclusion XVI includeb both the zero eigenvalue case for $ = 1 and the negative eigenvalue case where 0 lt ltjgt lt 1 Thus it is a general reshysult for scalar models where the asymptotic properties (518) and (520) of the infrequent sampling problem need not necessarily apply

Thus the verification of (5157) through (5159) prove that for a p

fixed measurement position reflected in c and fixed instrument accuracy fixed by v sampling at the estimation error limit is optimal

In the original comparisons for monitoring programs (1) and (2) 2 2 2

the assumption was made that ci = c in (5150) and cjj = c in (5153) The general case is now considered where the characteristics of the meashysurement at time t in program (1) are free to differ from those at time t N in (2) that is c f cjj

The objective of both monitoring programs under the earlier problem definition is to provide a sampling schedule which requires the least

overall number of samples necessary to maintain the estimation error beshylow its limit at all times An important observation for the scalar

case is that for a measurement at time t maximizing the time t K + N beshyfore the error limit is again reached is strictly equivalent to minimizshying the estimation error just after the sample at time t K (this may not

130

be the case in the extension to the vector problem due to the linear combinations of increasingdecreasing responses inherent in theTr[-] and g- [J functions this case is considered later) Thus the Objecshy

ts n tive of sampling schedule (1) is to choose c such that p is minimized and that of sampling schedule (2) is to find that cjj which minimizes pjj The optimality of the two is then established by determining which proshygram after time t N results in the smaller estimation error that is in determining which of Pu(c| ) and pbdquo(cjj ) is the smaller at time t N

for the scalar case it can be shown that the optinal measurement positions reflected in c and oL must be independent of the time each measurement is taken independent of the value of the variance at the times of the measurements and they must strictly be equal to each other To see this compare the first line of (5150) for a sample at time t with the case for a sample at time t N in (5153) Examining the denomishynators of the two expressions leads to the observation that the optimal choice for c in both cases must be the same In order to maximize the time until the estimation error limit is next reached after each measure-

1 N ment p-j and p N must be minimized at the times of those measurements From the forms of the expressions for the corrected variances this is achieved when the denomiators in both cases are maximized Clearly this occurs at the same common value

c 2 = c 2 = c 2 (5174) Thus for the eaalar case the optimal measurement positions as detershymined by c are seen to be independent of the value of the variance p at the times of the measurements and which is actually the same thing independent of time The same Is obviously true of the selection of the best Instrument accuracy as reflected In the measurement error variance

131

v which leads to the general result for the optimal management problem for scalar systems

Conclusion XVH For the scalar case of the tnonl-toring management problem the optimal sampling program is to sample only when the estimation error criterion 1s at its limit (CXVII)

Notice that the results in Conclusions XVI and XVII are general in that no restriction has been made which would limit them to the infreshyquent sampling problem only The infrequent sampling problem is obviously included under them as a special case

582 Extension to the Vector Case mdash Arbitrary Sampling Program mdash Consider the general case with n states retained in the normal mode exshypansion for the model m measurements at r stochastic disturbances for the monitoring management problem with bound on error in the state estishymate As in the scalar case assume the process starts at time tlaquo then compare the following two arbitrary monitoring programs

(1) Predict to t] sample at t and predict to t N (2) Predict to t N then sample

In the problem with bound on error In the state estimate the optimal program will be that which has the smallest value of Tr[P] after t N The relevant equations are for prediction

T r 8- T

ampN

s W +XVV-1 (s-176)

nl

on

nl

and for correction

Assume that the same measurement matrix pound Is used in both sampling programs

132

Ce Q ) (A) Predict from t Q to t

pound = H 0J T + Si (5178)

(B) Sample at t^

Ei bull Si - EdegE T [CPC T + y] _ 1cpO

=(5oJ T + s ) - ryo~ T + s)s T|9(io~ T + ~)~T + xl pound(JHoS T + ) s lt 5 - 1 7 9 )

(C) Predict to tbdquo using (5176) obtain N-l

pound - H Y H - l T +XV _ l T

n=l

^ n=l

- ^ ( J M Q J 1 + Q)pound T fe ( jy 0 T + Q ) E T + y l C ( M 0 T + s ) 1

(5180)

Case (2)

(A) Predict t N

(5181)

n=l

(B) Sample at t N

EM bull eS - E 0

N C T [ Q B deg G T bull y j 1 c E deg

N N

bull (V T + A pound r 1osn _ l TV ( t V T + Z J 1 ^ 1 ^ 7

^ n=l ^ n=l

x U v T + f laquon v- i T V + J V v T + Z jnlsslT (5182)

133

In order to establish the optimal1ty of program (2) it is required to find conditions on J a and MQ such that

Trjjpjj gt Tr[pJjJ (5183)

In general this is difficult to accomplish owing to the complexity inshyvolved in comparing traces of inverses of matrices Since it is so difshyficult to say anything at the symbolic level of (5180) and (5182) an example with n = 2 lt = l and r = 1 was developed algebraically which resulted in the same result as found with the scalar case in Conclusion XVII However an analytical result for the general case has not been found

Thus a general result for the optimal management problem for the vector case has not been obtained analytically though the results for the scalar case do suggest extension to the vector problem Numerical determination of the optimal sampling schedule for specific problems though tedious should be possible with dynamic programming (see Meier et al [92] for a related problem)

583 Extension to the Vector Case - Infrequent Sampling Program -Following the discussion for the scalar case where it was found that the amount of correction to the estimation error criterion was directly proportional to its predicted value at the time of a measurement it is desired to show the following for the vector case of monitoring with a bound on error 1n the state estimate

(A) Predict to time t K sample there and find the correction

poundTrK 5 Trfe - EJ J (5184A)

(B) Predict to time t K + N then sample and find the correction

134

ATr K+N 4degtrade - amp (5184B)

(C) Show that

(5184C)

(D) Finally predict the case in (A) ahead to t K + N and show

(5184D)

Graphically these relationships are shown in Figure 58 which is simply

the vector analog to Figure 57 for the scalar case

the cas

A T rK+N raquo i T r K

I K 1

Figure 58 Asymptotic relationships for Tr[pound] in the vector optishymal management problem

135

It 1s assumed that tines t K and t K + N are sufficiently long to pershymit the approximations in the infrequent sampling problem (518) and (520)) to apply at each sample With these simplifications obtain from (522)

T E H 4 + K deg + T r | j s

~PK = Edeg - efej [ s K $ T

K

+ y ]V p deg -K+N[~K+NEK+N poundK+N + ^J

pK+N -K+N ampamp CK+NEK+N

For consistency as before assume that

~K = poundK+N E ~

a t both measurement t imes Thus in (5 184A)

ATrbdquo = Tr

S i m i l a r l y for (5 184B)

ATr K+N [amp4 pound p K + N E + J

(5185)

(5186)

(5187)

(5183)

(5189)

(5190)

(5191)

I t is required in (5184C) to compare ATrK in (5190) with ATr K + N in

(5191) Making substitutions for pjj and Pdeg+ N for the matrices in (5185)

and (5186) shows that the only difference in pound[ and Ej + N is in the

valua of their (ll)-elements see the second terms in (5185) and (5186)

This results from the infrequent sampling approximations

Even with this simplification analytical comparisons in (5190)

and (5191) could not be found to substantiate (5184C) Approaches used

included use of the following theorem from matrix theory for the inversion

of a partitioned matrix

136

THEOREM I f fln is nonsingular then the inverse of the part i t ioned matrix

6

is given by

where

laquo11 Siz

A21 _ 1

1 5 2 2

A 1 + Xltf^X 1 - sect _ 1

e 1 1 e1

ilaquo x = 6 n f l

1 2

sect = ~22 ^21~

I - A 2 l A i r

(5192)

Attempting to use (5192) in comparing (5190) and (5191) where the

par t i t ion i s taken to ive A include only the ( l l )-elements of those

matrices shows that allowing only the ( l l ) -element of K and P + N to

be d i f ferent effects every element in the inner inverses in (5190) and

(5191) thus use of (5192) does not seem to help

I t was thought that use could be made of the

MATRIX INVERSION LEMMA For pound gt 0 and V gt 0

E - EpoundT[poundpoundST + y]_1poundpound = O f 1 + s V 1 ^ 1 (5193) (see Sorensen in Leondes 1781 p 254)

However though the number of terms in ATr K and ATr K + f | decreases the complexity in their comparison increases Thus the pursuit of an analytical statement for the solution of the optical management problem in the vector case was abandoned

584 Suggestion of a Heuristic Proof for the Vector Case - For the general management problem (of which the infrequent sampling problem is only a special case) the following heuristic proof is offered in substantiation of the optlmality of sampling only at the error limit when the model state is a vector

137

Suppose the problem started at time tQ and now is at time tbdquo The following two sampling programs as before are to be compared

(1) Sample at t|lt and predict to t +f (2) Predict to t K + N and sample (5194)

For consistency assume again that the same measurement matrix C is used in each case Then the optimality of (2) over (1) can be shown by provshying that at t K + N gt

T r ~K+N f o r C a s e ^ lt T r ~K +N f deg r C S S e ^ (5195) The above may be proven with a simple extension of the scalar results of Conclusion XVI to the vector case This extension can be made after making the following

Coniecture A The absolute values of the individual elements of the predicted covariance matrix in the linear recurrence (5175) are monotonically increasing functions of time (CA) Numerical experiments have shown the above to be true but an analytical proof has not been obtained Assume the conjecture to be true in what follows

The optimality of case (2) can be established by reasoning as folshylows at the first measurement time tbdquo

(1) Assume the measurement associated with the matrix C effects allthe modal state variables that is information is gained in the estimate of each state of the filter at a measurement (2) The information obtained in each mode decreases the absolute value of every element of the covariance matrix during a meashysurement

(3) Conjecture A implies that the absolute values of all the eleshyments of the predicted covariance matrix [PR+N3 at time t +tj are larger than those of [pound$] at time t|lt

(4) Then from Conclusion XVI for the scalar case the absolute value of the correction to each element of [J$+N] at t K + N should be greater than that to each element of [E$] at t|lt

(5) By the uniqueness of the solutions of linear recurrences the elements of [P|lt+M] for a sample at time t^+o must thus be smaller in absolute value than those of rPKM] at tiMM for a sample at t R K + N N N (5196)

138

A graphical interpretation of this even for a small number c reshytained modes adds more confusion than clarification to the above Such a pictorial description would follow Figure 57 for the scalar case where such a graph can now be thought to apply to eaah element of the (n x n) covariance matrix

If the above construction has validity 1t applies to both the trace of the state estimate error covariance matrix and to the variance of the system output estimate anywhere in the medium Thus in both the moi toring problem with bound on state estimate error and that with bound on output estimate error the optimal management program would be to sample only when the error criterion reaches its limit

Though a proof has not been found the concepts presented here may prove to form a basis for future solution of the optimal management probshylem for the multidimensional case

59 Extension to Systems in Woncartesian Coordinates General Result for the Infrequent Sampling Problem

Duff and Naylor [34] in Chapter 6 on the general theory of eigenshyvalues and eiaensystems discuss at length conditions under which partial differential equations of applied mathematics are separable Results are given there of conditions under which eigensystems for given coorshydinate systems can be found The results presented in this thesis for the Infrequent sampling problem based upon properties (518) and (520) extend directly to systems 1n any coordinate system for which complete orthogonal eigensystems can be found the requirement Is only that the first eigenvalue must dominate the asymptotic response a condition which has been seen to admit a wide variety of suitable boundary condishytions As developed in Young [131] no-flow boundary conditions can be

139

used in conjunction with pseudo-sources at the boundaries of actual sysshytems in the coupling of component models to one another greatly extendshying the applicati n of infrequent monitoring theory

The results of Conclusion XIV for systems with fixed boundary conshyditions extend as a worst case to systems in any separable coordinate system where a complete set of orthogonal eigenfunctions nay be found In those cases fidegd boundary conditions or emission or radiation boundary conditions lead to the modified separation property in (5119) this results in the necessity of solving for the position of maximum variance in the output estimate in the monitoring problem with bound on output error as a function of time This is not a serious difficulty and does boast the property that as in Conclusion XII for no-flow boundshyary conditions once the position of maximum variance is found at the first sa pie that position will be the position of the maximum varishyance for all subsequent samples Thus the time-varying maximization in (5119) and (51ZC) for one-dimensional diffusion with fixed boundary conditions or for systems with emission or radiation boundary conditions as in Conclusion XV need be solved only at the fivet sample the same result applying for all other samples the result extends directly to all systems of higher dimension in separable coordinates with complete orthogonal eigensystems

The more ideal results of Conclusions VII and XII for systems with no-flow boundary conditions appear to also extend to systems in arbitrary coordinate systems where again complete orthogonal eigensystems exist The requirement in order for the solution of the minimax problem to be Independent of time in Conciusion XI is that the eiaenfunction associated with the dominant eigenvalue in this case the zero eigenvalue be inde-

140

pendent of the spatial coordinates Consistent with this requirement make

Conjecture B For diffusive systems in any coordishynate system where solutions may be expressed in terms of a complete orthogonal eigensystem the case of no-flow boundary conditions leads to a dominant eigenvalue of zero modulus and an associated eigenfunction which is independent of the spatial coordinates (CB)

Examples include diffusive systems in cylindrical coordinates For a system with a no-flow boundary condition at radius r = R the eigenfunc-tions are Bessel functions the eigenvalues are the positive roots of

3 pound J 0 ( A R ) = 0 (519)

the first of which is zero The eigenfunctions are e n(r) = J 0(A nr) (5198)

but since A = 0 the fir-it eigenfunction is independent if r (see Mac Robert [b2] for n extensive treatement of Bessel functions in the area of spherical harmonics)

Another example concerns radial and latitudinal atmospheric pollushytant transport on a global scale (see Young[131] Chapter 4) It can be seen that eigenfunctions in the radial direction are Bessel functions while those in the latitudinal direction are the Legendre polynomials Both eigensystems possess zero first eigenvalues and related eigenfunc-ions which are independent of the spatial variables

In cases such as these the complete separation of the minimax problem as in Conclusion X into two independent problems in minimization and maximization both of which may be solved independently of time leads to in elegantly simple solution of the infrequent monitoring problem with bound on error in the output estimate

141

The following general results for diffusive systems in various dishymensions and coordinate systems summarize the extension of the one-dimensional results of this chapter o the general case in multiple dimensions

Conclusion XVIII The complete solution of the deshysign problem for an infrequent sampling monitor may be determined at the first sample time the results being optimal for all subsequent sample times The optimal sampling management program appears to be to sample only when the estimation error criterion is at its limit These results apply to diffusive systems in separable coordinate systems with homogeneous boundary conditions where complete orthogonal eigensystems exist and to normal mode models of arbitrary finite dimension

(CXVIII)

142

CHAPTER 6 NUMERICAL EXPERIMENTS

Examples are presented in this chapter which serve to numerically substantiate many of the analytical results of Chapter 5 The discrete-time Kalman Filter algorithm of Chapter 4 is programmed as shown in PROGRAM KALMAN (see Appendix F) using the normal mjde problem formulashytion of Chapter 3 and the time-discretization algorithms of Chapter 4 and Appendices A B and C The first-order gradient optimization algoshyrithm with linear constraints described in Section 536 (see Westley [127]) is coded as SUBROUTINE KEELE and included as part ot KALMAN For the case m = 2 for the optimal positioning of two noise-corrupted meashysurement devices and for a one-dimensional diffusive medium it is found to be convenient to generate contour plots of the value of the estimate error criterion (either Tr[Ppound + N(z K)] or [ P J ^ f z J L j ) as a function of the two measurement device position coordinates IKJi and f z K ] 2 at various times t bdquo + bdquo The surfaces shown in these plots with the high level of information they contain were instrumental in arriving at many of the conclusions of Chapter 5

The basic problem to be considered is developed in the following section various examples based upon it to demonstrate the more salient features of the infrequent monitoring problem are included in subsequent section

143

61 Problems in One-Dimensional Diffusion with Ho-Flow Boundary Condishytions Method of Solution

Consider a one-dimensional problem in diffusion including scavenging described as follows

Figure 61 One-dimensional Diffusive system example

For the pollutant concentration pound(T) consider the following initial-boundary value problem

3 5 uraquo 5 = 0 x = U

W e(cO) = V cos ((n - D f E )

(61)

(62)

(63)

The single stochastic point source 1s defined by

144

U U T ) = OI(T)S(C - c j

E[OI(T)] = 0

E[u(T)agt(T2)] = Wlaquo(T - x 2 ) (64)

In the interest of generality transform the problem to dimension-less functions of time and space as follows

t = poundl bull

a fix K

W T raquo (65)

Substitution of (65) into (61) yields the following dimensionless form

for the one-dimensional diffusion initial-boundary value problem 9

| f = S-l - 05 + f(zt)j (66)

bull amp i | f pound U 0 z = o z = 1 (67)

n laquoz0) = cos (n - 1) irzj) (68)

n=l

and where the dimensionless point source is given by

f (z t ) = w(t)lt5(z - z w )

E[w(t)] = 0

ElXt^wttg)] = Wa^ - t ) (69)

With these generalizations the modal resistances capacitances and eigenvalues from Table (331) become the following for the dimenshysionless problem with scavenging

145

n = 1 raquo

n = 23 2 n = 23 (n-l)V

The forcing terms from (335) become

((n-l)V + a)

[ c n cos ((n - 1)TT z w)jw(t)

concentration at any point z CO

pound(z t ) = ) x n ( t ) cos fn - UirzV

12

The pollutant concentration at any point z from (335) becomes

(610)

(611)

(612)

For a sufficient number of modes to be both theoretically interesting and computationally expedient choose n = 5 for the number of terms retained in the expansion in (612) This choice will be studied later as to its effect upon the outcome of the infrequent sampling problem

Thus the modal state equations may be written in dimensionless variables as follows

1 -o

2 bullU2+a) k3 - -(47i 2+a)

4

5

-(9ir z+a)

0

J +

o x l x 2

3

4

+

lt 5

2 cos (IT Z W ) 2 cos (2ir z j 2 cos (3ir z w) 2 cos (4 z )

w(t)

(613) The initial pollutant distribution (z0) is chosen as in (68) so that from (333) the initial modal state variables are written simply as

146

8(0) = m Q (614)

The covariance of the error in the estimate in the Initial state 1s chosen to be

005

Bo s raquoo 001 o

000001

o 000001 (615)

000001 For m = 2 the two noise-corrupted measurements in the vector y are given by

X pound i v

raquo1 1 cos(nz) cos (2irz) 1 cos(nz2) COS (2irz2)

r l1

x 3 x 4

v(t) v 2(t)

(616)

where the mean value of the measurement noise E[y] 5 o (617)

Choose the position of the stochastic source as z w = 03 (618)

For this case scavenging is ignored so that a = 00 (619)

Let the source and measurement noise statistics be defined by the folshylowing covarlance matrices

W = 0125 (620)

147

OOSO 0 (62i)

0 0025 A typical output record of the problem description from KALMAN Is

shown in Figuure 62 The data corresponds to a problem with a bound on the error 1n the state estimate where the error limit Tr = 0075 At each measurement time NSEARCH pound 5 random starting vectors are to be used In the measurement position optimizations The Initial guess for the measurement positions Is chosen as zbdquo = pound015015] (called Z) The computed values for A and D are shown For a steps1ze of OT 5 001 the so-called Paynter number raquo 35 that is the number of terms used in the series approximation for e- In (49) for an error criterion of EPS = 000001 The state transition matrix pound + 1 (called AK) and the discrete disturbance distribution matrix lpound + 1 (called OK) from (412) are computed along with the Incremental disturbance noise covariance matrix g K + 1 from (414) and Appendix B (called WKP1) The steady-state disturbance covariance matrix n from (519) and (520) including the

r - SS term | ft I ) Is listed as WSS along with the number of tlmesteps NSS

Nn necessary for the Infrequent sampling approximations to be valid see (578) for the value e - 100EPS (same EPS given above)

For the monitoring problem with bound on error in the state estishymate a measurement is necessary whenever at time t bdquo + N Tr[gpound+N(zpound)T gt Tr At each sample an attempt 1s made to locate the global optimum of the measurement position vector jJ + N such that

For the initial guess of z K + H = [015015]1 and for NSEARCH S 5 other randu^ starting vectors the constrained first-order gradient algorithm

DISCft i Te KALHAN F I L T E R SIMULATION PROGRAM V E R S 2 7 5 ftOV f

PFJ03LE1 INPUT JS AS FOLLOWS

EXAMPLE TO SHOW GROWTH OF T R A C E I P ( K K + N ) J Slf l lFACE WITH T I 1 E T ( K N ) ITS SHAPE APFRCACHES THAT OF I P l K K h l l SURFACE ASYHPTOTI ALLY FOR LARGE H

WO VECTOR I S

1OODE00 1OCOEOO

CAPMO MATRIX IS 500DE-O2 -DElaquo00

-OCraquoOC 1000E-O2 OE+CO -OE+OD CE+O0 -CE+OO -CE+OO -OE+OP CAPW MATRIX IS 1250E-01

CAPV MATRIX IS

10D0EO0 tOOOE00 IOODE+OO

-OEDO -OEraquo00 000E-05 -OE+OO -OE+OO

-OE+OO -OE+OD OE00 OOOE-03 -OE+OO

-OE+OO -OE+OO -OE+OO -OE+OO 1OOOE-03

2W VECTOR IS 3000E-01

Z VECTOR IS 1500E-0 1500E-01

NUWSEft OF POINTS FOR RANDOM SEARCH INITIALIZATION IN5EARCH) bull

THIS IS A MONITORINS PROBLEM OF TKE FIRST KIND WITH A CONSTRAINT ON THE ALLOWABLE ERROR IN THE STATE EST MATE THE ESTIMATION LRROR CRITERION IS THE TRACEIPltKK+N)3 THE CONSTRAINT ON THE ERROR IU THE STATE ESTIMATE IS FIXE) AT

Figure 62A Problem description from PROGRAM KALMAN

PARAMETERS FOR SYSTEM DESCRIPTION ARE

D IFFUSION CONSTANT K 1O00E+O0 LENOT OF MTPUW L = 1 OO0E-00 SCAVCKSINO RATE ALPHA = OE+OO

MATRIX I S - O E D D OE+OO

017+00 - 9 8 7 C E + O 0

OEOO OE+OO

OF+03 OEOD

OE00 OE+OO

MATRIX 1 5

1 O0JE+O0 1 1 7 6 E + 0 D

- 6 1 0 0 E - 0 1 - 1 9 0 2 E + 0 0 - 1 6 1 8 E + O D

OE+OO

OEDD bull3 94BE+01

OE+OO

CEOO

OE+OO CE+OD

OE+OO CE+DO

CE+OO OE+OO -eee3Eoi OEraquoOO

OE-00 -1S79E+02

1OOOE+00 bullOE+OD DEC0 OE+OO OE+CO

DK MAT)

10DDE-02 1119E-02 -5106E-03 -126CE-C2 -a134E-C3

OE+DO OOeOE-01 CE+OO OE+CD OE+DO

OE+00

OE+OO 673BE-01

OE+OO

OE+OO

OE+OO OE+OO OE+OO 1ME-D1 CE+OO

OE+OO OE+OO OE+OO OE+OO 2062E-0T

WKPt MATRIX I S

1 2 S 0 E - D 3 1 3 9 9 E - C S - S 3 B 3 E - 0 raquo l Q 7 6 E - 0 - 1 0 1 7 E - 0 3 1 3 3 B E - P 3 1 S 6 B E - 0 3 - 7 1 6 0 E - 0 4 - 1 7 7 6 E - 0 3 - I 1 5 2 E - 0 3

- 6 3 B 3 E - 0 4 - i e 6 E - C 4 3 3 0 1 E - 0 4 6 2 7 pound E 0 4 0 4 5 3 E - 0 4 - 1 3 7 0 E - 0 3 - I 7 7 6 E - D 3 8 2 7 0 E - 0 4 2 1 1 5 E - 0 3 I 4 2 7 E - 0 3 - 1 0 1 7 E - 0 3 - 1 1 S 2 E - 0 3 5 4 D 3 L - 0 4 1 4 2 7 E - 0 3 9 9 2 I E - 0 4

WSS MATRIX I S

9000E-02 143BE-02 - I 9 5 7 E - 0 3 -2 C77E-03 14d6E-02 A7MG-03 - 1 M 0 E O 3 - 2 0 3 2 E - 0 3

-1 957E-03 -I e^OE-03 6047E-04 1 I45E-03 -2 677E-03 -20(2E-Q3 1145E-03 254GE-03 - I 231E-C3 -I 4 1 E - 0 3 6333E-04 1 559E-03

bull1281E-03 bull l 417pound 03 6333E-04 1559E-03 1-036E-O3

THE NUMBER OK TEftK$ I N THE TRUNCATED MATRIX CCMVOLUTION SERIES FOR THE STEAOT-STATE VALUE OF tUSS) NSS 71

Figure 62B Problem description from PROGRAM KALMAN

150

KEELE produced the results for the first measurement partially shown in Figure 63 The global minimum is chosen as the best minimum found after the NSEARCH + 1 attempts

Figure 64 is a time history of Trlppound+N(zJ)] that is a plot of the performance criterion with the optimal measurement positions from time t K used in its evaluation between measurement times t K and t K N Three sample times are shown at t = 009 048 and 088 At each samshyple the optimal positions of the m = 2 measurement devices with covari-ances given in (621) are found such that the time to the next sample is maximized Examples of actual state and optimal state estimates are shown 1n Figure 65 In the plots those labeled X() are plots of states with time those labeled XH() (mnemonic for ( or x-hat) are the corresponding state estimates

In assessing the globil optimality of zpound and P found at time t K

(as in (62)) contour plots are constructed for the objective function [P^(j K)] 1 1 plotted against [z K] horizontally and Is K] vertically The minimum plotted value is noted with a the maximum with a 0 In between are nineteen equally spaced levels denoted with the symbols ()( )(D( )(2)( )(9)( )(U) The actual evolution of the optimizashytion calculations can be followed with such contour plots in order to understand the procedures of the algorithm More importantly study of the contours serves as an important method of understanding the nature of the design problem since the plots convey a level cf information otherwise not available through tabular listings or other means

At each sample time say t K + N the predicted covsriance matrix IK+N is written out for post processing and after the entire time intershyval in the monitoring problem is covered contour plots of the

THE NUMBER OF CALLS TO FVAL IG 1 1309346B3E-02 1ODO00000E+00 213471279E-01

THE KUKBER OF CALLS TO FVAL IS 7 127494646E-02 1OOOOOOOOElaquo00 1C3265064E-01

THE NUriBHR OF CALLS TO FVAL IS t 1 367C4440E-02 437O71939E-01 601669468E-OI

THE KUM3CR OF CALLS TO FVAL IS 19 12644I4E9E-02 21 J255890poundgt01 515S4B271E-01

THE NUMBER CF CALLS TO FVAL IS 1 146922GD4E-02 374187311E-01 B92S8163eE-01

THE NUMBER OF CALLS TO FVAL IS IS 1264J1463E-02 211254872C-01 S15347999E-01

THE NUMBER OF CALLS TO FVAL S 1 162042943E-02 5O7662490E-01 laquo00351916E-01

THE KUKBER OF CALLS TO FVAL 13 13 12B441469E-02 2t126264SE-01 3155529S3E-01

THE NUMBER OF CALLS TO FVAL I S 1 1SB617996E-02 3a5314991tgt01 27e840503E-01

THE NUMBER OF CALLS TO FVAL IK 11 126982870E-02 6621772E5H-01 1 67144930E-01

THE NUMBER OF CALLS TO FVAL IS 1 132010362E-02 2273t1246E-01 663S29703E-01

THE NUMBCR OF CALLS TO FVAL 16 442 1 E6441469E-02 2 U235SC4r-01 6I3540379E-O1

BEST LOCAL MINIMUM FOUND AFTER B TRTS I S 126441469E-02 211234672E-01 315347999E-01

Flpure 63 Sunmary of results of minimization of F P ^ Z ^ ] at the f i r s t sample time from SUBshyROUTINE KEELE r K ^ K ltJ l l

eooooE-o2

B3000E-02

42500E-OZ

X X X x ) x x x x x bull x x x x x x x x x x x x x X X X X X X X X X X X X X X X X X X X X X X X X X X - X X X X X X X X X X X X X X X X X X X X X X A X X X

x x x x x X X X X X X X X X X X

x x

Figure 64 Time response of TrJpK+MfZ|)Jraquo the performance criterion for the optimal monitorshying problem with bound on error in the state estimate samples occur at t K = 00D 048 and 088

B6900E-01

S5BOOE-01

947O0E-01

X X

X X

X X

x

X

X

X

X X X

X X X X X

X

X

X

X

X X

X X

X X

X X

XX XX

X

x X X X

X X X

XX

X X X X

X X X K X

X X

X

X

X

X

XX X X X

XRXX

XX XX

X X

X XXX

X

X

K

Figure 65A Trajectory of the f i r s t modal state [ K + N ] raquo versus time t K + f J

1OO3Opound00

xxxxxxxxxxxxxxxxxwoooutxxxwuwxxxxxxxxxxx

xxwoouooc

XXWOWKXXXXX) OIMXXXXXXXXXXXXXXXXW ucwxxxx

Figure 65B Trajectory of the optimal estimate of the f i rs t modal state time t K + s bull [ -K+NJ T versus

1000OElaquoO0 X

XXXJUUM WWXXX

-IOOOOE-01

Figure 65C Trajectory of the second modal state [SR+H] 2 versus tine t K + N

6000GE-01

JOOCIE-01

ZOOOOE-Ot

IX

1 X

I X

1 X

1 X

I X I X

I X I XX I X 1 X 1 X I X I X I X 1 X

i V I X 1 ft K XX XX XXX xxxx xxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 65D Trajectory of the optimal estimate of the second modal state I E K + N ] versus time t K + N- L J 2

157

[ppound +J)(z + N)] surfaces are made for each sample time Much use of

these plots is made in what follows

62 Problems with Bound on State Estimation Error

621 ftsyaptotic (tesporso of Stats Estimation Error mdash Fov the

monitoring problem with bound on allowable error in the estimate of the

modal state vector i t is necessary to make a measurement whenever for

a time tK bullK+N

T BK + N(SK) i T r l t a (623)

that i s whenever the trace of the error covariance matrix predicted

from the last measurement at positions z bdquo at time t bdquo to time t K + N reaches

the estimation error l i m i t T r

In order to numerically substantiate the fundamental results for

the Infrequent sampling problem contained in conclusions I I I I I and

I I IA the relationship between T l lpoundJ( + N( K)J and [pound()] is now conshy

sidered Suppose the monitoring problem is started at time t Q with

PS 5 Hbdquo as the i n i t i a l value of the error covariance matrix le t i t s -0 -0 value then be predicted ahead to lime t bdquo when

Tr[pdeg]= Tr i V nV l T gt T r z i r a (624)

at which point a measurement must be made The monitoring design probshy

lem is to choose pound at time t K so that the maximum time t K + N results when

For a measurement at 2 K the corrected estimation error covanance mashy

t r i x 1ltmed1ately af ter the measurement is given by

158

$(h) - PKdeg - $ ( [5(2K)EK-C(K)T + secthgt ampbullgt where

^ K )

1 cos (TTZ) cos (2TTZ)

1 cos (irz2) cos (2TTZ 2) (627)

In order to generate a contour plot of Tr[ppound(jK)] from (626) plot values of Tr[Pj(zK)] for all values of the elements of zraquo over the full length of tne medium (0 lt z lt 1 and 0 lt z lt 1 in (627)) The surface for the first sample at t R = 009 1s shown 1n Figure 66

To study the evolution of the trace of the predicted error covari-ance with time as a function of the measurements at time tbdquo let

-PK+I(SK) bull lt(SK)S T +

~PK+2(K) lti(Kgt T + 8

n=l (628)

Contours of the traces of the above predicted covariance matrices at tines t K + t K + 5 t K + 1 0 t|+11 and t K + 5 as functions of jo are shown in Figure 6-7 Notice how tht global minfmum moves with time ote also how the error 1n the estimate In the region near the stochastic source (z w = 03 along both coordinates z 1 and z 2) Increases in v ^e as time grows relative to the rest of the surface due to greater uncershytainty in the estimate in that area

CONTOUR PLOT OF TRACE[P(KK+Ngt(2(Kgt11 A3 FUNCTICI CF [Z(K)31 HORIZ C2(KM2 VERT EXAMPLE TO SHOW CROWTH OF TRACECPIfcK+Hll SURFACi UlTH TIME TIK+N) ITS SHAPE APPROACHES THAT CF [P(KK1J11 SURFACE ASVMPTOTICALLT FOR LAROE H

10 393 44 3 222 599 44 3 222 555 44 3 222 39 44 33 222 3 44 33 222

OS bull 44 33 222 44 33 222

444 33 222 444 33 222

444 33 222 06 444 33 222

4444 33 22 4444 33 22Z 4444 33 222

4444 33 222 07 bull 4444 33 22

4444 33 22 4444 33 22

4444 33 22

444444 33 22 0 6 M4444 33 2 1

4444 33 222

44 333 22 1 U f K l l Z 333 22 1

3333333 222 1 0 3 333 222 I

Z2222 2222222222

2222 33 4 S 6 77 2222 33 44 S laquo 77 2222 33 44 3 6 77 2222 33 44 3 66 777 2222 33 44 3 3 BB mdash 2222 33 44 S3 06 2222 33 44 S3 i-2322 33 4 S 61 2222 33 4 S 6L

222 33 44 33 66 222 3 44 S3 66 222 33 44 S BBS

222 33 ~

8(138 99999999 BUSS 99999999 S03B 999999B9 1)388 99903399 03986 93999999

777 888886 S9 J9999999 7 6883886 9999939999999 777 8838888 9S99999999

7 77 68868688 95J99 777 eeeeasses

77777 6888888688 77777 866886868666888

777777 6086666868886 666888686

04 -111111 111111 1111111 1111111 03 +1111111

1111111 i u m i m m 111111

oa + i i n

22222222222222222 22222222222222222222222

22222222 2222222 22222 22222 2222 333333 2222 222 3333333333 222 222 333333333333 222 222 33333333333 222 222 333333333 2222 2222 2222 222222 22222

2222222222 222222222 22222222222222222222

222 33 4 33 6G6 777777777 22 33 44 S 3 66S 7777777777 22Z 3 44 33 6663 7777777777777

22 3 3 4 4 3 3 GGXC 77777777777777 22 33 4 33 BE5636 77777777777777 222 33 44 33 3pound66S6GS6 777777

22 3 44 353 -36666666666666666 22 39 44 533S 6666666666666666686 22 33 444 355553553 222 39 4444 33333333553533353355333353333

22 33 44444444 222 333 4444444444444444444444444444 2222 3333333333333333333333333333 lt

22222 222222322222222 2222222222222222222222222pound222222

2222Z222222 11111111111111111111111111 t i l 111 m i l -

1111111111111111111111111111111111111 11111111 111111 111111111 111111 1 i u u i n 11111 11111 11111 11111 11111 11111 _ 11111 0

22222222222222 222222 01 +333333 2222 3933 2222 4444 333 222 44444 333 222 444 33 222 OO + 444 33 222 HH

urn i n i t i n

1 l 1 l l I 1 t l 1 l 1 1 1 l 1 1 1 1 U 1 l m i n i u m t m m t i i n n n i i

2222222222222 2222222 22222222222222222222222222222222 2222 3333333 222 333333 3333333333333333333333399333333 2222 3333 222 333 4444444444 222 33 44444444444444

TtK+N)raquo 90000E-02 T(K bull SO000E-O2 N bull O STEPS AFTER FIRST MEASUREMENT

T K S S S (S) (91

d616pound-02 3369TE-02

i e i (6)

33166E-02 32440E-02

(7) C7) 31713E-02

3O690E-O2 16) (6) 30265E-02

29540E-Q2 (3) (31

26814E-02 26089E-02

(4) (4)

27364E-02 26539E-02

(3 ) (3 )

23914E-02 23163E-0Z

(2) (2gt

244E3E-02 23738E-02

(1) lt1gt

23013E-02 22268E-02

(8jraquo 21363E-02 ESTIMATION ERROR CRITERION CONSTRAINT bull

78000E-02

figure 66 Contour plot of TnP|[(Sv)| a t f i r s t measurement time t K = 009

ITS SHti-e APPROACHES THAT CF lPtKKgt311 EbRFAC ~ IAYMPTOTICALLV FOR LAROE N

tZ(K)32 0 5

laquo 4 444

44444 ltgt444 4144 4444

444 3 444 3 444 33

222 222 222

2222 2222 2222 2222

i 222 pound2

2222 222 272 2ZZ

-1J4 444 44 444 44

33 222 03 222 33 222 33 22 333 333 2 3133 22 33333 222 2222 22222 222222

11111 1111111 111111 Mill 1111 111

111 1 111

22222 33 4 5 66 7 8338 9999999 0-22222 33 4 S 66 7 8e88 S999939 22222 33 4 S 6 7 BBC3B 933999S9 22222 33 4 5 6 7 7 8B380 99992939 22222 33 4 S 63 7 eSBGQ 93939993 22222 33 44 S3 66 77 6C8E68 933^9999999 222222 33 44 S3 60 777 8386888 99999S93999 22222 33 44 0 66 777 683B(8d S9999939 22222 33 4 55 6S6 7777 CSBBBSBB 2222 33 44 53 66 77777 088888888 22I-2 33 44 5 66 777777 08866886888 laquobull 2222 33 44 55 St 6 777777 8833668888880 222 33 A S3 664 77777777 88888888 222 33 44 55 tB-1 7777777777 111 222 3 44 55 6iC6 77777777777 11111 222 33 44 55 60566 7777777777777 1111111 222 33 44 55 UE66666 7777777777777 II 111 111 22 33 44 555 666666S666 777777 11111111 222 3 44 551 66666666666666 111111111 222 33 44 6-5 66666666G666666666

III 111111 2 2 3 3 44 pound5^5533553 66666 1111111111 222 33 444 5355355555533555555555 1111111111 222 33 4444ltM 55555 11111111111 222 3333 444444444444444444444444444444 11111111111 2 2 2 333333333 111111111111 22222 33333333333333333 111111111111 22222222pound22222222222222222222222 111111

222222 22222222222222222

222222 22222 2222 33=3 22222

2222 333333333333 222 222 33333333333333 222

2222 33333 333333 2 2 2 2222 33333 33333 222 222 33333333333333 2 2 2 2222 3333333333 2222 22222 pound222 1

222222 222222 11 2222222222222222

1111111111 111111111111 111111111 II 1111111 II II 111111 1111 1111111111 n i m i i i i 111111 H I m m 11111 i n i i

pound22222222 22222

333333 2222 3333 222

444lt] 333 222 441444 333 2pound22 4M444 33 222

1111111 1111111 1111111 111111 111111 1111111 1111111 1111111 111111

111111111111111111111

11111111 111111111111 11111111111 1111111111

111111 222222222

2222222 2222222222222222222222222222 2222 333333

2222 333333333333333333333333333333333333333 2222 3333 333333333333333333333333 222 3333 3333333333333

TCKNgt 10000E-01 T(K) bull 90000E-02 N bull 1 STEPS AFTER F r RST HEASUHEHENT

SYPcopy LEVEL RANGE

-s-srapoundsi m 35902E-02

35248E-02

i 34594E-02 33940E-02

33265E-02 32631E-02

i 31977E-02 3 1323E-02

30668E-02 30014E-02

s 29360E-O2 26706E-02

26051E-02 27397E-02

i 26743E-02 26CB9E-02

3434E-02 247eOE-02

(copy) 24T26E-02 ESTIMATION ERROR CRITERION CONSTRAINT =

750D0E-D2

12SJCE-013

Figure 67A Contour plot of measurement

T rfei(0] U K+1 010 one timestep af ter f i r s t

161

r w S z

m m n_ lnM bull MM ampnm J 5 8

pound8 SS8

totacopy t^f

I WW

laquo5S N K Jill timctmo B O O

ltoia mio v mm vn hi

ogtn M O W --

- w o n mdash ni Bin bull bull- w o n - w o n

a-o w - raquo - bdquo bdquo _ _

_ _ n n (M mdashmdashraquo- ~mdash^mdashlaquo-mdashmdash~raquo m r t r t o V T I V laquo o w - - ^ - - _ - - - - -

- n n m o n m ltrwMM nn w w - raquo - - - bull - - - -mU)D M T H J ^ M laquo r n w ^ ^ raquo - mdash mdash mdash bull mdash

M lt T M laquo n n n t i i ajpi raquo - - - bull bull nnnnnei laquo laquo - ^raquo - r - r - r -

n n n n ftiNw ^ - bull w w w m i i i - i n n o gtWNlaquo mdash _ bdquo raquo - _ CMVWMIM

n d n o n n n wcyNWh) mdashmdashmdash_- - ^ NNMt twNN laquo OjttOjCVWN bdquo - ^ raquo filtM laquoM

- - bull bull - bull - mdash -bull MU OO laquo

W

- N nnn bull

bullmdashgt- w w

III NiMdiuW

(MCMNfcrw

Bio

F-uu cvw lt laquo(jftlfCVJ

U S O -WMWtVWhJ

raquo-raquo- w

N mdash bull- mdash mdash

si WAituww n o n W N

WMW mdashZZ

CONTOUR PLOT OF TRACpoundtPfKK+HgtltZOOU AS FUNCTION OP t2ltK131 HOR1Z EZltK))2 VERT EXAMPLE TO SHOW GROWTH OF TRACEIPIKK+Hll SURFACE WITH TIME T(ftN) T6 SHAPE APPROACHES THAT OF (F(KK)311 SURFACE ASYMPTOTICALLY FOR LAROE N

0 2

Z S 2 2

aa 2g2 933 2222

333 22g 3333 222

333 33 222 333333 Z22

33333 222 bull33333 22

33J33 pound2 33333 22 35333 222

3333 22 33J 222

444 3 444 3

Aft W 44444 33 44444 33 +4444 333 444 33

333

22ZZZ222222222222 Z22222222222222222 22222222222225^222 Z22ZZ222Z222222222 22ZJ22222222222222

22222 22222222222 ~ 222222Z222

22Z22Z2222 222222222

2222222

333 44 H S 333 4 9 6 933 4 B TO

33 4 S3 66 33 44 S3 61 333 44 9 61

mdash 44 33

999399 O 999999

999999 9939999 99999399993 9999SS9

Mil

7 0B0BB 7 88088 n eases 7 BBSBS 77 BBSBBB T 7 BBBBBB

bdquo - ^ r 77 B680CB 33 44 9 3 68 77777 098888

33 4 9 668 77777 B6BBBBB3 33 44 raquo3 BB1 777777 BBBBBBBBBSBB

- - - 6raquor 7777777 60086886 - - laquo16G6 77771

33 4 S3 66666 77777777 -~ 353 66666B 777777777777

333 66666B66 777777777 SSJ 666666666 777

I SU5S 6066686666 bullJ353333 666666B666666B C666666B

222222 33 22222 33 44 33

222 mdash -222

222 i 22 222

11111111 11111111111111

11111111111111111 111111111111111111 111111 111111111

11111 111111 bdquo - -m i m i l 22^

1111 222 1111 222

111 222 3333133 111 2222

11111 22222122 2222 11111

1111111

2222 111 22222 1111

1111 111111

111111 l l i m

i m i m i i m m 11111 111111 11111 222222222222 11111 111111 222 2222 11111

111111m J g z 2 M 3 3 3 M 2 L - L - 1

444 pound33333333333 1 4444 9S5S35555S3B 13 44lt14ltM4 033333533353

44444444444

bull bull 1 1 U I U 1 1

liliSHn

3333 333

333 444444 333 444444

3333 222 33 222 333 22 333 22 333 222

333 222

11111111111111 111111111111111

m j u i m 01 +222222 111111 222 1111 33333 222 11 333 ---

_ 333 _ 222 33333333333 -raquo2 11111 2222 2222 11111 22222222222222 11111

1111111111111111111 bull 1111111111111 1111111111 1111111111111111111111111111 111111111111111111111111111111111111111 11111111111111111111111 1111111111 1 1111111111111111111111111111111111 m u 1 1 m m 111111111111111111111111111111

111111111111111111111111

0 0 bull144 33 333

sect22 22 111111

111 (11 11111111 11111 222222222 12pound2222222222g22a222222222222 111 2222 1 222 1 2222

T(KN1 19000E-01 TOO bull bull -0000E-02 N bull mdash 0 i E 3 AFTE FIRT BEASUREHENT bull bull bull ^ bull bull bull bull bull bull bull bull bull laquo B

COHTOUR LEVELS laquo0 SYPBaLS bull i i ^ i i i m i i i i i V1Vamp LEVEL RANGE i g g f i e e a s a t i i i i i

(0 47GG7E-02 19 (raquo m 171

47143E-02 46623E-02 46102E-02 40380E-02 4S059E-02 44S37E-02

( 6 ) CB)

44015E-02 43494E-02

IB) (31

42972E-02 42431E-02

11 t4J 41929E-02 41407E-02

13) 40Be6E-02 4 0984E-OS

(2J C2)

3SB43E-02 39321E-02 38799E-02 3S27SE-0Z

CM 37756E-02 I H ^ t H I I I I I I I I I ESTIMATION ERRdR CRITERION CONS^-AINT

7S000E-02 COVARIANCE tWJ

Figure 57C Contour plot of Tr ElLinfe) a l t 1 m e t ^ m - 0-19 ten timesteps after first measurement

CONTOUR PLOT OP TRACEIP(KKraquoN)lt2(KgtJ3 A3 FUraquoeTteM Of [ZCKI31 HORIZ CZIK12 VERT EXAMPLE TO SHOW OROWTM OF TRACEIPtk KN)3 itftACE WITH TIKE TltK+N) ITS SHAPE APPROACHES THAT CF [PIKfltJ311 SURFACE ASYMPTOTICALLY FOB LARUE l

bull 444 444 444 44144

333 33

06 bull 333 2222

333 pound22 3333 222 333333 222 33333 pound22 33333 22 0 7 raquo33333 22 33333 22 33333 22 33333 222 1 3333 22 1 OC 333 222 11 222 111 2222 1111 EZltKgt)2 22222 111 1111 0 9 bullU111111 11111

3 22222222222222222 3 22222222222222222 3 222222222pound2222222 2 22 222222222222222 222222222222222222 22222 222222222 HZ 2222 2222222222 2222 222

SBBflS eoeos 63886 eeeee 777 695808

laquo99999 0 939999 999999 999S939 99999999 9999909999 9999999

333 46 3 0 7T7 333 4 fl 66 -7 333 4 a ee -7 33 44 55 66 ~~ 33 44 55 61 333 44 S 6B 777 608689 _ 33 44 S3 63 7777 6BSofl8a 2222222222 33 44 59 CF 77777 aaSOBd 2222222222 33 44 53 6(6 77777 6638668 2222222 33 44 53 pound68 777777 680308888888 222222 33 44 33 ecEB 7777777 66380888 22222 33 44 S3 Gamp666 7777777 222 33 44 35 66666 77777777 1111111 Z22 33 44 35 6665666 7777777777777 111111111111 22 33 44 3L5 66666669 777777777 11111111111111 222 33 44 ESr3 66666866 77 111111111111111 22 33 444 311555 666666666 11 11111111 7 33 444 i353S533 6666666B66666 11111 22 333 444 55553535553 6666666 11111 22 33 444 55555535333 1111 22 333 44444444 33353533335lt 1111 22 333 4444444444444444 111 222 33533333 4444444444 1111 2222 333333333333333333 1111 222222222222222 111111 222222222222222222 1111111111111111111 1111111111111111111111111111 111111111111111 1111111111111111 11111 11111 bull 11111 222222222222 11 111111 222 2222 111111111 222 3333333333 222 1111111 11111 03 raquo111 111 111 11111 bullIU111 02 - 1111 11 -111111 11111111111111 1111111111111111 1111111111 bull222222 u n t i l 2222 1111 33333 222

333 222 33 222 00 +44 333 222

222 3333 333 22 333 333 pound22 222 333 4444444 33 22 222 333 4444444 33 22 222 33 444 333 2ZZ 222 333 333 222 2222 33333333333 222 11111 2222 2222 11111

1111 1111111111111111111 11111 11111l1111l1llt1l1111 111111 11111111111111111111111 11111111111111111111111111111111111 111111111111 111111111 nil 111111111)111111111111111111111111 11111111111111111111111111111111111 11111 11111111111111111111111

22222222222Z2 1111

01 11111111 11111111 11111111 11111111 11111111 11111111 11111111

1111 111 1 111 I 111111111111111111111111111 II111111111111111 111111111 111111 2222222222222222222222222222 1111 2222 22 111 222 333933333 3333333 I I 2222 333393333333 3333333333

T(KN)raquo 20000E-D T(K) bull 9C003E-Q2 N raquo I I STEPS AFTER FIRST MEASUREMENT

SYlaquoe LEVEL RAN3E (01 4B911E-02 (9) (9)

483g4E-02 47677E-02

(61 (8 ) 4735SE-02 46B42E-02

(71 (7 )

46323E-02 4S807E-02 (6) 16)

43200E-02 4 4773E-D2 IS) (5 )

44255E-02 43738E-02

(4 ) (4gt

43221E-02 42703E-02

C3) (3)

42166E-D2 4I6SSE-02

(2 ) C2)

41I31E-02 40634E-02

( 1 ) 40117E-02 33539E-C2

(6Jgt 390B2E-02 ESTIHAT ION E ROR CRITERION CONSTRAINT bull

75000E-02 souacEINPUT COVARIANCE [U]gt t I2530E-011

Figure 67D Contour plot of T H P I M I U K M moaciirAmont

at time t measurement

K+ll 020 eleven timesteps after first

CONTOUR PLOT OF T R A C E I P 1 K K N H Z ( K J ) J A S FUNCT13K OF t Z ( K ) 1 1 H C S l Z ( Z ( K ) 3 2 VEftT EXAMPLE Tfl s w a y cRCWTH CF TftACElPCRKH) 1 S U R F E WITH TIHE T(Kraquofl ITS SHAPE APPRCACML3 THAT OF I P t K K j - SURFACE A-irKPTOTICALLY FOR UtfWE K

444 33 444 33 4244 33 44a44 333 44444 33 09 +4444 333

22222Z2222222222 2222222222222222 2222222 2X22222 22222^222222222 222222 222lt222222 222^2iVLaJi222222Z 444 03 222222 2222222222222 33 22222 222222222222 333 2222 22^2^22222 333 2222 222222222 33 222 22222 222 pound2222 222 222 222 11111 2 22 m n i n n m 2i 22 11111111111111111 22 1111111111111111111 122 1111111 1111 111 till

333 44 S 68 333 4 3 65 333 4 5 66 33 44 S3 66 33 44 55 66 333 4 53 66 mdash 44 33 61 77

6BB0C 8003 esses csoese esses

99P999 339333 993999 9939339 99393399

3333 333333 33333 33333 33333 3i333 33333 33333 3333 222 Z22 2222 111 2222 111 1111 1111111 1111

1111 111 111 11

1111 1111 Mil 111 11U 111

777 eOOSSfi 9999999399 __ 7777 688888 9999999 33 44 35 6S 7777 6088898 33 44 03 5pound 777777 eceaeceo 33 44 53 euro6S 777777 608828833038 mdash - -s r66 7777777 60888008 bull55 6EG6 7777777 3raquo5 665666 7777777 _ 33 fifl 3 5- 66C65B6 777777777777 gt22 33 44 5 5ES 66366666 77777777 22 33 44 3Si3 65B6SSB6 222 33 44 SJSSSS 6666666BB 3 444 53353333 66666G656666 33 444 3U55S35S333 666866 bull 333 elaquo4 533S353353 2 333 c444444444 5355S35333 22 3333 44444444444444 222 3 3^13333333 444444444 2222 33333333333333

22 222

222222222222222 1111 1111111111111111 11111 11111 11111 22222222222 1111 111111 2222 222 1)111 111111111 222 33333333333 222 111111 III 1111 22 333 3333 222 1111111

1111 pound 2f2222222222222 111U1 111111-1111111111111 m i i n H i m t u i m m m i i i i t i i m i i i t

11111 222 33 44444 333 222 11 22 33 44444444 33 222 222 32 4444444 33 222 1 222 333 44444 333 222 1111 222 233 333 222 111111 111111 222 333333333333 22 1111 11111111 pound222 222 1111 11111111111 22222222222222 11111 1111111111 1111 n m m i m m i i i i m i t m i i i i i 222222 1111111111111 2222 1111111111 33333 222 11111111 333 222 I1M111 33 Z22 111111 44 333 222 11111

11111111111111111111 i i m n m i t r i m m u r n 1 1 1 1 1 1 m m m m m m n l i m i t 111111111111111 IU1111 m m i m i i i m m u r n l i m u m m u i i m m i m m i n i i i i i i m i i n i i i i i i m i m i m m i m i m m m m m m m m m m m

i m m m i m m m I m m 11

m i m i n i u r n m i m m i m i m t m m i m 1111111111 222222 raquo222222222222222222Praquo222222Z22222 11111111 22222 2222 1111111 2222 3131333 3333333 111111 222 33133333333 3333333333

TCKNgtraquo 240C0E-O1 TIKI bull 9000CE-OZ N bull 13 STEPS AFTEB FIRST MEASUREMENT

SYR3 LEVEL RANGE (0) 338S9E-02 (9) 19) 3 3389E-02 32asOE-02

(6) 3237IE-02 51862E-02 17) 17) 3 13S3E-02 30B43E-02 (6) (6) 39S34E-02 49S25E-02 (5) t5) 4931CE-G2 46607E-C2 (4) 14) 48297E-02 477Q0E-O2 (3) (3)

47279E-02 46770E-02 (2) 12) 462G1E-02 45751E-02 11) (1) 4S242E-02 44733E-02 (copy) 44224E-02

ESTIHATTON11

ERROR CRITERI0M CONSTRAINT =

7SO00E-02

IS500E-011

Figure 67E Contour plot of Tr p pound 1 ( z bdquo M at time t bdquo 1 i 024 f i f teen timesteps after f i r s t measurement L K + 1 5 ^ K J K + 1 5

CONTOUR PLCT OF TftftCEIFlKKN) (ZtK) J 7 AS FUNCTION OF IZ tKI I I KeRIZ IZtK)32 Vf=T OIAMPJS O SHOW GfCiWTH CF TRACEtP(KKlaquoN)l SUKFCr WITH TIKE TltKNgt ITS CH-PE APPROACHES THAT OF |P(HK)]11 CURFACt laquoSYKPTCTfCALLY FOR LARGE N

1 0 544 33

OG

EZCJOJS

533laquo3

+1313J J3H33 33333 3333

laquo

3 3 3

2K

l l | S l l l | | 2 J 3 CC d 53 poundCgt

0OCB3 Epound-008 pound3088

poundbull)

Z2 111 1 1 1 222 111 2222 111 2222 111 1111 bull1111111

111111111 1111111111111 111111111111111 1111111111111111 1111111 1111 111

90J099 99909ltJS9 55 6CG 7777 8B00CG 9990993959 44 23 GC 7777 688086 99999D9 333 44 C5 C6 77777 pound00386 33 aa 55 t5 77777 eooeraee 333 44 S3 (1pound6 777777 8380C8e0923 33 44 53 e6Dr 7 777777 noc8309 333 -14 Sf 56tgtDS 7777777 33 44 515 GG666 777777777 333 444 fji 0065656 777777777777

111111 11117 11 11111 1111111111111111 11111 11111 11111 2222222222pound2 1111 111111 222 222 11111 111111111 2 333333333333 22 11111 111111 2 333 333 222 11 24 333 4444444 33 22 2laquoipound 33 444444444 333 222 232 353 44414441 333 222 22 33 4444444 33 22 11 222 333 333 22 1111111 11111 222 33333 3^3333 222 11 HI 11111 ill 222 333 2222 1111 llllllllli 2222222 222222 11111

222 33 44 pound55 egt6igtEEGG6 77777777 22 33 444 Ii3i5 GG36CG666 222 33 44 35SS5 6(gtGGG66GG 22 33 44 SS5amp55555 C360GGDC5G3 22 33 4V4 55555555535 6G6GS 22 33 Mfl4 555S555555 22 333 44444444444 555555555 1 322 331 444444444444 1111 222 333333333333 44144444 1111 22227 33333333333333 1111 E222222r2222poundZ2222

m i l l t u i m i i M u 111111 i i i i i i n i t i i i m u

1111111111111111 1111111111111H1I

11111T11 1111111111111

2222222222222 111111111111 1111111111111111 llllltl 111111111 11 ill 1111111 111111111111111 1 111111111 11111111111 11111111111111111111111111 1111111111

11111111 111111111111111111111 11 11111111111111111111

111 1111111111 111111111 11111 111111111 +222222 111111 2222 11 1 33333 22 1 323 222 33 222 333 222

2222 i t t u m m bull1111 i n m i i i i i i i m m i i i i i m i m m i i i i m i i n i i i i i i -n i i m i u rn 111111111 22222222222222222222222222222222222pound 1 til 11 2222 2222 111111 2222 33C3333 3333333 111111 222 3333333333 3333333333

TIHE = 90000E-O2 F1R3T MEASUREMENT ELEMENT( 1 1)

CCNTO h LEVELS AND 5YKEULS SYMB LEVEL RANGE (0) pound 2200E 02 (91 2 1697C 1 1S4E Q2 02 ltegt 2 (6) 2

0C91F 01 OLE 02 02 (7) 1 (71 1 9680E 3103E 02 02 (5) 1 16 1 eampeoF 8177S

02 02 (5) 1 iSgt 1 7G74E 71gt1E 02 02 (4) 1 (4) 1 65^ TIE 6165E 02 02 (31 1 (31 1 5663E 5160E -02 -02 (21 1 (2) 1 4fr57E 4154pound bull02 -02 (1 ) 1 lt1gt 1 365 IE 314DL -02 -02 lQ)_t 2645E-02

ESTIMATION ERROR CRITERION CONSTRAINT =gt 75000E-02

SOURCE INJUT COVAKIANGE IU1 = C 1 2500E -on MEASIttCMEHT ERROR C0VAR rvj = t 050 I -0 -01 0251

Figure 68 Contour plot of E K ^ I I I asymptotic response of

at f i r s t measurement time t R = 009 compare with T r [~W M surface at t K+15 024 in Figure 67E

166

68 shows that for all values of z R

4 - bull bull bull

As N increases so does the convergence to the result

Finally to demonstrate the result in Conclusion II a contour plot of [Ppound(Zbdquo)] is shown in Figure 68 Comparing the traae of P at time

-f -N I] Vt-15 1 n F i 9 u r e 6- 7 E w i t h t n e OU-efceman of P at time t K in Figure

r all values of zbdquo

[EWB^K)]-^)]- lt 6- 2 9) o does the convergence to the result

^ T K + N ( K ) ] = [ ~ P f e ) ] n - (630)

Another way of seeing these relationships is as follows Write the trace of both sides of (628) as follows

4u4 -([jampol 4M 2 2

+ M 3 3 + - ) bull feu bull tS322pound] 4t]) ESJ33 J bull||- 1 gt bull )

X n=l n=l (b31)

where the two lines in (631) correspond with the two terms in (628) As N becomes large since 0 lt lttbj lt 1 i = 23raquo all the terms in the top lin anish except the first which remains unchanged with N For large N the first term 1n the second line grows continuously at a rate [SJn P e r l 1 m e s teP while according to the asymptotic relationshyship (520) all the other terms approach steady-state constants over N The meanings of Conclusions I and II are clear in (631) in that at time t K + the only term of Tr[P[+N(zbdquo)] which is still a function of z K is [P^Zj)]- none of the other terms effect the optimization over values of z K

Heuristically the response of the surface of Tr[Pv+M(i|()] o v e l a H values of zK as t K + N grows can be thought of as follows

167

EUK)] = T f | ] + [ e ^ ) + Nig] (632)

which may be studied schematically as in Figure 69 For successive values of N the contour of the surface of T r rPjJ + N (i K ) I I over z R is com-

i posed of the contour of [ P pound ( Z bdquo ) ] plus a constant value of Tr[ pound2] plus ~K ~K i i s s

a value which grows with t ime NEgJ^ The shape of the contour

Tr[ppound + f J ( K )3 should be exaatlythe same as the shape of the [P j^ (z | lt ) ] 1 1

surface and the value of a point anywhere on those two contours should

d i f f e r only by a constant

Figure 69 Asymptotic growth of TrlE^J

As a simple verification compare the values on the two surfaces for the global minimum itself the point plotted with a From the calculations for time t K = 009

[Pfc)]u deg- 0 1 2 6 4 5- (6-33) For fifteen steps after the sample at t K + 1 5 = 024 from Figure 67E

168

Tr -K+15 ( z ) j = 0044224 (634)

To estimate the stsady-state constant in (632) and Figure 69 hand ca l shy

culate the series in (631) by using only the f i r s t few terms and use

values for Q (called WKP1) from Figure 62 to obtain

11 = 1 N - 1 5 fl = O00125O N nn - 001875

bull 2 = 09060 0 22 + 22 + bullbullbull) ~ 55485 fl22 = 0001568 n 22 E 22 = bull 00080

33 bull= 0673B ( 1 + 4 raquo + 3 3 + - ) l-am ( 1 3 3 = 0000330 n 33 E 33 - 000060

44 = 04114 ( l + 44 + 44 - ) - 12037 n 4 4 = 000215 4444 bull 000255

hs bull= nraquo06Z ( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] =

poundlg5 = 0000992 n 55 r 55

+

000104 bull= nraquo06Z ( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] =

poundlg5 = 0000992 n 55 r 55

+ 003163

( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] = n=l (635)

~gt W ~ 001288

(636)

Thus from (633) and (635) approximate (632) at z as

[ P K ( Z K 3 I + N a + T r L | ] + N f i 1 1 + T r | Ci = 004428 (637)

I t is thus seen from a simple hand calculation that (634) and (637) are V

in close agreement thus values on the two surfaces nP K(z K)] and Tr[Ppound+ls(Z|)] do in fact differ only by a constant the constant in (635) For increasing values of N t K + M tbdquo N etc as in Figure 69 for N T+N K+N large any point on the Tr[Pbdquo+f(g1)J contours would then simply consist of Tr[ 8] from (636) added to Nfn] plus the value at the same point

The Tr[Pbdquo + N(zbdquo)j surface is just a trans-on the surface of [Mzj)] 11 lation in time of the [Ppound(z)] surface for N large ~K ~K bdquo

Another way of interpreting the asymptotic growth of the trace sur-face to that of the (11)-element of K as N becomes large is as follow

169

At the time of the f i r s t sample for t bdquo = 009 decompose the surface

for Tr[Ppound(z K)J into surfaces for each element of the trace that i s

[ E K ( Z K ) ] [E|^(z K) l poundPpound(zK)J as shown in contour plots of

Figue 610 The f u l l t race as in Figure 66 is shown in Figure 610A

with the individual elements shown on succeeding p lots As time t K + N

becomes large the formula for the trace in (631) may be rearranged as

fol lows

T r [ amp laquo ] [EK(K)]bdquo + B9nN

n=l

n=l

Each line in (638) represents what happens to each diagonal element of ppound + N comprising the trace as time goes on Since 0 lt lt 1 i = 23 45 as N becomes large all the terms except the first loose their funcshytional relationship with the positions of the measurement device given in zbdquo In terms of the plots for [pound + NJ through [ P pound + N ] in Figures 610B through 61 OF as time goes on these surfaces become flat with constant values equal to the steady-state values of the right-hand terms in (638) Thus for large time the surface Tr[P K + N(z K)] is made up of a number of steady-state slices a flat surface growing at the rate [pound]bdquo per time step and the surface [PD(z)]

CONTOUR PLOT OF TRACErPCKK+NMZfK) )3 AS FUNCTION OF tZtK)31 HORIZ IZ(K)32 VERT EXAMPLE TO SHOW GROWTH OF T R A C E C P ( K K N ) ] SURFACE WITH T I K E T C K N ) I TS SHAPE APPROACHES THAT OF [ P ( K K ) 3 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

+553 555 555

[ZCKJ12 0 9

44 33 222 44 33 44 3 3

444 3 3 444 3 3

444 33 444 33

4444 33 44-14 33 4444 33 44-14 33

bull 4444 33 4444 33 4444 33 4444 33

444444 33 bull44444 31

4444 33 44 333

033 i 3333333 2 333 22=

22222 2222322222

222 222 222 pound22 22 222 222 22 222 222 222

2222 2222 2222 2222 2222 2222 2222 2222 2222 222 222 222 222 222

33 4 5 e 77 33 44 9 6 77 33 44 5 G 77 33 44 5 66 777 33 44 59 56 77 33 44 5S 66 77 33 44 55 6 7

1888 99999999 B308 9SU99999 nS86 9^999999 9889 93399399 80083 99399999

66 33 4 33 4 33 44 95 tit 3 44 95 66 33 44 5 666 33 4 55 66 666 23 33 44 55 66-222 3 44 55 66 22 3S 44 50 laquo 22 33 4 55 222 33 44 55 22 3 44 955 22 33 44 5555 222 1111111111111 22 33 444 222 33 4444 22 33 44444 222 333 2222 3333333 22222 222r J222222222 22222222222 22222222222222222 22222222222222222222222 1111

22222222 2222222 111111 22222 22222 1111111 2222 333333 2222 111111 222 3333333333 222 222 333333333333 222 223 33333333333 222 222 333333333 222 2222 2222 222222 22222

9999999999 77 eeeeaeae 777 688066668 77777 6803068885

77777 088308888088860 7777777 8886Ce068e386

777777777 680688588 bulli 7777777777 56 7777777777777 gtSli 77777777777777 gt6iS6 77777777777777

51JS666666 777777 16666666666666666

666666666G666666666+ J5ii5555

55555555555555555555555955959 144

4444444444444444444444444444 JM333333333333333333 2322222222222222222222222222222

22222222222222 222332

bull333333 2223 3333 2222

44 333 222 44444 333 222

444 33 222 444 33 222

11111111111111 m i n i m u m 1 m i n i

1111

n i m 111111111111111 m m i i i i m i 111111

i n

2222222 2222 33333

222 333333 2222 3333 222 333 4444 222 3 44444

21222222222222222222222222222222+ 131

11333333333333333333333333333333

SYMB LEVEL RANSE

(6)375341E 62 (9) (9) 34616E-02 33891E-02 (8) ltegt

3316CE-02 32440E-02 (7) (7) 31715E-P2 30990E-02 (6) (6)

3Q265E-02 29340E-02 (9) (5) 26814E-02 2608SE-02 C4gt (4) 27364E-02 26639E-02 (3) (3) 25914E-02 25103E-Q2 (2) lt2gt 24463E-02 23730E-02 (1) (1 ) 23013E-02 22268E-02 fQgt 2-15C3E-02

ESTIMATION ERROR CRITERION CONSTRAINT = 75000E-02

Figure 610A Contour plot of Tr [K) at first measurement time tbdquo = 009

CONTOUR PLOT OF T R A C E [ P ( K K + N gt ( Z ( K ) gt 3 AS FUNCTION OF t Z ( K ) J l HORIZ t Z lt K 1 3 2 VERT EXA11PLE TC SHOW GROWTH OF T R A C E I P ( K K + N ) 3 SURFACE WITH T IME T ( K + N gt ITS SHAPE APPROACHES THAT OF [ p ( K K ) 3 1 T SURFACE iSYMPTOTICALLY FOR LARGE N

TJKE= 9 0 0 0 0 E - 0 2 F I R S T MEASUREMENT ELEMEhTt 1 11

+ 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 - ^ 2 2 4 4 4 3 3 2 2 2 2 2 2 2222i i 2

4 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 3 3 222222f 22L 2pound 2222

4J444 33 2pound2pound22 - 2222222raquo + 4 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 22pound2222 4 d 4 3 3 2 2 2 2 2 i 2 2 2 2 3 2 P 2 2 2 2 2

3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 - i 2 i gt 2 2 2 2 2 3 3 3 2 2 2 2 ~ 333 2222 333 222

333 44 S 66 333 44 S 66 333 4 0 6B 333 44 59 66 33 44 9 66 ___ 55 661-33 44 55 m 333 44 55 6

Ik 939999 D 999999 999909 999999 99999939

9999990999 oeeoae 9999999

222 222 222

CZ(K)32 09

33333

33333

33333

30393 +33333 22 33333 22 33333 222 3-33 22 1 3333 22 1 bull33 22 11

222 111 22222 111 2222 111

bull iiitm in

22222lt222i pound22 2 2 2 2 2 2 2 2 2 2 2 3 3 3 44

2 2 2 2 2 2 2 2 2 3 3 4 4 2 2 2 2 2 2 3 3 3 4 4

2 2 2 2 4 4

03236 7777 7777

77777 5 7 7 7 7 7 8808(1088 S6 7 7 7 7 7 7 8 3 8 0 6 8 6 0 3 3 3 6666 7777777

66666 7777777 535 S6656 777777777

2 2 2 3 3 3 4 4 4 CSS 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 1 U U U 1 U 1 2 2 2 3 3 4 4 5H3 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4 4 5 5 5 3 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 5 5 5 5 5 66G666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22 33 4 4 5 0 5 0 5 5 5 5 5 666666SG6G6 11 1 1 1 1 1 1 1 2 2 3 3 44 5 5 5 5 5 5 5 5 S G S f 1666

1111 2 2 3 3 4 4 4 1 4 5 5 5 5 5 5 5 5 5 5 1111 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 +

111 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 1111 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

_ 1111 2 2 2 2 2 0 3 3 3 3 3 3 3 3 3 3 3 3 3 A 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 111111111111111

111111111111111111111 222 333333333333 22 11111 11111111111111111111111111

222 333 333 222 111 U 1 111 1111ll 111111111 1 1111111111

11111 1111111111111111

11111 1111 + 11 111 2222222222222

111111 2222 222 n n i i - mdash 111111 Mil 222 333 4444444 33 22

222 33 444444444 333 22 222 333 444444444 333 225 222 33 4444444 33 22 222 333 333 22

222 33333 333333 222 11111 +111 Hill 222 333 2222 1111 1111111111 2222222 222222 11111 1111111111111 2222 11111

11111111111111 1 111111111111111111111

+222222 11 111 1111111111111 2222 111111111111111

33333 222 1111111111111 333 222 111111111111 33 222 11111111111

i +44 333 222 1111111111

111111111111111111 1111111111111111 11111111111111111 lllllllllllllllllltll 111111111 1111111 1111 11111111111111111 till 1111

11111 1111111111111111111111

111 1 11111111111111111111111111111111111111111111 1 1 1 i i 1 1 1 1 111111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1111 2 2 2 2 2 2 2 2 111 2 2 2 2 3 3 C 3 3 3 3 3 3 3 3 3 3 3 111 2 2 2 3 3 3 C J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 +

SYMB

CO) LEVEL RAN3E 2 2 2 0 0 E - O 2

( 9 ) ( 9 ) ( 8 ) ( 6 )

2 2 2 2

1 6 9 7 E - 0 2 1 ^ 3 4 E - 0 2

0 6 9 1 E - 0 2 0 1 8 S E - 0 2

C7J ( 7 )

1 1

9 6 B 6 E - 0 2 9 1 8 J E - 0 2

(G) ( 6 )

1 1

6 6 8 0 E - 0 2 6 1 7 7 E - 0 2

lt 5 ) ( S )

1 1

7 6 7 4 E - 0 2 7 1 7 1 E - 0 2

C4gt t 4 1 1

6 6 6 S E - 0 2 6 1 6 5 E - 0 2

( 3 ) ( 3 )

1 1

5 6 6 3 E - 0 2

5 1 6 0 E - 0 2 t Z ) (2)

1 1

4 6 5 7 S - 0 2

4 1 5 4 E - 0 2

( 1 ) ( 1 )

1 1

3 S 5 1 E - 0 2

3 1 4 0 E - 0 2

tcopy) 12645E-02

ESTTMATTOM ERROR CRITERION CONSTRAINT =

75000E-02

I25OOE-01]

Figure 61GB Contour plot of first term of Tr Ppound (z K) raquo K(JK)

CONTOUR PLOT OF T R A C t [ P ( K K N ) ( Z t K ) )3 AS P J N C T M N OF [ Z ( K ) 1 1 H O R I Z C Z ( K ) J 2 VERT EXAMPLE TO SHOW GROWTH 3F T R A C E P ( K K raquo N ) 1 SURFAi^ WITH TIME TCf + H) I TS SHAPE APPROACHES TH-T OF t P lt K k ) 1 1 1 SURFACE AMP10T1CALLY FOR LARGE N

TIME= 9 0000E-02 FIRST MEASUREMENT ELEMENTC Z 2)

2 2 2

660 gas

i w 22-1

33 4 S 6 77 80 _ 03 H 55 G 77 OB

Qpound2 3 4 5S 6 77 31 22 3 4 o 6 77 H5 bullPAV 33 4 s P6 7 (iO

33 44 5 56 7 03 33 4 5 6 bull BO

33 4 55 iS 77 faD 33 4 5 G 7 83 3 3 41 5 (iS 7 SO

3a 5 6 7 amp 33 4 amp 6 7 88

333 44 St (J 7 OS 323 44 6 77 00

3333 4 5 5C 7 mdash m 77 777 777 +7777 777 77777

-1 3 l l l | f JJ | II II

444 ri-14 44I 4441 444

bullM44 4144 55 GG 14144 444-14 5gt fi bullbull44-444-14 lili (it

5 5 aa

444444 333333333 444pound 4444gt

44444144444 ^^TI^-^^^ 444 ^ ^44

99999099 9 9999S9999S999 )y99999999C99999G999999939999S9 - 199999990999999593993 + amp939929309 000003008306000 10^83090803006060 laquo 777777777777777 i 77777777777 igtwC6C6+

eeeeccccecc Ii oiiSSBSS 4 -14444444 4 4 4 4 4

4^ 4444444 3 3 3 3 3 3 3 3 3 44 3 3 3 3 3 3 3 3 3 bull

3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 222222 1111111111111 2-S22 11111111111 c- 1111111111 + 111111111 11111111 copybull

111111111 US 1 1 1 1 1 1 1 1 1 2J222 1 1 1 1 1 1 1 1 1 1 1 1 +

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 nl 2 2 2 2 S 2 2 2 2 amp 2

3 3 3 3 3 3 0 3 2 2 2 9 2 2 2 2 2 2 Ain 3 3 3 3 3 3 3 3 3 3

4444444-14444 333333+ EiftSti 4444-1444444

S^bSOjEbSriSbS 4144 pound 55SS0 rt55iS I16G b55riij555

SYMamp LEVEL RANGE

CO) 8 9 S 2 7 E - 0 3

( 9 1 8 7 6 2 6 E - 0 3 8 5 6 2 S E - 0 3

( 8 ) ( 8 )

B 3 6 ^ 5 E - 0 3 6 1 6 2 5 E - 0 3

( 7 ) ( 7 )

7 lt1 i24E-03 7 VigtK3E-03

( 6 ) ( 6 )

7 5 6 2 3 E - 0 3 7 3 6 2 2 E - 0 3

( 5 1 (5

7 1 6 2 E - 0 3 6 0 S 2 1 E - 0 3

( 4 ) ( 4 )

5 7 f = 2 0 E - 0 3 C 5 S 2 D E - 0 3

( 3 ) ( 3 )

6 3 6 1 0 E - 0 3 G 1 6 1 9 E - 0 3

( 2 1 ( 2 )

5 9 amp 1 6 E - 0 3 5 7 0 1 7 C - 0 3

(1 ) t l )

S 5 G 1 7 E - 0 3 5 3 t i 1 6 E - 0 3

(0) 5 1 6 I 6 E - 0 3

E S I M A I ION ERCHR Ct l TERION CONSTRAINT =

7 H 0 0 Q E - O 2

1-2500E-01J

Figure 6IOC Contour plot of second term of Tr P ( K ) K(K) -

0 6

t Z l K ) J 2

C3NT0UR PLOT O F TRACECPCK^K-Ni t Z ( K U l AS FUNCTlC- t OF I Z t M H H C R I Z t Z ( K 1 1 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E [ P ( K K N ) ] SURFACE U I T H TIME T C K N ) ]Tlt SHAPE APPROACHES THAT OF [ P lt K K i 3 1 1 SURFACE XSVMPTOTCALLY FOR LARGE r

bull raquo + 4 4 + bull9-J19 8 0 7 5 4 3 272 3 4 5 6 7 0 3 9 0 bull 0 0 9 e a fi 5 4 3 2 2 2 2 2 3 3 4 5 6 7 8 ltlaquoltraquo laquo laquolf q 6 6 r b 5 lt1 3 2 2 2 2 2 3 3 A 3 6 7 O

6 0 7 6 5 1 3 3 2 2 2 2 2 2 2 2 3 3 4 5 7 7 8 s 7 7 5 U raquo3 2 pound 2 gt P 2 2 3 4 4 5 6 7 Q - - - laquo bull laquo bull - - - - -1 L o i B i a 3 6 0 7 6 S 4 3 6 0 7 6 5 A 3 a a y 6 5 lt 3 3 M 0 5 4 33 60 7 6 5 4 33 SB 7 6 5 4 33 80 7 6 5 J 33 03 7 E 5 4 33 B8 i amp 5 1 33 CB 7 6 3 A 33 e i 7 6 3 J 13 80 7 G 5 4 33

i 8 1 6 5 4 3 3

I 22

U3 83 7

Lgt A

iSP5

3 3 4 5 G 7 B 9 3 9 3 3 A 5 C 7 8 0 9 9 3 3 4 5 6 7 8 0 9 9 3 4 5 6 7 8 9 P 9 3 4 5 6 7 8 9 P 9 3 4 5 6 7 8 9 3 9 3 A S 6 7 O 5 9 9 3 4 5 6 7 3 G pound 9 3 3 4 5 6 7 0 9 9 0 3 3 4 S 6 7 8 SD9 3 4 5 6 7 8 9 9 3 4 5 6 7 8 0 9

3 3 4 5 6 7 8 9-J j 3 3 A 5 6 7 8 8 9ltJ 3 3 3 4 5 6 7 C 8 S9raquo0 9 9 9 9 3J3C-S33 bull 5 I) 7 (J T J 9 L 9 0 9 t i 9 9 9 9 9 3 9 9 9 9 9 9 3 9 9 9 S 9 9 9 9 9 9 9 9 9 9 9 9

-I 3 - ^ 3 -14 ti 6 7 flJ i - 3 9 9 9 9 y 3 y 3 3 3 deg 9 9 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 41 3 3 4 3 6 7 7 0 8 0 B B B 8 8 8

-14 4 4 5 5 6 7 7 8 8 ( 1 0 8 8 8 6 8 6 3 ^ 3 3 8 3 3 8 8 8 8 8 8 8 8 8 6 8 0 8 8 4 4 4 4 4 5 3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 -laquo4 4-14 5 5 6 7 7 7 7 7 7 6666ltgt6C6 6 5 G G G G G 6 6 C 6 6 e G 6 G 6

4 4 4 4 pound S tC6GE(JC6-J6 ampK35 5 3 5 S 5 5 5 gt t W 3 5 5 3 4 4 4 4 5 5 3 55455 ampAAamp - - - - - - -

3 3 3 3 3 3 3 4 4 4 4 3 4 4 3 3 3 3 3 3 3 3 4 4 4 4 4 3 3 3 3

i^Sa^^S1i bull 2 2 2 22 2222J2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22222 j S2laquolaquo2laquo S333 3 3 3 3 av^ raquo J laquo J U ) raquo raquo raquo raquo raquo J S

^rf11^4 233a33333 dd^-J^ 3 3 3 33333 2 - 2 2 2 - 2 Z 2 2 2 2 2 2 2 2 2 2 2 2 2

bdquo 3 3 3 3 3 4 4 1 4 4

5 3 5 6 6 6 C 6 b

7 7 7 7 7 7 7 7 7 7 7 7 7 r0 i 0 0 3 ( i O B f gt pound n O O - 8 6 8 8 G P 0 8 6 6 6 6 0 e 8 8 3 Q O Q J 6 7 7 HO 8 8 0 0 6 77 0 0 S1099lt E U 3 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 mdash 9 0 J 9 0 J - lt i j J 9 9 1 - 9 9 9 9 i S 9 9 9 3 9 3 9 9 9 9 9 9 9 9 9

9B0igtD0 9 gt ) 3 9 e G 3 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 S S 9 9 9 amp 9

Tl| f lE= 9 O 0 0 0 E - O 2 F l f S T MEASUREMENT ELEMENT 3 3 )

JYflB LEVEt RANGE (0gt 6 042ZE 04

S1 3 5 9133E 7CB4E 04 04

5 6S15E 534GE 04 04

tfi 5 5 4077E 2G00C 04 04

s 3 5 1339E 027OE 04 04

II A A

9001E 732E

04 04

(jJ) 4 4

64F3F S 1 04 E

04 04

iSJ f 393E 2G5GE

04 04

S A 1387E 04

il 3 3

6849 75301T 04 04

ltbull 3 6311E 04 EStMATION ERlIOR CRITERION CONSTRAINT = 7e000E-02 SampiJRCE IMI-JT CQVARIANCE [WJi r 1 2300E on MEASURfiMCNT ERlJOR COVAR IV3 = [ 050 -0] 0231

Figure 610D Contour plot of th i rd term of Tr )] [4

CONTOUR PLOT OF TRACETP(KK4N)CZ(K))1 AS FUNCTION OF tZ(K)J1 HORIZ tZ(K)J2 VERT EXAMPLE TO SHOW GROWTH OF TRACEtP(KK+N)] SURFACE WITH TIME T(KlaquoN) ITS SHAPE APPROACHES THAT OF [P(KKgt111 SURFACE SMPT0YI5Ai-LY FOR LARGE N

TIME 9O0O0E-O2 FIRST MEASUREMENT ELEMENT 4 4)

IUIAL 33 A 5 67 38 93 3 4 5 7 08 99 3 4 56 7 88 99

33 44 6 7 8 99 3 3 4 5 6 7 8 99

333 4 5 6 7 r mdash 39 8 76 S 1 333333 4 5 6 7 8 99 99 8 7 9 4 333333 4 3 6 7 8 99 99 6 7 6 5 44 223333 44 5 67 88 99 99 6 7 SS 44 C53333 44 5 7 88 99 99 8 7 6 4-1 3333H3 lti4 5 7 OS 39 99 B 7 6G 44 333333 44 5 7 tiS 99 99 8 7 5 4 333333 4 5 67 86 39 99 8 7 5 4 333333 4 5 6 7 6 99 99 8 76 5 4 33 33 4 5 6 7 8 99 9 8 G 5 4 33 33 4 5 6 7 0 99 9 0 7 6 4 33 3 4 6 7 8 - 5

99 8 7 OS 4 33 22 33 4 5 7 8 gg a 7 es 4 3 222 - - - - -99 8 7 65 4 O 222

9 8 7 65 4 3 22 9 87 6 54 3 S9 8 76 S - __ 99 6 7 6 44 333333 4 5 6 7 8 __ 8 76 S 44 44 S E 7 S 999

0 7 6 5 444 444 5 6 7 88 ~~ 69 7 6 55 4444 5 6 7 laquolaquo

fiSSeoe 7 66 5 55 06 7 66 7 7 77 S 5a 55 6 77 7777 5 5 5 copy6 6 8 5 5 65 666 666

1-4444 55 106 55 4444 5U 6665 555 3333 4 S5P5503 4-14444444 555503S5 444

2222 33 44 44- i 4444 444

3 4 5 7 6 99 3 4 5 7 8 99

33 4 56 7 0 9 3 43 6 7 8 99

33 4 5 5 88 99

8 6 8

1199999 9939999999i9pound999S9999g999999999g9g99g

esoossBBe aaeeeew

i n

t i

77777 UfcSB 55 33 13-333 44444 3333333333333 _- 333333 444 33 222 22222222 2222222222222 11 22 323 3333333333 333 22 111 11111 22222222

t 2 333 333333333333333 33333 22 11111111111 H i t 11 2 333 33333333333333 3333 22 H I T 111 1)11 11

11 2 33 3333333333 33 22 1 1 1 22222222222222 22 33 444444 4444444 33 ZZZZZZ222222 2222222 3 44 444 444 444 3333 3333333 333333333333

mdash mdash 4444 44444444 4444444444444 53363 U555S5355 35555V-3rraquo550

GCOC 6fo665G6 665GCSG6 777 77 77777 7777777 03C yi300C6P8 (-88831130008

6fi6

444 555 4444-14 355 555 oeeebf-Gb 55 15 seceeSSGe 777777 6 55 55 C 77777777

77777 BflaS 7 6C 5 E i 66 77 80C98 8S00amp 88 7 6 55 44444 3 0 7 88 __ bull ampSgt39399amp 3 7 6 E 44 44 3 6 7 06 939999999^ raquo9jiC0l-3 J999Ci999999S93asaampS9

99 Oft 0 it 4 3333 4 5 6 7 8 339 99993 99 6 76 0 4 33 33 4 5 7 99 9 87 65 4 3 222 33 4 6 7 8 99 9 0 7 5 33 222222 3 4 5 7 8 99

93 8 76 54 3 222222 3 4 5 7 8 3

SYKB LEVEL RANGE (0 25437E-03 (9) (9) 25Q05E-03 2455pound-03 (81 (81 24101E-03 23649E-03 17) (7) 23197E-03 22745E-03 (61 (6) 222H3E-03 2 1841E-03 (5) (51

213S9E-03 20937E-03 (4) 14) 20-135E-03 20033E-03 (31 (3)

19561E-03 10129E-O3 (2gt (2)

10677E-03 1S225E-03 lt1 ) (1 1

17773E-03 17321E-03

lcopyl_I 66 i3E-03 ESTIMATION ERROR Cftt tERION CONSTRAINT =

75000E-02

12300E-Oil

Figure 610E Contour plot of fourth term of Tr (4 [0 44

CONTOUR PLOT OF TRACEtP(KKNl li(K)) J AS FUNCTION OF tJIIOlt HPRIZ t2(KJ3Z VERT EXAMPLE TO SHOW OROUTH OF TRACECP(KKN)J SURFACE WITH TIME T(KN) ITS SHAPE APPROACHES THfl flF [P(KK)111 SURFACE 3VlaquoPT0T|CALLV FOR LAROE N

02

S3 0 76 5 44 99 6 76 S 4 99 8 7 5 4 99 0 7 C 3 44 99 B 7 6 5 44

4 5 6 7 6 09 4 5 6 7 8 99 4 3 O 7 9 99 44 3 6 7 00 99 44 3 6 7 r OB bull 9 8 7 6 3 444 444 5 6 7 8 9 1 8 7 6 3 444444 5 6 7 8 Q9 I 87 6 55 444444 53 6 7 8 99 I 6 76 55 44444 S 6 7 C 99 J 8 76 3 4444 5 6 7 8 39 08 + 99 8 76 5 4444 5 CS 7 6 99 9 8 7G 55 4 1444 3 6 7 t S3 9 87 6 3 444444 35 6 7 O 99 9 8 7 6 5 444444 3 i5 7 8 99 a 8 7 6 0 44 44 5 6 7 8 9 99 8 7 5 4 4 5- 7 GB 99 99 8 6 3 4 33 44 5 6 7 9 99 9 87 6 3 4 33333 4 5 G 7 9 99 9 6 7 65 4 333333 44 56 7 8 9 9 6 7 5 4 333 33 4 5 8 99 06 9 8 7 3 4 23 33 4 9 7 0 9 9 fl 7 6S 4 33 313 44 6 7 fl 91 9 ) 8 6 3 4 33333 4 3 6 7 0 99 bullJ 8 7 3 44 3 4 56 7 0 09 99 87 6 S 44 44 5 6 7 0 09 03 999S9 OB 8 7 6 5 4444 5 6 7 4 99 1 999amp9US 8 7 65 S3 S3 6 77 O S999999999 88 8D 7 6 305553 F6 7 8 9 888 77 8B8O0B 7 65 3355 7 83080388 77 66 7 77 G6 55 GG 77 777 66 04 444 0 6 77 66 553S G6 777 G6 530 333 44 5 eCGGGC 5C553t55 6666606 53 444 pound22 33 4 53 C555 5v53 553 4 It 2 33 4 335 44 5533 44 33 _bdquo 112 3 44 441444444 444 33 2222 03 -ltgt 11 2 S3 444 444^1444444444 4444 31 222 11 2 33 444 444444444444 4444 33 222 112 3 44 44444444 44 33 222 11 22 3 4 SSSiVS 3535555 44 333

222 3 44 gtZgt 3555 5555 555 44

199999

555 114444 1333

999 806888 888388 7777777777777 66666006066666 3535550555553353 4444444 44444444444 33333 3333333

ZPgt2 33333333330333333 22222 3333333333 222 333333333333 222 33333333 333333333333

bull33 44 05 tgt5 66G S33555 G66 656 35 6 77777 SS 555 65 77777777 6G6 6666 77 EOC 77 66 S5fgt 66 77 O03C9 777 777 68 EB 7 6 SS3rS5 66 7 8 803081 830 taiUQ 8 7 6 5 53 6 7 O 2999301)99 99939 93 C 70 5 444441 3 6 7 0 09 9 0 7 5 4 33raquo 44 U6 7 O 99 9 0 7 5 4 3 33 4 56 7 0 39 99 0 65 4 3 22222 3 4 6 7 6 99 9 8 7 34 3 22 S 34 3 7 6 99 99 3 76 4 3 2 22 3 3 67 0 99

33333 44444 55355 663066 7777777

iGFtlOUampUOOB

444444 4444444 55555055+ b0666666 7777777 88080608 93 990999999999999999999999999

TIKE 90000E-02 FIRST MEASUREMENT ELEMENT 3 5)

(0) LEVEL RANGE 1 0362E-03~

it 10I98E-03 1 -0035E-03

3GTI2E-04 97076E-04

95441E-04 93806E-04

sect 92170E-04 9053SE 04

ii 6e899E-04 872D4E-04

S3 B5G^9pound-04 83993E-04

sect G2358E-04 00722E-04

79037E-04 77452E-04

7S816E-04 74181E-04 (0) 72545E-04

ESTIMATION ERROR CRITERION CONSTRAINT =gt

75000E-02

to00E-O1J

Figure 610F Contour plot of fifth term of Tr [bull (4 [^L

176

622 Optimality of Measurement Locations - In Figure 64 was i

shown the trajectory TrlP K + N(z K)J where the optimal choice cf measureshyment positions was used at each measurement time In contrast suppose the designer felt that an intuitively good choice for the measurement positions would be to place the two statistically independent sensors right at the position of the source that is z = zbdquo = z = 03 Figshyure 611 compares the optimal trajectory Tr[ppound+f(zp)] of Figure 64 using

i

min [Pbdquo(z)] as the criterion at each measurement with the case with z K ~ K ~ K 11 z K = [0303] that is with measurements positions at the source The optimal case is plotted with the symbol 1 that with measurements at the source with the symbol 2 Clearly Case (1) is optimal since over a larger time interval it would result in fewer measurements necesshysary to maintain the estimation error below its bound

623 Comparison of Performance Criteria - Moore L 9 5 ] suggests that the minimization of the trace T rEPpound(z K)] at a sample time t K mey not be the best thing to do to lead to the fewest number of samples necshyessary over some time interval To demonstrate that this is in fact a true conjecture consider a slight modification to the problem of Section 61 Let

I 04 W

002 (639) -^ 000001

J^ 000001_ oioio

to -

lim and

(bull K)= 0 001

(640)

(641)

6 7 S 0 0 E - 0 2

5 5 0 0 0 E - 0 2

42300E-02

30000E-02

1 7 0 0 D E - 0 2

C mdash r ~ - rmdashU raquo mdash - bull bull r J V- mdash bull mdash a a t 2 1

2 i pound i I 2 1 2 1

2 2 1 2 1 1 2 1 2 1

2 2 1 2 1 pound J 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 - 2 1

2 1 2 1 -2 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2

2 1 2 1 2 2 1 2 1 2

2 1 2 1 2 2 1 2 1 2

2 1 Z 1 2 1 1 bull pound

2 1 2 1 2 2 1 2 1 _2

2 1 2 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 bull 2 1 1

2 1 2 1 2 1 1 2 1 2 1

2 1 2 1 2 1

1 2 1 1 1 2 1 2 1

2 1 2 1

Figure 611 Time response of T r [P^ + H ( z )J for (1) z the result of the minimization min [ p ^ z K j j M bdquo + bdquo H i t h s y m b o 1 a n d ( 2 ) Ln = r| = z ^ f b o t h m e a s u r e m e n t s a t tKe source

plotted with symbol 2 L J2 plotted wit locat ion

178

The other problem parameters are as before To measurement strategies are contrasted The first is at each

measurement time t K finding z K such that

as before The second is finding zbdquo such that 2 N

x T 4 Tr = min Trj Ppound(z) | (643)

In ti1s problem measurements are necessary at t 0 the initial time and it is found that immediately after the first measurements strategy number 2 using zj appears superior to that using ir The two trajectories

5 U l u

are plotted with symbols 1 and 2 in Figure 612 However it is seen that at t - 0021 the two curves cross afterwhich Criterion 1 remains superior leading to a second measurement at t = 0078 vs t = 0071 for Criterion 2 At the end of the interval 0 lt t lt 01 Criterion 1 clearly possesses the lower estimation error Thus it is not optimal to minishymize the trace of the estimation error covariance matrix at the time of

the sample but 1t is optimal to minimize its value for large time N which by Collusion II is equivalent to minimizing the (ll)-element of the covariance matrix at the time of the measurement

624 Effect of Instrument Accuracy - To study the effect of the quality of the measurement instruments upon the evolution of the Tr[PK+N(zj)] contours in the above problem consider the measurement error covariance matrix

005 O

001 (644)

93000E-02

76000E-02

59000E-02

42000E-02

23000E-02 I OE+00

222 111 222 111 22 111 222 111 22 111 222 111 222 111 22 111 22 HI 222 1 I 22111 221 11 2211

122 11222 1 1222 1122 1122

22111 2111 1111 321

22 22 1 2 1 2 1 pound 2 2

22 2 22 11 22 11 22 11 2 t 22 11 2 11 laquo2 1 2 2 2 2

1 2 1

1 1 1 1 1

B000E-02 1000E-01

Figure 612 Time response of 7r| P^ + ( j (z j j for (1) z the result of the minimization min P K ( K ) plotted

with symbol 1 and (2) zpound the result of the minimization min Tr |ppound(z K )J plotted with symbol

2 note how after the f i r s t measurement at t K =00 (2) possesses lower estimation error but with t ime the curves cross such that (1) is superior at the end of the time interval shown and thereafter

180

This accounts for a 51 difference in variances in the two sampling deshyvices in contrast to the 21 difference in the problem above The evo-

i

lution of T r L P ^ + N ] is shown in Figure 613 The contour plot of Tr[Ppound i (z K)] at t K = 009 is shown in Figure 614 Contour plots of Tr[ppound+f

(Z|)] are shown for t bdquo + 1 t K + 5 t K + ( | and t K + 1 5 in Figure 615 and finally that for [P(zbdquo)J in Figure 616 In this case since the two -K -K ii measurements are of much different quality than those in the previous case the error contour is much less symmetric showing where the more accurate sensor [z]o is preferred over the more inaccurate poundz] Notice the large motion that the global minimum can make over time in a particular problem the positions of zt the global minima can change greatly as a function of t+ for the surfaces TrpoundP K + N(z K)]

63 Problems with Bound on Output Estimation Error

In the monitoring problem with bound on the maximum allowable error in the estimate of the pollutant throughout the medium it is necessary to make a measurement whenever for a time t K +bdquo

T 4JhZ) Aim ( 6 4 5 gt

a 2K + N(z Kz) S c(z) TP + N (z K) c(z) (646)

where

as in Section 541 Suppose the first time (645) is satisfied is at sample time t K gt

It is required to select the best set of measurement locations zt such that

0 K + N ( 4 Z ) = m l nK mx deg K + N ( 2 K Z ) (6-47)

EXAMPLE TO SHOW QROWTH OF T R A C E I P t K - K + N H SlRi-ACE WITH T IME T ( K N ) I T S SHAPE APPROACHES THAT OF t P l K K J 5 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

I XX I X I X bull X 1 X

X X

X

x x

X X

X X

X

IX

X X

X X

gtbull X

X

X X

X X

X X XX

X

s X X

XX X

X X

X X

X

X X

X X

X X

X X

X

I X 1 X I X I X I X I X

X X

X X

X X

X

x x

X

I X I X

I i

X

X X

X

X X

X X

X

Figure 613 Time response of Tr 096

ppound + N(z^j] showing three sample times at t R = 009 052 and

CONTOUR PLOT OF TRACECP(KK+N) (ZIK)) 1 AS FUNCTIC-J OF CZCKUI HORIZ [2CK)1Z VERT EX^tfPLE TO SHOW GROWTH OF TRACEEPCKKN)1 SURFACE WITH TIME T(KN) ITS SHAPE APPROACHES THAT OF tP(KK)J11 SURFACE ASYMPTOTICALLY FOR LARGE N

95 44 33 55 44 33 55 44 33

S55 44 33 6 5

5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 bull 5 5 4

4 4 444 444 444 444

444 444 3

4444 3 44laquo4lt44 3 44444 33

333 33333

333333 2222

22122 222222

2222222 3 222^2222

22J2222 222J2C22

222igt22lt222 2222222S2Z

222222222222 222222222222

22222 2222 222 222 222

2 2 2

33 44 55 66 77 OSS 999339999 33 44 55 66 77 868 S939933999 333 44 55 66 77 88 9 9999993999 333 44 5 66 77 68 38 999^9999099 333 4 5 6 77 8 380 99999-JS999999 333 4 5 66 777 -36488 999D9999999S999999+ 33 44 55 66 777 809863 939999999999 33 44 55 66 777 686368888 33 44 5 66 7777 6880860680300 333 4 55 66 777 8385600068866880888888

33 44 55 66 7777 8888886808088883-33 44 55 66 7777777

22222 33 4 55 666 777777777777 2222 33 44 5 666 777777777777777777777777777

pound22 33 44 55 0666 777777 777777777777777 222 33 4 55 6066 56 77^77777-

22 33 44 55 66E JEiS66 555 6Le0j66660CCCG666C66666S

555 S66G5eeUf=i6e6G-eSB6666S666666 5555

4 5555555535555555055555555555555555555-2K araquo 444 222 33 4444444434444444444444444444444444444444

22 333 222 333333333^ 53333333333333033333333333333333

222

111 11111 11111 111111 m m 111111 1111111 i m m - m i n i

2222222222222 222222222gt222

222-fc222 2222222222222 222-22222222222222222222222222

222222 22222 22222 333333333333333333 2222

22222 333333 33333 222 2222222 3333 3333 222

222232 333 444444144444 333 2222 +222222 333 4444444444444 333 2222

222222 333 444444-^44444444 33 2222 222222 333 44444-44444 333 222 222M22 333 333 222 222^2222 333333 333333 2222

22222 333333333333333333 2222 I i i 222222222 22222 1111 22pound22ii222 222222222 222222222 111 2222222 22222222222222222222222222

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 bull 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 gt2

3 3 3 3 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 4 4 4 4 4 4 4 3 3 3 2 2 1 - 2 2 2 2 2 2 2 3 3 3 3

2222 2222222222222222 2gt22222222Z222222

22^222222222 n m m m i ii

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 bull 1 1 1 1 1 1 11II - 1 1 1 1 1 1 11111 i i i n n n n n m i i m i i i i m m 11 m i n i m u m m i i n i i m i n i m u m i m i n m i m n m m i m m i m m i i i m

2222222222

11 m m i i i n u m n n n m i i i u m i t i 1 U 1 1 1 U H m m i i i i i i

444 333 555553 444 333 5S5iiti55 44 333

-i222222 22C222 22222

333 333 333 4444444444144 4 444444 144344444444 4444 4444444444444

1111111111111111 1111111111111111111 52222222222 22222222222222 33333333333333333033330

TtKN)= 90000E-02 T(K) = 90000E-02 N - 0 STEPS AFTER FIRST MEASUREMENT CONTOUR LEVELS AND SYMBOLS SYMB LEVEL~RANGE (0) 2 9993E 02 (9) (9) 2 wm 02 02 lb) (0) 2 2 5poundI 02 02 (7) (7) 2 2 sectisectSe 02 02 (51 CO) 2 2 m 02 02 (5) (5) 2 2 poundpoundi 02 02 C4) (4) 2 2 iiaE

02 02 (3) pound3 2 1 g|pound 02 02 (2) (2) 1 SJ3i 02 02 (1) (1 ) 1 1 Z2TJ 02 02 (0) 1 flf 02

ESTIMATION ERROR CRITERION CONSTRAINT = 7 Slt gtgtbullbull)pound-02

Figure 614 Contour plot of T r l g ^ A ] a t f 1 r s t measurement time for case with d i f ferent measurer-gtnt error covariance matrix V

t bdquo - 009 compare with Figure 66 K

CONTOUR PLOT OF TRACEtPCK K+Nl t2(Kgt 11 AS FUNCTIOt- Cl= CZltK)11 HORIZ [2CK)J2 VERT EXAMPLE TO SHSW GROWTH OF TXACEtr(KKNgt3 SUff AGE WITH TIME T(KNgt ITS SHAPE APPROACHES THAT OF CP(KK)311 SURFACE rSVPTOTICALLY FOR LARGE N

EZ(K)J2 09

555 44 44 44 444 3555 5355S 5555 5555 535 444 44 444 444 4444 44-44 44-14-14 444 bull144 bull444-144 3 444-J4 3 444-14 3 44444 4444

333 333 44 333 333 44 333 3333 44 333 3333 pound4 333 3333 44 333 333 At 33 3333 4 333 333 4-333 22 333 333 222222 333 333 222222222 333 33 222222J2222 333 (33 222222222222 33 13 2232 22222222252 333

6 77 bull CS 77

dec oec oota

eteo cae

999Q99S99 5359929999 SC339^-99

S999i)J99399 D999399SP9999

333 4 33 222 333 222 3333333 222 353 222 22222 22222222

JPPZZ 2222 2222 222 222 11

m i 1M11 H i l l

n n i i 11111111 11111111

777 euseoe 77 BSEBSC3

777 acaoseesee 6 777 7 see8fJ8633888888 6S 77777 6R6 7777777

rgt0G 777777777777 56G6 777777777777777777777

_J 6G6E6 777777777777777777 22222 33 4-1 555 66E6t5poundS

22222 333 44 550 EGtmejGGGSS 222 33 44 555 C5e6tweampe6u66eGfl0^6eS666666666 2222 33 444 55tgt3 666666o6666S6GG6666l3S

222 33 44 5ti055amp 222 33 44 555S5iij555S555555SS555555555 222 33 444 55355555555555

222 33 444444^44 444444444 V2Z 3333 2222 33333333233333333333333333333333^3333333

2222 2222222222222 pound22222222222222222222222222

1 1 1 1 - -

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 111 111 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 1 1 1 1 1 1 1 1 1 n u n

f i i t u r n i i 2222222222222222222222222222 11111111 222222222 222222 111111 22222222 33333333333333333333 22222 111 22222 33333 3333 2222 3333 444444444444444 3333 222322 3333 44444 4444 Clt33 22222^2 33333 4444 4444 333 2222222 3333 4444 4444 333 22222pound2 3333 --4444 44444 3333 222222 33333 444444444444444 333 2222 22 3333 3333 2222 bull222222 3J333333333333333333 2222 2222222222 22222 2222^222^2222222 2222222222 2222i2ii22222222222222222222e22222pound222 22222222pound22-i2222222 2222222222222 +33333 222H2222222222222222222222222222222pound 111111111111 333333 222222222222222 222222222222222222222222222 444444 3333 2222222 33333333333333Ct3333 44444 3333 33333 333333333333333333333333 35 444 3333 3333 444444444^4-la 5555 444 333 33333 4444444444444-1444

22222222

111111111111111111111111111 1111 111111 111111111 1 i i m i u m i i n t i n i i a

m i m u n i n i i i i i n i i i m i i i i

T(K+N)= 1OOOOE01 T(KJ = 90000E-O2 N s 1 STEPS AFTER FIRST MEASUREMENT

^ =^ i f (91 (9) l^llgl lt8) IIg3f|gl (7) (7gt lSiil tS) pound6) i83I--8 (5) t5gt i3^igi (4) (4) l8sSgi f3I (3) lf^gl C21 (2 li5SIgl ( 1 ) (1) P | (0) _l18537E 02_

ESTIMATION ERROR CRITERION CONSTRAINT = 75000t-02

12500E-O13

Figure 615A Contour plot of Tr measurement

p K ~K+1 M at time t K+l 010 one time step after first

CONTOUR PLOT OF T R A C E C P f K K + N ) lt Z ( K ) ) 3 AS FUNCTION OF t Z t K U l HORIZ pound Z ( K ) ] 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E [ P ( K K + N ) 3 SURFACE WITH TIME T I K + N ) I T S SHAPE APPROACHES THAT OF C P ( K K gt ] 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

5S3 44 333333 555 444 333333

5555 44 33333 S5SSS 44 3333

_ S555S 444 3333 +555 44 333

44 3333 444 3333

4444 333 444444 333

CZ(K)12

09

3333333 333333 3333333

333333 33333

33333 44 55 65 777 3333 44 55 66 777 0888G888BS

3333 44 55 66 777 660688886888 3333 444 55 6S 77777

3333 44 55 G66 777777777

4 4 4 55 6 77 889 pound39999999 0 5 6 77 8C8 993399999

4 4 5 66 77 860EI 9999999999 4 4 55 66 77 eSEIS 9999999999 4 4 55 66 77 009688 999999999999S999

44444 U33 222222222 333 44 55 4444 333 22222222222222 333 444 55 444 333 2222222222222222 333 44 51 44 33 222222 22222222 333 44

333 2222 22222 33 444 333 2222 2222 33 44

333 222 2222 333 222 1111111 222

3333 222 11111111111 222 333

$656 777777777777 66666 7777777777777777777

lta 6563566 777777777 555 66666GS66666

555 666666666656666666666 G66666666666666-555E5

14 55SS5o335 444 5553S5555amp5S55SS5555

_ _ _ _ _ 444 amp55555lgt535555555555555 33333 222 1111111111111 222 333 4444444

333333 222 111111111111111 222 333 444444444444444444444444444444444+ 33 2222 1 1 1 1 11 1111111 222 33333

2222 111111 11111 2222 3333333333333333333333333333333333 222222 1111 11111 pound22222222 22222222222

11111 1111111 1111111111 1111 H i l l 111 1111111111111111111 1111111111111111-11111111 111111111111111 1111111 11111111111111111111111 1111111111t 111111111111111111111111 I -bull 111 11111111 2222222222 111111111

222222 22222 11111111111111111111111111111 2222222 3333333333333333333 22222 11111111111111111111111111111111

22222 3333 4444444144 333 22222 3333 4444 4444 333 2222223222222222222222222222

33333 444 555555555 444 333 222i2222222222222222222222222222222 +3333333 444 555555b555555 44 333 22Ppound2222222poundpound222222222222222222222-3333333 444 5555Si5o555355 44 333 22^ZV32222222222222222222222222222 33333333 444 55S55L555 444 333 2222 213222222222222222222222222

3333 4444 4444 333 2222ZT22Z 22222222 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 ^ 4 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1

+ 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 P 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 Q 2 2 2 2 2 2 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 t 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2pound222222

3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 3 3 2 J 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 33C-333333333

4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 AAA 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -

T ( K + N ) laquo 1 4 0 0 0 E - 0 1 T ( K ) = 9 0 0 0 0 E - 0 2 N = 5 STEPS AFTER F I R S T MEASUREMENT

SYMB

( 0 )

LEVEL RANGE

3 6 1 1 7 E - 0 2

( 9 ) ( 9 )

3 5 5 5 5 E - 0 2 3 4 9 9 2 E - 0 2

( 8 1 ( 8 )

3 4 4 2 S E - 0 2 3 3 0 5 6 E - 0 2

( 7 ) (7)

3 3 3 0 4 E - 0 2 3 2 7 4 1 E - 0 2

( 6 ) ( 6 )

3 J 17BE-02 3 I 6 1 6 E - 0 2

( 5 ) (5gt

3 1 0 5 3 E - 0 2 3 0 4 9 0 E - 0 2

( 4 ) lt4)

2 9 9 2 7 E - 0 2 2 9 3 3 5 E - 0 2

( 3 ) ( 3 )

2 8 6 0 2 E - 0 2 2 8 2 3 9 E - 0 2

( 2 ) ( 2 )

2 7 6 7 C E - 0 2 2 7 1 1 4 E - 0 2

( 1 ) ( 1 )

2 6 - 5 1 E - 0 2 2 5 9 0 8 E - 0 2

(copygt 2 5 4 2 5 E - 0 2

ESTIMATION ERROR CRITERION CONSTRAINT =

7 3 0 0 0 E - 0 2

Figure 615B Contour plot of Tr measurement amp 5 (0] a t t in tbdquo = 014 five time steps after first LKt5

CCM-OUR PLOT OF T R A C E t P ( K K N K 2 ( K ) I AS FUNCTION OP t Z ( K ) 7 1 HORIZ EZ fKJJS VERT EXAMPLE TO SHOW GROWTH OF TRACECP(KKN)3 SURFACE WITH TIME T ( K + H ) I TS SHAPE APPROACHES THAT OF [ P ( K K ) 3 U SURFACE ASYMPTOTICALLY FOR LARGE N

4 4 4 46 AC A

r5 66 - 7 7 7

GG 7 7 7 PSb 77

6G6 5 66 55 666

0 bull 555 144 333333333333 55f 44 333333333333

555 44 03333333333333 _ 55555 444 33333353333333 55555 44 333^333033333333 bull555 444 333333333333333333

4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 XH M 4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 4 5

4 4 4 4 3 3 3 3 3 3 3 3 3 3 4 4 4 4 1 4 4 4 3 3 3 3 3 3 3 3 4 4 4

1 + 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 ^ 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 44 5 5 5

3 3 3 3 222222222222P gt 33 4 4 5 5 5 333 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 5 5 5 5

3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 4 4 5 5 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 g

3 3 3 3 2 2 2 2 2 2 333 4 4 4 4 3 3 3 3 2 2 2 1 I t 11111 2 2 2 33 4 4 4 4

3 3 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 444

3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 bull 3 3 3 2 2 2 U 1 1 M 1 1 1 U 1 U 1 1 2 2 2 3 3 3 3

2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 1111 11111 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 raquo I 1 1 1 ) 1 1 1 1 1 1 bull 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 111111 1 gt

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2

2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 2 2 2 2 2 2 3333 4444 53535 444 333 2222

3333333 444 5555555 5555555 444 333 33333 444 555 555 444 333 33333 444 5555 5555 444 333 333333 44 55555 55555 444 333 33333333 444 555555555 444 333 222

3333 444444 44444 330 221222 222 33333 T^33 22222 222222222 3333333333333 22222

2222222222222222 2222222 22222222222222222222

2222222222222 222222222222

333333 222222222222 222222222222222222 33333 2222222222222222222

4444444 333 22222222222 33333333333 4444 3333 333333

4444 3333 3333

JSiJ 3Sfl e raquo 3 8

9 9 9 9 9 9 9 9 9 9 9 9 9 S 9 S 9 9

9 9 9 9 9 9 9 9 9 9 9 9 3 9 9 9 9 9 9 9

iSBraquolaquo 9 9 9 9 9 9 9 S 9 9 9 9 S 9 9 858cea3e 999999999-

7777 7777777

7777777777 iGi i 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ei5666 7777777777777

S6666666666 6666G66666666666

S35 SGS6S066666666B )5i S55555

HJ5555555S5U555555 5555555555^555555555

14 55555 1444444444444444444444

4 4 4 4 4 4 4 4 4 4 4 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 I222222222222222222222222222222

r i u i u i u i u i i i u n u n i i i i i i

1 i n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 bull m i n i

2 2 2 2 2 2 2 2 2 2 2 gt 2 2 2 2 2 2 2 2 2 2 2 2 2 lt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 pound

2 2 2 2 2 2

u u i n 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

m i n i m i m i n i m i 1 1 1 1 1 1 1 m 11 1111 111 1111111111

1 1 1 1 1 1 1 1 1 1 m i m m 1 1 m 2J22222

222222222222222222222 i33333333 3303

33333333333333333333332 3 333333333333333333

T(KraquoN)= ISOOOE01 TIK) = 90000E-02 N = 10 STEPS ftFTE F IRST MEASUREMENT

CONTOUR LEVELS ANO SYMBOLS

SYMS LEVEL RANGE

t O ) 4 2 3 1 9 1 1 - 0 2

( 9 ) ( 9 )

4 1 7 9 7 E - 0 2 4 1 2 7 4 E - 0 2

3 ) t e gt

4 0 7 5 1 E - 0 2 4 0 2 2 0 E - 0 2

(7gt ( 7 )

3 9 7 0 5 E - 0 2 3 9 l a 2 E - 0 2

( 6 ) (Ggt

3 6 amp 3 9 C - 0 2 3 amp 1 3 C E - 0 2

( 5 ) ( 5 )

3 7 t e l 3 E - 0 2 3 7 0 9 1 E - 0 2

( 4 ) ( 4 )

3 6 5 G R E - 0 2 3 6 0 4 5 E - 0 2

C3gt ( 3 )

3 5 5 2 2 E - G 2 3 4 S amp 9 pound - 0 2

( 2 ) 3 4 4 7 6 C - 0 2 3 3 S b 3 E - C 2

(1 ) ( 1 )

3 3 4 C O H - 0 2 3 2 9 U 6 E - 0 2

(0) 3 2 3 0 5 E - Q 2

EST) MAT 1 Oi l EKROR CRITERION CONSTRAINT =

7 5 O 0 C F - 0 2

1 - 2 5 0 Q E - 0 1 1

Figure 615C Contour plot of Tr measurement

bullK+10AK (h) at time t K+10 019 ten time steps af ter f i r s t

cz(Kgtia 03

CONTOUR PLOT OF T R A C E t P t K K N ) t Z ( K gt ) 3 AS FUNCTION OF t Z ( K ) ] T HOR1Z t Z ( K H 2 VERT EXAMPLE TO SHOW GROWTH OF TRACEEPCKKraquoNgt1 SURFACE WITH TIME T ( K N ) ITS SHAPE APPROACHES THAT OF [ P lt K K ) ] 1 1 SURFACE SVYPTOTICALLY FOR LARGE N

555 44 33323333 555 4 333023333 555 444 333333(333

5b55 44 3333tngt33333 5S55S 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 55L5 444 333333333333333

444 33333333333333333 444 33333333333333333333

444 55 6 444 55 444 55 444 S 5

77 BE 6 77 OEGfl

7 7 pound9118 777 ease

4404 33333 444444 3333 44444 3333 444 3333 222

33333333 444 5 333333 444 3333 444 333 444

55 66 777 44 55 66 777 444 55 666 7777 666 77777

999999999 999S90999 9S9SS39999 99999999999 99999999999999 99999999

333 2222P222222222 333 22222222222222222 3333 222222 22222222 3333 22222 2222 3333 222 222

680e88666038B68 6S6 7777777 BC3QBQSBBB gtamp 66GC 7777777777 555 6i6fiS 77777777777777 777 bull 555 6056666 77777777777

3333 222 333333 222 11111111111 33333 222 11111111111111 33 2222 111111111111111111 2222 11111 111111 222222 1111 11111

444 5555 666666366666 I3 444 555S 66GS66666S6666666 33 444 5amp05S5 6666666666666 333 444 t5Sy555555S5 333 444 555555555555555555 55555555S55555555 222 333 4444 222 333 444444444 222 3333 44 14444444444444444444441 mdash2 333333 44444444 222 333313333333333333333333333333 222222 111111 221-22222222222222222222222222222 111111111111111111111111111111 1111111111111

llll1111111111 111111111 1111 111111)1111 22222222222 11111111 22222 22222 11111111 222222222 3333 3333 22222 2 3333 444444 444444 333S 222222221 3333 144 555555535 444 3333 ZZpoundZ 333233 444 5555 5555 444 333 3333 444 555 555 444 3333 333 444 5556 555 444 3333 3333 44 5555 5555 444 3333 333333 444 5555555555555 444 3333 Zt 33333 4444 4444 333 2222222 33333 444444 3333 22222 22222222 3333333333333333 22222 111 22rgt2pound222222222 222222 11111111 2^2 2e2Sgtpound22222222222222222 1111111111 2gt2212222Ve^^-^2^222 1111111 222222poundZi2222

3333333 22222222222222222222222222222222222222 33333 222222222222222222 4441444 0333 22222222 3333333333333 444 3333 33333

111111111111111111111111111111

444 3333 33333

111111111111111111111111111111 11111111111II 111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 = 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

T t K N ) = 2 4 0 0 0 E - 0 1 TCKl = 9 0 0 0 0 E - 0 2 N = 15 STEPS AFTER F IRST MEASUREMENT

CONTOUR LEVELS AND SYMBOL5 SYM0 LEVEL RAN3E tOgt 46551E-02 (9gt (9

4 4 9039E-7D27E--02 02

4 4 701-1E-eao2pound-02 -02

lt7 (7raquo

4 4 59fSE-5477E--02 -02 lt6J (6gt

4 4 49GEE 44S2E--02 -02

(5J 4 4 39C0E-34pound7E--02 -02

(4j (4J 4 4 291

rJE-2-103 E-

bull02 -02 I3J (3)

4 4 1 830E-I37SE- 02 -02 (2gt 12)

4 4 06C5E- 03L3E--02 -02 J (1)

3 3 93-IIE-3323E--02 -02 lt0 36310E-02

EST 1 HAT I ON ERRPR CRITERION CONSTRAINT = 7taOOOE-02

Figure 615D Contour plot of T r EK+^^K) a t time t K +_ = 024 fifteen time steps after first measurement L J

CONTOUR PLOT OF TRACpound[PCKKNgtCZ(KgtgtJ AS FUNCTION pff C Z lt K ) ] 1 HORIZ t Z ( K gt 1 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E t P ( K K + N H SURFACE WITH TIME T lt K N ) I T S SHAPE APPROACHES THAJ OF C P f K K l l U SURFACE AgtV1PT0TICALLY FOR LAROE N

TJME= 9 0 0 0 0 E - 0 2 FIRCT MEASUREMENT ELEMENT 1 1)

555 444 444 55 6G 55 444 33 444 53 66

555 44 0333 4444 55 66 555 444 3333333 444 55 66

553555 AAA 3333333333 4444 55 6pound 5555 444 3 3 33 33 i 133333 444 553 S 444 333333333333333 444 ~

6D3 8 0 3e

3 3 F 9 7 7 7 3poundJt

939909039 9999S9999

990030099 39J999999

7 7 7 1 3 8 8 0 8 6 9 9 9 9 D 9 9 S 9 9 9 9 9 9 66 777 eaiaaena 99999999-

_ 666 7 7 7 7 8 6 6 e 8 8 - 8 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 55 6 6 77777 8e38688C8O880OO(38

4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 3 6 6 6 7 7 7 7 7 7 7 7 8 8 0 6 8 8 8 8 8 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 656G 7 7 7 7 7 7 7 7 7 7 7 4 4 4 4 4 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6G3E-6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - -4 4 4 3 3 3 3 3 3 3 144 sect55 5pound-SG6666 7 7 7 7 7 7 7 7 7

333 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 = 5 5 666665G5GGG6 3 3 3 2 R a R a raquo K 2 2 2 S 3 3 3 4 4 4 505 CGtJ6ampo6-6GGGCrGCGfiC6

3333 r y 2 2 2 2 r i 2 2 L 2 2 2 2 2 33 4 4 4 SS55 -gtb 66Gl5CCftgtG0tgt5 3 3 3 3 2gtZ2 2 2 2 2 Z 33 4-14 5E- 3 j ^ S S r i S W S 3 3 3 3 2r-22 2 2 2 2 333 4 4 4 4 55555503555511555555

3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 0 5 5 5 5 5 amp 5 5 5 5 5 5 5 5 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 333 4 4 4 4 4lt 4-14444

3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 I I I 11 2 2 2 2 333 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 + 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 4 4 4

2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 V3Z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 11111 1 1 1 1 1 1 2 2 2 2 2 2 2 ^

1111T1 111111 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111

11 1 11 111 1 1 1 -

11111111111111111111111111 1111111111 2222222222222 11111111

2222^ 22222 111117 1 22222222 33i^3 3333 2222

333 4-S44 44444 333 pound2222222 333333 444 55555555555 444 333 1

33333 444 5555 S555 444 3333 33 44 55 3 6G666 D55 44 393333

444 505 6665066 555 44 33333 333 444 555 555 444 3333 333333 444 55555555555555S 444 333 3333333 4444 4444 333 2222221

33333 4444444444 3333 222222 2222722 3333333333^3333333 22222 2222222222222 222222 111 1111 22P222i2-22l22P22222222222222 U11 U 1111 2ir2ai22-222i22irr2222 1111 11

22222r2-2Ki2 22 3333333 22pound2J22222Z22222222222222222Jai

3333 22222222222222222 4344444 3333 2222222 333333333 33C-

4444 3333 33333 444 33333 33333

11111111111111111111111111111 22222222222222222222222222222

33333333 3333333333333333333 333333333333033333

33353 22222

bull22222222222222222222222222222 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22222222

2 2 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3 3 3 ^ 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J

( 0 )

LEVEL RAKCE

1 6 0 S 3 E - 0 2

13) ( 9 )

1 6 3 4 S E - 0 2 1 5 0 4 0 E - O 2

1 5 3 3 4 E - C 2 1 4 C 2 E - 0 2

it ( 7 )

1 4 r 2 U - 0 2 1 3 t 1- t 02

( S ) ( 6 )

i sacaoos 1 2 8 0 2 E - 0 2

(5gt ( 5 )

1 2 2 9 5 f - 0 2 1 1 7 6 9 c - 0 2

( 4 ) ( 4 )

1 l pound P E - 0 2 1 0 7 7 C E - 0 2

( 3 J 133

1 O27OE-02 9 7 o 3 ^ pound - 0 3

(2) ( 2 )

9 2 5 t t l E - 0 3 8 7 j O ^ E - 0 3

(1 ) (1 )

BZnopound-03 7 7 3 7 5 E - 0 3

tOgt 7 2 3 1 2 E - 0 3

ESTMATUN ERtiR CRITERION C L l t T R U I H =

7 t r n o e - 0 2

SOURCE NPUr COVAKlANCE I W 1 - 1 2 5 0 f E - 0 1 1

Figure 616 Contour plot degl [amph at f i r s t measurement t ime t bdquo = 009 compare with asymptotic

response of Tr [ppound + N (z K )1 surface at t K + l g = 024 in Figure 615D

188

at the next sample at time t K + N when (645) is next satisfied From Conclusion X the minimax problem in (647) separates into finding zt

such that

[ E^4i = IK L - ^ that z which

^n-lr-1 $ 5$ pound

and independently findino that z which leads to

4 T max c(z) c(z)

(648)

(649)

for N large Various properties of the solution of th is problem are

demonstrated by example in what fol lows

631 Asymptotic Responses of Output Estimation Error - to demonshy

strate the asymptotic separation of the minimax problem in (647) into

the independent problems of vector minimization in (648) and scalar

maximization 1n (649) the problem of Section 61 was solved but as a

monitoring problem of the second kind with

~005 p 002

000001 (650) 000001

^ 000001 _

and with thi bound on maximum variance in the output estimate

Pdeg = ~0

lim 01 (651)

For this case a plot of the evolution of o^+(j(S((z) t n e gtin1max probshylem statement In (647) as a function of time t K + N 1s shown in Figure 617

The asymptotic separation of the minimax problem is demonstrated in Figures 618 and 619 The former 1s a plot of a^[z0z) as a function of the position 1n the medium z for values of time t R = 0 T 2T 9T

1OOOOE-01

6BO0OE-O2

S2000E-02

OeOOOE-02

4C000E-DZ

X X

X X

X

X

X X

XX

gt XX

X

X X

X XX

X X

X X

X X

X X

X X

X X

X X

X XX

X X

X X

X X

X

X X

X

X X

X

X X

X X

X

X

X X

X

X X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 617 Time response of aLwU((laquoz)gt t h e P e l f deg r m a n c e criterion for the optimal monitoring probshylem with bound on error in the output estimate for a = 010 samples occur at t = 011 047 and 085

EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTFUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-$ I At IT VALUE FOR LARGE TIME

80000E-02

74000E-02

96 7777 6 7 709 9 76666 e 876 6 7 9 976 555 6 78 6 55 56 9

1 0 0

865 4444 56 S 87 44 4 9 7654 4 5676

8654 33 9 754 33 33 4 567

3 SZZ100 965 3333g2H00 754

6BOOOE-02 4444pound2110 8343 5 55-JJgt3322 1002533222 777ii -514332293222 S^SS tiS314i65 0111

g- 03779S7 0 S99 (

62O00E-O2 1 2 3458

1 6 1 2 34579

36 1 2 4 79

1 35 8 2 6

i 1 34576 O I 2 6 J

C 1 23457) 6 9

12345 B 1 234 i7f)

1 gt579 0 123 13539

00 12 J4M5S9 41 OC 1 3-Ti67 9 9567

00 i345 6 6300 OOOOOO 0 00

SYMB TIME TK+N (0) 0E00 CI) 5000CE-C3 (2) 0001^-03 CD GOOCOE-03 (4) 80000C-03 t5 ) IOuOCE-02 (6) 12000E-02 ( 7 lJidOOC-02 0000 (6) 1600CC-02 000 I1 (9) 1 OOOOE-02 00 111

00111222222 0122 30333 P0112233344444 011223S4445SS-3 01 23341553 C306 012g34J50tt b67777 01254553077770360

12334Lpound67736999 12345My88393 12345677S99 12345^769 123b67699 1245S7S9 12456099 1245789 1246709 1246G99 134689 135799 13579 14R89 i99 2589 04799 2599

4000E-01 PtSl ION Z

Figure 618 Plot of performance criterion oilaquo[z) as a function of position z in the medium for K + N- -- - 2 _ _ _ J times t K+N 00 002 004 018 note how position z

changes with time of o + N(z ) = max a K + N U)

130O0E-O1

1 32O0E-O1

1 1 4 0 0 E - 0 1 ODDOnOOOCOO

raquoe00Dpound-02

oooooouooo

60D00E-02

Figure 619 Plot of asymptotic shape of performance c r i te r ion deg K + N ( z ) as a function of position z in the medium as N-raquo compare posit ion z =

totic position of maximum in Figure 618

the medium as N+degdeg compare posit ion z = 03 for Urn r j x apound + M (z) in th is curve with asymp-im n x N-~gt z

192

where T = (t K + - tbdquo) = 0002 zbdquo was taken as the initial guess at the best measurement locations z Q = [015015] The latter plot is a plot of

lti(z)T a c(z) (652) SS

2 the steady-state term in the asymptotic response of crJ + N fo r N large

Thus comparison of the asymptotic approach in time of the curves in

Figure 618 to the steady-state curve in Figure 619 shows that

N

c ( z ) T V n 1 M n 1 d(z) - c ( z ) T a c(z) (653) imdash S~S~ n=l

As a special case it shows that

max o+fzz)mdashgt max c(z) q c(z) SS

(654)

at the position of maximum variance z Note here that as expected the position of maximum variance is directly over the source position

(655)

632 The Effect of a priori Statistics mdash To demonstrate the efshyfect of the uncertainty in the initial state estimate x = m upon the optimal monitoring design problem consider variations in the a priori

statistics given in the initial state estimate error covariance matrix Pg = M- For this example fix the time interval of interest at 0 lt t lt 20 and set o | i m 5 02

(656A)

Compare the f i r s t case for which

000001 o E o s 8 o

0 0 00001

193

with the case where

E g - H o

oi 000001

o

o

000001

(656B)

The first choice results in the evolution of obdquo+bdquo(ztz) shown in Figure 620 resulting in one measurement at t = 126 The corresponding con-tour plot of [ E K ( K ) ] ] I as a function of [ z j and [jd for that meashysurement is shown in Figure 621

The plot of o^+f(zJz) for the second choice of M as in (656B) 2 is shown in Figure 622 where owing to the higher initial value of aQ

two sample times result at t = 046 and t = 160 The corresponding conshytour plots for those measurements are shown in Figure 623

Study of Figures 621 and 623 show that the locations of optimal measurement positions are not effected by the a priori statistics given in MQ provided that the time to the firsc sample is sufficiently long for the infrequent sampling approximations to apply

For the first case the time to the first sample is t = 126 for the second case the first sample occurred at t K = 046 Thus the only

effect that the choice of Mbdquo has upon the optimal monitoring design probshylem is the detirnrination of the time of the first sample

Thus the results of Conclusion V are substantiated here within the context of a monitoring problem with bound jn output estimation error

To illustrate the transient effects at play in the general monitorshying problem effects that exist before the infrequent sampling requireshyments of (518) and (520) are met consider the same problem as in the

20000E-01

16000E-01

taoooE-oi

raquo XX XX X XX X XX XX X

X Xt XX X XX X XX XX X

X X XX XX X XX X XX

I XX

X sx

XX X XX

X XX XX X XX X XX X 1 XX 1 X I X I XX I X I X I X I X I X

XX X X X X X X

X 1 X IX

X

X

1 600E+CO

2 2 0 Figure 620 Time response of ai+ufivtZ J f o r degi- = 0- 2 with initial covariance matrix P Q H H Q given in (656A) one sample occurs at t = 126

CONTOUR PLOT OF CP(KK) tZ(K)) J11 AS A FUNCTION CF CZCOU HORIZ AND EZtKgt32 VERT

bull4444 33 22222222222222222 4444 333 222222222222222222 4444 33 222222222222222 444 33 22222222222222222J 333 22222 2222222222222 333 2222

fZCKHZ

03

3333 __ 3333 22

33333 222 3333 2222 333 222 333 222 33 222 3 222

222222222E222 222222222222 2222222222222

2222222222222 222222222222

222 222

222 1 2222 11

22222 t11 1111

11111 bull1111111

22222222222 2222 31

1111 2222 31 11 111111 222 11(1111111111111 222

111111111111111111111 222 1111111111111111111111 22

1111111111 22 1 1111 I 22

11111 1111

1111

33 AA RK 7 aesss 999939 0 33 AA UK 7 7 eaaeo 99999 333 AA KH 7 a ieaa 333 A fifi 77 888908 999999

33 Ai HH 333 A 55 6t 7777 CAB 188 99999999

33 44 bullgt B 77777 888883 9953 333 AA Vgt 6(i 77777 0888883

3 3 44 Hfgt lies 777777 8880088885 3 3 3 AA 55 8SS6 777777 889Pd3S8

66666 7777777 44 555 6G6666 77777777 444 E5gt3 6666666 7777T777777

I 44 5SS5 66D6666 7777777 I 44 i5555 666G665 13 444 5555S5 666G66G66 J3 444 55055555 6665666666

1111 1111111111 22 33 AApoundA 5555555555 66666 22 333 J4I44 555555555 222 333 44AA4A4AAA 55555555553

222 3333 4444444444444 222 3323gt33 444444444444

111 222 33333333333333333 11U1 222E222 3333333333

11111 222222222222222222222 11111 1111111111 2222222-

H I 11 i i i i m i i i i i i i n i i i i n i u i u n i i i m i n 11111 m m 111111111111111111111

11111 222222222222 1 1 m m m i m - m m 1111111 222 33333333 222 11111 11111111111111111111 11111111 22 33 444 33 22 111111 11111111111111111111111111 1111 2E2 33 44 444 33 222 1 11 11 11 1 1 11 1 11 1 1111 1111 222 33 44 555 555 4 33 222 1111)11 2222 3 4 55 66666666 55 44 3 222 22222222222222 222222 33 4 5 G6 666 55 ltJ 33 222 222bull22222222222222222222 bull22222 33 44 55 66 777 66 35 44 33 22222 2222222222222222pound22222222-22222 33 44 53 66 777 6 5S 4 33 2222 2222222222222222222222222 22222 33 4 5 66 666 55 44 3 222 2222222222222222 222222 33 A 55 6666666 35 44 33 222 1 2222 33 44 655 555 44 33 22 11111111111111111 1111111111 222 33 444 44 33 22 1111111 1111111111111111111111111 222 333 333 222 11111 1111 ^

bull11 O 111111111111111111111 1111111 111111 111111111111111111111 1 22222222 22222 222222 22222222222222222222222222222 2222 222222222222 222 2222222

11111 bull2222 1 11 11

2222 1111 333 2222 11

3333 224 333 222 333 222

222222 222 111 m m

i m i m i i 111111 1111111111 111111 m i m 111 m m i i 11111 n

m m i i m n

CONTOUR LEVELS AND SYMBOLS

SYMB LEVEL RAIiGE

~76) iTs^ ie -o i 19) (9)

2 2

4972E 4402E-

02 02

( 8 ) 2 2

303i 3263E

02 02

C7) pound7)

2 2

2S94I-2124b

02 02

(61 (6)

2 2

155ipound 0985g

02 02

(5) (5)

2 1

011 5pound 98-562

02 02

t4 ) (4)

1 1

927ampE 87071J

02 02

(3) (3)

1 1

6137E 75S8E

02 02

(2) (2)

1 1

6996E S428E

02 02

(1 ) n 1

1 1

5059E 52QUE

02 02

(copy) 1 J720E 0 2

EST1 HATION ERROR CRITERION CONSTRAINT =

SOOCC^-Ol

12500E-O13

F i g u r e 6 2 1 C o n t o u r p l o t o ^ F K ^ K ^ l n w 1 t h i n i t i a l cdegvariance matrix E Q = - 0 9 i v e n i n ^ 6 5 6 A f o r

the sample at t j 126

20000E-01

95000E-02

6 OOOOE-OS

SS000E-02

Figure 622 Time response of C J | + N ( Z Z ) for ltm = 02 with i n i t i a l covariance matrix P 0 i MQ given in (656B) two samples occur at t K = 046 and 160

CONTOUR PLOT OF t P ( K K ) ( Z ( K ) ) 311 AS A FUNCTION OF CZCfOJ I HORIZ AND r Z ( K gt 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T IME P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-SiTATE VALUE FOR LARGE T I M E

CZ(Kgt]2 05

4444 33 222222222222222222 4444 333 222222222222222222 444 33 222222222222222222 444 33 222222222222222222 333 22222 2222222222222 333 2 22 333 2222 3333 2222 33333 222 3333 222 333 222 222

222 t 222 11

2222222222222 2222222222222 2222222222222

22 22 22 22 111

2222222222222 pound22222222222 2222222222 22222

23 44 55 6G 77 33 44 5 66 777 333 AC 5 66 777 333 4 55 66 777 33 44 55 C3 777 333 4 55 56 7777 33 44 5 e3 77777 333 4 55 i36 77777

999999 99999 93999 999999 99999999 99989999 9999 8888866

0

2222 222 222

111 222 222 222 2222 111 22222 111 111 1 11111 1111111

11111 11111111111 11111111111111 1111111111111111

1111111111 111 1 I I

11111 1111

111

55 666 77777 4 53 6666 777777 68688688 4 tgt55 66666 7777777 44 3E5 666666 77777777 444 5J55 6666666 77777777777

44 S55S 66665C6 777777 44 5555 6666666 Aamp1 555555 66666666

2 a 3 J14 555555555 6666666666 2 33 4144 555555555 66666 22 333 44444 555555555 222 333 4444444444 55555555555

222 3331 4444444444444 222 3133333 444444444444

1111 222 333333333333333333 11111 22 2^22 3333333333

111111 322222222222222222222 222222 11111

111111111111111 -11111 111111 111111111111111111111

11U1 222222222222 11111 1111111)11111111 1111111 222 33333333 222 11111 11111111111111111111

bull11111111 22 33 4444 33 22 111111 11111111111111111111111111 111 222 33 44 44 33 222 11111111111111111111 11111

222 33 44 555 555 4 33 222 11111111 22222 33 4 55 66666666 55 4 33 222 22222222222222

222222 33 4 5 66 66 5 4 33 2222 2L 1222222222222222222222 22222 33 44 55 66 7777 66 55 44 33 22222 2222222222222222222222222 2222 33 44 5 66 7777 66 SS 44 33 2222 2222222222222222222222222 22222 33 4 5 66 666 55 4 3 222 2222222222222222 222222 33 4 55 66666666 55 44 3 222

2222 33 44 555 555 44 33 22 111111111111111111 111 11 111 111 222 333 44 444 33 22 1111111 1111111111111111111111111

2222 333 333 222 1111 11111 2222 3333333 222 1111 11 22222222222222 22222 22222 3333 2222 333 222 333 222 333 222

111 11 0 11111111111111111111 1111111 111111 111111111111111111111 1 2222222222 22222 222222 22222222222222222222222222222 2222 22222222222 2222 222222

SYMB

t b i

LEVEL RANGE

z 5 5 1 9 pound - b 2 _

( 9 ) ( 9 )

2 2

4952E 4384E

0 2 C2

I B ) ( 8 )

2 2

3816E 3248E

0 2 0 2

( 7 ) ( 7 )

2 2

2G60E 2112E

0 2 0 2

( 6 ) ( 6 )

2 2

1544E 0977E

0 2 0 2

( 5 ) lt5gt

2 1

0409E 984 I E

0 2 0 2

( 4 ) ( 4 )

1 1

9273E 8705E

0 2 0 2

( 3 ) ( 3 1

1 1

8137E 7570E

0 2 0 2

( 2 ) t 2 )

1 1

7002E E 4 3 4 E

0 2 0 2

( 1 ) ( 1 )

1 1

5 8 6 6 E 5298E

- 0 2 - 0 2

( 0 ) 1 4 7 3 0 E - Q 2

ESTIMATION ERROR CRITERION CONSTRAINT =

2 0 0 0 Q E - O 1

1Z300E-011

Figure 623A Contour plot of Ppound( K )1 with in i t ia l covariance matrix f 0 = MQ given in (656B) and ulim = 02 for the first sample at tbdquo = 046

CONTOUR PLOT OF t P I K K lt ^ C K J gt 1 1 AS A FUNCTION O t 2 ( K ) J 1 HOBI2 AND t Z ( K gt ) 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPU ESTIMATE WITH T I M E POSIT ION OF KAXtrUlK VARIANCE APPROACHES STEADY-31A7E VALUE FOR LARGE T I M E

09

333 44 14 33 44J 33 333 333 2222 3333 2222 3333 222 33333 222 3333 2222 06 +333 222 333 222 222 I 222 11

07

CZCK132 O S

222 222 222 2222 22222 1i till lllli bull1111111

22222222222232222 22222222222222222 222222222222222222 222222222pound2222Z222 22222 2222^2^222222 2L2 222 222222 222222222222 2222222222222 2322222222222 222222222222 22222222222 22222 1 2222 1111 1 111111 Mil 111111111111111 11111111111)111 11111111 111

3 3 4 4 7 7 7 3 3 3 4 4 S 3 3 4 59 66 7 7

3 53 6 7 aar 4 4 ss i6 3 4-1 tgt

333 44 S3 tgttgt6

777

333

222 222

44 SS 66 77 USB66 993939 0- 3 G 6 99999 8388 59939 eeeoas gposgfl 00866 99999599 ltft aeoeoo 9999399s-77777 888068 3999 77777 8638880 665 777777 6608800888 4 OS 6SE6 777777 86000680 4 55= 66666 7777777 44 ESi 66SCC6 77777777 444 5i3 60EG666 77777777777 44 iSC5 6GGGGG6 7777777 44 35355 G61606G 1 44t 555553 GoGG66G66 22 33 114 355553C3 G6GG66G6G6 I 22 33 44 4 5355330553 CS666 II 22 333 4444 535555553 III 222 333 1444444444 33353515533 111 222 3333 4444444444444 till 222 3313J33 444444444444 1111 222 33333333333333333 11111 222122 3333333333 11)11 222222222222222222222 11111 Hill It II 222222 111 M1111111111111 11 II111111 I 1111 III11111I1 11111 111111 111111111111 11M111 11111 222222222222 11111 1 It 1M111111111 111111 222 33333333 222 11111 bull 1 111 11 1111 11111M 11111111 22 33 44 33 22 111111 11 111 11 I 111 11111 1111 I till 22 33 44 444 33 22 11111 11 bull 111111111 11 II 222 33 44 553 335 4 33 222 1 1111 III 2222 3 4 55 C666666G 53 44 3 222 222222raquo22222 222222 33 4 5 G6 666 53 4 33 222 22222222222^222272222222 22222 33 44 55 C 777 5 05 44 33 2222 2S222Wr2S2222222222 22222 33 44 5E 66 777 6 53 4 33 2222 22L-22rT22E22222 222222 22222 33 4 5 66 6SG 55 44 3 222 2227222222222222 2222222 33 4 55 G66GC66 53 44 33 222 11 2222 33 44 555 533 44 33 22 111 111 1 11 I I 111 111 11 I11 1 11 111

1111 111 HI

222 33 444 222 333 -111111 222 333333 222 11P1H 22222222222222

33 22 22

11111

2222 111 t i n 11 t i n 1 3traquo3 222 1111111111111

3333 222 11111111111 333 222 1111111111

2 111 m m

m n i u l i i i i i n m i n i i m i 11111

m m 11111 mi 11 1 11111 m 1 m 111111 1 22222gt222

222222 2222 222

m m 111 m 1111111111111

111111 m i n i m i m m i i m t 22222 222222222Z3222222222232222222 2222222222222 2222222

SYI-3 LEVEL RANGE (0) 25540E-02

l 2 2

4970E-02 440IE-02

2 3B31E-02 32G1E-02

i l l 2 2

2GXE-02 21225-02

1 2 1352E-02 0963E-02

11 2 1

O4I3E-02 9843E-Q2

i I I

9274E-02 8704E-02

II 1 8I3-JE-02 -756-S-02

si 1 1 6S93E-02

GJ25 -i-02

1 I

3333pound-02 GZilLC-02

lt0gt

g trade -12uorE-oil

Figure 623B Contour plot of [ P pound ( Z K j L with i n i t i a l covariance matrix PQ = HQ given in (656B) and

degl lim = 02 for the second sample at t R = 160

199

2 last case above with HQ defined in (656B) but with a = 016 instead

This results in the curve for o K + N(zJJz) shown in Figure 624 for the

shorter time interval 0 lt t lt 10 Two sample times result at t bdquo = 011

and t K + r ) = 086 Corresponding plots for [pound(lt)] and [ P pound + [ | ( Z K + H ) ]

are given in Figure 625 Notice how in this case that the optimal meashy

surement positions it and z bdquo + N at the two samples are different The o

reason for this is that here the estimation error l i m i t o is so low

that the infrequent sampling approximations do not apply at the f i r s t

sample t ime This is inferred by the response of degV+N^K Z^ i 9 U r e

624 where i t is seen that zhe steady-state slope [ f tJ i i = 000125 for

this problem has not been reached yet at the f i r s t sample whereas i t has

at the second thus the steady-state simpl i f icat ions 1o not apply at the

f i r s t sample For th is reason in practical applications step (3) of the

algorithmic procedure given in (572) is important where at each sample

i t is necessary to check whether or not steady-state conditions have

been adequately approached for the infrequent sampling approximations to

apply

833 Problems with a Fixed Number of Samplers aid Constant Error

Bound - Consider a problem withm = 2 samplers to be used in every 2

measurement with a time-invariant error bound o = 0075

The i n i t i a l covariance matrix

000001 O 1

eS = y 0 (657)

O 000001 Conclusion V and XI are substantiated in the context of this problem with bound on output error

laquo vV

X X K

- w XX XX XX XX XX XX XX XX

X

XX XX XX XX XX XX XX XX XX

xx m

X XX XX

gt X X X X

X X XX X X X X X

S5QQ0E-Opound

X X

X

X

X X X x

X

Figure 624 Time response of a K + fzpoundz) for a = 015 with initial covariance matrix P Q = M Q

given in (656B) Two samples occur at t = 011 and 086 compare with Figure 622 for case with a = 02

CONTOUR PLOT CF CP(KKMZltKgt1311 AS A FUNCT0^ t r [ZC EXAMPLE TO SHOW EVOLUTION OF VARIANCE ID C - J _ P C rSrl POSITION CF MAXIMUM VARIANCE APPROACHES S T C ^ V bullpound ATE i

Ji HOTIZ AND tZ(Kgt]2 VERT E WITH TI ME LUE FOR LAHGE TIME

tZ(K)12 05

aa 33 44 4 -_ -

4444 33 222 4 4 4 33 2222 4 4 333 222

33 222i 33 222

3333 222 33333 222 33333 222 33333 222

2222222222222222222 2222222222222r222 22222 2 t2222^^22

22222 2 2222 2f P 22 2222^22P2 22j2^^2r^22

22 ^lt7ih

3333 3333 3333 3333 3333 33 33 3333 333

22 22

2 2

i n n i m n n i n 11111111111111

2222 222 222

77 7 A C e R B 9C99 0 77 c-rrc-rs 90909 77 SCT638 S3^99 7 77 0^036 099999 777 CC3C36 92999999 7777 G363G3 99999999-

7777 eee 9999 i j 7777 e^cr pound33 (--bull 77777 iJZWrampec V G 7777 7 6^000833

j GMJ-5 7777777 o U -CG 777777 gtbullgt Ev -ro 777777777777 bulljT -5 CCSG^GS 7 7 7 7 7 7 7 7

11111111111 11111 j

1111 m i

22 33 AA

2 2 2 2 2 2 2 2 111

1111 bull i m m 1111

1511 2 2 33

i l l

111111111111 11111 11111

1111 222222222222 1111 111111 222 3333333 222 1111

11111111 22 33 4444 33 222 11111 i m 222 33 44 44 33 22 11111

222 33 44 55 555 4 33 22 11 22222 33 4 5 666666666 55 A 3 222

22222 33 44 55 G6 66 5 4 3 2Z2 2222 33 4 5 6 7777777 CO 55 4-1 33 2222 2222 33 4 5 66 7777777 56 55 44 33 2222 22222 33 4 4 5 5 6 6 7 66 5 4 3 222 222222 33 44 55 G66S C666 55 4 3 222

22222 33 4 555 55J 4 33 22 11 2222 33 444 44 33 pound2 11111

222 33 44444 T3 222 111 11

4l4 4fCltits44-44 53355-ltt44-144444

J333333333 r333533 33333333333

2222^^^^22^22222222 11111 1 I I 2222

m m m m i 11111 m 11 m m m i i m u m

m m m t m u u u u-u m i m 1111 m m i m m m m 11 n m M TVZ

222ytgt gtr 222222 2 2 2 - f v SW2V2vbullgt222222

22 - ^ ^ 2 ^ 2 2 2 2 2 2 2 2 2 ^ V 2 2 2 2 2

11111 bull m i m i m u m m m M U U 1 1 1 1 1

i raquo i 11 I I 111 m i 2 2 2

2 2 2 2 2 2 2 2 2 2

333333 222 333 222

4444 33 222 44444 33 222

2 2 2 2 2 2 111 m m

11 M l 111 1

111 M i l l 1 1 1 11 t m i l i u m m u i 11 U U 1 1 U 1

1111 u

22222 2222

2222 33 222 333

1111111111111111 1111111111111111-1111111

2222222222222 22222222222222 222222222

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3133333333 3333333333

CONTOUR LEVELS AND SYMBOLS

SYMB LEVEL RANGE

( 0 ) 2 C ^2E-02

( 9 1 113^151 ca t I-I13II--S1 pound71 pound71 iiS51ESf ( 6 ) (6) flIIlsecti ( 5 ) ( 5 1 UI|g| ( 4 ) pound41 i laquoSIS ( 3 ) ( 3 ) ^IIsectI ( 2 ) ( 2 ) sectvSgSI pound1 ) pound1 1 ssiis (0) 1 4302-02

ESTIMATION ERROR Jraquo TERION C0NampTR i - r =

C W 1 =

pound - 0 1 )

Figure 625A Contour plot of te)]u wi th initial covariance matrix P = H given in (656B) and cC HO15 for the first sample at t K = 011 case with a s 02

Lim

Compare with Figure 623A for

CONTOLR PLOT OF tPCKK) CZIK)) 311 AS A FUNCTION 3F [ Z ( m W3R1Z AND tZ tK) )2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE UTH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE fOR LARGE TIME

tZ(K)12 os

44444 333 22222222 44444 333 2222222 44444 333 22222-222 4444 33 2222222 4-14 333 2222222 A 33 22PZZZ

333 22ZS-K^^2222 333 22222^ 22222 333 2222222-222 22222

333333 222222222222222222222 33333 22222 33333 2222 3333 2222 3333 222 333 222 bull333 222 333 22 333 222

222

9333 At 3333 A 3333 A 333 gt 3333 333 bull 3333 333 333 33

22 222

2222 11 pound2222 1111

22222222222222 2222222222222 3

22222222222 22222 2222

111 11 222 11111111111 222

111111111 222 1111111111111111 1 11111111111

1111111 1111111

11111

99299 0 909999

S3 GG TIT B06BB 939999 55 66 77 85BG03 993299

A 5 65 77 03BBB 99999999 4 55 66 7777 66G86 99D999999 AA 5 6 3 7777 BBB30G 999999 AA 55 6 56 77777 QBOB600

44 55 56U 77777 eeBSBBBO AA 555 6GS6 777777 8008806008

44 S5S 0666 777777 66800 44 55 i 666C6 7777777

i3 44 5-iS 666666 777777777 33 44 550 6GG6666 7777777777 33 444 raquo5Si5 6G666SS6 77777 333 44 S)iS35 GGGGGGG6 33 444 3555535 6GG6660GG0 333 444 5555555555 66G666666

222 33 44 14 5555555S5S5 22 33 14144 5555555555 22 333 4444444444444 5535555 222 333 1 4444lt1444444 2222 I3lt13333333333 4144444

33333333333333

111111111111 1111111111111111111

1111 111111 1111 2222222222222 11111

11111 222 33333 2222 11 11111 222 333 333 222

1111111 222 33 44444444 333 111111 22 33 444 444 33 ez 1111 222 33 44 5555 44 33 Zi 11 22 33 44 55555555 44 33 2 11 22 33 44 55SS5 444 33 f 1111 222 33 444 444 33 22i 111111 222 33 3444 4444 233 222 11111111 22 333 44 333 222

111111 222 3333333333 222 11 11111 2222 22L1

11111 22222 1111111 111111

11111 11111111111 111111111

11111 222222 11111

2222 1111 222 11111

33 222 11111

11111 2222 11111 222222222222222 1111111 222222222222222222

i i11111 i 11111 n i i i I 11 i m i n i i i i i i

n i n m i i i i i i i i i n i n i i i i i i 111U1111111U1111111111111

m i l i i n u n i i i n i i 1111 i i m i m i i-1111111 I 111 i i n i n i 11111 11 1 111

1 1 2222222222

1111

1111 11111 11111 111111

222222 222W222222222 1 2222P222 HiP2222222222 2 2222222i^22222222222

1 111 222 1111 1 I I 1 1 1 1 1

1 1 1 1 1 1 1 lt i m i l m 1111 in 1111 m i ii 1111 ii i i lt i i i i i i i i i i i i i i i i i

m i i i i i i i

n m i n i m i i 222

222 - 2222222222222222222222222222Z22 222222 222222222222222222

22222 2222222222222

SYK3 LEVEL KAKEJE

(01 25171E-02

l 2 2

d570E-02 397CE-02

2 2

33G3E-02 27tiOE-02

2 2

21amp8E-02 15G7E-02

i 2 2

OQti7E-02 OatiiSE-QZ

i 1 0765E-02 9163E-0Z

1 05G4E-C2 79G4E-02

1 1

73G H-02 O7r3E-02

sect 1 1

eir2pound-02 55G1E-02

1 1

49G1E02 43G0E-0Z

tQl 137G0E-02

ESTIMATION EMWJ3 CPlTpoundRtCN CCNS^MNT laquo

I SOJSt-Ot

HIAfCL IWJ

Figure 625B Contour plot of | EK(^K) w i t h i n i t i a l covariance matrix p[j = HQ given in (656B) and a =015 for the second sample at t K = 086 Compare with Figure 623B for

case with a 7 - ~ 02

203

Supoose the problem starts at time tbdquo As discussed in Section 63 and according to Conclusion XI the position z of maximum variance in the estimate of the pollutant concentration at all measurement times is independent of time and is thus calculated at the beginning of the problem With this value z relationships among the various optimal measurement position vectors z at Ihe measurement times are to be conshysidered

Assume that the time the first measurement is required is at timj t iy is found to maximize Ktt) the time the next measurement is reshyquired Then at t K + N gt it+bdquo is found to maximize the next time interval to a measurement etc A typical plot of a (zz) over values of tbdquo is shown in Figure 626 For each measurement time t bdquo + N gt zJ +bdquo is to be

found to minimize [ P S ( Z K + N ) ] so that to corroborate the optimizations K+N over K + N contour plots are made at every measurement time for [ P K + N

(z K + N)] as a function of [ji+N] horizontally and [Zj+NJ vertically Plots for the four resulting measurement times in this problem at t = 027 048 069 and 090 are shown in Figure 6-7 Notice that the contours at all samples are the same leading to the eame optimal design for z] + N at all measurement times t K +^ thus Conclusion VI is demonshystrated

Comparing the first two measurement time intervals in Figure 626 that is (t K - t Q) = 027 compared with ( t K + N - t K) = 021 shows that for N large the only effect that the choice of U Q has upon the optimal measurement design at the first sample at time t is in determining the time of the required measurement t K it has no effect upon the optimal locations zt which demonstrates again Conclusion V

RUN N3 1 EAMfgtLE 7 0 - T I C W IPOLUTION OF VARIANCE I N O U T f U I ESTIMATE WITH T I M r S I G ( t ) POSIT ION OF r A X I M W I VARIANCE Prf iOACHES STFAIV -STATE VALUE FOR LArtCE T I M

60000E-02

4B0DEE-02

1-6000E-02

x x raquo X

X X

X X

X

X X

X X

X X

I X

I X I X I X I X I X I X

X

X X

X X

X

x

x x x X X X x x x

x x

I X I X

I X

X X

X

X

X X

X

X

X X

X

X

X X

X

X

1 X

i x

IX

X X X laquo(

X

l - f y r s ^ - ^

Figure 626 Time response of o K + t Yz z ) fcr obdquo - 0075 fojr samples occur at t f deg-7 048 069 and 090

205

deg gK Slt1

1 ss rjti on OO OO s

Vr gK Slt1

1 is 5 1 T 3

ore 2-5--

co iZ ^ pound3 Sm mdash SS raquo N

T 3

ore 2-5--

o tfgt W laquo WWttWW r-r- bullft w laquo NWWWW r-- ID n v ^ n WWVWftl r-f^ o m raquoltT f t WWWWCd S lO V o WWWWW

o rt V WWfV-W N T iT o ftiwwcvw N r u w N M V N N

bulla L i V laquo ltj laquobull IV o V o n wywcvcv

t o o i n lt o n WflWftWfti bull bull M O O m T WltoeJW

O t f rt V WWftftftiftJ O O w T o r a OlttKiV-jAiAW p laquo T WWMMftAlMW - N L I V WftiXFMAiiVOi

- N 1 bulli l V OCT L i ft

pound o irw 7 o ft ltt -v

t ID o ttvfitirv i m laquo w bullcjftCnWW

^ tvft fNPJVWPi o Ift W o W f - gt bull laquo ( raquo gt laquo OHO ifl bull o laquo c (M^Cft(M lOul n ^r Vi Nfftl O O - iv iww

(D^-gt bull c- laquo wwv luWNUi 10OO - 1 n n wwcv vwni

ww o o bull

mdash mdash mdash CJW

mdash mdash - mdash mdash Wftl

- ^ N N N N r v

www bull inmdash

bull (Oioininraquo-))0in

H 5 S 5 2

ftjft www Mftt

WiMCU

mdash ^ - w

c^v fJSJCl mdash - mdash -

iiiisis mdashmdash WW bull O mdashmdash (M J bull bull bull bull o

CONTOUR PLtff OF EP(KK)(Z(K))311 AS A FUNCTION F rZ(K)J1 H0R1Z AND CZ(Kgt32 VERT EXAMPLE TO SH3W EVOLUTION OF VARIANCE IN OUTPU1 ESTIMATE WITH TIME POiilTION Of MAXIMUM VARIANCE APPHOACHES STEADY- J T M T E VALUE FOR LARQE TIME

1

CZ0012 05

444 444

4444 4344 4VV

4144 444

4444 bull4444

44444 44-14-14

444-144 444444 44 14 4 4414

444444 5 444444 5 444444 5 4lt14lti44 SI 444M 44444 4444 44-144 4444 4 114

777 777 777

66

114 333 3333 3333 3333 3333 3333333 3333 22JU22 2222 2222222 22221-2

3333 333C333 333S$33333 I33333J373333 $33313raquo33S33333 4-144 555 666 3$3333amp3i33333333 444 55 666 33$^33J33J33333333333 444 55fgt 66J 3333 33333 333333 44 55 6E-6 333$3 3J33C333 444 55 GS 05S33 444 505 33333 44 b-S 222222 3333 444 555

0080 ueeo H388 SC30

OC038P occecoo

9990339 99093999 9S9S999 99303399 1S999 _ 9999S99raquo 999959999b 88663098 S99999 77 388833083 7777 8063000068 777777 808EJ8C88380860 7777777 0S03C3SQyC8B 777777777 6838008 777777777 Jifi 77777777777 ltJ 0C6 7777777777777777 fgtiit36SC 77777777777 66b5Eil3S^GC6 222222222222 333 44ltJ 555 22222-gt^I22amp2pound22 3333 bull 222pound222222222222 33 222222222 333 2222222 3333 -4^4ltM1414444

222222 33333 4441444444444444444444 222222 333333333

50305555355555 555555505555555555

222222 pound22222-2 2222

2222 2222222 ^ 2 2 2 2

1111111 1111 111 1111 111 II i n i n m i n i m m m i i n m m i m m i m i m i m i 1111

i n i m n

m m n n m i i

11111 m i l

2222

22

111

n

m i n i I n 11iin11 I I ii i m i n i m i IinI1111 n i n m 111111111 in-1

111 Ull 22222222-111111 22222222poundK22222 t 22222222222

11111 2222 2222 2222222222222 11111 2222222

11111 22222 33333333333 J3333 oo ^22222 ii i n ^ ^ i m i i H2222 333333c

SYMamp LEVEL RANGE

tO 21520E-6pound

(6t C6gt lISISi (5[ (5f l3ililgl (4) 14) 15SfI8i

(2J 1026oE-02

ita

I250UE-01J

F i g u r e 6 2 7 B C o n t o u r p l o t o f fe)jn for the second sample at tv = 048 K

CONTCLrt PLOT OF I P f K K ) ( Z ( K ) ) J 1 1 A3 A FUNCTION O f [ Z t K l l l HOR12 AND t Z ( K gt 3 2 VERT EXAMPLE Tr- SiTOW EVO^UTIDN OF VARIANCE I N OUTPUT r S l M A T E WITH T IME POSIT ION Oi MAXIMUM VARIANCE APPROACHES STEADY-G ATI VALUE FOR LARG T IME

444444 55 66 777

41 V pound4 tgt5 SS6 77 SS 66 777

44 444 oL-5 06 77

4 4 4 4 4 4

4 4 4 4

4 4 4 44-11 33333

444 1 3 3 3 3 3 3 3 A4-aA 3 3 3 3 3 3 J 3 3 3 [4ltii 3333Cgt J3073033 44 4 3 3 3 5 J i 3 J 3 3 3 3 3 3 3 IJ44 33 3V333o3-raquo3333333 M4 3 3 1 3 3 i 3 3 ^ J j J 3 a 3 3 3 3 a 3 144 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 44 5 S 3 6(gt 14 3 2 3 3 3 3 3 3 3 3 3 444 5S 5C I 3 3 3 3 3 3 2 3 3 3 AAA C 5

3 3 S 3 3 3 3 3 3 4 4 035 3 3 3 3 E222222 3333 -144 j-5

3 3 3 3 ZZZsrlte22 C3C3 4 4 4 5555 bull 3 3 3 3 322 2 22SV2222 3 3 3 3 4 4 4 5 3 3 3 3 3 3 3 23222gt2222-2raquoPgtpound22 3i3 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 2 3133 4-1444-i

2 2 2 R 2 r t 2 2 2 3 3 3 3 4- 1

2222-222 2 2 2 2 ^ 2 3 3 3 3 3 bull 2 2 2 2 2 2 222 3 3 3

1 1 1 1 1 1 1 1 1 1 2J222

-1-114 J 44-1

4 4 4

m i n i i i i i i i n i m i i i i i i i i t i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 bull i i i n m m 11 I n i i

m i i n n i m i m l i m n

u i m 11 i i t 1 1 I 11 II 1111 1111111

bull111111 111111111

11111 m i l

2222 1111 +pound2222 1111

111

22222 22222222 2222222

m u m 111111111111111 11 111 1111111111111111111111

11111111111111111111111111111 m m i u n i i i i i

m m i i m n u m n m

l i m n m m

11 11 1 22-gt22 11111 2222222 11111 22222 11111 22222

1 C8 9 3 9 9 9 9 9 0+ B t3 9 9 5 9 3 9 9 9 U CBS 93S--99

EU3S 3SJSJ3U39 E-r-so 9 r j099S99

CC30a 33S-SSE9 CfiSBOO 9999 pound999999

383S3S8 9 9 9 9 2 9 9 3 9 9 77 8S33C308 9 9 9 9 9 9 bull717 GC^raaraquoSB 7T777 amp088 iS9QeS

777 777 e8oSSr 30808388 777777 6 3 a 0 8 3 8 3 3 8 0 a

7 7 7 7 7 7 7 7 7 8 8 8 8 6 0 8 7 7 7 7 7 7 7 7 7

Ht 7777777777

CCfiSS 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 i l Egt6 -amp3S 7 7 7 7 7 7 7 7 7 7

S-j^tiGfcG666SG

0 j55 6C6eSCi66e666 _x^CJ50tgtSS555553

S5Cgt5055C55DS5oS5S5 -4M44444444A

4444444444--1444444444 3333333

33333333033333333333133333 3333oJ33333 2r^222 2- i^^22222222

22 pound 3ft laquoraquoamp 2 22222P2S2 222 22i^lamp r PP-2-2222^22222e2

2222 vr^- amp2222222 2 r ^ g 2 L - - ^ 2 2 pound 2 2 2 2 2 2 2 2 2

2^2 r 22 gt22222HS222222S22 P22^252i-pound-HSpoundHS-222i 12K 22c

2222^222gt2222222P22 22222222 2 222 222^22

pound22222222222 m i 1 bull m i n 11111111111111

i i i 1 1 1 1 1 1 i i i 1111111 11H11111 i l l 111

22222222-2^222222222222222^22222222222 bullbulliiiiL22ZZgt2Z-ZZZt

SYMB (01 mm (91 i OC03E-02 0152E-Q2 (8) (B)

9450E-02 B748E-02

(7) (7)

C04SZ-02 7344E-02

(6) (6)

GC43E-02 5341C-02

15) (5)

5235E-02 4 33E-ca

14) (4)

3S36E-02 3134E 02

(3) 13)

2432E-02 1730E-02

(2) C21

103pound-C2 Oj27t--02

(1) (1 J i 6252E-03 9234pound-03 (copyJ 8 - 2 2 1 7 E - 0 3

ESTIMATION ERROR C-RIrEKl f lN CONSTRAINT =

7 0 0 0 P S - 0 3

KlANCE [WJe

1 2 S 0 0 E - 0 1 1

Figure 627C Contour plot of [bullft M i l for the th i rd sample at t K = 069

CONTOUR degLOT OF tPCKK)(2(K))I1 AS A FUNCTIOM CF [ Z C K U I HORI2 AND (Z(K)13 VERT EXANPLF TO SiampU EVOLUTION OF VARIANCE N OUTPUT ESllMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIKE

3b55 5Sgt3 S5S6 555

444 4444 444 AAH 444

aaaa aaa

4444 44 3-4

lt4444 44- 114 444-44 44441

444444 444444 444 4 11 444414 4444-1 44444 1444-1 -14414 4444

53 G6 777 55 66 777 55 66 777 55 (JPS 77 GSS SS 77 55 GG 7 55 S6 7

I o

4 t44 Sco SG$

535

IZ(K)J2

05

33333 3333333

333333J333 333333330

33-raquor-ltgt3^ii333 V J 33ogt-i333ampJ^33333 444

3 3 3 3 S 3 3 S S 3 3 3 3 3 3 3 3 3 3 J 3 4 4 4 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 4 4 4

I 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 3 3 3 3 3 3 3 3 4 4 4

3 3 3 3 3 3 3 3 3 44 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 3 4lt

3 3 3 3 222222gt22 3 2 y a 4 4 4 3333 27-1- 2222Z 3333

3333333 S2Sk4gtgtZSfgtamp2lrfS32 033

3 5 0

4 4 4

3 3 3 3 22222 2 2 2 2

2222222 + 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 U U 1 1 1 1 1 + 1 1 1 1 1 1 1 1 1

l l t t l l l 11 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 U I U M 1 i i i m n 1111111 n u n 11111 bull i i i n 11111 m m

m m i m m

Z-2222P2 3333 414 2222222 3333

222222 33333 222222 3

pound222322 22222r

222

222222 2222J222 2222222

1 1 1 1 1 1 1 1 M M M M M M I

1 1 1 1 1 1 1 1 1 1 111111 111 111111 1 1 M l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M I M t n i 11 M l

m m m 11111 m 0 1 1 m

m m 1 1 1 1 1 1 1 1 1

u r n 11111

2 2 2 2 11111 +22222 Mill

1111M1M 1111111 1 M 1 M Mill ZZM 11111 222raquo222 11111 22222 Hill 22222

9S39399 0393339 UvV9 9S0S999 8bamp3 30S0S3999 B08CSS S99SS3S999 Oer668 9999999999999 6800836 939S3S9939 77 8SC8PC03 999999

777 08SS bull-iOPOS 7777 uoaac^osae 777777 5031^GOBpound3338

7 7 7 7 777 8S08S3 l 38J 08 7 7 7 7 7 7 7 6080668

bullrraquo 7 7 7 7 7 7 7 7 7 7 G6 7 7 7 7 7 7 7 7 7 7 t-se66 77777777777777

coorgts6eeu 7777777777

iJ amplaquo053 660CC666C666 i J5S5055oj5C55

14 5535555S^0li055555 --444444444444

4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 r )33333339

33333333333333333332233333 33pound-3333333 gt22222222 22P22 gt2222222

222222gtpound2222222222 2P^222 igt222222222222 22-222poundgt ^22^22^2^22222 2gt=-r^^c-^i7iVgt^y2^2

2poundf 2222 pound laquo 2t222-poundT2222 222222pound^2 222222

222L22222222P2^22222 1 22222-222222 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 111 M l 11 1111111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 M l 111 111 111 1 I M M

22222222-gt22r222gt2222222 12222222222222

^2^22222^2222222

CONTOUR LEVELS AND SYMBOLS

SYC1 LEVEL BADGE

( 0 ) 2 1 5 6 2 E - 0 2

( 9 ) ( S I Isectlil81 ( 8 ) ( 8 ) i l^Ig| 17gt ( 7 ) SMIgI ltS) (6gt lWSUi ( 5 ) ( 5 ) iI5SIsectI ( 4 ) 1 4 ) V^f-Si ( 3 ) (3gt f^gl C2gt 12 ) JSISi ( M ( 1 ) lIii8i lt0gt 8 2 3 3 E - 0 3

E-STIMAIICI-I E R O J CUTEFUQN CONSTPAlMT =

7 i i C 3 C E - 0 2

12oOCE-013

Figure 627D Contour plot of [laquo)] for the fourth sample at tbdquo = 090

20

634 The effect of Level of Estimation Error Bound upon the Opti-niaJ_jhpoundrtoring Problem - In the examples of the previous two sections a comparison is now made of the effect of the level of the estimation error limit upon Jie outcomes of the optimal monitoring problems of design and management In both cases start with H given in (656A) or (657) In the first example in Section 632 o r 02 whereas in that of Section 633 j v 007b

In the first case o+(zjtz] is shown in Figure 620 in the secshyond in Figure 626 Notice immediately that there is a diieat effect upon the bullbullbullbull bullt- problem a lower estimation error limit leads to higher sampling frequency as would be expected

However a more interesting point comes in the effect of the value of o v upon the optincl design problem the optimal placement of moni-

tors Comparison of the contour plots of [P^(zbdquo)l for sample times 2 2

tbdquo in Figure 621 for a r 02 with those in Figure 627 for a = 0075 shows that the optimal design problems are vastly different leadshying to entirely different positions zt for the global minima in the two problems

Notice also that the shape of the contour in Figure 621 is differshyent from those in 627 the predominant difference being the cmaller height of the rise around the source location z = 03 This can be exshyplained as fallows la the case of the flrst samples far the problem with a = 0075tbdquo = 027 whereas for o = 020 tbdquo = 126 Thus

urn J K ivn K

the stochastic source has longer to act upon the system with te higher error bound The effect of this can be seen by considering ihe form of the predicted covariance matrix P^ in (624) and (628) For the asympshytotic case of infrequent sampling from Section 532

210

Pdeg Mbdquo Ktg]

(628)

o o n s~s

(Jo] + K C ^n)

L ss

(658)

Thus as K grows the first element of fdeg get larger relative to the other steady-state terms in Pdeg as seen on the right-hand side of (658) This results in different values for the inverse [ pound ( 2 K ) P S C ( J K ) T + V] in the equation for the corrected covanance matrix in (626) Thus with T = (t K + 1 - t R) = 001 oZ

tim = 02 leads to K = 126 for the probshylem in Section 633 whereas that in 632 with cr = 0075 leads to K = 27 this results in the different contours in Figures 621 and 627 Thus the optimal design of the measurement locations is seen to be a function of the level of the error bound which substantiates Conclusion IV

635 Examples of Various Levels of Bound upon Output Error -The same problem as in the last examples was solved but with a range of error bound levels as follows o ^ H 005 0075 01 0125 015 02 and 05 Resultant contours of [Ppound(Z)]bdquo at the first sample time tbdquo for each case are shown in Figure 628

As the time interval grows before a sample is made the uncertainty in the estimate of the state in the area near the source z w s 03 beshycomes large relative to that elsewhere in the medium These plots further

CONTOUR PLOT OF t P ( K K ) ( Z ( K gt ) 3 I 1 AS A FUNCTION C CZ(K )31 HORIZAND t Z ( K ) J 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT E-STlMATE WITH T l W E POSIT ION OF KAXir iUM VARIANCE APPUOACHES STfeADY-STATE VALUE FOR LARGE T I M E

CZ(K)32 05

555 555 553 555 555 S55 555

444444 444444 44444 44444 44444 4444 41444 4444 4444 4444 4444 4444 444

4444444 4444444 4444144 4444144 AAA 144 44 1-144 444144

55 G6 77 083

4444 444 444 444 444 444 44

44444 444444 44444 raquo5 et 4444 555 I 44444 55 I 4444 55 I 4444 55 lt 33 444 55 3333333 4444 55 33333333333 444 555 33333333333333 444 33J333333333333 44 33333 3333333 444

999999999 992919339 53 66 i i JBB 53993399 55 66 77 CSS 099S9S939 55 66 77 608 999329999 55 66 77 copySi 9029099993 555 66 77 CU-iS 09 Oji 309999 555 f-6 77 BCe 9S23DS99S9999 55 66 77 Or60 999990999999999 55 56 777 FEd9 99993999999999993999 535 GB 77 C0U98 9S9P9999992999993-777 8U930O 99999999999999 77 03311388 939999939 6 777 S0ii008338

6 7 7 7 7 s a o a a a a e e a s 6 7 7 7 7 Q880aBCelt23688e tiG 7 7 7 888dC0e0LC388Ca8C338888

_ 6 6 6 7 7 7 7 7 8 8 8 8 3 8 0 3 8 0 8 8 3 8 8 8 9 5 5 66S 7 7 V 7 7 7 7 7

665 777777777777 4444 3333 33333 144 555 6666 777777777777777777777777

4444 3333 3333 444 553 6C6C866 7777777 444444 333 2222 3333 44 5555 6666666565606066666

3333 222222222222 3333 444 S55t3S 566S66666 33333 22222222222222222 3333 4444 55D55555555S555555j55555555

3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

pound 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 i m i m t m u

bull 1 1 1 1 1 1 1 I M 1 1 1 1 K 1 1 1 1 1 1 1 1 1 U 1 1 11111

i i i

n u n 1 1 U 1 1 I 1 1 1

m i l l 2 2 2 2 2 11111 2 2 2 2 2 2 2 2 1 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1 1 1 1

22222222 333 4444 222222 33333 4444444444444444444444444444

22222 333353333 333333333333333333333333333333

222 333333 22222222222

2S 25 722222222222222222222 2^2222222^22222222222222222222

22222lt222222222227222222 Z22222222222232222222

22222222222222222-11 1111 111111 1111111 11111111 111111

1111111 22222222222222222222 111111 22222222222222222222222222222222222 11111 2 2 222-2 pound2 111111 22222 333333333333333333333333d 1111111 2222 33333333333333333333333333 11111111 222 3333333

1111111 2 2 2 2 2 2 u i m u n 1 2 2 2 2 2 2 1 1 1 1 U 1 1 1 1 1111 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111111 n n u m i i i 1111111111

1111111111111111 i m i n t t i i i i i i

l i m n l i m i t 11111111

SYM3 LEVEL RANGE (6) 13141E-02 ( 9 ) ( S

1 2 6 8 7 E - 0 2 1 2 2 3 4 E - Q Z

( 0 ) ( 6 )

1 1 7 6 1 E - 0 2 1 1 3 2 8 E - 0 2

(7gt (7gt

1 0 8 7 4 E - 0 2 1 0 4 2 1 E - 0 2

( 6 ) ( 6 )

9 9 3 7 0 E - 0 3 9 5 1 4 5 E - 0 3

( 5 ) ( 5 )

9 O 6 1 2 E - 0 3 8 6 0 7 9 E - 0 3

( 4 ) ( 4 )

8 1 5 4 6 E - 0 3 7 7 0 1 3 E - D 3

(33 lt3gt

7 2 4 3 0 E - 0 3 6 7 3 4 7 E - 0 3

( 2 1 ( 2 )

6 3 4 1 5 E - 0 3 5 6 0 9 2 E - 0 3

( 1 ) ( 1 1

5 4 3 4 9 E - 0 3 4 9 8 1 6 E - 0 3

(Q) 4 5 2 3 3 E - 0 3

ESTIMATION ERROR CRITERION CONSTRAINT =

5 0 0 0 0 E - 0 2

12500E-01J

Figure 628A Contour plot of B ^ ( z K ) l 1 1 at f i r s t sample tirr t K = on for o ^ = 005

CONTOUR PLO T OF [P(KKIZ(K))JM AS A FUNCTION O r Z(K)11 H3RIZ AND tZ(K)J2 VERT EXAILE TQ SIOW EVOLUTION or VARIANCE I N OUTPUT E I M A T E WITH T I M E POSITION OF MAX MUH VARIANCE APTtOACKES SrCADY-SrAE VALUE FOR LAHQE TIME

C Z lt K gt J 2

0 5

4 4 4 1 4 4 4 5 5 5 6G 4 4 4 4 1 - 1 4 gtSgt 6 6 4 4 4 4 1 4 1 SOS G5 7 7 7 4 4 I - 4 - 4 0 5 eC 7 7

4 1 4 4 4 4 5 5 GC 7 7 7 444 - = i14 5 5 5 5G 7 7 7

4 4 4 4 - 1 4 5 5 5 GS 7 7 7 4 4 4 4 4 5 5 6 S 7 7

3 3 3 3 4 3 144 5 5 5 0 5 6 77 3 3 3 3 3 3 3 4 - 1 4 4 4 5 5 6 C 7

3 3 3 2 3 3 3 3 3 3 1444 5 5 5 tgteuro6 3 3 raquo 3 3 - j ^ - 3 i 3 3 4 4 4 4 S 5 6 3 6

333333-gt gtraquo3 -gt3333 4 4 4 4 5 5 5 C S G I - ^ v 3 3 3 o 3 3 5 - j 3 3 3 3 3 3 3 3 4 4 4 5 S 5 6GGS 4 4 3 1 r--ijgt333 3 5 3 3 3 0 3 3 1 3 4 1 4 5 J 3 6 -4 4 4 3 3 3 S 3 3 3 i 3 3 r ^ 3 3 4 1 4 -i CC 4 4 4 4 33T-2 3 3 i J 3 3 454 j ^ 5 f 4 4 3 ^ 3 3 3 ^ J 3 4 4 4 5 3 5

3 3 3 3 3 3 3 4 4 4 5 5 1 5 3 3 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 555E-

3 3 3 3 2 2 2 r - i ^ 2 2 2 3 3 3 3 4 4 4 5 S 3 3 3 3 3 3 22 laquo - - yraquo jraquo2 3 3 3 4 4 4 4

_ _ - - - r ^ amp ^ 2 ^ i 2 2 3 3 1 3 4 4 4 4 2 2 2 2 2 C 2 r 3 3 3 3 4 4

2222ltgt2 3 3 3 3 3 2 2 laquo 2 2 2 2 3 3 3

P 2 2 2 gt

5555 444 5555 444 555 4-i4 5-5 444 i 55 444

44-14 4444 4444 4444 44414 44444

4444- 14 444444

33333 222222

22222 222 -2

1111111 1111111 1UI1 11

2 - 2 pound bull

11111 11111111111 11 n m i n i i i n n i n m m n i

1111 n m 111111 m m m 1111 111111m 111111

m i

1111 11111111

111111 11111 ftfraquofgti- bull

1 1 1 1 1 WWZZZ

JErJSe pound 1 9 3 9 9 9 9 0lt

S L B 3 9 9 0 i T 9 - 9 f - a 3 D O - bull s - s s

bull i 3 3 3 O 3-3999 eccose ss-v9S3999

8 t S S C 8 9 9 0 9 9 0 9 9 9 9 9 9 9 9 8tt81B8 99S999999S9

V e t J f i380 t i 9 9 9 9 9 9 9 7 7 c s s o e r G O y77 e o s u c c - i i s n o

7 7 7 7 7 fcampceooaaeoeoe 7 7 7 7 7 7 7 a p 3 3 C 8 e e e e e 3 9

7 7 7 7 7 7 7 7 o c e o B e o s i 777f77777 Jo 77771(1777 3 3 77tn7777 pound 0 6 5 3 6 7 7 7 7 7 7 7 7 7 7

iGeampampG6CgtGS6 3poundGC66SC(GpoundGQ

i 5 i 3 6 G amp a amp 6 6 G 6 6 6 6 C G 5 5 J 3 5 5 5 5 5 W S 5 5

3 5 5 5 5 5 1 J S C - 5 5 5 5 5 G 5 5 5 5 5 1 1 - 1 1 4 4 4 4 4

44444 44 44444444-T444444444 J333 4444

3-3Cn3S333J3L--J33333 3 3 3 J J 3 3 3 3 3 J 3 3 3 3 0 3

pound 2 - 2 2 2 r i - 1 H i i 2 2 2 2

2-raquo i- raquogtr---2igt2 j j - r gt V ^ - l 2322

222 - bullgtbullbull2 raquo2222222raquoa 2 2 gt V 2 ^ gt i gt - S P 2 2 2 2 2 2 2 2

- 2 r ^ - gt 2 K 2 2 2 2 2 2 2 2 2 2 ^ 2 - ^ - - V 2 ^ 2 2 2 2 2 2

2fc i 2^22^ -2lt i 222

m m bull m m 1111 m 1 1 m 11111 i i i i m - i i

222222222 bull bull bull 2 i r - ^ 2 2 r ^ 2 R 2 2 2 2 2 2 2 2 2 2 2 - 2 ^ r ^ - ^ ^ 2 2 2 2 2 2 2

SYM3

( 0 ) mm ( 9 ) ( 9 - iJiiI8i ( 8 ) ( 6 ) Wiiiii lt 7 t ( 7 ) J5JiSi ( C ) ( 6 ) I8Sf8 ( 5 ) ( 5 ) 3i5i|g| ( 4 ) 4 gt lHIgI ( 3 ) ( 3 ) lfJ|8i ( 2 ) ( 2 ) HSSiSi ( I ) ( 1 gt I2iJIsect lt0gt 7 0 S W E - O J

ESTt l - ATITN tlrila C1C TCR10N C C K - r r A f T =

7 S 0 J C E - 0 S

SOURCE 1VPUT CUVAFUANCE [ W l raquo t 1 2 6 0 0 E - 0 1 J

Figure 628B Contour plot of fell at f i r s t sample time t 027 for o- i 0075

CONTOUR PLOT OF [ P f K K X Z C K ) ) 111 AS A FUNCTION CF I Z O O J 1 H 0 R I 2 AND t Z ( K 1 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E P O S I T I O N OF MAKIKUH VARIANCE APPROACHES S T E A D Y - E T A T E VALUE FOR LARGE T I M E

t Z lt K gt 3 2

0 0

44 444 AAA

4114 44444 A 4 4 L I 41 44 44 4 4 4 4 444

33333333333 33333333333 35 S 3 3 3 3 laquo33

SiJ^JyS gtlt33 32 i i - - 3^ - gt33 33-gt3- bull -

05 66 77

33 444 444

444 333 313 r i 33 laquo - i n333 3 2 ^ 3 3 J i3i bullbullraquo33333

3 3 3 3 3 3 3 3 gt t j r 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 444 3 3 3 3 3 3 3 3 3 3 3 3 3 3 AAA

3 3 3 3 3 3 3 3 3 3 3 3 Ad 3 1 3 3 3 3 3 3 4 4 4

3 3 3 3 2 2 2 2 2 3 3 3 3 44 2 V 2 2 P 2 3 3 3 3

63 66

i 66G

8000 0 3336

7 60G0B 7 Q6CS0 77 seaoe 777 flSJSi

777

9999939 9999999

9 9 9 9 9 3 9 93939999

S9Q09999 osaa 9993099999S9 80COB0B 999999999ltgt

533 3333

3i33 333333 33333 ZtZZ 333 gtZZ

2^22 222P2222 22222 1

1 M I 11111 11111

111111111111 11H1M 111

111 - 1111

11111 111111

ifpFte gt222 -gt22222 a 2pound-2P2

22222222 2S2ii2^

2 22

7777 O00C36 66 7777 0050008

gt 06 77777 6G03Ceea iS 656 777777 0030830888088-i5 6tGti 7777777 060088308 53 CM a 77777777 BB 555 6006 777777777

^1 533 ( J6GS6 77777777777 144 Su fJ3 60695096 777777777777

44 5355 6660CC-66S6 777777 3 44 G3C3 6CS56GG=S06 3 ^ 4 4 4 ^ s s - s s e e i i c c s e e s G c s 3laquo3 444 o35S355SS 66Gpounde66666

333 441 Sb5335rgtS55j5 333 444441 igtS5Sgt5SS55S55535

1 1

2 2 2 2 3 3 3 lti 1 4 4 4 4 4 4 4 4 4 4 4 4 4 111 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 111111 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 M 1 I 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 2 2 2 2 2 - 2 2 2 2 2 2 2 11 2 pound 2 2 2 2 2 2 2 2 2 2 2 gt2222

2222r-V j2222222222

22222222222 222i-rt 2 222r-222222 2222222222222222 2222--i2 22poundPamp22

1 1 111111

111 euro 3333

222222 222222 22222 22222 22222

22222 222222

1 1 1 1 1 1 1 1 11111

1111 2 2 2 2 2 bull 2 2 2 2 2 1111

222222- V222JV222J-P22222 22^22 -- ^^22222laquo22

22--V-J W J2gt2gtJ 22

222f Pr - gt 225r^laquo2J 2222 2222raquo fi 2r-2^igt22222

11111111111 22222 1111 222222222222 11111111111111111111 Kill 11 II 11111 111 11111 1 i 111111111 111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 m i l 111 m i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

g) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111 2 2 2 2 2 2 2

11111 2Pgt 2222 2222 =V 22222222222 222 11111 22l- bull 22Vv22222

11111 222222 11111 222222 333

SYtu

( 0 )

LEVEL RANGE

2 4 0 S J E - b 2

9 ) 9 )

2 2

33Z 1E-02 J 6 2 C E - 0 2

( 6 ) ( 3 )

2 1 9 2 7 E - 0 2 1 2 2 r i E - 0 2

( 7 ) ( 7 1

2 05271E-02 0 C 2 3 pound - r ) 2

t o ( 6 i

1 1

9 i r 2 r - o e - S ^ l E - 0 2

( 5 ) ( 5 )

1 1

7 7 2 G E - 0 2 7 0 1 3 E - 0 2

( 4 ) ( 4 ) 6 3 1 7 E - 0 2

S61 (3pound -02

f 3 ) ( 3 ) 1

4 9 1 5 E - 0 2 4 2 1 4 E - 0 2

(2gt lt2J 1 331 3- -02

2 8 1 I E - 0 2

( 1 ) ( 1 )

1 1

21 I O E - 0 2 1 4 0 9 E - 0 2

(0) 1 0 7 0 8 E - 0 2

s^fc 1 2 Q 0 0 E - 0 1 ]

Figure 628C Contour plot of fe)]n at f i r s t sample time t bdquo = 046 for a = 010

CONTOUR PLOT OF tPltXK)(Z(K))J1 1 AS A FUNCTION 01 tZ(K)I HORIZ AND [Z(K)J2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT KSUMATE WITH TIME POSITION OF MAXIMUH VARIANCE APPROACHES S1EA0Y-SAVE VALUE FOR LARGE TIME

333 444 4444 4444 333 44444 333 44444 333 +4444 333 444 333 333 222 333 2222222 3333 222222222 3333

33C3

CZ(K)]2 OS

333TJj3 333333 33333 33333 33333 3333 3333 333

33333333 44 6 68 77 33333333 44 S3 66 77 3333333 44 55 65 7 3333333 44 55 66 7 33333333 444 S ^6 3333333 44 55 J6 3333333 44 55 666 33333 44 55 666 33333 444 55 G6i 3333 4-1 55 6-222K2222222 333 44 55 i 222222222222222 333 44 2^2222222222222222222 22222 2222222222222 333 44 222 22222222222 2222 222 222 111 222 111 1111111

222 m n i i i i i i 222 1 HI 11 11 111 1 22 11ll 1111ll 111

33 33 333

44 444 55

11111 1111

11

2222222 2222 2222 33 444 222 333 4444 222 333 444 222 33C 4 222 333 2222 3333 2222

mil limiii ii i i 1111 2222222 1111 22222 22222 Mill 222 3 2222 22

22

222222 2 1111 11111111 11111111 11111111 11111111 11111111 1111111

68BG8 999999 eSCfiS 093999 86838 999999 bull7 8SC83 9399999 77 eoooee 99999999 777 7777 77777 i 77777 S 777777 S58ECSBQBC30 bull SM5 7777777 60830860+ 6ilaquoC6 7777777 66666 77777777 66666GE 77 77777777777 i 6SG6C666 777777777 iSf 6pound 6666566 7-i5amp05 666666666 50555595 6666666666666

555Q5555C35 6666666 I 5 5 U 5 ^ 5 5 5 5 5 14lt144 5555553555555-

444444444444444 13 4laquoi444444444444 333333333333333333 3333333333333 22222222222222222

22222222222222222 1111 11111111111 11 imiimt

222 33333333333 222 333 333 2222 iiii 33 4 333 2222 333 44444 333 222 33 4444 333 2222 333 3333 222 11111 J 33333 333333 222 11111111 222 3333 2222 1111111111

+11111 1111m mi 22222 111 222222 111 2222 111

11111

copy

22222 222222 1111 m m m m m i m

urn

m m m i 2222 m i 222222 1111 2222222

I 2222222222222222222 222222222222222222222 222222222222222222222 22222222222222222222 II 1 11111111 111111111111111111111111111)1 1 m u m m i n i m u m

i i n m m m i m m m m m i l i m u m i m m m 2222222

2i22222222222222222222222222222 22222222222222222e22

22222222222222

TIME laquo 66D00E-O1 FIRST MEASUREMENT

CONTOUR LEVELS AND SYMBOLS

SYM3 LEVEL RANGE (01 2 4793E 02 (9gt 2 pound9gt 2 4158E 3523E 02 02 (0gt 2 (8) 2 2363E 2252E 02 02 (7) 2 (7) 2 1617E 0982E 02 02 (6) 2 (6) 1 0347E 9712E 02 02 (51 1 (5) 1 9077E 9441E 02 02 (4) (4) 1 7806E 7171E 02 02 (3) 1 (3) I

6536E 5901E 02 02 (2) 1 (2) 1 52S5E 463DE 02 02 (1) 1 (1) 1 39S5E 3350E -02 02 (0) 1 2725E 02

ESTIMATION EPROR CRITERION CONSTRAINT = 1-2500E-01 SOURCE COVARi INPUT AHCE Wl-

12500E-01J

Figure 628D Contour plot of feMi at f i r s t sample time t K = 066 for o ^_ = 0125 2

CONTOUR PLOT OF E P ( K K H Z lt K gt ) 3 1 1 AS A FUNCTION 0 Z ( K ) 1 1 KORIZ AND C Z ( K ) 3 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT i S T I M A T E WITH T I M E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-S A f t VALUE FOR LARGE T I M E

bull 4 4 4 4 4 3 3 3 2 2 2 2 2 2 2 2 46640 3 3 3 2 2 2 2 2 2 2 44444 3 3 3 V2Z2Z9ZZ 4444 33 22222c J 22 4 4 4 3 3 3 2 2 2 2 2 2 2 2 bullA 3 3 2 gt 2 2 2 V 2 2 2

3 3 3 2 2 2 2 ^ ^ 2 2 2 2 3 3 3 2 2 ^ ^ f - 2 2 2

3 3 3 22^V22^ 2 2 2 2 2 3 3 3 3 ^ 3 2 2 2 2 2 i 2 ^ f r 2 2 2 2 2 2 2

[ 2 1 K gt 3 2

05

3333 4 3333 4 3333 4

333 3333

333 3333

3^3

11 65308

2 2 2 33333 2222i 33333 3353 3333 333 333 E33 33 222

222

3 3 3 3 3 3 3 3

44

2 2 2

2 2 I t 2 2 2 111

2 2 2 2 1 11 2 2 2 2 2 1111

1111 l i n t

2 2 2 2 2 2 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 2 2 2 2 2 2 2 3 a

2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3

2222 I 11111 2 2 2 2 11111111111 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

1 1 1 1 1 1 1 1 1 1 1 2 2 11111111

3 9 9 9 9 9 9 3 9 9 9

9 S 9 9 9 9 9 9 9 9 9 9

t i s s u e 9 9 9 9 9 9 9 9 7 7 7 7 09888 993S99399-

6 7777 esesao 999999 5 77777 8300886

flfl -Jigt 66 77777 88030688 44 5 5 5 ltSlt~C 777777 8008808888

44 SS5 liCSS 777777 86665+ 44 S55 66S66 7777777 44 5SE 6G66G6 77777777

44 556 666S666 7777777777 13 444 5t 5raquo 66666666 77777 3 44 SJ55 66666666 33 444 pound5555555 6666066666 333 444 55505S5555 666666666

33 444fl 53555555555 33 44-AV 555555S555

333 4144444444444 5555335

1111111 m i l l m i 111 n I mi mm in

It T1111 222 3333 44444444444 111111 2222 3(333333333333 4444444

111111 2222 333333333333333 111111 222J 2222222222222

1111111 2222222222222222222-111111111111 1111111111-11111

1111111111111111111 11111i111111111111111111 1111 111111 1111111111111111111111111111

1111 2222222222222 111111 111111111111111111111111111 11111 222 33333 222 11111111 1T11111111111111111111111111111

11111 222 333 333 222 11111111111111111111 222 33 22 33 bull 222 3 44 22 39 44 22 33 44

33 44444444 333

444 444 ~ S555 44

553SS3 444 555055 444

444 11 22

33 4444 33

222 4444 333

333 2 3333333333 222

222 u m m uui 222 11111 222 222 222 222 1111

33 2222222222 2222222Zamp22amp222222222 -2222222222222222222222 222222222222222222Z22

222 11111111111111 111111

1111 2222 2222 11111 11111 22222 11111 copy

11111111 1111111 11111 11111111111 11H11111 niituut nnniniv mu mmiimi i m mimiim urn m 222222 11111 111111 222

2222 1111 11ll 1 2222222222222222222222222222222222222 222 1111 11111 222222 222222222222222222

33 222 IHtl 11111 22222 2222222222222

TIME 6 6 0 0 O E - O f 1RST MEASUREMENT

CONTOU LEVELS AND SYMBOLS

SYHB LEVEL RANGE

lt0) 2 5 1 6 G E 0 2

( 9 ) ( 9 1

2 4 5 6 5 E 2 3 9 6 4 E

0 2 0 2

( 8 ) ( 6 )

2 3 3 6 2 E 2 2 7 6 1 E

0 2 0 2

( 7 1 lt71

2 2 1 6 0 E 2 1 5 5 S E

0 2 0 2

( 6 ) (6gt

2 0 0 5 7 E 2 0 3 5 6 E

0 2 0 2

lt5) ( 5 )

I 9 7 5 5 E 1 9 I 5 4 E

0 2 0 2

( 4 ) 14 )

1 0 5 5 3 E 1 7 9 5 1 E

0 2 0 2

( 3 ) ( 3 )

1 7 3 5 0 E 1 6 7 4 9 E

0 2 0 2

12) ( 2 )

t 6 1 4 G E 1 5 0 4 7 E

0 2 0 2

1 ) ( 1 )

1 4 9 4 5 E 1 4 3 4 4 E

0 2 0 2

l O ) 1 3 7 4 3 E - 0 2 ESTIMATION ERROR CRITERION CONSTRAINT =

1 5 0 D 0 E - 0 1

SUUSCE INPUT COVTMANCe pound 1 2300E

MEASUREMENT ERR03 COVAR

I 0 5 0 I - 0

W]=

on tv)laquo - 0 1 D233

Figure 628E Contour plot of [ P ^ K J I a t f i r s t Spoundp1e time t K = 086 for a l i m = 015

CONTOUR PLOT OF I P ( K K ) ( Z ( K ) ) 1 1 1 AS A FUNCTION ( F t Z I K I I I HCRIZ AND t Z ( K ) 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY- ITAVE VALUE FOR LARGE T I M E

CZltK)J2 0 3

^IPllI 33 44 55 6G 7 J

3330 2222 3333 222 33353 222 3333 2222 333 pound22 222 pound22 pound22 333

pound2 22 22 pound2

22-gt222 2222Z_222Z 22222 T-K222 2222- 0272ZZ 33

2d2i7gt2922 33 22lt2gt-222 3 22222 1 2222 1111 222 11111111111 222 111111111111111 222 1111111111111111 22 1111111111 22 111111

333 44 5 lt 333 4 55 I 33 44 55 333 44 55

0CCSO 0S8GO 83808

333 44 55

7 i 777 bull 777 til bulllt 7777 pound C 77777 t Gi 77777 rgt66 777777

999999 03099 9D399 999399 99939999 99999999 686830 9999 8608069 8088366368

111 222 222 222 II 2222 111 22222 111 1111 11111 1111111 11111

111 111111111111111 11111 11 11111 222222222222 1111111 222 33333333 222 11111111 22 33 444 33 1111 222 33 44 444 3 222 33 44 555 555 4 2222 3 4 5 66666C66

6665 777777 44 55 66G66 7777777 3 44 55 GSG666 77777777 3 444 5-5 66GCCCC 77777777777 33 -14 5555 6605666 777777 33 44 gt5535 666G66G 33 444 555555 606660666 33 AAe 5tgt5lgt5555 666G666G66 z 33 44I4 5553355S55 6GG66 22 333 4-144 555555555

bull 33 506 55 4 33 222 777 66 55 A- 33 22222 777 6 55 4 33 2222 i 66 665 55 44 3 222 55 6666G6G 55 44 33 222 2222 33 44 555 555 44 33 22 1111 222 33 444 44 33 22 1111111 222 333 333 222 11111 11111 222 333333 222 1111

11111 222 333 -1-544444444 55555555555 Ill 222 3333 4444444444444 1111 222 33C3323 444444444444 1111 222 33333333333333333 11111 2222 pound2 3333333333 11111 222222222pound22222222222 11U11IMI 2222222 1111-111111111111111111111 11 1111111 111 1111 111111 11111 11111

111111 111 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 2 2 2 1 1 1 1 1 1 1 1 3 2 2 2

111 H I 1 111 1111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111

33 44 53 66 33 44 55 66 33 4 ~

223J222222222 22222 ^2poundf22^2 2222222

22XgtM2V-gtpoundlt2V2Z_WW2PZZZ 22222 e222222gt22222

22222L-2222222222

1 1 1 1 1 1 11111

2 2 2 2 11 2 2 2 pound

333 2 2 2 2 3 3 3 3 222

3 3 3 2 2 2 3 3 3 2 2 2

22H22222222222 11 1 uiiinninniniii mini iniii iiiinmniiinimi 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

SYK3 LEVEL RANGE

oi 2 5 5 4 1 E 0 2

sect I 4 3 7 2 E 4402E

0 2 0 2

sect I 383 3S 32C5F

0 2 0 2

n I 2 0 9 E 21 EZ

0 2 0 2

ni I 1554E 0ampC6E

0 2 0 2

fl 0 7 1 5 E 9S45E

0 2 0 2

n 927SE 67D7E

0 2 - 0 2

sect 8 I 3 7 E 7560E

0 2 - 0 2

I 6 9 M E 6 4 2 J E

- 0 2 - 0 2

i 55C5E 5a5C

- 0 2 - 0 2

a -L 4 7 2 0 E 0 2

ESTIMATION ERHCrt CR f E i d O N CONSTRAINT =

2 C 0 0 0 E - 0 1

1 2500E-01]

Figure 628F Contour plot of P ^ i O m a t f i r S t s a m p l e t i m e tK = 1 2 G f o r deglw = deg 2 0

217

C O i O O bull O O i O O ss OO i

i mdash tfgt i W mdash 1 mm gt turn CUM I bull n n 55 flH

^ w J I

H U J U O

Si mdashbull- ltgtjltvwlaquotvw

O l o r -

E D gt o o O C O O f -

KM (-^-gt -gt - 3 V J mdash w n n laquo j - mdash mdash o o bull O D H W o o o n W - - o bull Z 10 - ltl O O O O WftJ wv 3 K - - lti o o ft l L - ^ 0 - W O laquo ^ 1 1 laquo W M fu

HI - W gt T 1 gt O N bull t U T n -v i i i o bull=bull w w

o o - w T I m i l i i c raquo ltgt l i v - w n igt t i v W C J bullVft -lt lt o - o v i n I O O O O ifgt n w i i y bull

laquo mdash W m t o I D T O laquo w - e n mdash W O f ( N - M v i 3 laquo J t ^ - laquo o - w n v m o huraquo n laquo ^ (

bull-gtlt - N 0 ( 0 0 (OTTO ft-lt bull - laquo (0 h - U J i f l W gt

w _ O O N raquo t u r n o r n ftikM w bull o o ftlt - 2 laquo o ^ E a N lt 0 sect W lt n sect rt N T ^ lt WCgtVtfgt 0) O N V O - o - ftt-gtv P - M i laquo i i laquo r ^ mdash o N laquo I O O O ^ V L I T C K I gt I - ( w o v O X - N O ^ V c

o gt p P - n ogt O N I - gt T c x -i

- - - - - - O R - n v o laquo o o r - T o n

- D E - - - - - - O w f t v a o s o c o t a T I laquo - D E - - - - - - O laquo W O N ) lt O O O - laquo r o N O i 1 o

o U 1 X

- laquo r o N O i 1 o

o OO

l u - w B i o N N ifgt o o o o -- - W O ^ r i O o m i T O

O u W O 10 Q U O igt T O O J O O [ j bdquo _ _ mdash _ _ _ _ _ - - M V i f t O 3 ( i o o D-t- - w w w w w _ _ _ _ _ _ bdquo _ - - - W 0 gt T - W u l l O L I T O

z ( C W O n i z ( C W O +_laquolaquoOKV f t JgJlaquo l ~ _ W w o Slt n T5 SS lt- n i 3 _ 1 ~ ftftjftjlt) _ ft O - 3 1 T V [J laquo 0 C H mdash _ j o W T S J - C o o o 1 laquoSp ^ojci^S^^Jv^^^NN^ bullbull w ^ v i - j ^ 2 5 ^ laquo laquo - gt laquo laquo W W ft I j - W N W l ^ C f l J W O T o o o o L1U1 bull o x o 0 - ~ 0 W M M ( laquo gt N A i M mdash - M W O O O O O t O f i -O a J t t laquo f ^ O U N T W W W - - - w w o o o o o in1) bull

0 0 ( 0 W W W W W bdquo _ _ (u Pgt n n o n laquo laquo raquo bull

218

substantiate the existence of a functional relationship between the optishymal measurements zt and the level of the output error bound o

636 The Effect of Time-Varying Error Bound upon the Optimal Meashysurement Design - Consider here an example where the output estimation error limit cC is allowed to vary in time For this problem let

lim 01 (659)

at the first sample time and then

Aim - degL + deg- 0 2 5 (660) for each sample thereafter

The resultant plot of o^ + N(jtz) over time for the interval 0 lt t S 2 is shown in Figure 629 where the initial covariance P^ E M n is as before in (657)

Notice how the curve asymptotically approaches the slope [Q]- =

00025 just before each sample in accordance with the infrequent samshypling approximations

v

At each samplecontour plots of lEDU^)] a r e 9 e n e r iraquoted and preshysented in Figure 630 for sample ti mes t| - 046 104 180 As can be seen from these plots the contours change with the error level as shown in the previous sections in fact they directly compare with those of the previous section Thus the converse of Conclusion VI may be stated as

Conclusion VIB The optimal measurements found at one measurement time may not in general be optimal for other measurement times if the bound on estimation error varies with time (CVIB)

Further verifications of the effects of the a priori statistics and level of estimation error bound upon the optimal design problem can be

1 2 0 0 0 E - 0 1

6 0 0 Q O E - 0 2

1 X

X

x x X

XX x

X X X

X X

x x X

XX x

X X

X X

X X

X

x X

X X X

X X

X X

X

x X

X

X

XX X

X X

X X

X X

X X

X X

X

X X

X X

X X

X X

X

X

X

X X

X

X

X

X

X

X

x x

X

X

X

c

X X X

Figure 629 Time response of ^+n(K z) f o r t lt n e v a r y i n S estimation error l imit o z ^( t) = 010 0125 and 0150 at sample times t K = 046 104 and 180 respectively

CONTOUR PLOT OF t F ( K K ) ( 2 ( K gt ) i 11 AS A FUNCTION = I Z I K H I HOfIZ AND I Z i K ) ] 2 VERT EXAMPLE TO S1ICW EVOLUTION OF VARIANCE I N OUTPUT r l 11 MATE WITH T IME POSITION CF MAXIMUM VARIANCE APPROACHES S I EADY- -T TE VALUE FOR LAKOE T I M E

C6

tZltKgt12

444 444 4444 444

44 33333333 444 444 3333333lt33 444 3333333J333 444 33C-^rS3J3333 444 33333S3333333 4444 3333333i333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333 4444 33333 3333333333333 444 33333 333333333333 3333 3333333333

55 6G 77 bulljV 66 77 eoaee 9900J 0 3

93 li9

3333 3333 3333 333333 33333 333 2222 2222 22222222 22222 1 1111 1111111111 m m i m i l 1U1111 m

i n m i

i n n m m

111111 m m 111111

i i i m i n n

i n n i m

i n

2222 333 lt 4444444444-1414

33333333 i 33333 I 22222 3333 2^^-^^2-222 3333 2222222222222222 333 2222J2222222222222 333 22222222 2222222222222 333 2222 2222

22222222222 22222222^22222222 2222 222222 222 222322 222 33 22222 222 3333 22222 2222 22222 2222 22222 222222 222222 1111111111 222222222222 111111111111111111

^222iV-2v_iV bullbull VJlaquo

222 2 L 22 2 2 r-^ gt L2 22I-22 22222

11111 11111111111U11111111

1111111111111

11111 11111111

u r n 22 11 11 22222 1111 22222 1111

11111111111 111111111111111

11111

n u n i m i n i i i i i i i i i i n m i i n bull m 11111 n i i i m i m i - i i i i i n m i i i m 1111151111111111111 ill 1 1 2222222 222222222222222222222222222 22222J-=2 2222222222222222r 222222 222222 333

t o t z i-o-

( 9 ) ( 9 )

2 KiSi ( 0 )

2 bulltJi-ll ( 7 1 (7)

2 1 degri-pound

ltegt 1 -vmii lt5gt ( 5 )

1 1 STSIgl

( 4 gt ( 4 )

1 -mii-n ( 3 ) ( 3 ) bullm-E ( 2 ) ( 2 )

i i if8f

C 1 ) ( 1 )

i i bullVW-ll

) O70 pound e ii ON

- 0

lwAa v i i E U T [W] =

C 5 C 0 C 3 E bull 3 1 1

ESamp sr EV3-

I -5g =pound

Figure 630A Contour plot of Figure 628C [4i a t f i r s t s a m p l e t i m e t bull deg 4 6 f 0 r deglin 0 1 0 compare w i t h

CONTOUR PLOT OF I P ( K K M Z ( K ) ) ] U AS A FUKCUOH poundlPLE TO SHDW evOLUT ON OF VUiJAhCE IN OHIrJ COS TIOM OF MAXIMUM VARIANCE APliCACULi STL-HY

pound2(KH2 03

d4At 33 4444 333 44444 333

444 44 333 44-1dfl 333 4J44 333 3^3

3333lt33 4 3333333 4-0333333 4 3333333 J 3333333 333333 333333 333J3

3333

bull ^ 3 9lti9nlaquo

33333 33333 33333 33333 3333 3333

32 2p||p-gtill p 044 55

2222 222 222

2222222222 333 222222 33 444 22222 333 44 33 444 1 J-2 333 44 2^2 333 laquo 222 333 2232 333 2222

11111 222 222 111111111111 22 33 22 1111111111111111 2 222 1111111 111 11 1 1 ] 1 111 222 i n u n u u u i u n n

222222 111 11 111111111 222 11111 1111111 111111 1 1 1111 11111111 1 I U U 1 U 1111 111111111111 11111111111111111111111111111111 inn i m n 11 n

1111 2222222 111 111 Tll 22222 22222 1 1 1 1111 222 3 1 2222 111 11 222 333333333333 222 111111 22 333 333 2J-22 m m m u 22 33 44pound 333 2222 bull11111111 22 333 444-144 333 222 11111111 22 333 44444 333 2EKpound 1 lllllll 222 333 333 222 lilt 1 1111 22 33333 33333 222 UUUi 1111 222 33333 222 111111111 111 22222 222222 11111 1111 22 11111 111111111111111111 11111111 1 1 1

bull4444444I4444444 C _ r 4^44444444444

m 1 r i i m 111 m

illllll

111 111 22222 111

I 1 M 111 ill 11 1 1 1 111 111 1111 1111 1 111 111111111111 m m m

2222222 bullit bull-222222^SfTl - 2222222222222 bullZ 222222222222 2 ^222 22222222222222

Figure 630B Contour plot of [ l $ (z K ) with Figure 628D

at second sample time t ^ = 104 for ^lln

CONTOUR PLOT OF tP(KK)(Z(Kgt)311 AS A FUNCTION V IZ(K)JI IflRIZ AND tZltKgt12 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT EI-M HATE WITH TIHE POSITION OF MAXIMUM VARIANCE APPROACHES STEAD-li TATE VALUE FOR LARGE TIHE

i 444d4 333 22222222 44444 333 22222222 44444 333 22222222 4444 33 22222222 444 333 2222222222 I a 33 22222222222 333 222222222222 333 22222222222222 333 2222222222222222 333333 222222222222222222222 bull33333 22222 33333 2222 3333 2222 3333 222 333 222 bull333 222 333 22 333 222 1 222 1

39399 999939 999939 999399

CZ(K))2 06

3333 44 5 66 77T 6BI 3333 44 0 66 777 861 3333 44 55 66 777 81 333 4 55 66 777 I 3333 44 9 66 7 77 333 44 55 66 7777 3333 44 5 60 7777 333 44 55 665 77777 333 44 53 CiSe 77777 33 44 35^ St 66 777777 333 44 555 6666 777777 2222222222222 33 44 555 66666 7777777 22222222222 33 44 555 666666 777777777 222222 333 44 535- 6666666 7777777777 2222 33 444 55S-5 66666666 77777 111111 2222 33 44 515555 66666666 111111111111 222 33 444 5555555 111111111111111 222 333 444 5555555555 1111111111111111 222 33 4444 555555555SS 1 11111111111 22 33 444lt44 5555555555 11111111 22 333 444444444444 5555555 1111111 222 3333 44444444444 11111 2222 33G33333333333 4444444 111111 2222 333333333333333 11111 22221222222222222 1 11111 2222222222222222222+ 111111111111 1111111111111111 1111111111111111111 111111111111111111111111 1111 bdquobdquobdquobdquobdquo A 111111 1111111111111111111111111111 1111 2222222222222 111111 111111111111111111111111111 11111 222 33333 222 11111111 111111111111111111111111111111+ 11111 222 333 333 222 11111111111111111111 1111 222 33 44444444 333 222 1111111111111 111 22 33 444 444 33 222 11111 2222222222 1 222 3 44 5555 44 33 222 222322222222222222222 22 33 44 55555555 444 33 222 2222222222222222222222+ 22 33 44 055555 444 33 222 222222222222222222222 222 33 44 444 33 222 11111 222

M 33 4444 4444 333 222 U l l l l i m u U 33 44 333 222 1111111111111111111111111111111111111111 222 3333333333 222 11111 111111111111111111111 2222 2222 1111

222 111 2222 111 22222 1111 1111 11111 +111111

111111 11111111 2 bull 111111 1111 11111 22222 11111 1111111 1111111 11111 11111111111 +111111111 1111111111 11111111111+ 11111 111111111111111111111111111111111111 11111 111111 222 2 2 1 1 1 1 11111 2222222 2222222222222222r 222222222222 n n n 1111 11111 222222 222222222222222222

CONTOUR LEVELS AND SYMBOLS SYMBLEVEL RANGE (0) 25168E-02 (9) (9) 24567E-02 239G6E-02 (6) (6) 23365E-02 22764E-02 17) (7) 22164E-02 21563E-02 (6) (6) 20962E-02 20361E-02 (5) (5)

19760E-02 19159E-02 C4gt (4) 18558E-02 1795SE-02 (3) (3) 17357E-02 16756E-02 (2) (2) 16155E-02 15554E-02 (1) 14953E-02 14353E-02 (reg) 1375EE-02

ESTIMATION ERROR CRITERION CONSTRAINT =

15000E-01

5Q000E-0J1

^ 2 2 11111 111111 22222 2222222222222

Figure 630C Contour plot of [ p ^ z ^ at third sample time t K - 180 for o ^ = 0150 compare with Figure 628E

223

obtained by comparison of the contours in Figure 630 with those for the cases with a^ = 01 0125 and 05 in Figure 628 in the previshyous section

637 The Effect of Time-Varying Disturbance and Measurement Statistics upon the Optimal Monitoring Design and Management Problems Consider a problem with

_2 Ums0-

0125

005

(661A)

(661B)

0025 (661C)

and with PQ = M given in (657) Consider two cases F i r s t f i x the

measurement s ta t i s t i cs V to the values given above in (661C) but l e t

the disturbance s ta t i s t i cs vary For this case for the time interval

0 lt t lt 2 sample times occur at t K = 046 and 122 The time-varying

disturbance s ta t is t i cs between samples start ing with W in (661B) is

then given by

j W 0 lt t lt 046 W(t) = lt 05 W 046 lt t lt 122

025W 122 S t lt 20 (662)

The resultant plot of cC + N(zpoundz) as a function of time t K + N is shown in Figure 631 wrere the effects of variable W(t) in (662) are readily seen As W(t) decreases so does the rate at which the uncertainty in the estishymate of the maximum variance in the output grow Thus times between samples change greatly changing the nature of the management problem

i

Though the plots of [PudSt)] are omitted for brev i ty for reasons slnri-K K 11

la r to those in the example of Section 534 the contours change from

sample to sample affect ing nonconstant solutions to the design problem

10COOE-O1 L t 1 bull bull XX i gt t X I X [ X I X I X

X XX X XX XX X XX

laquo t X I X 1 X I X I X I X

X x x x

XX X X XX X X

XX xxx xxx xxx xxx xxx xxx xxx xxx I X I X I X i x I X

X X X X

X X

XX X

X X X

1 X

1 X

IX

X

X

x

X

X 1600E00

Figure 631 Time response of ^ + M ( Z | ( raquo Z ) for time-varying disturbance statistics W(t) given in (662)

225

Thus Conclusion VIC The solutions for the optimal

monitoring design and management problems may not in general be the same for all measurement times if the disturbance noise statistics are allowed to vary with time (CVIC)

Second fix the disturbance noise statistics W to the value given in (661B) but now let the measurement error statistics vary from sample to sample In this case the sample times occur at t = 046 080 112

138 162 180 and 194 over the interval 0 lt t lt 2 Starting with V given in (661C) for the first sample let the measurement statistics be given by

V(t) = lt

[ - t = 046

15 y t = 080

(1-5) 2 V t = 112

( i 5 ) 3 y t = 138

( i 5 ) 4 y t = 162

( i 5 ) 5 y t = 180

( i - 5 ) 6 y t = 194

(663)

The plot of c^+N(zjjIz) for V(t) is shown in Figure 632 Note that V(t) specified in (663) may be interpreted as taking consecutively worse and worse measurements from sample to sample Thus as the quality of the measurements decreases the uncertainties in the estimate of the maxishymum variance in the output increase leading to higher initial conditions for the branches of at after each measurement and resulting in shorter and shorter times between measurements This completes the countershyexamples for Conclusion VI which are summarized in

Conclusion VIP The solutions for the optimal deshysign and management problems may not in general be the same for all measurement times if the measurement error statistics at each sample are allowed to vary (CVID)

X X

X

X [ X

( X

X X

X

x x

X X

X

x x

X X

~k X X X

X X X X

x

x x x x

x x x X

X X x x

X 1 X

X X

X X

X X

X

X

X

X

X ) X

X

lt X

x x X

X

X

x X x i X

x

-

X

x

X

X

X

X

X

X

X

X

figure 632 Time response of crj^^zjjz) for time-varying measurement statistics V(t) given in (663)

i

1

227

638 Variable Number of Samplers - As shown in Section 534 and Conclusion VII the optimum number of sampling devices to use at each measurement time t K the dimension m of the optimal measurement position vector J is the same for every measurement 1n the Infrequent sampling problem In order to find that optimum number the monitoring design problem Is solved Heratively n times at the first measurement time tbdquo with m = 12 n samplers used in each iteration This esshytablishes a sequence of optimal measurement vectors zf of Increasing dishymension from which corresponding values of [P pound ( Z J ) 1 may be found To find the zt of optimal dimension the various values of [E^zt)] are used to find the choice which leads to the fewest total number of samples necessary over the entire time interval of interest

o To demonstrate this concept consider an example with at s 01

W = 0125 EQ = Hg 9 v e n 1 n (6-57) and the measurement error in each measurement given by [ V ] ^ = 005 i = l2raquora Since the number of modal states retained n = 5 five cases are compared with from one to five samplers used for each measurement in each case

To find the optimum number of sensors m for the case of bound on output error 1n the Infrequent sampling problem from Conclusion X a measurement is necessary at time t R + N when

[eampOjn + laquoflu + poundlt z ) T

s 5 s slt z gt gt- Art lt 6- 6 4gt

where the ^-vector zj 1s the vector of optimal position locations and z from (572) is the position of maximum variance in the output cC + N(zJz) over all positions z in the medium

In order to compare the optimal zpound for various dimensions m first find

228

c (z ) T a c(z) s max c ( z ) T pound2 c(z) (665)

SV 2 sV This value is found by computation according to (572) where the matrix

B is defined in (520) For th is problem with the stochastic point ss source at z = 03 and including B E 5 modes in the model the position of maximum variance

z = 02711 (666) Then by computation

c(z) T a c(z) = 00417 (667) S~S~

For the first measurement at time t an expression for the time interval until the next sample is necessary can be obtained from (664) as follows For this problem the integration time step for i = 5 for the time interval 0 lt t lt 1 is chosen as

T = ( t K + 1 - t K ) = 001 (668) The time to the next sample necessary is thus

K+N O ( N ) ( T ) (6-69)

where from (664) the number of time steps

N = l iny (degH bull [amp)]bdquo - s ( z ) T | s ( z ) lt 6- 7 0 1

The results starting at t Q = 0 with initial covariance matrix p|j i M 0 as in (657) led to the times of the first measurement t = 046 The numerical determination of the optimal measurement position vectors zj at t K for m = 1234 and 5 along with the corresponding values for [EK-IP-I a n t tle l deg n 9 e s t times to the next required measurements Atbdquo + f are summarized in the following table

A tK+N

229

[laquo)]bdquo

[p 15196] [013866 |_013865_

013395 013160- 013016 013398 013160 013016 013398 013160 013016

013160 013016 p 13016

0022194

029

0014246

035

0010707

03S

0008705

039

0007417

deg-4deg (671)

Thus as the number of measurement devices m deployed at the f i r s t

measurement time increases so dos the time interval A t K + N before the

next measurement is required However over the ent ire time interval of

in terest the optimal choice can clearly be seen to use only one measureshy

ment device at each sample To see t h i s consider Figure 633 where

plots are presented together for a +(zz) as a function of time and

for a l l f ive optimal choices of z j for dimensions m = 1 through 5 (plotted

with 1 2 5 ) At the end of the time interval 0 lt t lt 1 the

tota l number of measurements necessary for each case are

xi 1 2 3 4 5

Total Samples 8 10

Clearly taking only one sample at each measurement time is best To see this another way compare the two extreme cases for m = 1

and m = 5 to determine the optimal dimension m for the measurement vecshytor zj From the table in (671) for m = 1 A t K + J - = 029 If this is compared with the case for m = 5 where Atbdquo + N| = 040 if only one measurement device (m = 1) is used over five measurement times 5 it K +M| = 145 time units would be covered whereas five measurement

~10(KKNI

40000E-02

-laquor TT^HMW 1-2 3349 11 22 3455 1 2 3349 11 22 345S 1 2 3345 1 22 3455 11 2 3345 22 34B5 2 345 2 3349 2 3455 1 22 345 1 2 3349 1 23 95 1 2 349 1 2 345 1 2 349 1 2 345 1 1 2 345 2 349 1 2 349 1 2 349 2 349 2 345 349 2 9 39

2 3 4 2 3 4 2 3 4 9 2 3 4 5 2 3 4 9 2 3 4 5 2 3 4 5 2 3 4 5 3 4 9 3 4 S

2 3 5 4 3 O

Figure 633 Time response of CTK+W(|(raquoZ) for optimal measurement position vectors z of dimension w = 1 2 3 4 and 5 plotted with corresponding symbols note decrease in sampling frequency with number of measurements taken at each sample time

231

devices used at only one measurement time results in A t bdquo + N | = 040

Both cases use a total of f ive samples but the case where only one samshy

ple is taken at each sample time leads to a much longer time Interval

overwhich the accuracy constraint is met

Examination of the optimal measurement vectors zjpound In the table in

(671) yields n observation regarding the placement of monitors of equal

measurement qual i ty which may be stated as

Conjecture C For the monitoring design problem using m s t a t i s t i ca l l y independent sampling devices of equal measurement qual i ty at each measurement t ime the optimal position of each sampling device is the same point in the medium (CC)

This is an interesting a lbei t obvious result which has arisen elsewhere

for the steady-state solution of the Riccati equation associated with

the continuous-time Kalman-Bucy F i l t e r (see Hersch pound56]) I ts interpretashy

t ion l ies in the real izat ion that since the measurement devices y ie ld

uneorrelated noise-corrupted measurements (that i s V is assumed to be

diagonal) the best position for one measurement device Is also the best

for a l l others The optimal design then is to make m statistically

independent samples a l l at the same point in the medium at each measureshy

ment time This requirement of s ta t i s t i ca l independence has Implications

about actual hardware needed for each measurement i t would tend to rule

out making more than one measurement with any given sensor at any one

measurement time since the resultant additive noise would probably be

correlated to some extent This does however deserve closer study

and is not the point of th is example

639 Sensit iv i ty of Results for the Infrequent Sampling Problem

to Model Dimensionality - The effects of the size and complexity of the

model of a physical process used in the analysis of any system upon the

232

results of that analysis is always a point of concern Much work has been done elsewhere on related problems including a recent study of the quantitative simplification of normal mode models presented in Young [131] Chapter 2

As mentioned earlier it is not the intention of this study to exshyplore this area in depth However a cursory look into model dimensionshyality as it relates to the infrequent sampling problem is in order here Consider then the effects of increasing the dimension n of the normal mode model used in the Kalman Filter upon the results of optimal design and management problems for the case of infrequent sampling As seen in previous examples the variable of critical importance is the quan-

i tity [P^(zbdquo)] its minimization directly effects the optimal design

and management problems and as will be seen in what follows that minishymization depends greatly upon the dimension of the model used in its calculation

Consider a problem with bound on error in the output estimate with o o

0 a 01 Let the time interval of interest be 0 lt t lt 1 with Pbdquo W and V given in (657) (620) and (621) respectively Consider the sequence of problems with n = 56789 and 10 the family of curves for oi+f[zZz) is shown in Figure 634 plotted with symbols 5 6 7 8 9 and 0 for the same order laquos can be seen immediately the dimension of the Kalman Filter model can greatly effect the results in the optimal management problem

To gain insight into the effect of the value of n upon the design problem contour plots of [PuCju)] at the first sample for each case are shown in order in Figure 635 The addition of higher modes to the

y

model is seen to complicate the nature of the [Ppound(z)J -surface This makes the optimization task for higher dimensional models more difficult

1COOOE-Ol

800D0E-02

60C00E-02

096 oea 7 06 77 -08 7 66 9 7 6 58 7 6 93 7 6 96 766 OB 76

960 7 66 038 7 G QBS 77CS -98 7 6 088 7766 06 7 6 77 6

qnn 7J5 098 7 3S 968 77 6 OSS 7 E6 96 7766 003 7 6 98 7766 - 77 6

66

C0S86 0 98 0 98 0S96 09 6 77 C989 7 0S6 7 020 7 6 C98 7 6 01 7 6 09 0 7 6

nflMfl 099P 00988 0 SB 7 00Oft 77 0 90C 7 I 0996 77 66 00P38 7 6 O 98 77 66 0993 77 65

X7-fift__ bull _ _ raquon 7 6 0E9 f 63 009 8 092 8 009 68 0 5 6 C099 5 0 9 80 0 9 8 03S S 0C9 38 0 9 8 77 099 8 7 09 8 7 03 8 77 OS SB 7 S 0006 7 5 9 6 7 5 09 8 7 5 09 8 09

40000E-O2 00 76 8 7 976

9 8 0 9 e

20000E-02

Figure 634 Time response of o W M ( K gt 2 ) fdeg r filter models of dimension n = 5 6 7 8 9 and 10 plotted with corresponding symbols note increase in sampling frequency with order of filter model

CONTOUR PLOT OF IPIKK)CZ(K))311 AS A FUNCTION CF tZ(K)I1 HEJRIZ AND tZ(K)32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-ETATE VALUE FOR LAROE TIME

tZltKgt32 09

bull33333 333 222Z 2222

444 444 4444 444 444 444 444

44 33333333333 444 33333333333 444 333333333333 444 3333333333333 444 3333333333333 4444 333333333333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333 4444 33333 33 3333333333 bull444 33333 333333333333 3333 3333333333 44lt 3333 33333333 4 333 33333 A 3333 22222 3333 333 22222222222 3333 3333 2222222222222222 333 3333 222222222222C222222 333 3333 22222222 2222222222222 333 S33333 2222 22222222 333

66 77 88888 0999999 0-66 77 8888 9999999 66 777 88388 9999999 66 77 88808 99999999 66 777 68886 99999399 -5 66 777 883888 9999999999999 15 66 777 SBBBBBB 99999999S9 55 666 7777 8888886 999999 55 66 7777 8808888 05 66 77777 80088888 666 777777 i as 6660 7777777 I 55 pound666 77777777 14 555 6BS66 777777777 14 555 6S6666 77777777777 144 5555 66666666 777777777777 44 5535 6666666666 777777 44 5555 65666666666 444 5S5H55 666666666666 444 055555355 6666666666

A44

444 S55

222222 333 444 5555555555553 22222 333 44414 555555555555555 2222 333 444444444444444 2222 333333 44444444444444444 22222 3333333333333333 222222 03333333333333333333 2222222222222 22222222222222222222 2222222222222222222222222

1111)111 22222 11111111111111

11111111111111111111 111111111111111111111111

111111111111111111111 1111111 1111111111

1111111 gt 1111111 22222222222

111111 22222222222222222 111111 2222 222222

111111 222 222222 111111 222 S3 22222 111111 222 3333 22222 111111 2222 22222

11111 2222 22222 11111 222222 222222 11111111111

1111 222222222222 1111111111111111 11111 1111111111111111111111111111

1111111111111111 1111111 1111111111 I _ 1111111111111 11111111 copy 1111

1111111111 11111 11111111111111 11M111 1111111

11111 11111 2222222222222222222222222222222222 22 1111 11111 22222^2^22222222222222222 22222 1111 11111 222222

bull22222 1111 111V 222222 333

222222222222222222222 2222222222222222222222

222222222222222222222222 2222222222222222222P22222

22222222222222222222222222 2222222222222222222222222

222222222222222222222222 222222222P22222222222

22222

111111111 11111111 11111111111111111 111111111111111II 11 1)1111111111111

2222222

SYMB LEVEL RANGE (0T~274031E-02 (9) (9)

2 2

3329E-02 2620E-O2

(0) 8)

2 2

1927E-02 1226E-02

(71 (7)

2 1

052CE-02 9823E-02

(6) (G)

1 1

9122E-02 0421E-02

(5) (5)

1 1

7720E-02 7019E-02

(4) t4gt

1 1

6317E-02 56^6E-02

(3) (3)

1 1

4915E-02 4Z14E-02

(2) 2)

1 1

3513E-02 2811E-02

(1 ) (1)

1 1

2110E-02

1409E-02 ltgt 10706E-02

ESTIMATION ERROR CRITERION CONSTRAINT -

1OOQOE-01

I2500E-01]

Figure 635A Contour plot mension laquo = 5

deg f [lt)]bdquo at f i r s t sample time t bdquo = 046 for f i l t e r model of d i -

CONTOUR PLOT OF [P(KKM2ltKgt H11 AS A FUNCTION Or IZ(K)31 HORIZ AND tZtK)JP EXAMPLE TO SHOW EVeLUTICN OF VARIANCE IN OUTPUT W I K A T E WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-SATE VALUE FOR LARSE TIME

CZ(K)32 00

44 33333333333 444 33333333333 444 333333333333 444 3333333333333 444 3333333333333 4444 333333333333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333

55 66 77

33333 33333 3333 3333 333

3333333333333 333333333333 33333333cr 33333333 33333

444 444 444 4444 444 444 444 --444 53 666 444 55 66

(bull3B88 QBBB eenee

o

53 68 777

9999999 S999S99 9909399 99999999 99999999 9999999999999 9999999999 999999

aBB8BQt-J8

7777 4444 33333 3333333333333 44 55 66 77777 14 555 666 777777 144 55 6Si6 7777777 44 55 6lti6S 77777777 444 555 lti6I-06 777777777 3333 22222 3333 44 535 6=6666 77777777777 333 22222222222 3333 444 5555 66666666 777777777777 3333 2222222222222222 333 44 5SS5 666666666B 777777 3333 2222222222222222222 333 44 555 i 66666666666 3333 22222222 2222222222222 333 444 55gt55 66666666666 333333 2222 bull33333 2222 333 2222 2222 22222222 bdquo 1111111111 111111111111 1111111 111 111 1111 11111 111111 nun m m 111111 111111 11111 11111

22222222 333 444 51lt555555S 6666666666 222222 333 444 5555555355555 22222 333 444-14laquo 5^oS55553553553 2222 333 414444444444444 2222 333333 44444444444444444 22222 33gt333333333333 222222 33333333333333333333 222222 2 i2222 i2222222222222222222 2222222222222222222222222 2225gt22222pound22222222222 22222222222 222222222222222222222+ 22222222222222222 22222222222P2222222222 2222 222222 222222222222222222222222 222 232222 2222222222222222222222222 222 33 22222 22222pound-2222222222222222222 222 2333 22222 2222222222222222222222222 2222 22222 222222222222222222222222 22222 222222222222222222222

| | raquo

222222 222222 22222 11111111111 11111111111111111111 11111 111111111111111111111111111111 n n i i m t i - t i u i i u i i i i n m i i i i i i i ^ i i i i n i i i i i i i 1111111U1 0 m t i i i i i i i i 1I111111111U111111 11111 i i i i i i i i i t i i i i i i i i i n i l i u m i i m n 11111 11111 22222222222222222222222222222222 22 1111 11111 222222i 2pound2222222222222222 22222 1111 11111 222222 bull22222 1111 11111 222222 333

1 11111 1111 111111 11111111111111111 11111111111111111 11111111111111111 2222222

f i T i l f

m 2 2 3329E-02 2626E-02

iii 2 2 1927E-02 122SE-02

IV 2 1 C525E-02 9823E-02

iii 1 912PE-02 6421E-02

Si 1 1 7720E-02 7019E-02

] 1 1 6317E-02 56I6E-02

iii 1 1 4915E-Q2 4214E-02

i 1 1 3313E-02 2611E-02

1 1 2110E-02 I409E-02 (Qgt 10708E-02

ESTIMATION ERROR CRITERION CONSTRAINT a 1OOOOE-01

12309E-01)

Figure 635B Contour plot of [ P pound ( Z K ) ] ] 1 a t f i r s t s a m p l e t i m e K = deg 4 6 f o r f 1 U e r m w t e 1 o f d i m e n sion = 6 note similarity with case for n = 5 in Figure 635A

CONTOUR PLOT OF IP(KK)(2(K11]II A A FUNCTION CF IZtKHI HORI2 AND tZ(K)32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTFJ ESTIMATE WITK TIME POSITION OF MAXIMUM VARIANCE APPROACHES SCEADV-CTATE VALUE FOR LARPE TIME

1 0 +444444444 444444444 AAAAAAAAA

AAAAAAA AAAAAA

AAAAA 44444 44444 444144 4444 44 434 4444444 331 AAAAA 33233

33333 333333 3333333 333333333

06

03

4 4 4 4 4 4 4 4 ^ 4 4 35 6 6 7 7 7 0CG 4 4 4 4 4 4 4 4 4 4 4 55 7 7 7

5 5 7777 P338 4 4 4 4 4 4 4 4 3 5 7 7 7

4 24-144 5 -14444 R 7 7 7 7 ercao

4 4 4 4 fgt CSQ3 3 444 6G 7 7 7 7 coca

33 333 333 33S33 rraquo33333 3333333 3333333 33i323333 333113333333 333laquoS 3333333 __ 3_laquo5j^y353U333333 44 55 06 33333333333 4 OS 6C-6 3333-33Ji 44 u5 6GGC 333333333333 44 S3 GC66 33333333333 44 555 fi- 3333333^33 444 551-S

55 63

3333333 2222222 3333 444 33333 2222222222 3333 444 raquoV 3333 22222222J2222222 333 441 33 222222 2222222222222 333 4444 2222222222 33 4144 22222 33 4444444 2ZVZ 333 444-4-44 2222 lt33 44V 4 2222 3333

222 33333333 22222 222222212

22222 22222 22222 222222 22222222222 05 +2222222 n i l

1111111111T1111

111111111111111 i t m i

m u m 11111111 i l l 11 i i i i i i t m i 111 t u 1111 u i i n i i i + i m m i i 11111111111

1 1 m m

i t m t i i i i m m i i i m i n 1111 1 2222222 22222 222222 222 33 2222 22 3333333333 2222 222 333 333 2222 222 33 333 22222 22 333 333 2222 222 3333 3333 222 222 333333 222

11 mit mi m 1111111 11111111 11111111

1111 2222 2222 U l U U l U t 1111 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 m m i i m i m m 1 111 m m 1111 1 1 1 m m m i n i m u m

1 1 1 1 m 111 m m 11 m m m m 11 m m m m

laquoS99 Sacs 99S9 3399 9999 0 99 3 S339 eaea 33S9 eeflS S3999399999999999 777 8J68 99339999999999 7 7 7 7 c o a a

7777 CG0e3B3C^003B33B3 77777 G6C383

GIG 777777 6S1666 777 7777777777777

(36566 -bull 6GIM36G8 r i50 6Cfcamp56SSGGS6i66366 amp055D55 6GGG06S666GG6G

5D0355

1444 J555GC5Gi55555550555 14^-144444 55i355JtJ5

4 4 4 4 4 4 4 4 4 4 S333333 4 14444444

3 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 gt222222 2 2 2 2 2 2 2 2 2 2 2

222222222222222222222 222D222P22rfpound2222222222

gt222i 222 222222 22222 2322 2 333333

3330333 bullbull 33333- v^^S22H222222222K2

222222222222i-2ii222222222 22222222

m m m m m m 1111111111111111111111 m m m u m m u u i 11111111 m u m 11

22222222222222 222222222222222222222

2222222 ^2ri 2122222222222 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 r gt 2 2 1 2 2

2 2 2 2 2 2 2 2 2 22222 2 2 2 2 2 2 2 2 2 2 2

SVM3 LEVEL HAN3E

( 0 ) 2 3 1 7 5 ^ - 0 2

2 2 5 0 7 F - 0 2 2 1640E-02

W 2 1 1 7 3 K - 0 2

I I 1 E 5 3 Q ^ - 0 2 1 9 1 7 1 E - 0 2

1 0 S 0 3 E - 0 2 1 7 G 0 6 E - 0 2

1 1 7 1 0 9 E - 0 2 1 C 5 C 2 E - 0 2

15 1 amp C 3 4 E - 0 2 1 51 17E-02

ill 1 4 5 0 0 E - 0 2 1 3 5 3 2 pound - 0 2

i l i 1 3 1 G 5 C - 0 2 1 - 2 4 0 0 E - 0 2

1 1 0 3 0 E - 0 2 1 1 1G3E-02

iQ) 1 04lt-SR-02

i MAT I ON ft CRITERION TRAI IT =

1 O00OE-01

isa CE ir U7 VlANCE I W J

r t 2 5 0 0 t -on

amppound URLK NT lt CCVAK I V 1 =

bull _ - 0 ] 0253

Figure 635C Contour plot of P | X J K ) at f i r s t sample time t bdquo = 041 for f i l t e r model of di sion n = 7

237

8 n i o l bdquon M M

ttf- gt WW O N lt I O mdasho ttf-

y W W W W W -bull- -- mdash laquo-- mdash ttf-

CJlaquot

6 U ffim Qltff -- ougt ss 5 n o mdashmdash ZZ

wm N N W M N N

T^ laquo WWW

5 5 f v a I T nn ^tn]

tN (DIP mm Tr-wv nn Mraquo- copy I D in in w n

laquogt-laquo t laquo o o n r NtCKK o o n KH ww w _ mdash - -

laquogt bull C I S J O M ^ N J V traquogt -gt W W W W W mdash mdash mdash mdash w pound bull laquo i a i Nrsfsfs o laquo ew w mdashmdashmdashmdash 1 4 - - i r^V w ^deg F1 -s laquo w w w - - mdash

5 M ^ k 1 $S fcl v i o c i cw bull r bull bull - bull bull - r - mdash

D W ^ 1 O C J C J WCv N h N I ^ S 1 0 o S S deg IDto1 V laquo raquo ( - raquo ( t f u

zngt- bull M raquo OlDOtOO raquotfgt i r V i CVAJOKJfW - bull mdash bull- mdash ( j c a lt T T P I K i M

Po5 n t n w r t W W Po5 v o o o W W O D t - W W CUWWN mdash mdash mdash laquo - - _ mdash laquo to w 3 Z w L - mdash laquo n n n w

n n n lt u i r O C T O M N

u u n o w 1W

lt lt o (VCVWCVCKU W W W W mdash - mdash bull - mdash bull - bulla Wf tJCWCJ

- C O W gt W N laquocu w - + - lt f t N t J W t l i w mnn w bull- gt J w w w w n n n n w mdash

w w w (o o n o w mdash - U U N N P I C ) n raquo-mdash o o w w w N n o w^mdash w K w w w w n ltraquo o wmdashmdash N Z lt cuww w n w o cu mdash - p - W t u t g N o w o N raquo- bull mdash c W W W w o v o wmdashmdash

gt-lt ( M W W t t bullmdash- w o o wmdashmdash o gt MIUAI - bull mdash mdash w o n mdash

o b N W laquo - w o n o n cw mdash O

ww o n w - o b V V w o n o n cw mdash O ww o n w -

01 W mdash W W laquo whi ww ^ bull

I E

laquo C M bull W I M N N mdashmdash

I E bull n W W n C T S laquo r t S r ) w w w W W W W

cvtvwww bullmdash-- ^ W W ~ -I E bull n W W n C T S laquo r t S r )

w w w W W W W

cvtvwww O tL C ( V W ^ W W J D Q

bull |E5i degssecto laquo i W M W W mdashmdash J D Q

bull |E5i degssecto laquo i W M W W

KUIO N M U O l N 3 J ~ O O - H w w w w

^B35^I ssl (UWW-N -^B35^I ssl (UWW-N UbJCL- fllNNN

bull y w raquo laquo r v w w c ^ _ o n deg - raquo - -

CONTOUR PLOT OF t P ( K K ) f Z C K gt ) ] 1 1 A3 A FUNCTION OF C 2 ( K ) J 1 HORIZ AND t Z C K ) J 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E POSIT ION OF MAXIMUM VARIANCE APPROACHES STEADY-STV i VALUE FOR LAR3E T I M E

0 + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 +444444444444 444444444444 44444444444 4444444444 4444444

oe

os

04

03

OI

4444444444 4444444444 4444444444 4444444444 44444444444 4444 44444 444 444 444

380 pound88 068

east) 3333333 3333333 3333333333 3333333333333333 3333 33333333333

553 666 777 53 6B6 777 53 666 777 55 666 777 53 6G6 777 33 666 777 53 6666 77V 55 666 77V7 355 666 7777 44 C5 6666 7777 444 353 666 7777 44 53 666 7777 444 535 6666 77777

B99SS9 999999 9999999 99999999 999999999 999999999999 99999999999909 99999999999 99999

eeocsssB 0898868888888889 333 33333333333 44 535 666ltgt 777777 333 3333333333 44 5555 6066 77777777 07 +333333 33333 33333 444 S555 6666 77777777777777 3333333333333 22 333 444 53553 666666 77777777777 73333333333 222222 333 444 555 1 666666666 333 22222222 333 44444 gt5555 666666666666666666 222222222222222222 333 44444 5553553 66656 22222 22222222222222 3339 44444 5555555555535 12222222 33333 444444 55555555555533555 222222 333333 44444444 2222 33333333 4444444444444444 2222 333333331 4444444444444444444 1111 22222 333)33333 1111111 222222 3333333333333333 1111111 2222222222222 3333333333333333333 111II 222222222J2 22222 1 2222222222222222222222 222222 2222222222222222222222222+ 2222 22222 222222222222222222222222222 2 33333 2222 22222222222222222 333 333 2222222222222222222222 33333

22222 22222 22222222222222 2222222222222 22222222222

1111 1 111111111111111 111111111111111 11111111 11 1111111 11111111111111 11111111111 1111111 2pound 33 111111 22 33 111111111 111111111111 111 111 22 33 44444 333

333

333333333333333333 3333333333333333333 3333333333333333 2222222222222222222222

11111111 11111111111111 bull11111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 111111111111

00 +11111111

2222222222222 isit 222222222222 333 222222222222222 3333 2222 222222322222 2222 11t1 2222222 111111111 111111111111

11111 111111111-111 1111111 111111111111111111111111 1111111 111111111111111111111111111111111111 111111111111111111 1111 11111111111 2222222 11111 2222222222222222222222222 11111 222222222222222222222222222 11111 2222222222222222222222222 111111111 111111111 1U11 till

22222222222222222 222222222222P-22 222222222222222-

TIME gt 3 9 0 0 0 E - 0 1 F IRST MEASUREMENT

CONTCtr LEVELS AND S HBOLS

SVMB LEVEL 3 RANGE ( 0 ) 2 3 1 6 6 E - 0 2

( 9 1 2 ( 9 ) 2

24PE-

1 7 8 E --02 bull02

( f t ) bullgt U ) 2

1 0 7 5 E -

0 3 7 1 E -bull02 bull02

1) 1 ( 7 1 1

9 6 6 7 E - 6 9 6 4 E

- 0 2 - 0 2

( 6 ) 1 ( 6 ) 1

8 2 6 0 E - 7 5 5 6 E

- 0 2 - 0 2

( 5 ) 1 ( 5 ) 1

6 B 3 2 E

6 1 4 9 E -- 0 2 - 0 2

C4) 1 ( 4 ) 1

bull 5 4 4 5 E - 4 7 4 1 E

- 02 - 0 2

( 3 ) 1 ( 3 ) 1

4 Q 3 8 E

3 3 3 4 E - 0 2 - 0 2

(ggt 1 ( 2 ) 1

2 6 3 0 E

1 9 2 6 E - 0 2 - 0 2

( 1 ) 1 ( 1 ) 1

1 2 2 3 E

0 5 1 3 E - 0 2 - 0 2

ESTIMATION ERROR CRITERION CONSTRAINT =

1 0 0 0 0 E - 0 1

SOURCE INPUT COVARIANCE IW3laquo [ 1 2 S 0 0 E - 0 1 ]

MEASUREMENT ERROR COVAR [ V l gt

[ 0 5 0 - 0 1 C - 0 0 2 3 1

Figure 635E Contour plot of [pj^(zK) sion laquo = 9 bull J

at first sample time tK = 039 for filter model dimen-

CONTOUft PLOT OF [P(KK3(Z(K) )311 AS A FUNCTION OF tZCfOJI HORIZ AND CZCK1J2 VEPT EXAMPLE TO SHOW EVOLUTION OP VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIME

10 +444444444444 444444444444 4444444444444 4444444444444 4444444444444 +4444444444444 4444444444444 444444444444 4444444444 44444444 +444

09

oe

ot

444444444444 5S 444444444444 SS 44444444444 53 44444444444 55 4444444444 53 444444444 55 33 44444444 55 3333 444 S 33333 3333333 33333333 3333333333 33333 33333 33333 333333333333 444 3333 3333333333 44 3333 333333333 44 3333 333333333 333 44 3333333333333 2222 33 3333333333 __22222222_ 33

777 0866 9999333 777 0868 9999999 777 068 S999999 777 068 9999999 0 777 068 9999999 777 668 9999339 77 66B 939999 777 8088 9999999 444 555 666 777 666868 99999999999999 444 555 6SS T77 44 555 666 7777 44 5555 66S 777 6555 666 77777 8888888888688688

6S6 666 666 6666 6666 6666 6G68 666

5555 666 777777 888888a88B68 55555 6E6 77777777 55555 6666 777777777 lt M 5 S 6666 77777777777777777 444 5555 66666666 7777777777 44444 3f-6U 22222222222 333 44444 055355 6666666666666 222222222222222222222 3333 444444 5S5555S3S555 22222222222 2222222222222 33333 44444 55555550355555555 2222222222222 2222222222222 333333 444444444 222222222222 22 2222 3333333 444444444444444 22222222222 2222 3333333 44444444444444444 2222 11 222 333333 44444444444 11111 2222 33333333330333 11111 22222222222 3333333333333333333 333333 1111111 1111111 2222222222222222 333333333333 11111111111111111111 222222222222222222 111111111111 222222 222222222222222222222222222 U11111111 222 2222 2222222222222222222222 11111111111111 22 33333333 222 2222222222222222 11111111111 22 33 33 2222222222222 3333333333333333333 22 33 444444 33 22222222 333333333333333333 22 33 444444 33 22222222 333333333333333333 11111111111 22 33 44 33 222222222222 33333333333333333333 111111111111

II +11111 11111 11111 11111 11111

00 +111U

U 1 U 1 1 1111111 1111111 111111 111111 11111 11111

33333333 222 2 2 2 2 2 2 1

1111 222 11111 11111111111111 illll

111111 111 111

1111 1111 111

laquo I 1 0 ill m 11 11

11 m i m i m i m i m i nil i

22222222222222222 22222222222222222222 u u M U i n u 11 111 n i n 111111111 111I111111111H11111 l i m n i i 2222222222222 22222222222222222+ 22222222222222222222 222222222222222222222222 222222222222222222222222 22222222222222222222222 22222222222222222222222+

T I K E raquo 3 6 0 0 O E - O 1 F I S S T MEASUREMENT

CONTOURLEVELS AND SYMBOLS

SYKB LEVEL RAN3E

( 0 1 2 2 8 7 1 E - 0 2

( 9 ) ( 9 1

2 2 1 7 6 E 2 1 4 9 2 E

0 2 0 2

1 ( 0 )

2 0 7 6 7 E 2 0 0 9 3 E

0 2 0 2

( 7 ) ( 7 )

1 9 3 9 8 E 1 8 7 0 4 E

0 2 0 2

( 6 ) ( 6 )

1 S009E 1 7 3 1 5 E

0 2 0 2

( 5 ) ( 5 )

1 6 6 2 0 E 1 S925E

0 2 0 2

( 4 ) lt4gt

1 5 2 3 1 E 1 4 5 3 6 E

0 2 - 0 2

( 3 1 ( 3 )

1 3 8 4 2 E 1 3 1 4 7 E

OZ - 0 2

( 2 ) ( 2 )

1 2 4 5 3 E 1 1 7 5 8 E

- 0 2 0 2

( 1 ) ( 1 )

1 1 0 6 4 E I 0 3 6 9 E

- 0 2 - 0 2

t copy ) a 6 7 4 8 E - 0 3

ESTIMATION ERROR CRITERION CONSTRAINT =

I OOOOE-01

i zsooE-on

09

Figure 635F Contour plot of sion laquo = 10 [M at f i rs t sample time t bdquo 038 for f i l t e r model of dimen-

240

owing to the addition of numerous local extrema The classical approach to solving minimization problems which possess complicated objective functions is to increase the number of initial search points until suffishycient confidence is obtained to suspect that the global minimum has been found no other methods are known Quoting from Beveridge and Schechter [20] p 499 regarding finding the global optimum in a problem with multiple extrema

Thus once a particular local minimum has been located by an appropriate search technique it is imshyportant to check that other better optima do not exist There is no rigorous method for this search except in certain restricted classes of problem One can only begin the search procedure at a number of different initial base points

Thus the dimensionality of the filter model is seen to bear directly upon the complexity of the associated optimizations in the optimal deshysign problem

1 Another method of comparing the [Pbdquo(zbdquo)L surfaces for various model dimensions is by fixing one of the measurement positions and plotshyting sections through the surfaces over the range of dimensions for n

as functions of the other measurement position Such plots are included for values of [z K] = 01 03 and 08 Schematically they represent cuts through the three-dimensional contour surfaces as in Figure 636 The three sets of curves for n = 5 6789 and 10 are shown in Figshyure 637 For the first two cuts with U J = 01 and 03 large difshyferences result particularly in the region of the source near z = 03 For the third cut for Ui]_ - 08 agreement is fairly good note howshyever that in contrast to the first cases this cut is farther from the position of the source where it is seen that the effects of the source tend to be filtered out

241

Figure 636 Schematic representation of the intersections of [ P | lt ( | K | I I surface with the planes [ z K ] 2 i 0 1 03 and 08

Comparison of the contours in Figure 635 and par t icu lar ly the cut

for [ z K ] 2 = 01 near the global minimima in l l f e ^ bdquo n h t h e t i m e bdquo

sponses for o^ + f (zJz) in Figure 637A gives r ise to an apparent anomshy

aly in the expected resul ts even though higher dimensional models in

general are seen to result in lower optimal values for lPuUv)l at

the sample times the sampling frequency for higher dimensional models

is greater This can be explained as follows Consider the s i tuat ion

77777 996777 7763 77777877 770 99a

77777777 53336999 77 699977809 77 969999 988 777777 88979666860686886 55696666666 5333335 B9 77 mdash mdash O0000000OD 000 0000 00

7 S 99988 8B9geeeee

73999 899

9988 OOOOQOOOOOO 000

i e 77777 6 77B 77 9879 958 667 689 67 88BBC9 8 t 99 B S3 I

79 0 7 7 9 0 a c

1C400E-O2

SB 689 6 6888 9 I 19 68808868 99 0 O S 9999 O 0 9999999 O 0 OODOOO COOOOOO

S0Q00E-03 1 0E00

Figure 637A Intersections of the [PJ^SK)]^ surfaces with the plane [z R ] 2 = 01 plotted as funcshytions of [zA for filter models of dimension n = 5610 plotted with correspondshying symbols

1laquo000E-02

B80B 69B9D8 9 77907 907 907_ 67 raquo7 057

14I0COE-D2

687 9990 88 - 75 80799990059 99 79 00909 00060 78 00997 000 66 09 98 C 3 S 7 60 10 77 66 089977 66 O 98 7 097668666 t- $8 78777 0 S99999 coooo

CO 666688 07777 68 80758999

86 999999079939888 000609900000077 0 899 77 _ 777770 999 755 777 O 68775777775 S566SS6G6666 7 088 555 708886998 55

11000E-02 I

87 O 77 69 775 6 0 998733 8 O S555986 86 0 000 9 6688 0 1 00000 99 099

Figure 637B Intersections of the [pj((2 K)| n surfaces with the plane [ z K ] = 03 plotted as funcshytions of fgK| for filter models of dimension n = 5610 plotted with correspondshying symbols

lPtKi-raquo11

S2500E-0Z

2O5D0E-02

1B7ODE-02

16B00E-02

6C99C0 C63900 76 23C 7SGBS0 776 300

777777777777777 777 66C53C9 77 G63CiC-93399 7 5GC099939 7 1C9laquoOOOOOOC030DO 7 CCCITOCCC^ 7 0639J CO 778635 000 76999 00 76G9 000

77C1

OSSO 7eS90 76 90

7 6 77 6 _ 7 6 690 7 6 020 7 6 990 7 9 0 89 0 6900 620

00

9 0

14900E-02

666 77777

677 pound677

C 7 bull3605008992987 0000099 6G96

000000 6997 0C0E37

70 579 S57790 5553777 CO 55507077 690 5535 99999999000 C69S67SlaquoS 7793 009S 777779C 0990 600 OODOOO

13000E-02

Figure 637C Intersections of the [P^K)] surfaces with the plane [lKz 08 plotted as funcshy

tions of ing symbols

zv for filter models of dimension n = 5610 plotted with correspond-

245

at the first set of sample times The results from the figures are summarized in the following table Even though as n Increases and

n S 6 7 8 9 10

2 [01340] |013401 [02568] [024121 [02393] [024181 ~K Lo l340j Lol34oJ LOO622J LOO6I8J L00648J I00633J

m)u 0010707 0010707 0010495 0009953 0009814 0009674

degfcgt 002280 002280 002384 002697 002717 002828

h 0460 0460 0440 0400 0390 0380

hH K) 0380 0380 0360 0320 0310 0310

(673)

[ppound(z)] deoveaaes the time to the next sample (t K + f - tbdquo) also deshy

creases Note however that as n increases so do the initial condishytions on the trajectories for cCtztz) This effect stems from the fact that even though [Ppoundzbdquo)] 9eis smaller as n grows more terms

~ K~ K 11 are being added into the quadratic forms for ajUzJz) as the matrices increase in dimension

The effect of this can be explained concisely in the asymptotic case for infrequent sampling by writing the expression for degK+N(zJjz) at the second set of sample times t+

4 N ( K lt ) pound pound amp ) ] n + N [ 8 ] n + sU)T g amp ( 2 (674)

As n increases even though the term [p^U^)]]] decreases the last term c(z) Q e(z) increases at a faster rate Thus for the same time period (t + N - t) larger values of variance in the output result for models of larger dimension thus higher frequency sampling programs

One final comparison is made for the monitoring problem with bound on error in the output estimate The number of modal states retained in

246

the Kaiman Filter model is seen to effect the outcome of the determlnl-zatlon of position of maximum variance in the output estimate That is the model dimension effects where in the medium the error in the pollutshyant estimate will first reach its limit The maximization problem re-

For time t(c+N given optimal measurement positions zpound at time t|lt find z such that

4damp)degV $(bull) (675)

For the infrequent sampling problem in the case of no-flow boundary conshyditions from Conclusion X (675) was found to be equivalent to finding

max c(z) pound2c(z) (676)

o

For the example treated here plots of oS(z) at trie f i r s t sample

times for the range of model dimensions n = 5 through 10 are shown in

Figure 638 Results for the maximization problem are tabulated below

n 5 6 7 8 9 10 Z 02711 02711 02940 02922 02883 02957

c ( z ) T 0 t ( z ) 00417 00417 00447 00501 00509 00519 SS

mdash ( 0raquo

Recalling that the single point source is located at z 5 03 i t 1s

seen that as more modes are Included in the model the posit ion of the

maximum variance in the estimate ef the output approaches the position

of the source as expected th is 1s the point in the medum of greatest

uncertainty in the estimate

Notice that the steady-state term aiy a c(z) does In fact ln -S5~

crease with he dimension of the nodel n corroborating the reason

bull1ODOOE-01 1

8SD0OE-O2 666658665360 77777777777

8886999000 9938665999990000 O0DD0O0QQ00O

666696 6S79D 697 66 730 537

7 890 890 890 890

987 057 9 0 6 7 9 9 - 8 7

B 7 O S 8 73 S 0675 08 7

i9 7 S 06 7 5 C8 7 6 93 7786 ose 7 e 098 7 9 098 7799 038 7 99 0098 77 99 098 7 99 098 77 99 0998 77 99 00968 777 555 00988 777 6599 00988 777 9559 09988 777 55995 0099886 7777 00099888 00099886 000999668 000099988888 000099999688860886 000000099999999399939 00000000000000

5555S8S69 7777777 595553555 777777777777777

Figure 638 Plots of CT(ZJZ) at first sample times t K as functions of position z in the medium for filter models of dimension n = 5610 plotted with corresponding symbols

248

behind the increased sampling frequencies for higher dimensional models Notice further in all of the data here that there are no differences

for models of dimension n - 5 or 6 The reason for this can be seen by comparison of the input distribution matrices for the two models the matrix D in equation (613) For these cases computation yields

n 5 6

1000 1000 1176 1176

-0618 -0618 - -190 -1902

-1618 -1618 1923 X 1 0 1 0 (671s)

Thus the contribution of the noise source to the sixth mode is seen co be negligible in comparison to the others The reason for this is that the sixth mode characterized by its eigenfunction

e g(z) = cos (5irz)

possesses a zero at z = 03 which happens to be the location of the source Thus the addition of the sixth mode does not change the response of the model after its transient term has disappeared since that mode is unshyforced

The results of this section are brought together in Conclusion XIX The dimension of the model used in

the optimal monitoring problem is seen to directly efshyfect the results in the optimal design and management problems (CXIX)

A word of caution is in order then in practical applications tradeoffs are necessary as in all analyses involving finite dimensional models of infinite dimensional processes Short of embarking upon a quantitative solution to the model simplification problem the analyst

249

should assure himself that a model of a given dimension is sufficient to adequately represent his process In the framework of the infreshyquent sampling problem the mathemat cs associated with the sensitivity anolvsis of the results for the optimal monitor are seen to be particushylarly simple providing a basis for rapid determination of adequate model complexity by straightforward comparison of numerical simulations

6310 Problems Including Pollutant Scavenging - All the exshyamples thus far have been fc the case of one-dimensional diffusion with no-flow boundary conditions and with no pollutant scavenging Consider here cases where the scavenging term -aC in the initial-boundary value problem (66) is nonzero For the monitoring problem with bound on error in the output estimate from Section 551 the maximum variance in the output estimate in the asymptotic case for infrequent sampling is given by

n=l (679)

From the state transition matrix J for the matrix A in (613) it is seen that in (679)

JO a = 0 n = bull (680)

le-aT c^O Thus the asymptotic growth of the first mode is a ramp of slope [fi]-- for a = 0 whoreas it is a forced first-order response with a negative real eigenvalue for cases where a gt 0 in problems with scavenging These differences are studied in the following examples

250

Consider first the example of the previous section with raquo = 5 modal states Choose for comparison the values a raquo 0 01 and 02 A plot of opound + N(zz) for the three cases using symbols 1 2 and 3 respectively is shown in Figure 639 For completeness contour plots of [Py(zbdquo)] at the first sample times for the three values of -K -K n

a are shown 1n Figure 640 As suspected from the separation of varishyables in the eigenproblem of (583) and (584) in Section 55 the addishytion of scavenging has no effeat upon the results for the optimal measureshyment design problem but does have a direct effeat upon the management problem the sampling frequency changes with a but the optimal mea-surenent locations do not

Consider a second example the cases o = 0 1 and 2 plots for these are included in Figure 641 It is seen that for both values of nonzero scavenging nc samples occurred within the interval C lt t lt 1 From (520) it is found that the steady-state values of apoundN(zpoundz) for the cases a = 1 and 2 are as follows for the condition 0 lt $j lt 1

From (518) the limit for the first term in (579) is

^[EK(4 = 0 1 lt681A)

From (520) the limit for the second term in (57S) is given by

5 Wi i gt bullit - T ^ ( 6 - 8 1 B )

Thus by computation obtain

251

pound[4i 0 0

ltrade pound0311 ) lt n=l

2(n hi

bull1 ) 006221 003124

s(z)Tne(z) 003782 003493

lim K + M ( z t z 1 1 01000 006617 (6B1C)

for the case of a =1 the limiting value of deg K + N ^ K Z S s e e n t 0 c lt u a 1

2 the estimation error limit o J i m laquo 01 Thus this is seen to be the limiting case for the size of the scavenging term a for which the reshysults of the infrequent sampling cease to apply for values of a gt 1 no samples occur For the case a bull 2 the limiting value for 2

aKtN s c l e a r 1 y below the estimation error limit It is seen then that for monitoring problems Including scavengshy

ing situations may arise in practice where a steady-state level of unshycertainty In the pollutant estimate may exist which Is below the specishyfied estimation error limit In these cases it 1s never necessary to sample in order to assure that the estimation error remains below Its limit for such cases the monitoring problem solution proposed here has no meaning

lOOOOC-01 1

2000DE-02

U 2 33 1 22 33

22 3 2 33

33 3

1 1

2 2 2 2

1 2 3 1 2 3

1 2 3

i HE

1 2-112233

12233 -(1233

ti33 122il

1233 1233

123 233

233 3

3

i t ia 34 1 S 33

12233 233 3

y i

2 7 2 3

r 2 3 1 8 3

I 2 3 i 2 3

2 3

1 1

I t 1 2J

11 2 1 22

11 2 3 22 33

1 2 3 11 22 33

V 22 3 11 2 3

1 2 33 22 3

2 3 2 33

U 2 33 1 22 33

22 3 2 33

33 3

1 1

2 2 2 2

1 2 3 1 2 3

1 2 3

3deg 3

3

3

2 o 3

1 2

1 3 2

1 2 3 1 2

3

t 2 a

1

Figure 639 Plots of ^ + N ( K Z ) versus time t K + f ) for systems with scavenging parameter a = 00 01 and 02 plotted with symbols 1 2 and 3 respectively

CONTOUR PLOT OF IPCKKKZCK1 111 A3 A FUNCTION CT (ZOOM HOtflZ AN3 CZ(Kgt32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE UlTtf TIME PCSITlCN CF KAXinUH VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIME

tZK)32 0 3

444 444 444

444 4444

444444 444444 44444 4444 03333 444 33333

3333 3333 333

33333333333 3333333333 033333333333

9333333333333 3333333333333

333333333333333 33333333333333

3 333=333-3 33333333 3373333333337^333333

444 9 444 5 444 5 4444 5

444 3 444

444 444

444

eaesa ease ecssa

777

3333333333333 333333333335

3333333333 33333333

33333

44 44 444 3333 32222 3333 333 22722222222 3333 lt 3333 2222222222222222 333 3333 2222222212222222222 333 3333 22222222 2222222222222 933 333333 2222 222222^2 333 33333 2222 333 2222 2222 22222222 Mil Mil

22222 t n n n t m n i

9393999 9999999 9S9D999 99999998 06088 9999D999 CD if 6080PC 9999999999999-ee 77 BBOufleB 9399999999 ess 77 essaooB 599999 6S 7777 0BC3683 i 6B 77777 OBBBBeGO i5 GGC 777777 6060300888808 iS 66G 7777777 55 laquoGlaquogt6 77777777 335 CUC66 777777777

035 GCG666 77777777777 4 5533 GG6G866G 777777777777-4 5535- GGGG6G6GCB 777777 44 Q3S 65665066666 444 K-5555 6GGG666GGG66

444 U55S5SS3S 6GGG6G6666

0

M M 1 M M 1 M 1 1 1 1 1 M 1 1 M M M M M M M 1 M M I 1 M 1 M M 1 M 1 M 1 M 1 1 M M 1 1111111 1111111111 1111111 1111111 22222222222 11M11 2222Z2222222Z2222 111111 2222 222222 111111 222 222222 111111 222 33 22222 111111 222 3333 22222 1M111 2222 pound2222 II111 2222 22222 11111 222222 pound22222 222222S22222

2-2222 U33 444 5525559353553 22222 333 44444 535555353533553 2222 333 444444444444444 2222 333333 44444444444444444 22222 3333333333939333 222222 32393333333333333333-2222222222222 22222222222222222222 2222222222222222222222222 222222222222222222222 222222222222222222222-2222222222222222222222 222222222822222222222222 2222222222222222222222222 22222222222222222222222222 2222222222222222222222222 222222222222222222222222 222222222222222222222 Mill Ml Ml 22222 11111111111111111111 11111 11111111111111111111111111111111 111 11111111 Ml 111111111 1111111111111111111111111111111 _ 111111111111 11111111M1111111111111 1111 0 1T1U 11111111111111111 111111111 11111 1111111 M M Mill 1111 Ml 111 111111 11111 111111111111111111111 bull M M 1111 111M11 2222222 Mill 11111 222222222222222222222222222222222 22 1111 Mill 222222222222222222222222 22222 1111 Mill 222222 22222 11M Mill 222222 333

(0)24031E-02 (9) 19) 2 2

3323E-02

2620E-02 (8) (B) 2 1927E-02 1225E-02 (7) (7) 2 1 0525E-O2 9S23E-02 C6) tB) 1 1

9122E-02 S421E-02 (3) (5) 1 1 7720E-02 7019E-Q2 14) (4) 1 1 6317E-02 5G1GE-02 (3) (3) 1 1 4915E-02 4214E-02 12) C2raquo 1 1 3513E-02 20ME-02

lt1) 1 1 2110E-02 1409E-02 (Q) 10708E-02

ESTIMATION ERROR CRITERION CONSTRAINT =

10000E-01

12303E-011

00 0 1

Figure 640A Contour plot of |PK( Z K)J I I f deg r t h e f i r s t s a n i P l e a t bull lt = deg - 4 6 for the case with scavenging parameter a = 00

fONTOUR PLOT Of tP(KK)lt2tKl) I11 AS A FUNCTION 3F IZ(K111 HOR1Z AND CZltKgt12 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-JTrtTC VALUE FOR LAROE TIME

10 bull 444 333333333333 444 333333333333 444 33333333333333 444 33333333333333

444 33333333333333 09 4444 3333333333333333

444444 33333333333333333

444444 33333333333333333333

44444 333333 3333333333333 14 3313 333333333333

06 raquo444 3333 33333S3333

07

09

04

444 S3 6C 77 4444 S3 66 77 4444 S3 6B 77 7 444 33 SB 7 444 S3 66 77

688 6068 86888

88808 888688

9959999 999939 S999999

9939999 99999999

4444 33 SB 777 8868- 8 9939999999999-444 Q3 68 777 8685888 3999999999

444 SS 666 7777 8888888 99989 444 Q3S 668 77777 888B588B

444 S3 66 777777 686088888 SS 66iJ8 777777 8886888888663-__ 880866686 333 3333333333 444 535 6gt6G 7777777

3333 3333333 44 53 5606 77777777 333 33333 444 335 66368 777777777

3333 222222 3333 44 333 666666 777777777777 333 2222222222222 3333 44 335 66666666 77777777777

3333 22222222222222222 3333 444 555 J 666666666 777777 333

333 333333 22222

0 6 33333 222 3 3 3 bdquo 2 2 2 2

K112 2222222 2222 111 bull 111111 1111111111111 1111111111111 11111 111

nil n u n

22222222222222222222 333 44 55 59 66666K66666 222222 2222222222 333 44 35035 66666666666S

22222222 333 4444 5553535553 666666666 222222 333 4444 55335333355553

22222 333 441444 55555335555555 11 22222 3333 1444444444444444

1111111111 22222 33331 4444444444444444 11111111111111 22222 1333333333333333 11111111111111111 2222222 3333333333333333333+ 11111111111111111111 22221222222222 111 J1111 11111 J 22222222L 11111 111111 22222222222222222222222 11 11111 22222222222222222222

22222222222 22222222222222222222bull 22222222222222222 222222222222222222222 i i t i i i

H i m l i n n m m

m i l m t i

m i m i

u r n i i i i m

1111111111111

22222 2222 222 222 3333333 222 33333 222 22222

222222 222222 22222 22222 22222 22222 22222

tradeHIbdquo

1111111 111 t m m i m 11111111

m 111 111 i i n bull i n 11111111 i m m m i i m i i i t

i n n i m m i

i i i i m i i i i i i i i m m i i lt i m m m i 1111111 11111 mn 11111 m i

22222222222222222222222 222222P222222222222222222 222222222P222222222222222 2222222222222222222222222 22222222222222222222222-222222222222222222222

111 11111111111111111 11111111111111111 11111111111111111 11111111111111111

2222222 2^22222222222222222222222222222222

222222222222222222222222 222222

3333

3VMB LEVEL RANGE c i i i t e i s t t i i t i i

(O) 2 3926E-02 (9) (9) 2 2 323BE-02 2550E-02 C6gt 161 2 2 1663E-02 1173E-02 17gt (7gt 2 1

0467E-02 9799E-02 (6) [61 1 9111E-02 6424E-02 (6) (5) 1 1 7736E-02 7040E-02 (4) (4) 1 1 6360E-02 5672E-02 (3) (3) 1 1 4983E-02 4297E-02 (2) (2) 1 1 3609E-02 2921E-02 (1) (1) 1 1 2233E-02 1546E-02 (0) 108S8E-02

ESTIMATION ERROR CRITERION CONSTRAINT gt

10000E-01

12300E-011

2

F i g u r e 6 4 J Cu i tour p l o t o f M O j ^ l K t h e

s c a v e n g i n g p a r a m e t e r as 0 1

sample a t t bdquo laquo 0 4 9 f o r t h e case w i t h

CONTOUR PLOT OF tPCKKKZCK) )311 AS A FUNCTION OF CZ(K)11 HORIZ AND LZ(K)]2 VERT EXAMPLE TO 8HOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEAOY-SATE VALUE FOR LARGE TIKE

10 444 3333333333303 444 33333333333333 444 33333333333333 444 333333333333333 444 333333333333333 09 bull 4444 33333333333333333 444444 3333333333333333333 4dlt 44444 333333 3333333333333 4lt 4444d 33333 3333333333333 4-4444 3333 333333333333 08 +44 3333 33333333333 3333 333J33333 3333 3333333 3333 33333 3333 22222222 333 07 bull 333 22222322222222 333 3333 222222222222222222 333 22222222222222222222 3333 22222 333333 2222 33333 2222 333 2222

4444 S3 66 77 4444 S3 66 77 444 S3 66 777 444 53 6 77 444 53 copy6 777

BB8B BBSS 66388 66888 663889

9999999 939399 9999999 995J999 99999999 _ _ _ 77 688B8B 999999999999 555 66 777 B8BBBBB 9999999999 I 55 666 7777 6886089 99999 I 55 666 77777 68686868 14 55 663 777777 888868888 14 55 656 777777 6238080808888 144 355 65t6 77777777 886886886 44 55 56-36 77777777 44 353 CG66B 777777777 444 535 666666 77777777777 335 66666666 77777777777 333 44 77777

2222 2222222 2222 11 inn 11111111111 11111111111

555 i 6666666666 __ 55533 6666^666666

2222222222 333 44 SSU5S5 666666666666 2222222 333 444 0353555553

22222 333 4444 3355535555355 2 2 2 2 3 3 3 3 4lt 14-1d 5 5 5 5 5 3 5 3 3 3 3 5 3 3

111 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 ) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 gt 2 2 2 2 2 2 2 2 2 2 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i l l 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 11111

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 2

2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2ZZ 3 3 3 3 9 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i 1 1 1 t 111111111 1111

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 Zi22222222222222222222222222222222

zxx m i 11111 2 2 2 2 2 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1111 11111 2 2 2 2 2 2 2 2 2 2 2 1111 1111 2 2 2 2 2 3 3 3 3

1 1 1 1 1 n u n 1 1 1 1 1 1 m m l i n n i n n i n n m i

bullHI

2222222222222222222222 2222222222222222222222 222222222222222222 2222222222222222222 2222222222222222222 22222222222222222222222 222222222222222222222222 2222222222222222222222222 Z222222222222222222222222 22222222222222222222222 22222222222222222222

111111 111111 111111111111111 111111111111111 111111111111111 111111111111111

T I W a B 2 0 0 0 E - 0 1 F I R S T MEASUREMENT

bull bull bull bull bull bull l i B i i n i i l CONTOUR LEVELS

AND SYMBOLS

SVMB LEVEL RANGE

1 0 ) 2 ~ 3 7 S 9 E - 0 2

( 9 1 2 ( 9 ) 2

3123E 2447E

0 2 0 2

( 8 1 2 ( 8 1 2

1772E 1096E

0 2 0 2

( 7 ) 2 ( 7 ) 1

0 4 2 0 E 9 7 4

0 2 0 2

( S I 1 ( 6 1 1

9 0 6 8 E 6392E

0 2 0 2

( 3 ) 1 ( 5 ) 1

7716E 7041E

0 2 0 2

( 4 ) 1 ( 4 ) 1

63G3E -56B9E

0 2 0 2

( 3 ) 1 ( 3 ) 1

5 0 1 3 E 4 3 3 7 E

0 2 0 2

( 2 ) 1 ( 2 ) 1

3 6 6 1 E

2 9 8 5 E 0 2 0 2

( 1 ) 1 ( 1 ) 1

bull 2 9 0 9 E 1 6 3 4 E

0 2 0 2

( reg ) 1 0 9 5 8 E - 0 2

E S T I M A T I O N ERROR CRITERION CONSTRAINT =

l OOOOE-01

S O U R C E I M P U T COVARIANCE tWi I 1 2 5 0 0 E - 0 1 1

MEASUREMENT ERROR COVAR I V

E 0 3 0 - 0 1 [ - 0 0 2 3 3

Figure 640C Contour plot of [PJlt(K)]II f o r t h e f 1 r s t s a m p 1 e a t K = 0 S Z f 0 r t h e C a S e w 1 t h

scavenging parameter o = 02

10300E-01

80D00E-t2

0OOOOE-O2

4000CE-02

20000E-02

n i n - n bulllaquolaquolaquotradelaquolaquolaquo2222222222 1 1 222222222 11 22222222 1 222221 11 222222 11 1 22222 1

11 1

11 ^222 1 1 2222 1 1 222 11 11 222 1 i 1 222 1 1 222 M a a a a a a a a a a a a M 3 3 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 -

22 3331333333 1 i 1 2 11 22 1 22 1 2 33 122 333 1 233

3333 1 i 333 1 i 1 1 1 1 1 1 i

1 1 1 1 1

13

3 3

i

i i

(

Figure 641 Plots of deg+N(ziz versus time t K + N for systems with scavenging parameter a 3 00 10 and 20 plotted with symbols 1 2 and 3 respectively Notice how iwgt samples occur for the cases with large scavenging terms compare with Figure 639

257

6311 Problems with Multiple Sources mdash Though the results for the problem with a single point source are general two cases are inshycluded here with multiple sources to demonstrate the applicability of the infrequent sampling concepts when more than one source is injecting pollutant into the medium Compare three cases Including one two and three point sources with their respective source location vectors given by

w s [deg4 gtbullbull[]bull 01 03 08

(f82)

For consistency each of the three independent sources is specified by the same variance [W]JJ = 0125 1 = 123 as In previous examples Since the total disturbance to the system 1s more In the multiple source cases than for just one source as in past examples the response of the output variance ojjtzlz) grows faster with time In order to allow a sufficient number of time steps for the steady-state assumptions in (518) and (520) to hold a larger error limit is used 1n these examples of = 05

A plot of the maximum variance in the output estimate aj+N(ztz) 1s included for the three cases in Figure 642 trajectories for one two and three sources are plotted with symbols 1 2 and 3 reshyspectively over the time Interval 0 lt t lt 4 It is seen that the greater the noise input to the total system the faster the maximum uncertainty 1n ths pollutant estimate Increases

Contour plots of [Ppound(zbdquo)] at the first sample times are shown for the cases with one twgtgt and three point sources in Figure 643 The general shapes of the surfaces change from those with just one source For the two with multiple sources the original source from all the

sooooe-ci i

3

3 4 2 3 2 4 4 9

2 9 2 9 3 2 3 2 1 3 9 3 11 J 2 9 It 2 11 9 2 3 tt

11 9 11 2 11 9 2 U 9 2 2 3 2

raquo _32 9

9 2 3 9

2 11 I 2 311 2 31 pound 11 Z 11 3 2 11 3

2 l 3 laquo

bull3

t3

2 3 2 3

V 32 32 32

3raquo 3 1 3 11

2

211 3 2 3 11 3 3 112 2 11 2 3 2 3 2 2 2 3 2 3 2 3 2 3 1

C 3 2 2 1

2

11 3 2 3 2

3 2

3 2 3 3 2 3

3 2 3

3 2 3

3^ 3

3 1 2 tl

1 1 t

2

I

Figure 642 Plots of lt^+ M(sJ[z) versus tine t K + N for systems with one two and three sources plotted with corresponding symbols for sources with positions given in (682)

COHTOOT FLBT OP t M K i O I 2 I 1 0 raquo 1 1 1 AS FWCTIOH O r Z(K131 HCRI2 AW t Z ( K ) ) 2 VERT EKATtPLE TO SMOW EVOLUTION OF VARIANCE IH CUTTUT I3yen |laquoATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LAR9E TIBC

C Z ( K gt 3 2

0 3

333 22 333 222

3333 22 33333 22 3333 222 333 22 33 222

222 222

2222 2222

22222 222222 22poundP22 222223 2222

222 222 222 222

bull 2222 22222 2222

111 222 33 44 9 9 1111 2 2 2 3 3 4 4 9 3 1111 2 2 2 2 3 3 4 9 3

111 11 2 2 2 2 5 3 4 4 6 3 111111 2 2 2 3 4 4 9 111111 2 2 2 2 33 4 4

1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1111111111111 222 33 44 111111111111111111111 2Z 33 111111111111111111131111 222 333 11111 111111111111111111 222 33 1111111111111111 22 333 11111111 22 33 11111 222 - -

ISO 180 6G3 CG66

USS8

77777 laquoC5EpoundB 777777 eCBBBSS

77777 P6BBS68 77777 8868888888

777777 BeSBSBBB

1111 111 111 111 111 111 111

9668 777777 BBSS a gt 66668 777777

355 66666B 77777777 i 5533 6S6668 777777777 14 G33S9 GB66BB 777 gtlaquolaquo 55555 CC6666S 444 555533 66C6666BCL

4-14 5535533 6B666EG66 4444 55555335 688

4ltJ444 33555553 4444444 555333555

bull 1 1 2 2 3 3 3 1111 2 2 2 3 3 3 3

1 ( 1 2 2 3 3 3 3 1111 2 2 2 33 13333

111 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 111 111 2 2 2 2 111 1111 Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

1111 H i l l 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11111 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 11111 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 1111

2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 3 3 2 2 1111 2 2 2 2 2 2 2 3 3 4 4 9 5 5 5 9 9 9 S 4 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +

2 2 2 3 3 3 4 9 6 6 laquo 9 4 3 2 2 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 lt 333 44 33 6 77 77 ( 5 9 4 3 222

3333 44 5 6 77 tSB i 7 6 S 4 1 3 3 2222 222222222222222 444 95 B 7 U 999 MB bull 7 S 9 44 3 3 Z22raquo22222222222222222222222222

444 S C 7 0 99 99 e 7 C 55 4 33 221222222222222 22222222k -I S 5 6 7 8 B M 0 laquo bull 8 7 H 9 4 3 3 2222222^2222222 22222222 22i 444 9 6B 7 B 99 99 B 7 e 9 44 3 3 222gt22222222222222222222222222222

444 95 B 7 48 999 B 7 6 5 4 3 2222 22222222222 333 44 9 9 77 BBSBBB 77 6B 9 44 33 222 1111111 333333 44 9 66 777777 6 9 4 3 222 1 f 1111 M1111111111111 Ml 11111111

333333 44 553 66BB 5 5 44 3 222 1 1 1 1 1 1 1 1 1 33333 444 0553 44 33

3333 4444444 3 3 222 3333 3333333 333333 222

bull33333333 333333 2222 3333 2222222

4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 444 333 222222222222

11353 44 333 2222222222 5555 44 3333 222222222

H i m 1111111 m i n i m i

1111111H11 m m _ 111111111111111111111 222222222

2222222222222222222222222 333333(313 222222222222

3333333lilaquo33 222222

SVKB LEVEL RANGE

CO) 2 7 6 0 7 6 - 0 2

C9gt ( 9 )

2 6 9 9 9 E - 0 2 2 6 3 9 1 E - 0 2

8 J I B )

2 9 7 8 - J E - 0 2 2 9 I 7 6 E - 0 2

C7gt lt7gt

2 4 S C 9 E - 0 2 2 3 9 G I E - 0 2

CSgt 16gt

2 3 3 S 3 E - 0 2 2 2 7 4 6 E - 0 2

lt5gt lt5gt

2 2 1 3 8 E - 0 2 2 1 5 3 0 E - 0 2

141 C4)

2 0 9 2 3 E - 0 2 2 0 3 T 5 E - 0 2

1 3 ) lt3gt

1 9 7 O 7 E - 0 2 1 9 1 0 0 E - 0 2

C2gt 121

1 B 4 S 2 E - 0 2 1 7 6 6 4 E - 0 2

1 1 1 ( 1 1

1 7 2 7 7 E - 0 2 1 6 6 6 9 E - 0 2

lt9gt 1 6 0 6 1 E - 0 2 ESTIMATION ERROR CRITERION CONSTRAINT gt

9 0 0 0 0 E - 0 1

SOURCE INPUT CQVARIANCE I W 1 I I 2 5 0 0 E - 0 1 ]

OSO - 0 1 - 0 0 2 9 1 bull M l t i l l t l l l l

Figure 643A Contour plot of | E $ ( J K ) fdegr t h e f i r s t sample at t R = 365 for the case with one source at z w s 03

CONTOUR f L O T OF I P t K bdquo K gt C 2 t K 1 ) J11 AS A FUNCTION CF I Z lt K raquo HSRIZ AND t Z ( K gt 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ES1IKATL W I T H T I K E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LAROE T I K E

tZ(K)3pound 09

11 1111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111

m m m m l i n n 111111 m m m i i m m m m

11111 m m m i l l m i l l

11111 111111

m m 1111111 1111111

l u i i i i 11111111

i m i i i 1111111 11111111 1111111U 11111111111

2222 2222 2222 2222 22222 22222 poundpoundpound22 22222 222222 22222 22^222 22222 22222 22

333 333 333 333 333 333 333 333

444 4444 444 444 4444

35333 335=3 35353 553553 33553 35555 5555533 553333

666666666 ee ~gtSSE66E0 6 6666C66B 56EGGCGG66 6amp6G6G6G6C666SS8

66S56GC6G6ee6 666666666 333 44-4 3333553 333 444 S53353SS5 3333 4444 35553553355 3333 44444 3335535535533353 333 444444 535355355355533 3333 34444444 0555355335 222 3333 444444444 pound2222 3333 44444444444 22222 33333 444444444444444444

2222 333333 4444444444444444 2222 333333333 4444444 2222 3333333333333 22222 3333333333333333333333 2222222 33333333333333333 22222222222 22222222222poundlti22222222 1111111111 gggzegeeeeezggezzezzgggggzz 1111111111111111111

t i t 11111111111mm u i i n m m m i n u m 11111m i n m m i n m m

111111111 n i i n u n i n m u m i n i m m u i i i i i i i i i m i m i i m i m m i

222222

i i i u m i n 2222 3333333333 pound222 3333333333333333 222 3333033333333 33333 2222 333333333^3333 3333 222

333 222 3333 222 44444444444444444 3333 222 4444444^4 3333 222 53555553 44laquo444 3333 222 5S555 44444 3333 222 666C66665 533 444 333 2222 777777 66 55 444 333 2222 77 66 555 444 333 see 77 e 555 444 333

111111111111111111 11111 11111111111111111 11111 111111111111111111 11111 111111111111111111 11111 111111111111111111 11111

itmtmmmui 11111 111111111111111m

in 44 333 tgt5 44 333 999 OS 77 60 55 444 3333 0 09 6 7 BE 55 444 3333

2222222222222 111111111111111111 111111111111111 1111111111111111

i i m i m m i n 111111111111111 111111111M11 11 i i m u i i t m t i

m i m i i u n t i l i i u m

11111111 i m m m 11111111111111111111111111111111111111111

i i m n t m m i i m i i m i i m i i i i m i 11111111111111111 2222222 222222222222222222222222

222222222222 2222222222222222222222222222222222222222222222 222222

SfHS LEVEL RANGE (0) 32227E-02 19) lt9gt 30316E-02 46404E-02 10) lt8gt 46492E-C2 44530E-02 (7) lt7gt 42E68E-02 4Q7SCE-0Z lt6gt 6raquo 3B344E-02 36933E-CZ (31 (3) 35021pound-02 33I0SE-02 14 31197E-02

29283E-02 3) fraquol

27373E-02 234C1E-02

(2) (2gt

23550E-02 21638E-02

Jl) 19726E-02 17ei4E-02 (copy) 15S02E-02

ESTIMATION EtfROR CRITERION CONSTRAINT -5Q0aQE-01 SflURCE INPUT C^VARIANCE [W]gt [ 1 2 5 0 0 E - O 1 1

H S A S U R C A E N T EJTROR C O V A R t v j laquo

Figure 643B Contour plot of [ E ^ I ^ L for the first sample at t K = 140 for the case with two sources at z = 1010311

amp R 3 amp k deg I O F IP(KKgtZKraquo5311 laquo A FUNCTION 3F IZIK1J1 HOR1Z AND CZltKI]2 VERT lpoundW2VL T 2raquo S M O w EVOLUTION OF VARIANCE IN OUTPUT EST I KATE WITH TIHE POSITION OF tflAXlPlUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIHE

tZltKJ]Z 05

11111111 TTTTrfTT 11111111 11111111 11111111 111111111 111111111 111111111 1111111111 11111111111 11111111111

111 i n n I I t i u t i i u U] J 3 I M n m 111111m m i i n i i i i i i n m i i i i i i i i i

1111111111 222

2222= 2 2222222 S^SSSSSSSS26222ZJ-^Z2 2222222222 222222222222 222222 -^olaquo--tradebdquobdquobdquo ^ 33333333533 2222 i l i i l l i i S s M S 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ^

22221 323 444 55 66SS6 22222 313 444 55 666G6 ZZ2Z 3pound3 444 35 66666 2222 3333 444 553 66656 2222 333 44 553 66G6G 22222 333 44 555 666CC6 2222 333 44 555 6CGe66 2222 333 4lt14 555 6666068 ZZ7ZZ 333 4ltI3 555 66CSCC666 2222 333 44 555 666G60C66666666S658 222Z2 333 C M 555 666G6G666666666e666 2222 333 44 553 6666G6666C6G6666 2222 33J 444 5555 2222 Di3 AAA 55JSS5S 2222 323 4444 55550555555555535555 22T 333 44444 2222 3333 44444444444444444444^444 2222 33333 444444444444 22222 3333333333 222222 333333333333333333333 1 222-222222 1 22222222222222222222 1 22222222222222222222222 2222222222

333333353333353 33333 3333 333 S A A A fl 4444 4 4 44444 44444lt4lt 14444fl44laquoJ4444444444 333 4444444 4 (bull A 444 AAAAAamp4A 333 _ bdquo laquo laquo bdquo 4444444 333 5355555555 44444 J33 535555535555 3 4 3 333 elaquo ^ laquo laquo bdquo 555555 4444 333 666bS666666 55553 4444 333 7 7 7 ---65Spound 553 444 333 - - - - I 7 7 7 7 ^66 555 444 3333 SDSB8Q 77 66 533 AAA 2333 D Q O a o o

a e 8a 7Z 66 355 444 33333 deg 9 3 9l2r f i 0 sect raquo Z7 66 555 444 33333 9399 86 77 6 555 444 33033 7 C66 550 444 33323 77 566 555 444 33533

2222 222 222 222 222 22-gt2 222 222 2222 2222 2222 2222

1111111111 111111111111111111111 11111 1111111111111111111111111111111 11111111111111111111111111

993 6B 2222122 22 tl _gt2232 2i3gt222222

222 22222222 222222222

COMJteuR LEVELS NO SYMBOLS SYHQ^EVEL RANGE (O) 56137E-02 (9gt (9) 6 5405E-02

B2673E-02 (8) (6) (7) (7)

S9940E-02 _B720Spound-02 I -4476E-02 5 1744E-02

(6) (6) 0 9011E-02

0 6279E-02 (5) C5) A3547E-02

laquo 0615E-02 (4) (41

96032E-D2 3 5350E-02

C3) (31 3 2 6 i a E - 0 2

B903CE-02 (21 (2) 6 7153E-02

C4421pound-02 (1) (1) B1609E-02

183572-02 BfOgt_l -6224S-02 ^ll^TioN 3 K O L c f c n e R i o r i CONSTRAINT 3

5-ooooe-oi

12500E-OU

OI

Figure 643C Contour plot of L^SKOJn f o r t h e f 1 r s t s a m P l e t K = 1 0 deg f o r t h e c a s e w l t h t h r e e

sources at z = [OlOSOS]1

262

previous examples 1s included at z = 03 and results in the rises 1n the s p a c e s near that location In Figure 634B the second source at z w = 01 1s added which significantly Increases the uncertainty in the region near the left end of the medium In Figure 643C a third source at z s 08 results 1n a slight rise in that area

It seems 1n Hne with the results of Section 639 that the dimenshysionality of the model effects the sensitivity of the response of the

It surface [Pbdquo(z] to the locations of sources ilaquo the medium This can -K -K n

be explained as follows The model used in these two cases has only five modes retained in the modal expansion The spatial mode shape or

elgenfunction for mode n is of the form cos ((n-1) TTZ) where 0 lt z lt 1 in these examples Thus near the end z = 0 all n modes have e1gen-functions which approach unity whereas for other positions out into the medium cancellations can occur Heur^stically the effect of a point source nearer z = 0 should be greater in each of the modal equations resulting in a larger uncertainty in that region of the surface than 1n other areas The response near z w = 03 and z = 08 should then be more like that in the area of z = 01 if a greater number of modes were retained demonstrate this concept Figure 644 shows the contour for [E^(laquo K)] for the same problem with j w as in (682) for three sources but with n - 10 modes retained Comparing this plot with Figshyure 643C shows greater definition in the response near the region of the source at z = 08 In the limit as n -raquo raquo the response of the surface [PIAZ)] to a single point source should be more nearly the same for all w 0 lt laquo lt 1

In cases with multiple sources the dimension of the model also efshyfects the variance in the estimate of the output ltj^+N(zJz) as a function

CONTOUR PLOT OF I P f K K J t Z(Kgt raquoJ1 t AS A FUNCTION CF I Z t K I J I HORIZ AND I Z ( K I 3 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E POSIT ION OF MAXIMUM VARIANCE APPR6ACHE3 STEADY- TATE VALUE FOR LARGE T IME

IZ(Kraquopound 03

111111 11111 1111111 111111 11111111111111 11111111111111 1111111111111 -1111111111111 1111111111111 11111 1111 111 1111 1111 1111111 1111111 1111111 1111 111 111

222322 2222222 222222

2222 222 222 222 222 222 222 2 222 2222 2222 zzz

AAA

AAA

i53

6CG6 66SS 666 668

I 55 6 77 I 55 6 7 B 55 6 77 6 53 ee 7 ei 55 66 77

7777777 777777 777777 77777 7777 777 7 oeoeaoo

6 8 8 8 0 0 8 6 6 8 8 8 9 9 9

iliiilHliHHilaquo

111111 1111111 1111 11 1111111 11111111 11111111 11111111 11111111 i m i n i i i n i n t 1111H11

3333 3333 3333

3333 3333 3333 3333 3333 333 333 333 _ _ _ _ __ 333 AcA 53 66 7 88 8638 77777 3333 i4A 55 66 77 S68 77777 2222 3333 10 55 66 777777 666666 2222 333C 444 555 666666666 22222 3pound3 AAA S555S5amp535b5553553533 pound222222 C-33 444444 2222222 3333 4444441444444444444 2222222 33333333333 222222 333333333333333 22t2^22 33333333

2-ll 222222222222222pound 22222222222222222222222 pound2222222222222222 1111 111111 111111111 111111111 11 11

2222222222 2222222222222222222222222222222222 Z222222222222222 222222 333333 3333 22222 333 AA4AAAA4A 33 2222 444444444444 444444 555555 AA 33 22222

5 3 5 3 4A 3 3 5353353 - 5 5 6G666 55 44 333 5353555555iS3333 663660 03 44 333

553535555555 666 35 4 333 35355555555 555 4 333

55555553555033 44 33 666666066666 55555555 44 333

666 55555 44 333 77 66 55553 444 3333 3 7 66 5355 444 mdash

99999 999 68 7 66 555 44 93 6 1 666 55 44 O 93 J 77 666 55 44 323 222i2f2 99 6 77 666 55 44 333 Z22Z27gt 99 6 77 666 53 44 333 22222f2r3 99 6 77 656 35 44 333 222221212 99 6 77 666 5 44 333 222pound -22

11111 1111 11111111111111 til 11111111111111111111111 111 11111 till 11111111111 11111111111 111111111 1111111 1111 11111 1111 1111111 11111111111111111111(1111111111 111111111 11111111111 2222222 11111 11111 2222222 111 1111 1111

bull bull 1 1

2ZZ222 2 2 2 2

2 2 2 1 1 1 2 2 2 1 1 1 1 1 11 2 2 2 1111 I 11

2 2 2 1 1 1 ) 1 1 1 2 2 2 2

3 3 3 3 2 2 2 2 2 2 2 3 3 3 3

3 3 3

111111 111111111 111111111111111111111 1111111 1111

11111111111111111111111111111 m i 11111111

2 2 2 Z 2 2 2 J 2 2 2 2 2 2 2 2 2 2 2 i - 2 2 2 2 2 2 2 2 2

pound 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

SYI-S

( 0 1

LEVEL RANGE

6 T 3 1 2 E - 0 2

t9gt C9)

5 e9S-3E-02 3 6 6 Z G E - 0 2

( B ) ( 8 )

5 4 2 S 3 E - 0 2 5 19-CIE-Q2

C7) ( 7 )

4 9 5 9 7 E - 0 2 4 7 2 5 3 E - 0 2

( 6 ) ( 6 )

4 4 9 1 0 E - 0 2 4 2 5 6 7 E - 0 2

15) ( 5 )

4 0 2 2 4 E - 0 2 3 7 6 6 1 E - 0 2

( 4 ) C4gt

3 5 5 3 3 E - 0 2 3 3 1 9 5 E - 0 2

( 3 ) ( 3 )

3 0 8 5 2 E - 0 2 2 3 5 0 9 E - 0 2

lt2gt ( 2 )

2 6 1 6 6 E - 0 2 2 3 8 2 3 E - 0 2

( 1 ) ( 1 )

2 1 4 7 9 E - C 2 1 - 9 1 3 6 E - 0 2

ltcopyraquo 1 6 7 9 3 E - 0 2

ESTIMATION EPROR CRITERION CONSTRAINT =

5 0 0 0 0 E - 0 1

1 2 S n o E - 0 1 )

Figure 644 Contour p lot of | P [ [ ( Z K ) for the f i r s t sample at t K = 102 for the case with three

sources at z = [0 1 0 3 0 8 ] T but with f i l t e r model of dimension n = 10 Compare with Figure 643C where n three sources

5 note hiaher resolution in surface near positions of

5000DE-01

47000E-01

4400QE-01

41000E-01

3SOOOE-01

5SS 0000500000 9 00 I 5 0 I 5 1 S 0 3 0 5 3 0 5 0 3 0 0 Q 0 5 0 3 9 3 0 5300000000 9 0

9 0 6 3 0 99 0 3 9 0 9 9 0 0 S O ft 00 deg- laquobull bull o o 3 0 0 so o oo 30 0 00 3 0 0 000 3 0 9959 0000000 5 ) 0 35333 535555399355555 6 00 0 93 33 00 0 S3 3 000 00055 55 OOOOOOOOOOO 55 55 5 3 5 5335 5553 535

bull0E00 2OO0E-O1 400DE-OI 8000E-01 POSITION Z

Figure 645 Plots of oK(zzj at first sample times t as functions of position z in the medium for case with three sources at z = [010308]T and filter models of dimension n = 5 and 10 plotted with symbols 5 and 0 respectively Compare with cases with just one source

265

of position z in the medium The cases corresponding to the plots of

C E K U K gt ] 1 Figures 643C and 644 for n raquo 5 and 10 are plotted in

Figure 645 with symbols 5 and 0 respectively Here again dimenshy

s ional i ty effects the resul ts

64 Optimality in the Management Problem

Demonstration of the optimality of the monitoring sampling program as proposed in Section 58 can be made by cross-comparing many of the examples included above Two particular choices from Section 635 perhaps serve to demonstrate better than the others extension of the scalar results of Conclusions XVI and XVTI to the vector case Let Pjj = M Q at t Q be defined in (657) as before and choose the time inter-

2 val of nterest as 0 lt t s 1 Let cr = 0150 for a monitoring problem with bound on error in the output estimate However compare the followshying two sampling schedules

(1) Predict to time tbdquo when K l

sample then predict to t = 1 (2) Predict to time t bdquo when

K 2

7 9

sample then predict to t = 1 (683) The plot showing the trajectories for the two programs in (683)

plotted with symbols 1 and 2 respectively is in Figure 616 Both schedules result in only one sample time over the interval 0 lt t lt 1 such that since both require the same number of samples to maintain the estimation error within its bound the schedule resulting in the lower variance after both have sampled is clearly the better sampling program

12000E-01

S0000E-02

300D0E-D2

22 222

bull a

2 2 2 2 2

1 1 1 2 a 2 a r

1 1 1

11

pound22 22

22 222

11 111

11 11

bull i bull

1 I 1 n -

11

2 11

11 11

111 11

11 11

11 1 gt1 1 1

It 111 Ml

11

11 i

I 2

M 1 2

2 2 12

1 1

I 1

1 1 1

1 1 1

1 _1

11

2 [1

gt 0E00 2000E-01

Figure 646 Plots of ajLu Ui gt 2) versus time t K +bdquo for sampling schedules (1) and (2) given in (638) plotted with corresponding symbols note optimality of the second sampling program at end of time interval shown

267

Since the error in schedule (2) is lower at the end of the interval 2 2

sampling at the limit when at t cC gt a is seen to be superior Thus extension of the scalar results to this particular vector example shows that here sampling at the limit is optimal

Naturally this is not a proof but merely a demonstration in one particular example However for all cases studied to date extension of the scalar results for the optimal management problem to the vector case has been seen to be valid further indicating that proofs for the proposed extensions in Sections 582 583 and 584 may be possishyble for the vector case

268

CHAPTER 7 SUMMARY AND RECOMMENDED EXTENSIONS OF THE MAIN RESULTS

Here are gathered the main results for the class of optimal monishytoring problem considered in this thesis with suggestions of certain areas in the theory where future expansions should be considered The format is brief since concise statements of the conclusions resulting from this study as listed at the beginning of this report are conshytained within the main chapters themselves

71 Summary

The problem of the optimal monitoring of pollutants in d i f fus ive

environmental media has been studied in the contexts of the subproblems

of the optimal design and management of environmental monitors for bounds

on maximum allowable errors in the estimate of the monitor state or outshy

put variables Concise problem statements were made in Chapter 2 see

(27) and (28) Continuous-time finite-dimensional normal mode models

for distr ibuted stochastic d i f fus ive pollutant transport were developed

in Chapter 3 see for example (337) and (340) and Figure 32 The

resultant set of state equations was discretized in time for implementashy

t ion in the Kalman F i l t e r in thf problem of optimal state estimation in

Chapter 4 see the optimal f i l t e r algorithm summarized in Figure 4 1

The theory of the solutions for problems of the optimal design and

management of environmental monitoring systems was developed in Chapter 5

The general solution of the optimal monitoring problem with bound on ershy

ror in the state estimate has been stated see (513) The general solushy

t ion for the optimal monitoring problem with bound on error in the output

estimate has also been found see (563)

269

The main results of this thesis concern the special class of optishymal monitoring problem called the infrequent sampling problem For the case of time-invariant linear stochastic diffusive systems where the maximum errors allowable in the monitored estimates are relatively large drastic simplifications in the solutions of the optimal monitorshying design and management problems are possible as set forth in all of the conclusions in Chapters 5 and 6 The final results for the optimal monitoring design problem in the case of infrequent sampling with bound on error in the state estimate are contained in Conclusion VIII The final results for the optimal monitoring design problem for the case of infrequent sampling with bound on error in the output estimate are conshytained in Conclusion XII Extensions to systems including pollutant scavenging were made results are in Conclusion XIII Extensions were made to systems with fixed boundary conditions as summarized in Conclushysion XIV The theory was found to apply for systems with emission or radiation boundary conditions in Conclusion XV which completed the exshytension in the design problem to all systems with general homogeneous boundary conditions

The optimal management problem was solved analytically for scalar systems see Conclusion XVII Though an analytical result for the vecshytor case of the optimal monitoring management problem was not found an intuitively satisfying heuristic proof was proposed (see (5196)) based upon the concept of the amount of correction made to the error in an estimate at a measurement in the scalar case found in Conclusion XVI

The general result for the infrequent sampling monitoring problem in arbitrary coordinate systems with various boundary conditions is conshytained in Conclusion XVIII

270

In Chapter 6 a considerable number of numerical examples are ofshyfered in substantiation of the theoretical results of Chapter 5 Various forms of graphical computer results serve to illustrate many of the more salient points of the theory of the infrequent sampling monitor

72 Recommended Extensions

The main contribution of this study has been to demonstrate to future resuarchers that optimal solutions for monitoring problems in large comshyplex environmental systems will likely come from the study of an imporshytant special case the infrequent sampling monitoring problem A great number of extensions and refinements are seen possible by this author this work has really only begun to scratch the surface of a large set of problems where the theory of the infrequent sampling problem may apply Some o f the more important areas for future consideration are suggested in what follows

Recent extensions nave been made by others of concepts of industrial engineering and operations research to the areas of dynamic system theory and optimal measurement system design The work of Bar-Shalom et at

[16] applies stochastic system theory to the resource allocation problem when uncertainty 1s included in the system Aoki and Toda [5 ] have conshysidered adaptive resource allocation for decentralized dynamic systems All of these areas of theory - resource allocation as It applies to optishymization of measurements stochastic control as it relates to taking noise-corrupted measurements and decentralized dynamic systems for the study of large coupled dynamic processes mdashare relavent areas for future study in the optimal environmental monitoring problem

A useful extension of the fundamental concepts of Kalman Filter theory ib to the problem of optimal pollutant surveillance in environmental

271

systems (see for example Brewer and Hubbard [23]) By using the smoothing form of the Kalman Filter (see Gelb [44] Bryson and Ho [26] and Jazwinski [65]) it is possible to construct a monitor whose purpose is to identify from measurement data the source which is injecting a harmful pollutant into an environmental region - its location strength etc Such a detectionsurveillance monitor could prove t be of great value to regional pollution control districts

Many of the mathematical procedures used in this study are subject to refinement PosMbly the critical algorithm is that of the constrained optimization of a nonlinear function of many variables The algorithm used here by Westley [127]was thought to be one of the superior gradient techniques in nonlinear programming when it was written However Westley [128] has since suggested consideration of the newer algorithms due to Abadie [i 2] using the generalized reduced gradient method as alternative and more powerful local minimization techniques In this area of the extremlzation of a function with many local extrema there is still the problem of determining whether or not the local minimum found is the global minimum There still appears to be no analytical solution to the problem of global minimization [20] Though not considered here pure random search techniques rather than steepest decent or gradient techshyniques might possess better convergence characteristics for optimization in larger dimensional spaces which would result from a y practical applicashytion 1n monitoring system synthesis a starting point for future work here could be Ksrnopp [68]

The efficient and accurate modeling of environmental pollutant transshyport has long been a problem of concern to researchers and indeed conshytinues to be As the complexity and size oT systems studied grows so

272

does the need for more efficient modeling techniques A new application of the collocation methods from the theory of partial differential equashytions has been made by Michelsen et al [94124] state-space models of exshytremely small dimension (like five or six states) have been used with greater accuracy than more routine finite-difference models of very large size (like one thousand cells) for the solution of the transport equations of a fixed-bed chemical reactor This technique could be a powerful alshyternative to the separation of variables methods used in this study in systems where analytical expressions for eigensystems cannot be found as was the case for fixed-bed reactors [39]

The general results for the infrequent sampling problem suggest poshytential application to any modeling technique for physical systems where certain dynamic terms dominate all others in the asymptotic response This is allied to the theory of systems of stiff ordinary differential equations [43] and to the area of singuar perturbations in control sysshytem design [72131] Application is thus seen to extend to mechanisms of pollutant dispersal other than just Fickian diffusion through the use of say finite-difference modeling techniques (see Goudreau [47] for comparishysons of finite-difference methods) This is thought to be a particularly fertile area for future extensions since by applying finite-difference techniques to distributed systems of various configurations tiio resultshying differential-difference equations could be cast into a form which can be diagonalized into a finite set of modal state equations (see Loscutoff [79]) these modal equations would then clecrly exhibit the ordering of the eigenvalues which Is essential to the infrequent monitorshying problem

273

Extensions are thus suggested to pollutant dispersal processes which combine diffusion with convection Such processes embrace a wide variety of environmental systems among them being air pollution river and estuary water pollution and groundwater pollution A recent study by Oesalu et al [311 shows how stochastic models for air pollution can be derived a way which lumps lt11 the nondiffusive terms in the combined transport equation into time-varying source terms and then treats the resultant problem as one in Fickian diffusion The use of such a techshynique seems to open a logical area for application of the theory assoshyciated with the infrequent sampling problem

Other applications in such extensions to air pollution monitoring conceivably include use in the cost-optimal validation of regional and global atmospheric pollutant transport models [8081] Considerable effort is being made toward modeling regional atmospheric pollutant transport phenomena Extension of the infrequent sampling ideas ot this study to such areas couid result in the cost-effective validation of such models As mentioned before application to modeling the upper atshymosphere could help in determining where and when to fly high altitude aircraft for taking air samples for global atmospheric model validashytion A likely application of the extension to surveillance monitoting systems mentioned above would be in detecting radon gas source positions and strengths in uranium mine shafts and in geothermal wells the release of radon has been coming under closer scrutiny in recent years as man has increasingly disturbed the environments where it had heretofore remained entrapped

274

Another application associated with uranium might be to the Nationshyal Uranium Resource Evaluation Program In this study tens of thousands of soil samples are to be taken in the western United States Upon deshytermining the amounts of certain trace elements contained in these samshyples this data will be used in a large pattern recognition computer program in order to learn whether the existence of such trace elements is correlated to uranium ore deposits in the areas where the samples were taken An extension of the infrequent sampling ideas might include findshying time scales over which dynamic models ol the trace element transport through environmental systems would be valid With the use of such models which would apply over say days months or years cost-effecshytive sampling programs for the identification or uraniui deposits could result

The initial application of optimal monitoring system synthesis conshycepts to river and estuary pollutant transport has been proposed by Moore [95] This author feels that extensions of the infrequent sampling problem ideas could be made there to simplify monitoring system design for aquatic ecosystems

Finally applications could be studied in the areas of atomspheric and aquatic radiation monitoring systems Applications are suggested in designing minimum-cost air sampling letworks for example in the monishytoring of atmospheric radiation levels in regions where underground nu-ciear experiments are conducted An interesting extension of the surshyveillance application suggested above could be made here in attempting to identify sources of radiation from air samples gathered by a minimum-cost monitoring network Another possible application could be to the cost-effective design of radiation detection networks for monitoring

275

groundwater radiation levels [1203 Variations of this might also inshyclude applications in the siting of nuclear power reactors and in the determination of best locations for their associated nuclear waste stor age sites In such applications the intent would be to find locations where soil conditions were such tliat in the event of leakage of nuclear waste substances into the so Jl effects to surrounding groundwater sysshytems would be minimized

All of these areas may be hypotehtical at Lest but deserve future study for the application and extension of the concepts presented in this study for the infequent sampling problem possess a great potential for improving and advancing the design procedures of cost-effective environmental pollution monitoring systems

276

APPENDIX A DISCRETIZATION OF THE STATE EQUATION

Given the linear tine-invariant system x = Ax + Bu (Al)

Takahashi [121] and others have shovm that for step size T s (t K + - tbdquo)

bdquo e4Tbdquo AT iK+1 e =K -AT KJ1 = e~Xi + e- I e - BU(T) dT

J0 (fi2)

T = t - KT

This expression is now put into two more useable forms for machine app l i shy

cation

Since y ( t ) is held constant over time in terva ls i e y ( t ) = u ( t K )

TI _fl~ ^K+l e T x K + e T e T d T BuK

= e AT K + e A T [ _ ( e - A T T JJ A -1 B u K

where the matrix exponential is given by

n=0

(ST)

(A3)

(A4)

Equation (49) is ver i f ied with (A3) and (A4)

277

In cases where the system matrix A is singular A does not exist and (A3) cannot he used Starting with (A2) an alternative exshypression is sought for (A3)

x K + 1 - + eV[ I dT f e bull eA(T-x) d T

Bubdquo

By

(A2)

A ( T - T ) dt = I + A(T - T) + -bull 92(T - t ) 2

J0 L

IT 6(T - T ) 2 ft2(T - T )

dt

2 3

- [IT] - 0 - AT 2 A 2 T 3

AT 2 A 2 T 3

-IT + TT + TF +

~ + i = e ~ T ~ x K + T |J + 2 T + i r + - - - 5SK-AT (ATT 2T+ I F

Equations (410) and (411) are ver i f ied with (A6)

(A 5)

(A6)

278

APPENDIX B DISCRETIZATION OF THE STATE DISTURBANCE STATISTICS

This Appendix detai ls the development of a simple recursion for

5 K + 1 (see DAppolito 129]) as outlined in Section 412

Leibnitz s rule may be used to demonstrate that a is a solution of

a Riccati equation Starting from the def in i t ion

t bdquo r K+1 S K + 1 = Q( t ) | = (tT)DW(T)D TJ(tT) T dx

t _ t K + l (414)

d i f ferent ia te to get

ifs(t) at J(tT)DW(T)DT|(tT) dT

+ j(tt)DW(t)D TJ(tt) T ^ | 2

- laquo(tt K)DW(t K)D TJ(tt K) T -pound ( t K )

t bdquo L

(ft (tT)Vw(T)D T j(tT) T + j(tT)DW(T)DT U | |(tT)) dT

+ SWOOP

|A(tT)D|()(T)D T j(tT) T dT

+ (tT)DW(T)D T(tT) TA T d T + DW(t)DT

279

= A (tT)DW(T)D T jCtT) T dx

[f J(tT)DW(T)D TJ(tT) T dx AT + DW(t)DT (B l )

or f i n a l l y

j fsw + QAT + DW(t)DT pound2(0) = 0 (B2)

Since g K + must sat isfy the above matrix Riccati equation matrix Riccati

equation solution methods are sought for the evaluation of (414)

F i r s t define the Hamiltonian H in terms of x and the costate vecshy

tor 5 (see Kalman and Bucy [67] and Brewer [22 ] )

i xTDWDTx - sect TA Tx (B3)

From this obtain Hamiltons equations

dx 3H _ T df = af ~

|=-i=BWSVAC Adjoin the x and vectors to obtain

- - -x -A T g X X

mdash mdash s A

1 DWD T fl sect 5 bull

(B4)

Define the (i x 2n) state transition matrix J for the system matrix A

as

280

I I i - -H

$21 22

where

j = A ttt) = I

Define (laquo x n) matrices x and such that

- A T ~ 1

L T 1

DWD |

0 I - A T ~ 1

L T 1

DWD | A 0 1 _ _

x(o) = g 0(0) = g(o) = o

(B5)

(B6)

(B7)

Make the equality

sect = 8Xgt (B8)

Differentiate to obtain

6 = qx + gx- (B9)

Substitute from (B7) to find

DWDTx + AG = fix - af iV (B10)

Since x(0) = I and since x is a state transition matrix x(t)~ exists

so that i f

9 = Ox

then

copyx1 = n CBll)

and

X 1 = Q_1n (B12)

Multiply (B10) through by x 1 and substitute (B12) to get

281

DWD T + AOx1 = a - QA T

=gt- n = Ag + QA T + DWQT CB13)

Thus by making the equality (B8) it is seen that the solution of the matrix Hamiltons equations (B7) is linked to the solution of the mashytrix Riccati equation (B13)

The solution Q(t) of (B12) can now be found The solution of the Hamiltons equations (B7) may be written

x(t) I [~ x(o)

(t) 6(0)

i ll I 12 mdash J _

I $21 4 22

Thus x ( t ) = S u ( t ) (t) = 2 1 ( t ) and

5 ( t ) = $ 2 1 ( t ) 1 1 ( t ) 1

From the form of A in (B4)

S 1 2 = 9-

With th is observation and using (B6) i t is found that

22

bull laquo 1 1 -

A$22

sect2i = BhBTJii + 622raquo

From (B17) and (B18) for T = ( t K + 1 - t K )

$11ltW = I

2 2 ( t K t K ) = I

j 2 1 ( t K t K ) -o

bdquo-6 TT

-22 - - T

0 L J

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

(B21)

282

so that

$ l i 1 = 2 J - (B22)

Since

J 1 = |e 6 T j tB23)

and

pound2 2~ = [ e 6 T J (B24)

i t is seen that

iiSi = I = 22n = L e - T J T e~TT - I- ( B - 2 5 gt Thus it has been verified that since (B18) is the adjoint of (B17)

in1 = Zzz- ( B- 2 6gt This eliminated having to use an inverse resulting in the equation sought for y

3 = 2i22- (B-27)

Thus the problem of finding n reduces from solving a matrix Riccati equation to solving for two state transition matrices $bdquo and J

The computational algorithm for finding a i s now developed The

system under study i s time-invariant with calculational step s ize

T = ( t K + 1 - t K ) so that

(6T)n

nO Z (AT)

- i n - bull ( B - 2 8 gt

From i 7) and (B18)

283

n-0

V (AT) SffllT)

Since 1 2 ( T ) = 0 (AT) must have the form

(B29)

(B30)

(AT) n

(-6TT)

I (AT)

(B31)

An expression is sought for F to be used in computing $2i I n

order to obtain a recursive relationship for F_n right multiply (AT) n

by (AT)

(-A TT) n

En ( A T )

(-AT) I Q l_

l DWDT i AT

(-A TT) + 1

-E nCA TT) + (AT)nDWDTT | ( A T ) n + 1

(B32)

From which

Define

F n + 1 = (^T)nDWDTT - pound n ( A T T ) E 0 = Q

tn n s n n

Thus the algorithm equations are

En + l= iTT[5 n M T T-F n (A T T) ] E 0

S raquo

AT -A n+1 = n+1 V A o E i -

(B33)

(B34)

(B35)

(B36)

284

2 1(T) = ) Fn (B37)

(B38)

Here k is the number of terms necessary to adequately approximate the infinite series expressions In practice it is found using a method due to Paynter (see Brewer [22])

0 K + ] = 8(Tgt = $ 2 1CT)raquo 22(T) T = (t K + - t K ) (B39) Thus the discretized form of the state disturbance covariance mashy

trix convolution (426) has been shown as the product of two state transhysition matrices obtainable with the algorithm (B35) - (B39)

285

APPENDIX C STATE AND ERROR COVARIANCE PREDICTION WITHOUT MEASUREMENTS

In this Appendix are developed relationships useful to the monitor management problem for the extension of the predicted values of the state and error covariance terms in the Kalman Filter

The monitor management scheme proposed in Chapter 5 requires the exshytension of the predicted value of the state estimate error covariance matrix over times when no measurements are taken This requires modifishycations to the basic Kalman Filter algorithm of Chapter 4 Consider the filter equations rewritten as

amp i = -K+IEKK+IT + s ^ + i lt 4 - 2 7 gt

E K [ l - SKSKJEK1 K - J

~GK = E K 1 ^ fccEH1^ + X K ] 1 t c - 2 )

For the case of prediction only no measurements are taken so set C K = 0 and (see Bryson and Ho [26] p 361) let

V K _ 1

= gt g K mdash g (c3)

so that

266

Thus for the case of no measurements the predicted error covariance matrix may be calculated iteratively as a function of its own past values and the state noise uncertainty term Q|+1-

Equation (C4) serves as the heart of the prediction process for K B K + N which is the value of the error covariance matrix predicted ahead

N steps to time t K + f but based only on the knowledge of measurements made through time tbdquo In practice a fixed time interval T s (t K + 1 - tbdquo) is chosen so that

K+1 - bull ( W t l c ) 8 lt T gt = S 8 f t T (C5)

n K + 1 = s(t K + 1 - t R V g(T) i g (c6)

(see Appendixes A and B for details) With this computational time step T it is possible to formulate an expression for Epound + N-

First note that for fixed size time steps 8 in (C6) is a constant that is

8 = 8 K + 1 = 8 J + 1 a n lt ana J- (C7)

g represents the per step increase 1n the uncertainty in the state estishymate due to the stochastic input acting upon the state Thus if the statistics of w(t) in (414) are constant that is if

H(t) raquo W ( T ) all t and T (C8)

Then from Appendix B for fixed step size n is a constant With (C5) and (C6) (C4) becomes

The recursion to obtain pound raquo + N starts from the corrected error co-variance matrix at time tbdquo Ppound and predicts ahead one-step

287

EK-H = Kr + 5- (cio)

Subsequent steps ^re taken using (C9)

eU = S E + 1 S T + 5

] $PpoundS T + a W

2K 2 + 53JT + 0- (cll)

Finally for step t K+N

The two terms in (C12) represent the free and driven response of P as time grows If A is stable the first term decreases with tirne The second term a discrete-time convolution of the forcing term Q grows with time to some steady-state value

In practice the prediction is started with (CIO) and then extended recursively using (C9) until some error limits are reached say this occurs at time t K + f ) Now 1t is required to extend the state estimate Itself to time ti+N- For a fixed tine step from Appendix A

lei (K+I 0 I lt T s (C13)

and the predicted and corrected values of the state estimate can be written

ampltbull) raquo K + SHK ^C14)

288

hon (C3) the fact that no measurements are taken results in

xpound mdash xpound _ 1 (C16)

8 K + ] bull J K _ 1 + s a K - lt c - 1 7 gt

Thus the -urrent predicted value of the state estimate may be expressed as a function of its own past values and the past deterministic inputs

In a manner similar to (Cll) the value of the state estimate preshydicted ahead N time steps is found to be

KplusmnN-1 (CIS) 0 K - J AK+N-l-n

Thus once the covariance matrix has been recursively extended ahead to time t K +bdquo the state estimate may be predicted ahead all at once with (C18)

289

APPENDIX D ANALYTICAL MEASUREMENT OPTIMIZATION

The purpose of this appendix is to demonstrate the difficulties in attempting to solve the measurement placement optimization problem anashylytically The problem involves finding the optimum measurement matrix C at a measurement time time t K + Ngtwhich minimizes some performance criterion Two criteria are considered one in which the error in the state estiriate after the measurement is to be minimized the other where the sum of estimate error and measurement cost are to be minimized Both attempts are found to fail

Dl Minimize Estimate Error

For the case the performance criterion is chosen to be

J 1 i Tr

Define T S (CP K

K+ NC T + y)

(Dl)

bull2)

and drop subscripts for now Then following Athans [11] take the total differential of J

dJ1 = dTrfp - P C T T _ 1 C P 1

df- d(pc TT 1Cp

p(dC1)T_ 1CP - PCV 1 lt(dC)PCT

+ CpdCT)gt T_1CP + PcV^dCJP

=Tr

= Tr

(D3)

290

In (D3) use was made of the chain ru le The second term may be deshy

rived as fol lows

To f ind

AY i|cPCT + y |

f i r s t l e t

XY = I

X = Y1

= S gt d(XY) = (dX)Y + X(dY) = d l = 0

= gt dX = -X(dY)Y _ 1

= Y 1(dY)Y 1

dY1 = -Y 1(dY)Y 1

Now i f

then

and f i n a l l y

Y = I CPCT + y j

d = CdC)PCT + CP(rfCT)

dY1 = - i 1 (dQ)PCT + Cp(dCTJjY1

as sought

Return to (03) and expand the second term to obtain d J i = -Tlr(laquoicT)T1poundP - E E V ^ J D E E V ^ E

- EpoundTT~1CP(dCT)T1CP + PcV^dCJB (D4)

Bringing the total differential operator d() inside the trace operator Tr[] is valid since both are linear operators so is the partial differ-

291

ential operator bull pound (bull)bull Thus in order to take the partial derivative of 0 1 with respect to the matrix C follow Athans (pound11] p 19) with the use of unit matrices EJ^ to obtain

3C Jl 3C l r [ K+NJ

ijk - EcV 1 cp(E j i )r- 1 cP + reV^E^Ey

bull Z -IikEEjirSLEu + I 1 k poundpoundr 1 E 1 j PcV 1 cPE k j

ijk bull E^PcV^PE^T^CPEy - E^PcVE^Py

= Z -WuEufaSk+ [pcT-^EiiPEYV^ ijk

[ESVsJ ly ln f EKM - [poundpoundV1JkE f jPEk j

(see [11] Eq 5-H)

- Mi JT ^PI CH + TPCT1] [pcVcpl E

PCV^PI IT^CPI E - [PCV 1 ] [PLE L~~ ~ -~JkjL~ J l k - u L~~ - J k i ^ J k - i j

Ijk +

(now with rules of matrix multiplication)

= -I_16EP + I 1 pound T E T pound T QV poundPT

+ r ^ C P i V ^ P J_1QPTPT- (0-5)

292

Noting that

P = P -1 - 1 T

1 = 1 (D5) becomes

^ bull j = ^[T^CP2 - y ^ c V w (D6)

(D6) is the relationship sought the derivation of which may seem obshyscure A more simple derivation results from making a pair of identishyties and the statement of a Lemma [ H ]

^bullTr[AXB] = A TB Tgt (D7)

3X

These follow from

Lemma I f

| Tr[AXTB] = BA

Simi lar ly

bullpound- Tr[AX] = TrfAEj j then ^ | Tr [AX] = A T

e the above formulas

dTr[AXB] = Tr|A(dX)B] = Tr[BA(dX)j

Lemma

3-L- TrfAXB] = TrJjgA tfLJ - TrfgAE-J j | [AXB = A TB T

To demonstrate the above formulas

Now apply the Lemma

AXTB = BA

293

With the use of (D7) (D6) can be obtained d i rec t ly from (D4)

as fol lows

dJ 1 = -Tr[p(dCT)T 1CP - P c V ^ d C j P c V ^ P

3 i _ _T~VDD x T-rDTnlrTp-l r D T 3C u l J = -TCPP + T CPPCT CP1

+ T^CPPcV^CP - T W

)IT~PDZ _ tv~ ImrTrp = -2 ITCP4 - T CPCT CPj (D6)

as before

Now in the measurement optimization problem we seek an extremal

in C C which minimizes J-j = Tr Pj^Jj To that end set

af J i =raquobull (deg- 8gt j V P - PcYcPC1 + vV^P = 0 (DP)

Simplify (D9) with the use of

Lemma Matrix Inversion (see [78])

For P gt 0 V gt 0

p bullbull E pound T ( p pound T + y)1 ( V 1 + s 1- 1-) bull ( D - 1deg)

To prove that th is is t rue simply mult iply both sides by the inverse of

the right-hand side and col lect terms Substituting (DIO) into (D9)

obtain

i p1 + fV-y w J i = T l c p ~ 1 ^ T - 1 - 1

= C = 0 CD11)

294

Thus the extremalIzatIon results In the value C = 0 However this is only a necessary condition and obviously corresponds to a maximum 1n the performance criterion Noting the form of J in (01) the negashytive sign in front of the second term shows that for any pound Q J j that is the extremal found 1s a maximum This corresponds to the case where no measurements are taken The value of J from (Dl) for C = 0 can be seen to be equal to Tr |pjpound[j = Tr p|+N that is the predicted and corrected covarlance matrices are equal which agrees with the case when no measurements are taken

The opposite extreme is of some interest that is the case where the size of the matrix C as given Lv Its norm grows without bound p l l bull Consider the case where C is square and nonsingular Then from (Dl) dropping subscripts we find as C bullbull ltdeg

T r |^K+M] = T r [ - K T(--~ T + iO^EJ T r P - Ppound T(fcpc TV 1cpJ

= Tr P - PC T(pound TVV 1)poundpJ Tr[P - P] = 0 (D12)

This is the result we would expect As can be seen from Eq (417) for the filter

K +N pound K + N X K + N + W ( 0- 1 3 )

the larger C K + N the more deterministic information Is contained in y K + N and the greater the s1gnal-to-no1se ratio This manifests itself 1n the variances of the estimates of the states going to zero as seen in the diagonal terms of K+u vanishing The quadratic term dominates the measurement noise covarlance V in the expression to be Inverted which allows our limiting operation to take place

295

It should be noted here that even If this analysis had led to useshyful results a major constraint is placed upon the result In that the operations of taking derivatives of traces of matrices (as 1n (D5) and (D7)) are based upon the utilization of unit matrices J which are square matrices Thus only in the case where Q is a square matrix Ie as many measurement devices as states could this analysis apply This Is a serious limitation 1n the context of studying the optimization of measurement systems

D2 Minimize Estimation Error and Measurement Cost

To alleviate the degeneracy found above let

h T r[C + poundK+NlaquoK+N]

Let T = (CPCT + V)

Then dJ 2 = dTr P + C Tgcl

= Trl-P^dC1)^

+ ffiV1 (dpound)poundcT + gg(dpoundT)li1gp

- E G Y W G J E + (dpoundT)9pound + poundTQ(dpound)l

= Trl- P(dCT)T1CP + PcVfdCJPcJj^CP

+ ESV^EC^JT^E

PcV^dCjP + (dcjgg + CTg(dC)l (D15)

296

And

j jr J 2 = -T _ 1 CPP + T 1 C P V Q V 1 GET

+ r 1 1 1 l 1 P T pound T + 9pound + 9Tc - o

= -2ltfpz - T ^ C P V I V - gc = g = l V | E - EpoundT(lt-EQT)+ i CP - gc

= I ^CP^P 1 + c V c ) - gc

= CP - (CPC T + v)gc(p + c V c ) = o

= CEP^E 1 E cpc Tgcc Tv - 1 c

+ vggp- + vgcc Ty _ 1c - cp = g (oi6)

Thus extremalization with respect to a combined performance index one which includes a weighted term for measurement cost results 1n a very complicated expression

Now operate on the above equation to obtain C I S T 9 C I 1 + QPpoundTQQpoundTv-1c + vgcp1 + vgccV c - CP = g (Di7)

Assume C exists Thus

EpoundT99 + EEVEW + pound - 1ygc + c 1ygcc Ty 1cp - P 2 = g ( D I S )

or f inal ly

p(cTgg)+ (c 1laquogccTv 1c)p + c^ygc

- E(l - pound T 9 pound pound T V 1 C ) E = 9- (D19)

297

Discussion The drawback of the above equation is that it solves for the wrong variable P K + N gt in terms of C K + N required is the opposite to solve for pound K + N as a function of E t N which is known at time K+N

The equation could be used iteratlvely to find the P which matches the P L N already known in order to fUd the C K + ~ this type of method is not desirable however

Also to get -jraquo Jg into the form of a Riccati equation as in (D19) for which standard solutions exist a necessary assumption was that C K + f J

be nonsingular This implies having as many measurements as states at each measurement time which is a severe limitation when the point of the problem included minimizing the necessary number of measurements

D3 Results

Choices of the two performance criteria J- and J 2 show that obshytaining an eXtremum analytically is very elusive No modification made by this author to the above performance criteria led to a set of equations for which an analytical solution could be found

More importantly the fundamental concept of minimizing some pershyformance criterion with respect to the whole measurement matrix pound itself seems like the wrong thing to do By this is meant that the elements of C in a general formulation of the system equations have little to do with the placement of measurement sites An exception to this would be the case of decoupled state measurement where the model could he discreti2ed in space with one sensor in each element of the finite difference reshypresentation

Another possibility would be the formulation of the system in norshymal mode coordinates In this case the C matrix has a very definite

298

structure where the sensor placements z appear as arguments of the matrix C = C(z)

The former case with a diagonal matrix C was difficult to get into a form where optimal measurement locations would result In the latter case that of normal modes a way was not found to constrain the solution to fit the normal mode form for C

Also the addition of the quadratic term in C in J above is diffishycult to understand It was meant to represent measurement cost but in problem structure here any direct connection with cost of measurement is unclear

For these reasons a more fundamental approach was decided upon that of minimizing the performance Index directly with respect to the vector of sensor positions z The problem is also to he formulated in normal modes in order to simplify computation and also to direct the measurement positions to the problem structure through the measurement matrix C(z) The minimization 1s done for various dimensions of z repshyresenting various numbers of sensors Thus measurement cost is dirshyectly related to the dimension of j

299

APPFrtDIX E NUMERICAL MEASUREMENT QUALITY OPTIMIZATION

As mentioned in Section 537 the Inclusion of the optimal selecshytion o the types of measurement sensors to depoy at a measurement time depends upon the way in which the measurement cost is defined in the original optimal monitoring problem definition

The case outlined in this Appendix deals with measurement cost which is defined to be proportional to measurement instrument quality this is the general case first proposed in the optimal monitoring probshylem statement in Section 22 This is a realistic case in which a disshy

crete valued ikgtasurement cost function could be seen to apply as a funcshytion of the specific choices of measurement Instrument accuracy which could be obtained commercially In order to include the quality of meashysurement devices in the optimal design structure at each measurement time formulate the portion of the objective function associated with measurement Instrument quality first as a oontinuoua function of the sizes of the measurement errors or variances given by the diagonal elements of the measurement noise covariance matrix y that is the terms [ V L J 1 = l2m The optimal choice of measurement instrushyment accuracies would then be related to the resulting optimal values

for the variances [V]JJraquo the best instrument accuracies would then be those commercially available discrete choices which most closely correshyspond to the optimal measurement errors of values [V] i = l2m

To obtain the longest times between required measurements it seems plausible then to form an adjoined vector for the optimization in Sec-tion 536 a vector composed of the measurement sensor position z and their variances diag [V] as follows

300

_ i SSK- I I 5 I V 3 I

v 2 2

(E l )

To include selection of sensor accuracy in the optimization simply subshy

s t i tu te the 2m-vector Cu in (E l ) for i-vector zbdquo in the def in i t ion

(544) to obtain J(^ j ) the combined objective function for measurement

position and qual i ty optimization

A corresponding minor modification to the gradient in (549) with

T defined as in (548) results in the fol lowing

^SOV^KJK) ) ] (E2)

where from the definition of poundbdquo in (El)

laquo pound 7 S lt laquo E raquo (E3)

(see Athans and Schweppe [11] equation (717)) Thus the combined gradient in (E2) can be simply seen to be

301

laquo bull ) bull

wKih)

^ i If VI [ Zdiag HI J ^ J

(E4)

an adjoined 2m-vector of terms associated with z and V Note that finding pound at the first sample under the conditions of

Conclusion VI completes the design problem for all other sample tines to yield the final result stated as Conclusion VIII in Section 537

Notice that the main objective of every optimization problem in the monitoring design problem considered thus far has been to minimize the total number of samples taken over all necessary measurement times within the time interval of interest Adding selection of measurement instrument quality to the problem probably changes the design objective to one which seeks to minimize instead the total measurement cost as first discussed in Section 22 where more accurate measurements (smaller [VL)result in higher unit measurement costs This presents a tradeoff between using numerous low accuracy sensors and fewer high accuracy meashysurement devices This restructuring of the problem could easily be carried out with constraints placed upon available measurement instrushyment accuracies of the form

Vmin laquo t V ] 1 f lt V M X gt 1 - 1 2 m (E5)

These constraints entered as bounds on the bottom half of C in the gradient minimization algorithm would lead to optimal values for ^ for the entire range of possible dimensions for zbdquo m = l2n The optimal results forc K over all ra at the first measurement time ty

could then be extended over the whole time interval to determine which choice leads to the lowest total cost according to Conclusion VII this

302

optimal choice for [][J at the first sample time must be optimal for all other measurement times completing the design

The concepts of this Appendix for the inclusion of measurement instrument quality into the optimal monitoring design problem are preshysented to indicate how such an extension might be made The details though an important part of any realistic design are not crucial to the other results for the infrequent sampling problem and are omitted in the interest of brevity

303

APPENDIX F DESCRIPTION AND LISTING OF PROGRAM KALHAN

The major computer program written for this study is PROGRAM KALMAN It contains all the necessary coding for the optimal monitoring design and management computations It is written in FORTRAN IV for a CDC 7600 computer It accepts input via a card deck named INFILE and generates an answer file OUTFILE which is given to an ordinary lineprinter Bishynary disc files for intermediate storage are generated for use by the graphics package of postprocessor programs listed in Appendix Gj these two binary files are called PFILE and TFILE A flow chart of the intershyconnections among KALMAN its input and output files and its postprocessors is shown in Figure Fl The various computer-generated figures in this report listed with the programs from which they originated are included in Figure F2

The listing for PROGRAM KALMAN is included in this Appendix A nearly sufficient number of comment cards are included to permit usage directly A detailed explanation of its use is omitted here in the inshyterest of brevity the interested user should examine SUBROUTINE INPUT (lines 402 to 535) where all input statements for the file INFILE occur

A brief description is now given of the more important routines which comprise this program KALMAN is the main routine where the Kalman Filter algorithm of Figure 41 is implemented along with the logic assoshyciated with solution of the optimal monitoring problems as given in Conshyclusions II III X and XI SUBROUTINE FVAL computes [ P pound ( Z bdquo ) ] used

~K -K ]1

in the optimizations in SUBROUTINE KEELE for the optimal design problem

SUBROUTINE GRADNT is i t s f i rs t -o rder gradient that i s ^ f - [ppound(z)]

mdash

TOFT SIGMAT MAXTIME

TF1LE

POSTSP

plusmn_ POSTPLT

Figure Fl Relationships among PROGRAM KALMAN its input and output files and its postprocessors K 9 n a

305

PROGRAM FIGURES GENERATED BY VARIOUS PROGRAMS

KALMAN 6 2 6 3 6 4 6 5 6 1 3 6 1 7 6 2 0 6 2 2 6 2 4 6 2 6 6 2 9 6 3 1 6 3 2

CONTOUR 6 2 1 6 2 3 6 2 5 6 27 6 2 8 6 3 0 6 3 5 6 4 0

6 4 3 6 44

POFT 6 6 6 7 6 1 4 6 15

PELEM 6 8 610

SIGMAT 6 1 8 6 1 9

MAXTIME 6 1 2

POSTPLT 6 H 6 3 3 6 3 4 6 3 9 6 4 1 6 4 2 6 4 6

POSTFP 637

POSTSP 6 3 8 6 45

Figure F2 L is t of computer-generated figures and the programs from which they came

SUBROUTINE CONSTR defines the l inear inequality constraints of the form

(553) used in KEELE TRPKK and DTRPKK define Tr [ppound(z K ) ] and i t s gradishy

ent also UoOd in KEELE (they are only used in the comparison of perforshy

mance c r i t e r i a found in Section 623) bUBROUTINE SS computes the check

for the approach to steady-state monitoring as in step (3) of (572)

HAXSIG finds z the position of maximum variance in the output estimate

using SUBROUTINE MUELLER [61] as a root- f inder

SUBROUTINE KEELEA is th is authors modification of the or ig inal

l inear ly constrained nonlinear programming algorithm KEELE wri t ten by G

W Westley [127] the addition of a set of random start ing vectors has

been added to the or iginal routine (see lines 986 through 1000) Subshy

routines CONDRP PROJCT CONADD CUBMIN and PRBOLC are a l l routines from

the or iginal KEELE package

306

SUBROUTINE PAYNTER finds the number of terms necessary in the matrix AT

series expansion of J = e~ the matrix exponential state t ransi t ion mashyt r i x as discussed in Chapter 4 and Appendix A SUBROUTINE STM performs

1 1 i

the actual calculation of pound + 1 T pound + and r pound + in (412) for the discrete-

time state equation I t also performs the computation for g + 1 in (414)

and (415) as suggested by DAppolito [29] and detailed in Appendix B of

th is report

A number of matrix arithmetic algorithms are included (l ines 2076

through 2178) whose use was found to greatly simpli fy the numerous matrix

computations which arose in the solutions of the monitoring problems

SUBROUTINE INVERSE (lines 2179 through 2371) is based upon the LDU deshy

composition reported in Forsythe and Moler [ 38 ] i t is recognized as an

extremely accurate matrix inversion algorithm

NOISE NOISEW and NOISEV generate normally-distributed random vecshy

tors They use FUNCTION GN which is an implementation of the polar

method of generating random deviates from a uniform d is t r ibut ion as reshy

ported in Knuth [71] FUNCTION RAND returns a uniformly-distributed

pseudo-random number on the open interval (01) i t was coded by F N

Fritsch [42] and is completely portable in that is is useable on any b i shy

nary computer regardless of i t s machine word length

UBAR and UI generate the deterministic forcing function vector u( t )

in (41) A selection of possible analytical functions of time are i n shy

cluded see the l i s t i n g for deta i ls

A number of output routines complete the program the more notable

of which are XYPLOTS and ENDPTS wri t ten by H K McCue [84 ] These

routines provide the Hne pr inter plots of T r [ P K + N ] and cC + N as functions

of time t K + N Included in th is study

307

It should be mentioned that extensions of KALMAN to handle more complex problems could be easily accomplished The eigensystem which results from the boundary conditions of the particular problem under study is specified in SUBROUTINE INPUT problems other than that of one-dimensional diffusion with scavenging and no-flow boundary conditions as coded in this program can easily be included By moving the calls to PAYNTER (line 119) STM (123) SS (124) and MAXSIG (127) inside the main integration loop in KALMAN the loop between statements 20 and 100 (lines 141 and 349) time-varying system matrices and statistics could be inshycluded To handle noulinearities the basic Kalman Filter algorithm of Figure 41 could be modified to the form of the Extended Kalman Filter with some effort (see Oazwinski [65] Theorem 81) the basic structure of this program permits such a direct extension

Future work should include the development of a more complete invenshytory of pollutant source models Besides point sources representations for distributed background level and line sources in normal model form would broaden the scope of applicability of this program

308

1 PROGRAM KALMAN I INFILETAPE2=INK ILEOUTFILETAPE3=OUTFILE 2 2 PFILE1APE4=PFILETFILETAPES=TFILE) 3 VER = 10HVER43075 4 C 5 CALL CHANGE (7HKALMANI 6 COMMON Of NINNOUTNTTYNRUNVER 7 C 8 CALL CREATE (5HPFILE10000SUT) 9 INTEGER POUT 10 POUT = 4 11 CALL CREATE (5HTF1LE I 0000SWT) 12 INTEGER TOUT 13 TOUT = S 14 C 15 DIMENSION 16 C DIMENriONS OF FOLLOWING CARDS ARE DEFINED ONLY BY PROBLEM SUE MD 17 1 AIIOI0)B(1DI0)C(1010gt0(1010)AC(1010)BC(1010)DC(1010) 18 2 M0(lOJCAPMOi1010)V(10)CAPV(1010)Wl10)CAPW(1010) 19 3 Xl0)XKMl(10)XHKMlK(l0)XHKK(l0)Y(10gtYml0)Z(10)E(l0) 20 3 COV(IO) 21 4 SIGMAV(10)SIGMAW 1 0) Gl 1 0 1 01 P( I 0 10)PP(10 10) ID( 10101 22 5 U(10)lu(10)UK(103)W1(1010)W2(1010)W3(1010)DY(10) 23 6 ZU(lOlZWIlOlWKPIllO10) 24 C DIMENSIONS ON POLL I WINS CARDS ARE DEFINED BY NUMBER OF TIME 25 C POINTS TO BE STOKED FOR OUTPUT (NT) PROBLEM SIZE IND) AND 26 C NUMBER OF INDIVIDUAL VECTORS OR MATRIX COLUMNS TO BE STORED 27 C FOR PLOTTING AND OUTPUT (NP) DIMENSIONS OF IIOUT) AND (IPLT) 28 C COINCIDE WITH NUMBER OF CHOICES FOR OUI PUT AT STATMENT 20 OF 29 C MAIN PROGRAM AND N-JMBLR OK CHOICES FOR LERUGGING OUTPUT IN DEBUG 30 7 TST(110)ST(110105) JMAXi5)NAMESTI5)NCOLSTt5) 31 8 IOUT(10)IPLT(5)XYPWl(110)XrPW2(1IOITlTLES(48) 32 DI MENSIUN WSS(10lo)SYMBERRC2) 33 DATA 5VI1BERR 3HTRP3HSIG 34 REAL MO10 35 INTEGER FMAX 36 COMMON PRC5 NMZMAXAPCAPVWKP1WSSISING 37 EXTERNAL FVALGRADNTCONSTR 38 EXTERNAL TRPKK DTRPKK 39 PI = 314159266 40 C SET SIZE OF ARRAY DIMENSIONS HERE 41 ND = 10 42 NT = 110 43 NP = 5 44 C ND = THE MAXIMUM PROBLEM SIZE TO BE FIN (LENGTH OF X-VECTOR) 45 C NT i THE MAXIMUM NUMBER OF POINTS TO BE STORED FOR OUTPUT 46 C (CAUTIONTHIS DIMENSION IS USED IN THE 3-DIMENS1ONAL 47 C ARRAY (STltNTNDNP)) THUS IT RAPIDLY ADDS STORAGE 48 C TO LENGTH OF PROGRAM) 49 C NP = THE MAXIMUM NUMBER OF VECTORS TO BE STORED 50 C WHCR NP = (4 bull ND) AS PROGRAMMED IN ORDER TO STORE 51 C THE FALLOWING(X XH E COV AND ALL M COLUMNS OF G) 52 C HERE M CAN BE AS LARGE AS ND 53 C 54 C HERE THE FOLLOWING EOUALITIES ARE MADE FOR THE CALLS TO (0UTPUT3) 55 Nl = 110 56 NJ = NO 87 NK = NP 58 C 59 C HERE I MAX THE ACTUAL NUMBER OF POINTS TO BE STORED IS SET 60 C EQUAL TO NT THE DIMENSIONS OF ASSICIATED ARRAYS IT COULD BE 61 C SET SMAILER IF OESIREO BUT UNUSED STORAGE WOULD RESULT 62 I MAX = NT 63 C 64 C SET LOGICAL INPUTOUTPUT UNIT NUMBERS HERE 05 N1N = 2 66 NOUT = 3 67 NTTY = 59 68 C INITIALIZE RUN COUNTER AND START FIRST RUN 69 NRUN = 0 70 1 NRUN = NRUN 1 71 CALL INPUT (N LM LL NTL I PLT 10UTLENGTH 72 2 T0T10TACBCCDCIUUK 73 3 NOCAPMOWCAPWVCAPVIERRORNOPOEPSKMAXTITLESND 74 4 ZZUZWZMAXERRLIMLIMITALPHANSEARCHSYMBERR 75 5 NLINFMAX IWC0NVG0ELTEPSLONRH0DELTAPFLOWERACC I EXP) 76 C 77 78 80 C SET UP CONSTANTS FOR KEELE CALLING SEQUENCE 81 C 82 83 84 NP = N bull 1

M2 = M laquo 2 NE bull= 0 NP bull = N bull INITIALIZATION CALL NOISE (MOCAPMOXNND) GENERATE NXN IDENTITY MATRIX (ID) DO 3 I - 1N DO 2 J=1N

309

91 i n n Jgt = oo 92 3 10(1I) bull 10 93 C INITIALIZE INITIAL C0NDITIOMS OF SYSTEM MATRICES USE -00 FOR 94 C THOSE WHICH ARE UNDEFINED AT T = T0 95 DO 10 I M N 96 JO 9 J=1N 97 G(IJgt = -00 96 PI I J) = CAPMOd Jgt 99 9 PP(IJ) = CAPMOd J) 100 XKMld 1 laquo XII gt 101 XKKKI I) laquo M O I D 10pound YtIgt raquo -00 103 YH(I) = -00 104 Elt1) = -00 105 Wdgt = -00 106 VI I ) = -00 107 10 CONTINUE 108 T = TO 109 K = 0 110 NOP = 0 112 C COMPUTE STATE CONTROL AND NOISE TRANSITION MARTICES FOR THE 113 C DISCRETE PROBLEM [THEY ARE AIKK-11 B(KK-l) AND D ( K K - M 1 I M C GIVEN THEIH EQUIVALENTS FOR THE CONTINUOUS CASE CACBC AND D C ) 115 f WKP1 REPRESENTS THE DISCRETIZATION OF CONTINUOUS CONVOLUTION OF 116 C CAPW1T) FOR T BETWEEN TK AND TKraquo1 WHERE CAPW(T) IS THE 117 C COVARIANCE MATRIX FOR THE MODEL STOCHASTIC INPUT W(T) M S C FORiT DETERMINE NUMBER OF TERMS TO BE USED IN TRUNCATED SERIES KK 119 CALL PAYNTER ltKKKMAXNDTEPSNOUTACND) 120 C IF PAYNTER CRITERION WAS NOT MET SET NUMBER OF TERMS 121 C IN MATRIX EXPANSION OF EXP(AT) TO MAXIMUM ALLOWED IN INPUT DECK 122 IF(KKLTO) KK = KMAX 1Z3 CALL STM (NLLLACBCDCCAPWABDWKP1KKDTNOgt 124 CALL SS (NAWKPl100EPSNSSWSSND) 125 C NOTE THAT WIDTH OF INTERVALS AND MAXIMUM NUMBER OF ITERATIONS 126 C IN F1ND1N0 POSITION Of MAXIMUN SIGMA IS PROBLEM-SIZE DEPENDENT 127 IFCLIMITE02) CALL MAXSIGISIGMAXZSTARI(5raquoNgtCONVG5Ngt 128 C 129 tRI Tpound lPOLTgtNtltlLL NTL TO Tl LIMIT 130 WRITE(TOUT)NMLLNTLTOTlLIMITERRLIM 131 WRITElPOUTXiAil J)J=IN) l=lN) 132 WRITE(POUT)(IWKPlilJ)J=lN)I=1N) 133 WRITEIPOUT)(ltWSS(l J)J=1NI l=tN) 134 WRITE I POUT) UCAPWdJ)J=tLLgtl=1LLgt 135 W R I T E C P O U T K l C A P V d J ) J=1M)1=1M) 136 IF1NTL8T0) WRITE(POUT) lt (Tl TLES1 1 J) J--1 8) I =1 NTL) 137 IFINTLGTO) WRITE(TOUT) ((TITLESIJ)J=18)I=INTLgt 138 WRITEIPOUTINOPrERRLIMDT 139 WR1TEIP0UTX (CAPMOd J) J=1N) 1 = 1 N) 140 C 141 20 CONTINUE 142 C 143 C THIS IS THE BEGINNING OF LOOP WHICH CALCULATES SYSTEM AND FILTER 144 C TIME-HISTORIES WITH THEIR RECURSIVE EQUATIONS 145 C THE LOOP STARTS AT STATEMENT 20 AND ENDS AT 100 146 C 147 C 148 C SELECT ERROR CRITERION VALUE ACCORDING TO (LIMIT) 149 C 150 IF1L1MITEQ1) ERROR = TR (PPN) 151 IF(LIMITpound02) ERROR SIGKPN IZSTARPPNND) 152 C 153 C THIS IS THE CRUCIAL CHECK OF MANAGEMENT ALGORITHMIF THE ERROR 154 C IN THE ESTIMATE EXCEEDS THE GIVEN LIMIT GO TO MAKE A MEASUREMENT 155 C IF NOT RETURN TO CONTINUE PREDICTION 156 C 167 IFIERRORGEERRLIM) GO TO 28 156 C 159 C DO THE OUTPUT FOR TIME T 160 C NOTEFIRST TIME THROUGH INITIAL CONDITIONS ARE OUTPUTTED 161 C 162 C DEFINE THE VARIANCE VECTOR ICOV) FROM THE COVARIANCE MATRIX (Pgt 163 DO 5 1=1N 164 5 COVd I = PP(I I) 165 C 166 IF UCIUT(1gtNE-Igt 167 2 CALL DEBUG (NL M LLTTOXXHGYYHEWVPPPIOUTND) 168 C 169 IFdPLTdlEQil CALL 0UTPUT3 (X3H X 0 N T TO Tl TST ST 170 2 XYPW1XYPIgt2TITLpoundSNTLJMMESTNCOLST|MAXJMAXN1NJNK) 171 IFltIPLT(2gtEQDCALL 0UTPUT3 (XHKK3H XH0NTTOtlTSTST I 72 2 XYPWIXVPW2TITLESNTLNAMESTNCOLST I MAXJMAXNINJNK i 173 F(IPLT(3gtE01) C A L L 0 U T P U T 3 (E3H EONTTOTlTSTST 174 2 XYPW1XYPU2TITLESNTLNAMESTNCOLST(MAXJMAXNINJNK) 175 IFIIPLT(4)E01) CALL OUTPUTS (COV3H00V0NTTOTlTSTST 176 2 KYPW1XYPW2TITLESNTLNAMESTNCOLST IMAX JMAX N1 NJ NK 177 lF(IPLt(5)EQ11 CALL OUTPUTS (ERRORSYMBERRILIMITl 176 1 O 1TT0TITSTST 179 2 XYPU1XYPW2TITLESNTLNAMESTNCOLSTIMAXJMAXNlNJNKI 180 C

310

let c 182 bull S3 C 184 C STORE LAST VALUE OF CAVAR1ANCE IN (P) THEN PREDICTED VALUE IN IPP 185 C 186 CALL ATOB (PP P NNND) 187 CALL AOOTBT ltP AW1 N N N ND) 18S CALL ADOTB (AWlW3NN NND) 189 CALL APLUSB IW3WKP1PPNMND) 190 C 191 C OBTAIN INPUT VECTOR OF TIME FUNCTIONS (UlITgt Iraquo1 L) FOR DETER-192 C MINISTIC FORCING FUNCTION 193 IF(LNEO) CALL UBAR(LTUIUUKNDgt 194 C 195 C GENERATE PROCESS NOISE W(T) 196 CALL NO I SEW (TCAPWWS10MAWLLND) 197 C 198 C INCREMENT TIME (T) AND ITERATION COUNTER (K) 199 T = T DT 200 K = K 1 201 C 202 C CALCULATE MODEL STATE X(Kgt CALL IT (X) 203 C 801 DO 24 IIN 205 X(lgt laquo 06 206 DO 21 J=1N 207 21 X(I) = X(l) bull AllJ)laquoXKM1(Jgt 208 IF(LEQO) 00 TO 31 209 00 22 J=1L 210 22 XII) = X(lgt BIIJ)U(J) 211 31 CONTINUE 212 DO 23 J=1LL 213 23 X(l) = X(i) bull DJ)laquoW(J) 214 24 CONTINUE 215 C STORE CURRENT (X) IN (XKM1) FOR NEXT ITERATION 216 00 2S 1-1N 217 XKMKI) a XII) 218 25 CONTINUE 219 C 220 C CALCULATE PREDICTED STATE ESTIMATE XH(K-1Kgt CALL IT (XHKM1K1 221 C 222 DO 39 I = 1 N 223 XHKMIK(I) = 0 224 00 36 J=1N 225 36 XHKMIK(I) = XHKMIK(I) bull AltIJ1XHKKltJ) Z26 IFILEQO) GO TO 32 227 DO 37 J=1L 228 37 XHKMIK(I) =XHKM1K(I) B(IJ1laquoU(Jgt 229 32 CONTINUE 230 39 CONTINUE 231 C 232 C COPY PREOICTED STATE ESTIMATE VECTOR INTO CORRECTED ESTIMATE 233 C VECTOR FOR INITIAL VALUE IN NEXT PREDICTED CYCLE 234 C 235 DO 40 llN 236 XHKK(I) = XHKM1KU) 237 40 CONTINUE 238 C 239 C 00 TO CHECK FOR VIOLATION OF ESTIMATION ERROR CONSTRAINT 240 C 241 SO TO 20 242 C 243 28 CONTINUE 245 C THE ESTIMATION ERROR LIMIT (ERRLIM) HAS BEEN REACHED 246 C IT IS NOW NECESSARV TO TAKE A MEASUREMENT OF THE SYSTEM OUTPUT 247 C IN ORDER TO OBTAIN MORE INFORMATION ABOUT THE SYSTEM STATE 248 C 249 C UNLESS TIME IS AT INITIAL VALUE BR1NQ BACK TIME TO VALUE WHEN 250 C ESTIMATION ERROR WAS LAST SATISFIED IN ORDER TO STORE AND OUTPUT 251 C BOTH THE PREDICTED AND CORRECTED VALUES AT EACH MEASUREMENT TIME 252 1FIKEQ0) 00 TO 29 253 T = T - DT 254 K = K - 1 255 29 CONTINUE 256 C 257 C WRITE NUMBER OF OPTIMIZATION (NOP) AND (PI MATRIX FOR POSTPROCESS 258 NOP bull NOP 259 260 261 C 262 WRITE(N0UT2001)N0PT 263 2001 FORMAT tlaquo1laquol2laquo) SAMPLE TIME = E103gt 264 CALL MATOUTPPNNlHPN0l 266 C 266 C (Ml IS THE NUMBER OF MEASUREMENTS TO BE TAKEN FIND THE OPTIMAL 267 C PLACEMENT OF THOSE M MEASUREMENTS THE PLACEMENT WHICH MINIMIZES 268 C THE FUNCTIONAL WHOSE VALUE IS (TR2) THE OPTIMAL LOCATIONS ARE 269 C STORED IN THE VECTOR (Zgt 270 C

311

271 C CAUTION FIRST TWO ARGUMENTS ARE IMM2) AS USED HERE BUT 272 C THEY ARE CNM) AS USEO IN (KEELE) 273 C 274 CALL KEELEA CM M2 NENLINFMAX IWZP11CONVGOELT 275 2 EPSLONRHODELTAPTRPKKDTRPKKCONSTR1 FAILFLOWERACCIEXP 276 3 NSEARCH) 277 IFIISINGEO3) GO TO 994 278 IF(1FA1LGTO) GO TO 995 279 WRITECPOUTHZCI ) 1=1Ml 260 CALL KEELEA (MM2NENL1NFMAX1W2PI 1 CONVG DELT 261 2 EPSLaNRHODELTAPFVALGRADNTCONSTRIFAILFLOWERACCIEXP 283 IFCISINGEO3) GO TO 994 284 1FCIFAILOTO) GO TO 995 285 WRITECPOUT)CZCl)1=1M) 286 C 287 C WITH OPTIMAL MEASUREMENT POSITIONS ltZ1 CALCULATE 288 C OPTIMAL MEASUREMENT MATRIX IC) = (C(Zgti 289 C 290 DO 52 l=1M 291 DO 51 J = 1N 292 51 CIIJI t C0SdJ-1)raquoPIlaquoZII)) 293 52 CONTINUE 294 C 295 C KNOWING OPTIMAL PLACEMENT (Z) OF MEASUREMENT DEVICES 296 C CALCULATE MODEL OUTPUT MEASUREMENT YltKgt CALL IT (Y) 297 C 298 r SET MEASUREMENT NOISE V(T) 299 CALL NOISEV (TCAPVVSIGMAVMND) 300 C 301 DO 30 I=1M 302 Y(I) = 00 303 DO 26 J=lN 304 26 Y (I ) = Y ( I ) 305 Yd ) = Yd) 306 30 CONTINUE 308 C CALCULATE FILTER SAIN MATRIX G(K) CALL IT (Q) 309 C 310 CALL ADOTBT (PCWlNNMNDI 311 CALL ADOTB (C Wl W2 M N M ND) 312 CALL APLUSB ltW2CAPVWlMMND) 313 CALL INVERSE (MW1W2IERR) 314 IF (IERRLTO) GO TO 992 315 CALL ADOTBT IPCW3NNMND) 316 CALL ADOTB 1W3W2GNMMND) 316 C CALCULATE CORRECTED STATE ESTIMATE XH(KK) CALL IT (XHKK) 319 C ALSO CALCULATE ESTIMATE ERROR E(K) = XIK) - XH(KK) CALL IT ltE) 320 C 321 DO 42 1=1M 322 CXH = 00 323 DO 41 J=1N 324 41 CXH = CXH laquo CdJ)XHKMtKIJ) 325 YHltI) = CXH 326 42 DYU) = Yd 1 - CXH 327 DO 44 I = IN 328 GDY = 0 329 DO 43 J=1M 330 43 GDY = GDY bull GdJ)laquoDY(J) 331 XHKKW) = XHKMlKd) + QDY 332 44 Elll gtXIII bull X H K K d ) 333 C 334 C CALCULATE CORRECTED ERROR COVARIANCE MATRIX P1KK) CALL IT ltPP) 336 CALL ADOTB ltGCW1NMNND) 337 CALL AMINSB (IDWlW2 NNND) 338 CALL ADOTBT (PW2WlNNNNDgt 339 CALL ADOTB ltW2W1W3NN NND) 340 CALL AOOTBT (CAPVGWlMMNND) 341 CALL AOOTB IGW1W2NMNND) 342 CALL APLUSB CW3W2PPNNND) 343 C 344 C FILTER AND STATE CALCULATION FOR THIS STEP IS FINISHED 345 C RETURN TO TOP OF LOOP BETWEEN STMTS 20 AND 100 TO OUTPUT RESULTS 346 C THEN CHECK TIME LIMIT AND CONTINUE SOLUTION 347 GO TO 20 346 C 349 100 CONTINUE 350 C THIS IS THE END OF PROBLEM NUMBER (NRUN) TELL THE TTY AND GO TO 351 C NEXT PROBLEM 352 WRITECNTTY 1001INRUN 353 1001 FORMATI 23H OK) 354 C 355 C WRITE I NOP) SET TO ZERO TO CLOSE OUT POSTPROCESSING 356 NOP = -1 357 WRITEIPOUT)NOPTERRLIMOT 358 C 359 GO TO 1 360 99 CONTINUE

312

361 II = -I 362 WRITEIPOUTMI 363 WRITEIYOUTIll 364 CALL EXITIO) 365 C XXX ERROR EXITS XXX 366 991 WRITEiNTTV9391) 367 9991 FORMA I ltlaquo CANNOT CREATE OUTFILE TRY AGAIN) 3GB CALL EXITIO) 369 902 WRITEtNOUT9992) 370 9992 FORMATraquo 3IN0IJLAR MATRIX IN KALMAN SAIN EQUATION 371 2 OFFENDING MATRIX IS Ml laquo ICXPXCT CAPVlO 372 CALL MATOUTP IWlMM2HW1NDI 373 C DUMP OUTPUT GENERATED BEFORE SINGULAR CONDITION OCCURRED 370 CALL 0UTPUT3 (XIOM SINGULAR) 375 WRITE(NTTY9982)NRUN 376 99B2 FORMAT128H NG-SING) 377 C THIS PROBLEM SINGULAR SO GO TO NEXT PROBLEM IN INPUT DECK 378 GO TO 1 379 993 VRtTEINOUT 9993) a60 9993 FCRHATWS2H THE PAYNTER SERIES EXPANSION CRITERION WAS NOT MET) 381 WRITEINTTY990S1NRUN 382 9903 FORMAT128H NG-PAYN) 383 C THIS PROBLEM CANNOT BE RUN SO GO TO NEXT ONE IN INPUT DECK 384 GO TO I 385 994 CONTINUE 386 C A MATRIX BECAME SINGULAR IN THE OPTIMIZATION PROCEDURE 387 C DUMP OUTPUT BEFORE SINGULAR CONDITION OCCURRED 388 CALL 0UTPUT3 IX10H SINGULAR) 389 WRITENTTY99841NRUN 390 9984 FORMAT1212H NG-SING OPT) 391 C THIS PROBLEM SINGULAR SO GO TO NEXT PROBLEM IN INPUT DECK 392 GO TO I 393 995 CONT1NUE 394 C CONVERGENCE PROBLEMS IN OPTIMIZATION 395 WRITE(N0UT999SgtIFAIL 390 9995 FORMAT CONVERGENCE PROBLEMS IN (KEELEA1 IFAIL = 12) 397 CALL 0UTPUT3 IX I OH SINGULAR) 398 WRITpoundINTTY9S8SgtNRUNIFAIL 399 S995 FORMATJ220H NG-CONV OPT 1FAIL=I2) 400 GO TO 1 401 END

402 SUBROUTINE INPUT (NL MLLNTLIPLTI8UT LENGTH 403 2 T0T1 OTABCD 1UUK 404 3 MOCAPMOWCAPWVCAPVI ERRORNOPQEPSKMAXTITLESND 405 4 ZZU ZWZMAXERRLlMLIMITALPHANSEARCflSYMBERRi 406 5 NLINFMAX1WC0NV0BELTEPSLONRHaOELTAPFLOWERACCIEXP) 407 DIMENSION IPLTIS) 408 I IOUTI10)ANDND)BINDND)CINDND)DINOND)IU(NU) 409 2 UKCND3)MOND)CAPMO(NDNO)WIND)CAPWINDND) 410 3 V(ND)CAPVINDND)TITLESi48gt 411 4 Z(NO)ZUINOgtZWINDgt 412 DIMENSION SYMBERRI2) 413 REAL MO 414 COMMON I0 NINNOUT NTTYNRUN VER 419 READ1NIN101) NLMLLNTLIPLTII)1=15)(I0UT1J)J=1101 416 2 LENGTH 417 101 F0RMATC5I10511X01)1001 I 10) 418 IF INEQO) GO T6 99i 419 IFNRUNGTI) GO TO I 420 IF I LENGTHEOO) LENGTH = 20000 421 CALL CREATE I7H0UTFILELENGTHDUMMY) 422 F I DUMMYLT0) GO TO 992 423 1 WRITEIN6UT103gtVERNRUN 424 2 NLMLLNTLIIPLTII)1 = 15)IIOUTIJ) J=110) LENGTH 425 103 FORMAT I44H10ISCRETE KALMAN FILTER SIMULATION PROGRAM A10 426 1 10H RUN NO 12 427 2 31H PROBLEM INPUT IS AS FOLLOWS 428 3 I OXIHNI OXI ML10X1HM9X2HLLOX3HNTLIXI OH IPLT 429 4 IXI OH -I0UT5X6HLENGTH5I1XI 10)IX5IX01-IX1OOI 430 5 IX110) 431 C SEE IF ANY IOUTIII IS NONZERO IF NOT SET I0UT(1gt=-1 AS A FLAG 432 C THIS IS TO SIGNAL THAT (DEBUG) IS NOT USED (DEBUG) IS MAINLY 433 C USED FOR DEBUGGING PURPOSES IT PRODUCES OTHERWISE POOR OUTPUT 434 NDEBU3 = 0 435 DO 3 I = 110 436 3 I F I 0 U T I D l E Q I ) NDEBUG = NDEBUG bull 1 437 IF(NDEBUGEQO) IOUT1 ) = - I 438 READ (NIN102) TOT1DTNOPQEPSKMAX 439 102 FOMAT 13E103I 10ElO3110 440 IF lEPSEOOOS EPS = 1 E-5 441 IF(KMAXEOO) KMAX = 100 442 WRITE(N0UT105I TOTlDTNOPOEPSKMAX 443 105 FORMAT9X2HT09X2HT19X2HDC7X4HN0PQ8X3HEPS7X4HKMAX 444 2 3I1XEI03)1X1101XE103IX110) 445 Tl = 99999999 laquo Tl _ _bdquo 446 READININ 120)NLINFMAXIWlEXPCONVGBELT EPSLONRHO DELTAP 447 2 FLOWERACC 448 120 F0RMATI4I1O7E1O3)

313

4 4 9 IF ( N T L F O O ) 6 0 TO 5 450 DO 2 1=1NTL 45t READ i N I N 1 0 0 ) ( T l T L E S f I J ) J = I 8 ) 452 100 FURMAT(8A10) 45 WRITE (N0UT108) ( T I T L E S ( I J ) J = 1 8 ) --54 100 FORMAT IX 8A10I 455 2 CONTINUE 456 5 CONTINUE 457 IF(LEO 0) 00 TO 7 458 WRITE (NOUT1061 459 106 FORMAT INPUT SEI ECTORS AND PARAMETER VALUES ARE AS FOLLOWS 460 2 I 1NPT Algt A(2) Alt3gtlaquo) 461 DO 10 l=lL 162 READ (NIN104) IU(1)(UKlt1JgtJ=l3) 463 104 rORIlAI I I 1 9X 7E1 0 3) 464 WRITE (N0UTI07) IIU(1)ltUK(IJ)J=I3) 465 107 FORMAT tl3 I 67(1XElO3)) 466 10 CONTINUE 467 7 CONTINUE 468 CALL VECINPT (MON2HM0ND) 469 CALL MATINPT ICAPMCNM5HCAPM0NO) 470 CALL MATINPT ICAPWlLLL4HCAPWND) 471 CALL MATINPT ICAPVMM4HCAPVND) 472 C 473 C PRODI FM STRUCTURE IS FORMULATED IN DIMENSIGNLESS COORDINATES 474 _bull SO 1 i-IAT 0NE-DII-ILNS10NAL MEDIUM IS OF UNIT LENGTH 475 ZMAK = I0 476 C 477 1F(L NEO) CALL VECINPT IZUL2HZUND) 478 CALL VECINPT IZWLL2H2WND) 479 CALL VECI PT(ZM1HZNO) 480 READININ 111 ) ERRLIMLI MlTALPHANSEARCH 461 lit FOFMAT(ltE103 I 10)) 482 WRITECNOUT112) NSEARCH 463 I 12 FORMAT ( 484 3 lCH NUMBER OF POINTS FOR RANDOM SEARCH INITIALIZATION INSEARCH) = 485 4 15) 486 IFCLIMITEO 1) WRITElNOUT 1 I31ERRLIM 487 113 FORMAT THIS IS A MONITORING PROBLEM OF THE FIRST KIND 488 2 bull WITH A C0NS TRAIN1 ON THE ALLOWABLE ERROR IN THE STATE ESTIMATE 489 3 THE ESTIMATION ERROR CRITERION IS THE TRACECPCKK+N)3 490 4 bull fHC CONSTRAINT ON THE ERROR IN THE STATE ESTIMATE IS FIXED AT 491 5 bullbull TRLIM bull-raquo El 0 3 laquo 1 laquo ) 492 I F I L I M 1 T E 0 2 ) W R 1 T E ( N 6 U T 1 1 4 1 E R R L I M 403 114 FORMATbull THIS IS A MONITORING PROBLEM OF THE SECOND KIND 494 2 WITH A CONSTRAINI ON THE ALLOWABLE ERROR IN THE OUTPUT- 435 3 ESIIMATE THE ESTIMATION ERROR CRITERION IS THE MAXIMUM 406 4 VALLE OVER I HE LENGTH OF THE MEDIUM Zlaquo 497 5 OF THE VARIANCE OF THE ESTIMATE OF THE OUTPUT GIVEN BY 490 6 bull SIGMA(Zgt = CT(Z) tP(KK+N)] CIZ) 499 7 bull THE CONSTRAINT IN THE ERROR IN THE OUTPUT ESTIMATE IS FIXED- 500 8 bull AT- SIGMALIM = raquo El 0 3 1 ) 501 WRITE (NOUT H O I ALPHA C02 110 FORMAT ARAMLTERS FOR SYSTEM DESCRIPTION ARE 003 2 laquo DIFFUSION CONSTANT K = IOOOE+00 5D4 3 laquo LENGTH OF MEDIUM L = 1OOOE00 505 4 SCAVENGING RATE ALPHA = laquoE103) 506 C KNOWING ZU AND ZW VECTORS DEFINE SYSTEM MATRICES AB AND D 507 PI = 31459266 506 DO 12 1 = 1 Ngt 509 DO 11 J=1N 510 11 A(lJ) = 6 511 12 A(ll) bull -(((I-1 )raquoP1 )raquolaquo2 ALPHA) 512 DO 15 1=1N 513 IF(LEOO) GO TO 8 514 DO 13 J=1L 515 B(IJ) = COS(I-1)laquoPIZU(J)gt 516 13 I Ft 1 EO 1) BltIJ) = 5 517 8 CONTINUE 518 DO 14 J=]LL 519 D(IJ) = COS((I-1)PIZW(Jgt) 520 14 IF(IEQ-I) D(IJ) = 5 521 15 CONTINUE 522 CALL MATOUTP (ANN1HAND) 523 IF (LNEO) CALL MATOUTP (BNL1HBND) 524 CALL MATOUTP (DN LL1HDND) 525 I ERROR = 0 526 RETURN 527 C ERROR EXITS 528 C I ERROR = 0 OK 529 C IERROR s -I END OF INPUT DECK RETURN TO EXIT 530 C IERROR = -2 CANNOT CREATE OUTPUT FILE RETURN TO EXIT 531 991 I ERROR = -1 532 RETURN 533 992 I E R R O K S -2 53ltt RETURN 535 END

536 SUBROUTINE FVAL (ZPI11

314

937 C RETURNS tPCKK)(Z(Kgtgt1C11) 538 C FOR USE IN MAXIMIZATION OF ERROR-LIMIT INTERCEPT TIME By 530 C MINIMIZING- THE (II) ELEMENT OF THE CORRECTED COVARIANCE MATRIX 540 C AT TIME IK) 541 COMMON PROB NMZMAXAPCAFVWKPIWSSISINB 542 DIMENSION A( 10 lol PC 10 |0gt CAPlC 10 10) WKPI 1101 0) WSS( 1 0 10) 543 DIMENSION 0lt10101 PSII(1010)2(1)Wl11010)W2(10 I 0)W3(10101 544 N D gt 10 545 F = 3I4I5926B 54E DO 12 1=111 547 DO 11 J=1N 548 II C(lJ) = C0S((J-1)raquoPIraquoZ(Igt) 549 I 2 CONTINUE 550 C FIRST COMPUTE IPSIIJ tClaquoP(K-lK)laquoCT1INVERSE 551 00 5 1AMM 952 00 2 IC=1N 553 WKIAIC) = 0 554 DO 1 101N 555 I W K I A I C ) = W K I A i C ) bull C( I A 10) P( ID IC) 550 2 CONTINUE 557 00 4 1B=IM 556 W 2 M A I B ) CAPVUAIBI 559 DO 3 IE=1N 560 3 W2C1AIB) = W2UAIB) Wl (I A I E)raquoC( IB I E) 551 4 CONTINUE 562 5 CONTINUE 563 CALL INVERSE (MW2PSIIIERR) 564 IF(IERRLTO) GO TO 991 565 C COMPUTATION OF IPIZK)(KK)1111 566 P11 = P(ll) 567 00 7 IC=tM 568 W1PI = 0 559 DO 6 1DraquoIM 570 6 W1PI = W1PI bull W1CIDl)raquoPSII110IC 571 7 PI1 = P11 - W1PtlaquoWlilC1) 572 ISINB gt 0 073 99 RETURN 574 991 1S1NG s 3 57 RETURN 576 END

577 SUBROUTINE GRADNT (Z0P11) 576 C 579 C RETURNS OCPCKKlIZCK))Jl1Igt0Z 580 C THE DERIVATIVE IF THE (11) ELEMENT OF THE CORRECTED COVARIANCE 581 C MATRIX AT TIME (K) WITH RESPECT TO THE VECTOR (Z(Kgt) 552 C 583 COMMON PROB NMZMAXAPCAPVWKP1WSSISINO 584 DIMENSION Alt1010)Plt1010)CAPVl1010)WKP1(1010)WSS(1010) 585 DIMENSION CC1010)DOC 1010)Z(1)DPI 1(1)Wl(1010)W2(10to) 506 2 W3C1010)PSI1(1010) 587 NO = 10 588 PI o 314158266 569 C 590 C FIRST COMPUTE CPSIIJ tClaquoPltK-lK)laquoOT]INVERSE 591 C 592 C GENERATE C(Z(Kgt) MATRIX (CALL IT C ) 593 C GENERATE 0C( I J)DZC I ) MATRIX (CALL IT D O 594 DO LO IlM 595 DO 19 J1N 596 C(IJgt bull COSltJ-1)PI-2(l)) 597 19 00(1J) gt -1J-1)PIlaquoSIN((J-1)laquoPIraquoZ(I)) 598 20 CONTINUE 599 C 600 DO 5 IAlaquo1M 601 DO 2 ICalN 602 WKIAIC) gt 0 603 DO 1 IDIN 6J4 1 WKIAIC) a UKIA1C) Clt I A ID)raquoPlt 10 1C) 605 2 CONTINUE 606 00 4 IB1M 607 W2lt1AIB) - CAPVlIAIB) 60S DO 3 lEolN 609 3 W2CIAIB) = W2ltlAtB) bull Wl ( I A IE)raquoCUB IE) 610 4 CONTINUE 611 5 CONTINUE 612 CALL INVERSE ltMW2PSIIlERFt) 613 IFCIERRLT0) GO TO 991 614 C 615 C COMPUTE PSIIlaquoCraquoP 616 C 617 00 7 IA=1M 616 W2CIAI) bull 0 619 DO 6 |B=1M 620 6 W2IIA 1) s W2CIA 1) PSI I (IA IBXW1 IB I ) 621 7 CONTINUE 622 C 623 C COMPUTE BRACKETED MIDDLE TERM OF SECOND MATRIX EXPRESSION 624 C

315

625 DO 12 IA=1M 626 DO 11 IC=1M 627 W3(1AIC) 3 0 628 DO 10 IB=1N 629 10 W3(IAICgt = W3(1AICgt + W1 ( I A IB) raquoDC( 10 1B1 630 11 CONTINUE 631 12 CONTINUE 632 C 633 C NOW COMPUTE THREE MATRIX TERMS IN GRADIENT 634 C FIRST TERM 635 C 636 DO 69 I IraquoIM 637 C 638 DPI 1(1 I) = 0 639 C 640 PDC = 0 641 DS 8 1A=1N 642 8 PDC = PDC bull P(l1A)laquoDC(IIIAgt 643 DP1K I 1 ) = PDCraquoW2(I 11 ) 644 C 616 C THIRD TERM EQUALS FIRST TERM SO JUST DOUBLE THE FIRST 646 C 6 4 7 D P I K I I ) bull 2 lt D P I K l I gt 648 C 649 C FINALLY COMPLETE SECOND TERM 650 C 651 DO 24 1B=1M 652 IF(IBEQII) 00 TO 22 653 POCP - W2III1)raquoW3(IBII) 654 SO TO 24 655 22 POCP = W2I1I 1 )laquoW3(I1 II ) 656 00 23 IA=1M 657 23 POCP = POCP W2(1AIgtraquoW3(lAlIgt 65B 24 DPIKII) = DPI 1(11) - PDCPraquoW2(IB1gt 659 C 660 C INCLUDE OVERALL MINUS SIGN 661 C 662 DPIKII) = -lraquoDPIKII) 663 C 664 89 CONTINUE 665 90 ISING = 0 666 RETURN 667 991 ISINQ = 3 668 RETURN 669 END 670 SUBROUTINE CONSTR 671 COMMON BAMRWH G(1020)B(20) 672 DIMENSION At 1010)Plt1010)CAPVM 1010)laquoKP1lt1010)WSS(10lO) 673 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 674 DO 1 I=1M 675 G(ll) = -I 676 B(l bull 0 677 G(IMIgt = 1 676 1 B1MI) = ZMAX 679 RETURN 680 END 681 SUBROUTINE TRPKK (ZTRP) 682 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 6B3 DIMENSION A(10I 0)WKP1(to10)WSS(1610) 684 DIMENSION PI 10 10)C[10 10)CAPV(1010)PSII(1010) 685 DIMENSION Z(1)Wllt1010)W2I1010) W3(10 10) 686 IB laquo 10 687 PI raquo 314159266 688 C CALCULATE C(Z) AND PSIKC(Z)) AND PUT IN COMMON 689 DO 2 I=1 M 690 DO 1 J O I N 691 1 C ( I J ) 3 C O S K J - I gt raquo P I raquo Z ( I ) gt 692 2 CONTINUE 693 CALL ADOTB (CPW1MNNND) 694 CALL AOOTBT (Wl6W2MNMND) 695 CALL APLUSB ltW2CAPVW3MMND) 696 CALL INVERSE (MW3PSIII ERR) 697 IFIIERRLT0)00 TO 991 698 CALL ADOTB (PSIIW1W2MMNNDgt 699 CALL ATDOTB (MlU2W3NMNND) 700 CALL AM1NSB (PW3W2NNND) 701 TRP 0 702 DO 10 l=1N 703 10 TRP = TRP W2(II) 704 ISING laquo 0 705 99 RETURN 706 991 ISINQ = 3 707 RETURN 708 END

316

709 SUBROUTINE DTRPKK CZDDZ1 710 COMMON PROB NMZMAXA PVWKP1WSS I SING 711 DIMENSION A(1010)WKP1(100)WSS(10101 712 DIMENSION P(10 10)C(10 10)CAPV(10 I 0 ) PS1Ilt10 101 713 DIMENSION Z( 1)DDZTRP(1)Wl(1010)Wpound(10101 714 2 W311010 W4(1010gtW5(i010gtW6(1010gtDClt1010) 715 ND = 10 716 PI = 3 14159266 717 C GENERATE C 718 DO 10 l = lM 719 DO 9 J=lN 720 9 C(IJ) = COS((J-l)PIZ(Igtgt 721 10 CONTINUE 722 C FIND PS II = PS I INVERSE 723 CALL ADOTB (CPWlMNNND) 724 CALL ADOTBT (WlC W2MNMND) 2S CALL APLUSB IW2CAPVW3MMND) 728 CALL INVERSE IMW3PSII I ERR) 727 IF(IERRLTOJGO TO 991 728 CALL ADOTB (PSIIWlW2MMNND) 729 DO 89 II = 1M 730 C GENERATE 0C(1J)DZ(1) MATRIX (CALL IT D O 731 DO 6 1=1M 732 DO 5 J=l N 733 S DC(IJ) = 0 734 6 CONTINUE 735 DO 7 J=l N 736 7 DCIIIJ) = -(J-l)laquoPISIN((J-1]PIraquoZCII)) 737 C NOW CALCULATE THREE MATRIX TERMS FIRST TERM (W4gt 738 CALL ATDOTB ltDCW2W3NMNNO) 739 CALL AOOTB (PW3W4NNNND) 740 C SECOND TERM (W5gt 741 CALL ADOTBT (WlDCW3MNMNO) 742 CALL APLUSBT(W3W3W5MMNO) 743 CALL ADOTB (W5W2W6MMNND) 744 CALL ATDOTB (W2W6W5NMNNO) 745 C THIRD TERM NOTE THIRD TERM = (FIRST 1ERM1T SO --ST ADD UP TERMS 746 CALL AM1NSB (W4W5W6N NND) 747 CALL APLUSBT(W6W4W5NNNDI 748 DDZTRPU I gt = 0 749 DO 12 l = lN 75C 12 DDZTRPU I gt = DDZTRP(I I) - W5(II) 751 89 CONTINUE 752 90 ISING = 0 753 RETURN 754 991 ISING = 3 755 RETURN 756 END

757 FUNCTION SIGKPN (ZSTARPPNND) 758 C FINUS 759 C SIGMA--21ZKZSTAR) = C(ZSTAR)T PP(ZK)(K ION) - C(ZSTAR) 760 DIMENSION C(10)PPC1010) 761 PI = 314159266 762 DO 1 1 = 1 N 763 1 C(I) - COS((1-1)PIZSTAR) 764 CALL XTAY (CPPCSIGKPNNND) 765 RETURN 766 END

767 FUNCTION SIGMA(Z) 768 COMMON PROB NMZMAXAPCAPVWKP1WSS I SING 769 DIMENSION A(10 10)P(10 10)CAPV(10 I0)WKP1(10 I0)WSS110 10) 770 DIMENSION C(10) 771 PI = 314159266 772 DO 1 J = 1 N 773 1 C ( J ) = C O S U J - I ) laquo P I raquo Z ) 774 CALL XTAY (CWSSCSIGMAN10) 775 RETURN 776 END

777 FUNCTION DSIGMA(Z) 778 COMMON PROB NMZHtXAPCAPVWKP1WSS1S1NG 779 DIMENSION A(I 010)P(010)CAPV(1010)WKP1(10 10)WSS( 1010) 780 DIMENSION C(10)DC(10) 781 PI = 314159266 762 DO 1 J=1N 783 CIJI = COS( (J-l )PlZ) 764 1 DCIJ) bullbullbull -( J-l )raquoPIS1NC (J -1 ]PIZ) 765 CALL XTAY (DCWISCTERMN10) 786 DSIGMA = 2sTERN 787 RETURN 788 END

317

791 XI - WMlNl5NNISf6WkpIilSSi6iWSS1010 793 2 W1(tO10)W2(10 0)SUMi10 10) 794 NSS = 1 795 1 NSS NSS+1 bdquo 796 RATIO = A(22lNSSAlt22) 797 IFCRATIOLEEPS) 60 TO 2 796 GO TO 1 BOO C 2 M N o t w I s ) STEADY-STATE MATRIX CONVOLUTION OF ltUKP1 ) 601 CALL ATOB IWKP1W2N N ND1 60 CALL -TOB (WKPI SUM N N ND) 803 DO 7 K=1 NSS 804 CALL ATOB (W2W1NNND 805 CALL ABAT I AWlW2NND) 806 CALL OPLUSB (SUI1U2 SUM N N ND) 807 7 C0N1INUE 608 CALL ATOB (SUMWSSNUND) 809 CALL MATOUTP (WSSNN3HWSSND) il 108 FORMA BTHE SNUMiSER OF 1ERMS IN THE TRUNCATED MATRIX 812 1 CONVOLUTION SERIES bdquo 813 2 FOR THE STEADY-STATE VALUE OF 1WSS) NSS = laquoI3) 814 RETURN 815 END 816 SUBROUTINE MAXSIG (SIGMAXYSTARGEPS ITER) 817 EXTERNAL DSIGMASIGMA 818 YMIN = 0 81 9 YMAX = I 620 DY = GMYMAX-YM1N) 821 YL = YMIN 822 YR = YM1N+DY 623 SUP - SIGMAIYL) 624 Y S U J = YL 825 I END = ITER 626 1 CONTINUE 827 CALL MUELLER (YFYDSIGMAYLYREPS I END IER) 828 C FINISHED WITH CURRENT INTERVAL SLIDE LiMITS OF SEARCH RIGHT 829 C CHECK FOR BOUNDARY AND GO ON 830 IFUERGTO) GO TO 13 831 C IF AN EXTREMUM WAS FOUMD IN THIS INTERVAL CHECK IT AGAINST LAST 832 C VALUE OF SUPREMUM 633 FMUEL = SIGMA(Y) 634 IFIFMUELLTSUP) GO TO 11 635 SUP = FMUEL 636 YSUP = Y 837 11 CONTINUE 838 13 CONTINUE 639 VL = YR 640 YR = YRDY 641 IF(YROTYMAX) GO TO 20 842 FR = SIGMAtYR) 843 IF(FRLTSUP) GO TO 12 844 SUP = FR 645 YSUP = YR 646 12 CONTINUE 647 GO TO 1 846 20 CONTINUE 843 C INTERVAL CYI1INYMAX) HAS BEEN SEARCHED 850 SIOMAX = SUP 651 D5IGMAX = DSIGMA(YSUP) 652 YSTAR lt= YSUP 8f3 W R 1 T E O 101 gtYM1NYMAXGSIGMAXDSIGMAXYSTAR 654 101 FORMAT (laquo MAXIMUM SIGMA SOUGHT BETWEEN YMIN - raquoE103 655 2 AND YMAX bull raquoE103raquo WITH INTERVAL WIDTH DY = laquoEI03 856 3 - SIGMAX = EI03laquo OStGMAX = E103raquo YSTAR = raquoE103) 857 RETURN 858 END

659 SUBROUTINE MUELLER (X FFCTXLIXRIEPS I END IFR) 660 C 661 C REFIBM SCIENTIFIC SUBROUTINE SUBROUTINE PACKAGE 662 C SUBROUTINE RTMI IBM SSP PROGRAMMERS MANUAL EDITION 4 1966 863 C P 217 864 i 865 IER0 866 XL=XLI 867 XR=XRI 666 X=XL 669 T0L=X 670 F=FCT(TOLgt 871 IF(F)1I61 672 I FL=F 373 X=XR 874 TOL=X 675 F=FCT(TOL) 676 IF(F)2I62

318

87 2 FRraquoF 876 C CHECK FLlaquoFR LT 0 879 IF(SIGN(1FL)+SIGN(1FR))25325 660 3 I=0 881 T0LF=100laquoEPS 682 A 1=11 883 DO 13 K=11END 864 X=5raquoXL^XR) 885 TOL=X 886 F=FCTltTOLgt 867 IF(F)5165 668 S 1 F C S I G N U FJSIGNC1 F R ) ) 7 6 7 889 6 TOL=XL 890 XL=XR 691 XR=TOL 892 TOL=FL 893 FL=FR 894 FR=TOL 8S5 7 TOL=F-FL 896 A=FraquoTOL 897 A=AlaquoA 893 IFltA-FRraquoltFR-FL)gt699 899 8 IFII-IENDJ17179 900 9 XR=X 901 FR-F 902 TOL=EPS 903 A=ABS(XR) 904 1F(A-1)111110 905 10 TOL=TOLA 906 11 F(ABS(XR-XL)-T0L)121213 907 12 |F(ABS(FR-FL)-T0LF)141413 908 13 CONTINUE 909 C END OF BISECTION 910 C ERROR RETURNNO CONVERGENCE WITHIN (1END) ITERATIONS 911 IER=1 912 14 F ( A B S ( F R ) - A B S ( F L ) ) I 6 16 15 913 C NORMAL RETURN 914 15 X=XL 915 F=FL 916 16 RETURN 917 C ITERATED INVERSE PARABOLIC INTERPOLATION 918 17 A=FR-F 919 DX=CX-XL)laquoFLlaquo(ltFCA-TOLgtltAMFR-FL)gt)TOL 920 XM=X 921 FM=F 922 X=XL-DX 923 TOL=X 924 F=FCTltTOL) 925 IFCF1181616 926 16 TOL=EPS 927 A=ABS(X) 928 IF(A-11202019 929 19 T0L=T0LraquoA 930 20 IF(ABS(DX)-T8L)212122 931 21 IF(ABS(F)-T0LF)I61622 932 22 IF(S1GNlt1F)S1GNC1FLgtgt242324 933 23 XRaX 934 FR=F 935 00 TO 4 936 24 XL-X 937 FL=F 936 XRaXM 939 FR=FM 940 GO TO 4 941 C ERRORWRONG INPUT DATA 942 26 I ER=2 943 RETURN 944 END

945 SUBROUTINE KEELEA (NMNENLINFMAXIWXINFFINFC0NV6DELT 94B 2 EPSLONRHODELTAPFVALGRADNTCONSTRJ FAIL FLOWERACC IEXP 947 3 N5EARCH) 948 C VERSION (A) OF (KEELE) (NSEARCH) MINIMIZATIONS laquonE ATTEMPTED 949 C EACH FROM A DIFFERENT RANDOM VECTOR WHOSE ELEMENTS ARE SCALED 950 0 TO LIE WITHIN OLEZ(I)LE2MAX 951 DIMENSION SC1010)GTSGlt2020)P(20gtPAR(20)PLlt20)PAlt20) 952 DIMENSION XBlt10)EXTRA10) 953 DIMENSION XINF(l6) 954 ZMAX = 1 953 REAL NORMNORM IN0RM2 9S8 INTEGER C0LI20)DEPClt20)FNUMFMAXCOLICOLJ 957 COMMON BAMRWH G(10 20)B(20) 95B C REFERENCE 9GS C 960 C PROGRAM AUTHOR 0 W WESTLEV 961 C COMPUTING TECHNOLOGY CENTER UNION CARBIDE CORP 962 C NUCLEAR DIVISION 963 C nraquoV RIDGE TENN

319

965 C 96S C 967 C 966 C 969 C 970 C 971 C 973 C 973 970 975 976 C 977 976 979 9eo 961 C 982 963 964 965 966 987 968 1 989 990 991 992 2 993 994 995 996 997 C 998 999 3

1000 5 1001 1002 1003 1004 1005 1006 1007 100B 1009 1010 1011 1012 1013 C 1014 C 1015 1016 1017 10 1018 20 1019 1020 C 1021 C 1022 C 1023 1024 1025 1026 1027 1028 30 1029 C 1030 C 1031 C 1032 C 1033 1034 C 1035 C 1036 C 1037 C 1036 C 1039 C 1040 C 1041 1042 1043 1044 40 1045 1046 1047 SO 1048 60 1049 C 1000 C 1051 1052 1053 1054

MODIFIED TO RUN AT LLL 72572 BY RFHAUSMAN JR IV IS THE MAXIMUM NUMBER OF VARIBLES ALLOWED IC IS THE MAXIMUM NUMBER OF CONSTRAINTS ALLOWED

101 IS THE LOGICAL UNIT NUMBER FOR PRINTOUT

LA3EL1 = 6H OONV LABEL2 = 10HERGENCE raquos LBLMAX = N + 1 IF(LBLMAXGT7) LBLMAX = 7 T0L1 = 1E-10 IF (IWGTO) WRITECI01 1040 ) NMNE I EXP NLINFMAXIWCONVGDELT gt EPSLONRHO DELTAP TOL lF([WEQ2)WRITE[I0t 1149) 1 SEARCH = 0 00 1 I=1N XBCI ) = X1NFM ) CALL FVAL (XINFFINF) IF(NSEARCHEQO) GO TO 5 NSEARPI = NSEARCH 1 1 SEARCH = I SEARCH 1 IFIISEARCHEQ1) GO TO 5 IFCISEARCHGTNSEARPI)G0 TO 798 ISEARM1 = [SEARCH - 1 WRITEtIOl1048)1SEARM1 GENERATE A NEW RANDOM STARTING VECTOR DO 3 I=1N XB(I ) = ZMAXXRANDCIY) CONTINUE I FAIL = 0 I LAST = 0 NBC = 0 FNUM = 0 IFRST - 0 NDEP = 0 NDEPEQ = 0 FNUM = FNUM + 1 CALL FVAHXB FB) IF((IWGTO)AND(1WNE2))

2 WRITEdOl 1050 ) FNUM FB (XB( I ) I = 1 N) IFltIWEO2)WRITE1011051)FNUMFB(XB(I)11Ngt SET THE INITIAL S TO I DO 20 I=1N DO 10 JalN S(IJ) = 0 S(II) = 1 IF (MEQO) GO TO 90 ZERO OUT THE COEFFICIENT MATRIX

DO 30 J=1M COL(J I = 0 DEPC(J) = 0 B(J) = 00 DO 30 I=1N GilJ) - 0

OALL CONSTR

ADJUST THE CONSTRAINTS TO UNIT NORM G IS THE COEFFICIENT MATRIX G(11)laquoXlt1) G(21)raquoX(2) B IS THE VECTOR OF CONSTRAINT CONSTANTS DO 60 J=1M SUM = 0 DO 40 ldeg1N SUM = SUM GI1J)raquoGlt1J) SUM = SORT(SUM) DO 50 I=1N

8(1 J) = G(l J)SUM B(Jgt = BCJ1SUM NE1 = NE + 1 NE2 = NE raquo 2 IF (HEEOO) GO TO 90

320

1055 CALL C0NADD(GTSGS1COLPPLNNBCIVIC) 1056 IF (IWGE2) WRITE1011110 ) 1NBC 1057 IF (NEEOl) GO TO 90 1056 DO 80 I=2NE 1059 C 1060 C PROJECT THE I-TH CONSTRAINT TO TEST FOR LINEAR INDEPENDENCE 1061 C 1062 CALL PROJCTIPLPEXTRASGTSGNNBCCOLIIVIC N0RM1) 1063 IF UWGT2) WRITE1011120 ) INORMlTOLI 1064 C 1065 C TEST AGAINST TOL1 FOR LINEAR DEPENDENCE 1066 C 1067 IF CN0RM1GTT0L1) GO TO 70 1068 NDEP = NDEP 1 1069 NDEPEO = NDEP 1070 DEPCINDEP) = I 1071 GB TO 60 107 70 CALL CONADDIOTSGSICOLPPLNNBC IV IC1 1073 IF IIWGE2) WRITE1011110 ) INBC 1074 80 CONTINUE 1075 NE1 = NE - NDEPEQ + 1 1076 NE2 = NE1 bull 1 1077 C 107B 0 1079 C CALCULATE THE PARTIAL VECTOR OF THE OBJECTIVE FUNCTION 1080 C 1081 90 CALL GRADNTIXBPAR) 1082 C 10S3 C GENERATE THE SEARCH DIRECTION 1084 C 1085 100 CONTINUE 108E DO 110 I = 1N 1087 110 PAI) = -PAR1) 1088 C 1089 C IF THERE ARE CONSTRAINTS IN THE BASIS THEN CALCULATE THE PROJECT1 1090 C 1091 IF (NBCEOO) GO TO 170 1092 DO 120 1=1N 1093 PLI) = 0 1094 DO 120 J=1N 1095 120 PL(I) = PL11) + S(IJ)raquoPARJ) 1096 C 1097 C COLI) = K IMPLIES THAT THE K-TH CONSTRAINT IS IN COL 1 OF BASI 1098 C 1099 DO 130 1=1NBC 1 1 00 PA I ) = 0 1101 LA = COL(l) 1102 DO 130 J=1N 1103 130 P A I D = P A I D GJLA)raquoPLJgt 1104 C 1105 C PUT THE LADRANGE VECTOR IN THE VECTOR PL 1 106 CC I 107 DO 140 Ideg1NBC 1108 PLI) = 0 1109 DO 140 J=1NBC 1110 140 PL) laquo PL(I) OTS G d J)laquoPAIJ) 1111 C II 12 C 1113 DO 150 I = 1 N 1114 PAI) = 0 1115 DO 150 J=1NBC 1116 COLJ = COL(J) Z l 5 0 bdquo P A lt P A ( 0(1 COLJ gtlaquoPLJgt

1118 DO 160 1 = 1 N 1119 160 PA(I) = PA(I) - PARI) 1 120 C 1121 C I 122 170 CONTINUE 1 123 C 1124 C 1126 C P A H 0 L D S r H pound N F 0 F 0 R T H E DOWNHILL-POSITIVE DEFINITE CHECK 1127 C P HOLDS THE SEARCH DIRECTION 1 126 C 1129 00 180 I = IN 1130 PI) = 6 1131 00 180 J=1N 132 160 PCI) = PII) bull SIIJ) laquo PAIJ) 1 133 C 1134 C 1135 C 1136 C 1138 C F D trade E N deg R M deg F trade E D R E C r i 0 N VECTOR 1139 N0RM1 a 0 1140 NORM = 0 1141 DO 190 ldeg1N H S laquolaquo K2SM I bull N degRraquo + P A ( I ) raquo laquo 2 1143 190 NORM = NORM bull Pltl)raquoraquo2 1144 NORM = SORT I NORM)

321

1145 N0IM1 = SQRT(NORMl) 1 1 46 NORM2 = NORM 1 147 BETA = 0 1146 J = 0 1149 IF (NBC EQ (NE-NDEPEC1) 1 GO TO 220 1 ISO C 1 151 C 1 I 52 c 1 153 C 1154 C 1155 J = NE1 1156 CC = PL(NEl) 1157 IF (NBCE0NE1) GO TO 210 158 DO POO I=NE2NBC 1159 IF (PL (IgtLECC) GO TO 200 1160 J = I 1161 CC = PL(I1 1162 200 CONTINUE 1163 210 BETA = 5raquoCCABS1GTSGl J 0) gt I 16-1 22U CONTI NUE 1165 IF (1WGT2) WRITE1011010 ) NORMBETA J 1166 IF (NORMLECONVGANDBETALECONVG) GO TO 710 1 167 C 1 168 C 1169 C THE PROCEDURE HAS NOT CONVERGED YET EITHER DROP THE J-TH COL 1170 C OF THE BASIS AND RE-CHECK OR STEP ALONG THE DIRECTION IN P 1171 C 1172 C 1173 IF (NORMGTBETA) GO TO 250 1 174 C 1175 C DROP THE CONSTRAINT CORRESPONDING TO MAXIMUM LAGRANGE 1 176 C 1 177 C 1173 C SINCE A CONSTRAINT IS BEING DROPPED - FORGET ABOUT ALL OF TH 1179 C PREVIOUS INEQUALITY DEPENDENCE 1 180 C 1181 IF (NDEPEQO) GO TO 240 1182 K = NOEPEO 1 1103 DO 230 I-KNDEP 1184 230 D E P C ( 1 1 = 0 1185 NDEP = NOEFFQ 1185 240 ILAST = COL(J) 1167 IF (IWGT2) WRITEt1011080 ) ILAST 1166 CALL C0NDRP(C0L J NBCGTSGPL 1C1 1 1 89 GO TO 1 00 1 90 C 1 191 C 1 192 C 1 193 C 1 1 94 0 1 195 C I 196 pound50 CONTINUE 1197 LL = 0 1198 CC = 1E+60 1199 IF I(NBC+NOEP)EQM) GO TO 320 1200 DO 310 I = 1M 1201 IF (ILASTEOI) GO TO 310 1202 IF INBCEQ01 GS TO 280 1203 DO 260 K=1NBC 1204 IF (IEQGOL(K)) GO TO 310 1205 260 CONTINUE 1206 IF (NDEPEQO) GO TO 280 1207 DO 270 K=1NDEP 1208 IF (I EQDrPClKgtgt 00 TO 310 1209 270 CONTINUE 1210 C 1211 C CONSTRAINT I IS NOT IN THE BASIS IS IT BINDING 1212 C 1213 281) C0N1 = B(l I 1214 C0N2 = 0 1215 DO 290 J=1N 1216 C0N1 = C0N1 1217 290 C0N2 = C0N2 bdquo -raquo 1216 IFC IWEC13)WRITEI 101 1000 ) IC0N1C0N2 1219 IF (C0N2EQ0 ) GO TO 310 1220 NORM = ABSfCONl) 1221 IF (NORMGT1E-141 GO TO 300 1222 IF (C0N2GT0 ) GO TO 700 t223 GO TO 310 1224 300 C0N1 = C0N1C0N2 1225 IF(C0N1 LEOE-OOeRCONl GECC) GO TO 310 1226 CC=C0N1 1227 LL=I 1228 310 CONTINUE 1229 C 320 NORM = OMlNl(1DOCC) 1230 320 NORM = CC 1231 IF(NORMGT1) NORM = 1 1232 ILAST = O 1234 C CALCULATE THE INDEX OF IMPROVEMENT C0N2

322

1235 C IMPROVEMENT IS ACCEPTED IF F(K) - F(kll GL tPSLON bull CON2 1236 C 1237 C0N2 = 0 1238 00 330 1=1N 1239 330 C0N2 = C0N2 - PARUgtlaquoPtlgt 1240 IF CIWGT2) WRITEC 1011020 ) C0N2 CO 1241 ICON - 0 1242 IF (C0N2LT0 ) 00 TO 370 1243 CPAR a -C0N2 1244 C0N2 a COM2 laquo EPSLON 1245 C 1246 C STEP TO THE LIMIT TO THE NEAREST CONSTRAINT TO CHECK FOR IMPROVEM 1247 C 1246 DO 340 1=1N 1249 340 PLC I) a XBl I ) bull NORMPCIgt 1250 FNUM o FNUM bull 1 1251 CALL FVALCPLFL) 1252 IF (IWGT2I WRITEC 1011090 ) FNUMFL CPLCI)I a IN) 1253 IF CIWGT2) WRITEClOl1030 gt 1254 IF ICFB-FLgtQEN0RMlaquoC0N2gt 00 TO 350 1255 C 1256 C 1257 C NO SIGNIFICANT IMPROVEMENT ATTEMPT TO LOCATE THE OPT ALONO 1258 C THE DIRECTION P TO MORE DEFINITION 1259 C 1261 ^ IF CIEXPEQO) CALL CUBMINCXBFBPLFLTEXTRAFVALh C0N2N0RM 1262 gt FNUMIWNLINLLGRADNTCCCPARgt 1263 IF IIEXPEQ1) CALL PRBOLCIXBFBPLFLNORMC0N2 PNFNUMFVAL IW 1264 gt NL1NLL CCFLOWERACCCPARgt 1265 IF (FNUMGTFMAX) SO TO 740 1266 IF CLLNE2) GO TO 410 1267 QO TO 370 1268 350 DO 360 1 = 1N 1269 EXT a pLCI) - XBI1) 1270 XBCI o PLC I) 1271 360 PLC I) a EXT 1272 FB a FL 1273 ICON = 0 1274 IF ICCLE1 ) ICON a 1 1275 GO TO 41O 1276 C 1277 0 NO IMPROVEMENT IN THE FUNCTION SO RESET THE S MATRIX TO 1 1276 C 1279 370 IF (IFRSTEQO) GO TO 750 1260 DO 390 I=1N 1281 DO 360 Ka1N 1262 380 StKgt a 0 1283 390 SCII) a 1 1284 IFRST a 0 1285 IF (NBCEOO) GO TO 670 1286 C 1287 C RESET GTS3 1288 C 1289 LA a 0 1290 08 400 1=1NBC 1291 10 = COLCI 1 1292 400 CALL CONADDCGTSBS10COLPPLNLAIVI0gt 1293 GO TO 670 1294 C 1295 C 129B C XB = XCKtD P = Q(K1) PLa PCK11 THEN PL a P(KIgt - SIK 1298 C 1299 C UPDATE SGTSG FOR Kl AND POSSIBLY GTSQ FOR NBC bull 1 1300 C 1301 410 CALL GRADNTCXBEXTRA) 1302 IFIIWE03)WRITECI011050)FNUMFBCXBCI ) I al Ngt 222 FIIWpoundQ2)WR1TEII011051IFNUMlFBCXBltI 11 = 1 N) 1304 IF CFNUMGTFMAXgt GO TO 740 1305 IFRST a 1 1306 00 420 lraquo1N 1307 420 PCI) a EXTRAI) - PARC 1) 1308 DO 430 llaquo1N 1309 IF ( ABSCPII))GTT0L1) GO TO 440 1310 430 CONTINUE 1311 GO TO 370 1312 440 CONTINUE 1313 C 1314 C MVL pound RESCALE THE ALFA AND THE S MATRIX HOWEVER LEAVE THE STEP SIZE 2 1 pound WSk T E8 EPi -IHUS F A L F A is SCALED UP THE S IS SCALED DOWN Wl pound fiLdeg SCALE THE S AND THE GTSG MATRIX TO SATISFY THE NORM RE-1318 C QUIREMENT 1319 C 1320 C 1321 C0N2 = NORM I 322 AF a 1 1323 IF IC0N2GEDELTAPI GO TO 450 1324 AF a C0N20ELTAP

323

- bull I O -^0 K i l l C bull

- | - gt raquo lC 1 0 S O

bull ( j) v n i i i i i i o i i r o ) A ( I I M

--V bull bull C i - l 1A

1 I ~ S(K I gt i bulllt c i CM TO s i o

bull bull I i i-C bull V i NBC bull bull bull bull K i = CTOI 1K) AF

K bull bull i rJO TO Olo -V 1 c

bull bull(bullbull K--- IA bull ) I i bullbull ) OTMi I J

- I h J - 1 N

gtbull( U i PLC I I bull bull C

gtS PLltIgtlaquo=2 ic bull L ( l ) laquo P A t l )

10 ) GO TO 370 bull bull bull bull l i CE CCOMVOraquoC0N2gt)AN0CCN3RMCON1)GTOELTgtgt GO TO

iT rLiAIN POS DEF FOR K l USE RESET 2 CASE

2 ) URITECI011100 )

W Me SltK) TO StK + 1 )

| v UW = 0 bull bull bull 0 I =7 N

HU 50 J=1N C1Jgt = S lt l J ) bull PLlt1)laquoPL(JgtC0N1

I I I - 2 N I A 1-1 Iif 80 J M L A

rraquo( i j ) raquo S ( J I )

P = C bull II-TRANSPOSE laquo Y(Kraquo1) A = VCKH ) bullbullbullT = Y ( K ) - T raquo S-M raquo (G-M-T bull S(K) G-M) - INVERSE

- ii ncfQOI GO TO 650 rori THE UPDATE SCHEME USED HERE SEE RALSTON AND W1LF VOLUME I

DO S90 1 = 1 NBC P( I I = 0 LA = COLU ) DO 590 J=IN P(l ) = P(ll bull SltJLA1 laquo PL(J) Wj i00 1 = 1 NBC PAltI) = 0 CD 600 JMNBC P A M ) = P A ( I ) bull GTS3lt I J ) laquo PltJ)

iiHZ - CJNI

X 5-0 1=1NBC IJ-IS = C0N2 + Pltl ) laquoPA( I )

i) V 1 = 1 NBC 1 W ( 1 ) = 0 laquo u0 J=1NBC

PAP l l l = FAR(igt P ( J ) raquo G T S O ( J I ) DO i 0 1 = 1 NBC

Ou eno J = I N B C O C O l l J ) = G T S B U J ) - PAU l iPARCJ I CSNS O I - W 1 1 n gt ( - U I O H l I

IF (NftC t J1 I ) tlO TO 6S0 DO 6I0 =2 NBC

LA 1~S

324

1415 1416 1417 1416 1419 1420 1421 1422 1423 1424 1425 1426 1427 1426 1429

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1480 1451 1452 I4S3 1454 1455 1456 1437 14S8 1459 1460 1461 1462 1463 1464 1465 1466 1467 1466 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1181 1482 I4B3 1404 1485 I486 1487 1468 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1S02 1S03 1504

00 640 J=1LA 640 GTSG11J) = GTSG1JI) 650 DO 660 I = 1 N 660 PARC 11 = EXTRAI)

GTSG HAS NOW BEEN ADJUSTED FOR SCK+1)

NOH IF A CONSTRAINT HAS BEEN ADDED ADD IT TO THE BASIS- 670 IF (ICONEQO) GO TO 100 680 IF (NBC EQO) GO TO 690

Cfc_V- PW5tCT^PuPElVSftfcSSScopy1NWampSlaquoK--i_ W hZ M O m i l IF (IWGT2) WRITEdOl 1120 1 LLN0RM1T0L1 3 TEST AGAINST T0L1 FOR LI NEAR DEPENDENCE IF IN0RN1GTT0L1) GO TO 690 NDEP = NliEP raquo 1 DEPC(NDEP) = LL GO TO 100 690 CALl- OONADOIGTSGSLLCOLPPLNNBC IVICgt IF UWGT2) WRITE101 I 110 ) LLN8C GO TO 100 700 LL I GO -TO S80 710 CONTINUE IF( MWGT 0) AND ( IWNE21 ) 2 WRITE1011050 ) FNUMFBCXBII)I=1N) IF(IWEO 2)WRITE I 101 I 131)( I LABEL ILABEL2) l=lLBLMAXgt IF IIWLT1ORNBCEQO) GO TO 760 WRITE1011030 gt WRITE1011140 ) DO 720 1=1NBC 10 = COLIgt 720 WRITE1011160 ) I 0(G(K10)K=l N) IF (NDEPEQO) GO TO 760 WRITEUOI 1030 ) WR I T E 5 0 ) WRI1EII0I1140 ) DO 730 l=1NDEP |0 = DEPCII) 730 WRITE1811160 I 10 (G(K10)K =1 N) GO TO 760 740 IF llWGTO) WRITE101 1 ISO ) FNUMFMAX l f A f e 760

IIWGT 750 IF 760

761

771 772

79B 799

1FAJL N T I N

2 0) WRITEilOl1190 ) CONTINUE IFlMSEARCHGTO) GO TO 771 DO 761 1=1N XINFI I 1 = XB(I ) FINf = FB GO 10 799 IF(FBGEFINF) GO TO 2 DO 772 l=lN XINFI) - XBI I ) FINF = FB I FA 1 LA = I FAIL GO TO 2 IFAIL = 1FAILA IFIWGT0gtWRITE(101I052)NSEARP1

_ _ RETL RN 1000 FORMAT1H I 102E20 I 0) 1010 FORMATUH NORM = E168 1020 FORH ~

FINFIX1NFIII1=1NI

OFHATIIH VNDEX 0F~iMPR6vEMENTElea loX laquo1HE UPPER MOUND ON STEP SIZElaquo El 88) 1031) FORhAT iH )

1040FORMAT tlHl ax laquoWraquo9KMgt 8X laquo1W IH 71I0IH04XraquoC0NVGraquo6XlaquoDELTraquo4XraquoEPSLONraquoeXraquoRH

a 4Xraquo0ELTAPlaquo7XT0L1laquo1H 6E103 I 1048 F 6 R M A T laquo ITERATION NO raquo|3 2 bull FNUM FUNCTION VALUE Z(1) - -bull 1049 FORMAT41H FNUM FUNCTION VALUE 1050 FORMATIH raquoTHE NUMBER OF CALLS TO FVAL IS I 2H t6X6E168)gt 1051 FORMAT151X7E168I22X6E1B 8) ) 1052 FORMAT BEST LOCAL MINIMUM FOUND AFTER

Zli) raquo I32H

laquo 13 TRYS IS-1060 FORMAT1H THE CONSTRAINT I 3HAS BEEN PUT IN THE BASIS

1 |H THERE ARE I5C0NSTRAI NTS IN THE BASIS NOW) 1070 FORMATIH raquoTH6 COEFFICIENTS OF THE NEW CONSTRAINT ARE 1H

I 7E16BI1H 7EI68)) 1080 FORMAT1H0CONSTRAINT15 laquo HAS BEEN DROPPED FROM THE BASIS) 1090 F0RMATI1H AFTER 15 CALLS THE MAXIMUM STEP TOWARD THE NEARES1

1 CONSTRAINT GIVES1H 7E168I1H I6X7E168)) 1100 FORMATHH laquoXXXX RESET S FOR THE POSITIVE DEFINITE FAILURE) 1110 F0RMATI1H laquoTHE CONSTRAINT raquoI5 laquo HAS BEEN PUT IN THE BASIS

325

ISOS 1 1H THERE ARE 15 CONSTRAINTS IN THE PRESENT BASIS) 150G 1120 FORMAT ( 1 HO THE PROJECTION OF CONSTRAINT I3 1607 I bull AGAINST THE CURRENT BASIS IS E168 1606 1 laquo THE TOLERANCE FOR L1N-DEP IS E168gt 1609 1130 FORMAT1H AFTER IS laquo CALLS THE CONVERSED POINT IS 1H 1510 1 7EI68I1H 16X6E168)) 1611 1131 FORMATCCH bullraquo 7tA6A10)gt 1512 1140 FORMATdH CONSTRAINT laquo 10X COEFFI CI ENTSraquo) 1513 1 150 FORMAH 1H0 1514 1 THESE CONSTRAINTS ARE DEPENDENT BN THOSE IN THE BASIS laquogt 1515 1160 FORMATdH I 55X6E168(1H 1 OX 6EI68)) 1B16 1170 FORMAT1 HOTHE S MATRIX MUST BE SCALED TO SATISFY NORMS THE 1517 1 1H NORM SCALE FACTOR IS laquoEt68) 1518 1100 FORMATI1H TOO MANY CALLS 21101 1519 1190 FORMAT1H THE IDENITY RESET USED IN SUCCESION) 1520 END 1521 SUBROUTINE CONDRPICOLJNBCGTSGPLIC) 1522 DIMENSION GTSG1 IC IOPLIIC) 1523 INTEGER COL(IC) 1524 IF JEQNBC) GO TO 30 1525 C 1526 C SWITCH VOLUMNS JNBC SWITCH ROWS JNBC 1527 C 1528 DO 10 1=1NBC 1529 CC = GTSG(INBC) 1530 GTSGIINBC) = GTSG(IJ) 1531 10 GTSGIIJ) = CC 1532 DO 20 1=1NBC 1533 CC ltbull GTSGtNBC I ) 1534 GTSGINBCI) = GTSGIJ I) 1535 20 GTSGIJI gt = CC 1536 C 1537 C CALCULATE THE NEW INVERSE 1536 C 1539 30 CONTINUE 1540 IF INBCGTl) GO TO 40 1541 NBC = 0 1542 COL1 gt = 0 1543 RETURN 1544 40 NBI = NBC - 1 1545 CC = GTSGtNBCNBC) 1546 DO 50 l=lNB1 1547 C0N1 - GTSGII NBC) 1548 DO 50 K=lNB1 1549 50 GTSG(IK) = GTSGllK) - C0N1laquoGTSG(NBCK)CC 1550 IF INBlEOl) GO TO 70 1551 DO 60 I=2NBI 1552 LA = 1-1 1553 DO 60 K=1LA 1554 60 GTSGIIK)=GTSGIK1) 1555 70 IF (JLTNB1) GO TO 80 1656 IF (JEQNB1) COL(NBI) = COLNBC) 1557 COL I NBC) = 0 1558 NBC = NBI 1559 RETURN 1560 C 1561 C ~ 1562 C 1563 C 1564 80 00 90 1=1NBI 1565 90 PLII) = GTSGIIJ) 1566 NB2 = NBI - 1 1567 DO 100 K=JNBB 1568 LA = Kl 1569 DO 100 1=1NBI 1570 100 GTSGIIK) = GTSGIILA) 1571 DO 110 1=1NBI 1572 110 GTSGIINB1) = PLII) 1573 00 120 l=lNB1 1574 120 PL(1gt = GTSGIJI) 1575 DO 130 K=JNB2 1576 LA = Kl 1577 00 130 1=1NBI 1578 130 GTSGlKl) = GTSGILAI) 1579 DO 140 1=1NBI 1580 140 GTSG(NBII) = PLII) 1581 DO 150 l=JNB1 1582 150 COL(l) = C0LII1) 1583 COLI NBC) = 0 1584 NBC = NBI 1585 RETURN 1586 END

1588 C SUBROUTINE PROJCTIPLPEXRASGTSGNNBCCOLIIVIC NORM) 1589 1590

326

1 ^91 t NTEO R lt-nt t c i n r _ ini j 159 cnii i i bull bullbull i ) bull ) f bull o i gt 1 J Tl PV I - -bullbull bullbullbull i i--RM o r TIC PROJECTION OK THE I -TH 11- i- bullbullchi^rvin i gtoiraquo 1 bull H DO 1 0 K -1 l I v O poundgt iPVK) bullbullbull U 1 w n DO 10 - - I N loOi 0 EURI ) ( T ) bull S lt K J ) G lt J 1 gt 150 no ro io i NT- I0T- PL (K) = 0 1 OO j LA = COL(K 1004 DO 20 J = l N WOE 20 PL(Ilt) = PI IK) bull bull - LA EXTRACJ) 1 500 DO 30 K= I NSC 1607 P I K ) - 0 1 toe DO 30 = bull NtC 1003 30 PCX) = PI ) O 0 (K J ) laquo P L ( J gt IG10 00 40 K - I N 1611 P L I K ) = 0 15 2 DO 40 J- I NBC 131 3 COLi - CO_l l ) 1014 -10 PLCK) - PL1K1 bull 0 KCOLJ ) laquo P ( J I I 0 i DO C 0 K- 1N 1 fi 1 6 F- IK) bull IX 1 RA K i 101 DO i ic J - M 1GK1 0 P l U = Pl - I ltK J ) P L ( J ) I Ma c 1620 C P I iOv H i P i t - i 11raquo OF THE I -TH CONSTRAINT 1021 C l o 2 imMi = 0 16 3 0 0 lt bull I N 11524 1 i-Arhl - II0PI1 H P I K ) laquo raquo 2 )52Ti i1JK- - GOUTchuRMI) 1 6 2 rCLUKN I 6 t END

1628 -OcTOi TINE C^fiAriOl GTSO S LL COL P PL N NBC I V IC) 1629 traquo - I laquo I f f S T j O C i C l r l SC IV W l P I l I P L U I 1530 Hlfr R Ot)_( |C) COLI COLJ 1631 f5tll LMRwH Glt1020)BI20) 1632 0 1633 C 1S34 C TIM f - O l l M E UPDATES THE MATRIX (G(M) - T laquo S (K ) raquo GCM) gtbullINVEF 163igt c IO IHF A IRX IOCf1lt ) -T laquo SCK) bull GCM1) ) - INVERSE WHEN THE LL 1636 C C J M M I H T IS f JT IN TtiC BASIS 1637 C 1636 C 1639 II 1 = HOC t 1 1640 COL (KIM ) = LL 1641 C 1642 C SET OF A12 1643 C IG44 00 10 l=lN 1643 Pltl) = 0 1646 00 10 J=lN 1647 10 P(I) s PCI) laquo SCIJ) GIJLL) 1648 AO = 0 1643 DO 20 I si N 1650 20 AO - AO + Q(lLL) Ptll 1651 IF IHBC fcOO) BO TO 100 I 652 DO JO I=1NUC 1653 PL(I) = 0 1654 DO 30 J = 1N 1655 COLI = COL (I ) 1656 30 PL(I) raquo PLCI) OIJCOLI ) raquo P1J) 1657 C 1658 C 1659 C SET UP -All-1 bull A2 1660 C 1661 C 1662 DO 40 I-1N3C 1663 PU ) sO 1664 DO 40 J=1NBC 1668 40 Pill bull Pill bull OTSO(IJ) s PLJ) 1666 C 1667 C COMPLETE CALCULATION OF AO 1660 C 1E69 DO 50 Is INBC 1670 50 AO - AO bull PLCII laquo PC I 1 1671 OO 60 Is INBC 1672 DO 60 JslNBC 1673 60 GT5QIIJ) = QTSOIIJ) PC I I raquo PCJ) AO 1674 IP CNdC E O l l GO TO 80 1675 00 70 |s2NBC 1676 LA = I - I 1677 00 70 J=tLA 1676 70 OTS Q U J ) sGTSGCJl)

37

1679 80 DO 90 1=1NBC 1600 GTS6IINB1I = P(1)A0 1661 90 GTSGINB1I) = GTSGlt1NB1) 1682 1 00 0TSGIND1NBU = 1 AO 1amp63 NBC = NB1 1684 RETURN 1685 END

1666 SUBROUTINE CUBMI NIXB FB PLFLPEXTRA FVAL 1 1 NLINLLGRADIITCCCPAR) 1687 SUBROUTINE CUBMI NIXB FB PLFLPEXTRA FVAL 1 1 NLINLLGRADIITCCCPAR)

1666 C 1569 DIMENSION XBC1gtPC1gtPLlt1)EXTRA1) 1 690 REAL NOFM NeRM 1 1691 1 NTFGER FNUM 1692 C 101 IS THE LOGICAL UNIT NUMBER FOR PRINTOUT 1693 101 = 3 1694 LL = 0 1695 NL = 0 1696 NORM = DST 1697 CALL GRAONTIPLEXTRA) 1696 GB = 0 1699 DO 10 1 = 1 N 10 GB = GB + PCI) EXTRA1) 1700

DO 10 1 = 1 N 10 GB = GB + PCI) EXTRA1) 1701 GA = CPAR 1702 IF (GBGTO ) SO TO 120 1703 GO TO 30 1704 20 LL = 2 1705 FNUM = FNUM NL 1706 RETURN 1707 30 IF (CCGINOFM) GO 10 80 1708 40 NORM = NORM 2 1709 DO 50 l=lN 1710 50 PL(I 1 = XBCl) bull NORM raquo PC I ) 1711 NL = NL bull 1 1712 CALL FVALI PL FE)

IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60

1713 CALL FVALI PL FE) IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60 1711 CALL FVALI PL FE) IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60 1715 IF NL IENLIN) GO TO 40 1716 GO TO 20

1717 60 CALL GRADNKPLEXTRA) 1716 GB = 0 1719 DO 70 1 = 1 N 1720 70 GB = GB bull PCI)-EXTRAI) 1721 IF CGBLEO ) GO TO 210 1722 FL = FE 1723 GO TO 120 1724 80 GA = GB 1725 Fl = FL 1726 N0RM1 = NORM 1727 C NORM = DlilNl INORMI DSTCO 1728 NORM = NORN bull DST 1729 IFINORMGTCC) NORM = CC 1730 DO 90 1=1 N 1731 90 PL(I) = XB(I) + N0RMraquoPI) 1732 CALL GRADNTIPLEXTRA) 1733 GB = 0 1734 DO 100 1=1N 1735 100 GB = GB t P(|) raquo EXTRAI) 1736 CALL FVAL1PLFL) 1737 IF I1WBT2) WRITE101 1020 ) FL NORM 1738 NL = NL bull 1 1739 IF (GBOTO ) GO TO 110 1740 IF ltFB-FLIGEN0RMlaquoC0N2gt GO TO 200 1741 IF INORMGECO GO TO 20 1742 IF CNLLTNLIN) GO TO 80 1743 GO TO 20 1744 110 A = N0RM1 1745 B = NORM 1746 GO TO 140 1747 120 A = 0 1748 B = NORM 1749 Fl = FB 1750 GO TO 140 1751 130 IF (NLGTNLIN) GO TO 20 1752 14U 2 = 3 bulllt(F1-FL)(B-AgtIGAraquoGB 1753 W = SQRT1Z-Z-0A-GB1 1754 AS = B - UGBW-ZgtCGB-GA200raquoWgt) raquo CB-A) 1755 IF (ALTASANDASLTB) GO TO ISO 1756 AS = 5gtCAlaquoB) 1787 ISO DO 160 l=lN 1758 160 PL1I ) = XBCI ) AS raquo P(l ) 1759 NL = NL bull 1 1760 CALL FVAL(PLFEI 1761 IF (IW0121 WHITE1011010 ) FEAS

IF ((FE-FB)GEASgtC0N2) GO TO 170 1762 IF (IW0121 WHITE1011010 ) FEAS IF ((FE-FB)GEASgtC0N2) GO TO 170

1763 NORM = AS 1764 GO TO 210 1765 170 CALL GRAONTPLEXTRA) 1766 2 = 0

328

1767 DO 180 l=1N 176S 180 Z = Z + ~ 1769 IF (ZGEO 1 770 A = AS 1771 GA = Z 1772 1773 1774 1776 FL raquo FE 1776 SB = Z 1777 00 TO 130 1778 200 FE = FL 1779 210 DO 220 1=1N 1780 W = PLC1) - XBCI) 1781 XB I) = PLC I 1 1782 220 PLC 1 ) = W 1783 FB = FE 1784 FNUM = FNUM NL 1785 DST = NORM 1786 RETURN 1787 1000 F0RMAT13H H E20125XE156) 1788 1010 F0RMATC3H C E20125XE156) 1789 1020 FORMATC3H E E20125XE156) 1790 END

1791 SUBROUTINE PRBOLCCXBFBPLFLDSTC0N2PNFNUMFVALIWLINMIN 1792 gt LLCCFLOWERACCCPAR) 1793 REAL NORM 1794 REAL L1L2L3 1795 DIMENSION XBC1)PC1)PLC 1 J 1796 INTEGER FNUM 179 C 101 IS THE LOUICAL UNIT NUMBER FOR PRINTOUT 17911 101 = 3 179S IF (FBLTFLOWER) FLOWER = -lE30 180D IWK = 0 1801 LL o 0 1802 NLN = 0 1803 NORM = CPAR 1804 CON =-NORM 1805 NORM = 2 bull ABS((FB-FLOWER)NORM) 1803 C RO - DMINKNORM 1 DO 5D0CC) 180V RO = 5raquoCC 1808 IFCROGT1 gt RO = 1 1809 IFCROGTNORM) RO = NORM 1610 IF CROEQDST) GO TO 20 1811 DO 10 1=1N 1812 10 PLC I I o XBCi) ROPCl ) 1813 CALL FVALCPLF1) 1814 I F CIWGT2) WRITEC 1 0 1 1 0 1 0 ) F1 R0 1815 NLN = NLN bull 1 1816 IF CNLNGELINM1N) GO TO 240 1817 0 0 TO 30 1818 20 F1 = FL 1619 30 LO = 0 1820 L I = RO 1821 FO = FB 1822 40 Rl = 5 CONROlaquoROCF1-F0+ CONRO) 1823 IF I R 1 G T 0 ) 00 TO 80 1824 C 5 0 L2 = DM1NI ( 2 D0laquoL1 L1 bull 9 9 9 I CC-L1 ) 1 1825 50 L2 = LI + 999raquoCC0-L11 1826 IFCL2GT(2raquoL1)gt L2 = 2laquoLI 1S27 60 00 70 I=1 N 1828 70 PLC I) = XBCI) raquo L2laquoP(I) 1829 CALL FVALCPLF2) 1830 IF IIWGT2) WRITE1011010 ) F2L2 1831 NLN = NLN 1 1832 IF CNLNOTLINMIN) GO TO 230 1833 IF IF2GEFI) GO TO 140 1634 LO a LI 1835 FO = Fl 183G LI = L2 1837 Fl o F2 1838 00 TO 50 1839 80 IF IR1-L1) 1005090 1840 C 90 L2 = DMIN1CR1999laquoCC) 1841 90 L2 = 999CC 1842 1FCL2GTRI) L2 = Rl 843 GO TO 60 844 C 100 D = 0MIN1C7SD0R0R1) 845 100 D = 75raquoR0 846 IFC0GTR1) 0 = Rl 847 C Rd - DMAX1 I 25D0laquoR0D) 848 R2 = 25laquoR0 849 IFIR2LTD) R2 = 0 850 DO 110 I = 1 M 851 110 PLCI) = XBCI) R2laquoPCI) 1852 CALL FVALCPLNORM) 1803 IF CIW0T2) WRITEC 1011010 ) N0RMR2 1854 NLN = NLN 1

329

1655 IF INLNGTLINMIN) GO TO 240 1856 IF (NJRMLTFO) GO TO 120 1857 LI = R2 1850 Fl = NORM 1859 I860 1661 1662 10 = R2 1863 FO = NORM 1861 GO TO 50 18o5 130 L raquo Li 1 J6E F2 = F 1 136 7 LI = R2 1860 Fl = NORM 1869 M O K = 1 1670 IF (IWKFQO) GO TO 150 1671 IF ( (FB-M ) GE 11 -CONK) GO TO 260 1672 150 JWK = 1 1373 R3 = 500-(F0CLllaquo2-L22) + F1 (L2lt2-LO2) + F2( L0laquo2-L1laquo2 1874 gt )ltF0(L1-L2) F1KL2-L0) + F 2 M L 0 - L O ) 1875 IF ( AB5(R3-Lt)LEACCL1) GO TO 260 1676 C D = DMIN1(L0+9D0CL2-L0)R3) 1877 D = LO + 9(L2-L0) 168 IFIDGlR3J 0 = R3 1879 C R4 = OMAKULO 1D0(L2-L0) 0) 1880 R4 = LO + 1ML2-L0) 1861 IF(R4LTD) R4 = D 1882 160 DO 170 1 = 1 N 18C3 170 PL() = XB(I) + R 4 raquo P U ) 1884 CALL FVAL(PLNORM) 1685 IF (IWGT2J WRiTE(1011000 ) NORMR4 1 Dub NLN = NLN bull 1 I (87 IF (NLNGTLINMIN) GO TO 240 1380 IF (R4E0L11 GO TO 260 1689 IF (R40TL1gt GO TO 210 1890 IF INCiRMLTFU GO TO 190 1891 LO = R4 T632 FO = NORM 1893 IF tKEQ2) GO TO 140 1694 R4 = 5ML1+L2) 1895 180 K = 2 1896 GO TO 160 1897 190 L2 = L1 1896 F2 = F 189S 200 LI = h 1900 Fl = NURM 1901 OO TO 140 1902 210 IF (N0RMGEF1) GO TO 20 1903 LO = L1 1904 FO = Fl 1905 GO TO 200 1906 220 L2 = R4 1907 F2 = NORM 1908 IF (KEQS) GO TO 140 1909 R4 = 5ML1+L2) 1910 r0 TO 180 191 230 IF (F2GcF1) GO TO 240 1912 Fl = F2 1913 L1 = L 1914 240 LL = 2 1915 IF UKB-F1) LTC0N2Ll) GO TO 280 1916 LL = 1 1917 DO 250 1=1 N 1918 250 P H I ) = XB(I) + L1P(I) 1919 260 IF (FDLEF1) GO TO 240 1920 FB = Fl 1921 OST = LI 1922 DO 270 I=1N 1923 D = PL(I) - XB(I gt 1924 X B U gt = P L U ) 1925 270 PL( I gt o D 1926 2^0 l-NUM - FNUM + NLN 1927 RETURN 1928 1000 J-0RMATC3H0B E25125Xpound1561 1929 1010 FORMATC3H0S E25 12 5XEl 56) 1930 END

1931 1932 1933 1934 C THIS SUBROUTINE SOLVES FOR THE PAYNTIiR TRUNCATION NUMBER K SOLVE FOR 1935 C A K SUFFICIENTLY LARGE THAT THE FOLLOWIN3 INEQUALITY IS SATISFIED 1936 C I1FACT0RlAL(k))(QraquoK)EXPCQ)ltERRQR 1937 C 1938 C REF ANALYSISSIMULATION AND CONTROL OF DYNAMIC SYSTEMS BY J W 1939 C BREWER PP100-1B2 FOR THE JUSTIFICATION OF THIS METHOD 1940 C AND MCCUE H K UNIVERSITY OF CALIFORNIA 1941 C LAWRENCE LlvERMORE LABORATORY (PRIVATE COMMUNICATION) 1942 C

330

1943 1944 1945 1946 1947 1346 1949 1950 1951 1952 1353 1154 1905 1956 1957 1958 1959 I960 1961 1962

C THE LARGEST FACTORIALS THAT ONE CAN REhVr-FNr ON A 60 pound51 T MACHINE C ARE AS FOLLOWS C 18 FACTORIAL INTEGER C 154 FACTORIAL FLOATING POINT C THIS FACT ALONG WITH IOVI ONE IMPLIMENTS THE FAYNTfriR INEQUALITY C PLACES AM UPPEK 1JOUHI IN KMAX (ASSUMING SINGLE PRECISION) C A REASONABLE VALUE IS KHAX-100 (OR FLOATING POINT FACTORIALS C

DIMENSION A(N0N0) C SET K = 0 FOR CHECK ON RETURN

K = 0 C SOLVE FOR THE LfRGFST ELEMENT IN THE A MATRIX AMAX = ABStAll1)) DO 1 I = 1 N1 DO 1 J=1NI 0=ABS(A(I J)) 1 IF(QGTAM))AMiX~Q C SCALE AMAX TCI TIG bullbullbull 1011 lif) VALUE

1 96- 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1963 1984 1985 1986 1987

Q=AMAXraquoOELTAN PERFORM THE PAYNrtfi If

AMAX=EXP(U) X1=00 XK=00 DO 2 1=1KMAX XK=XK16 X1=QXK AMAX=AMAXlaquoXI IFIAM) IL rRl- K COM) 1 MUE INECUAIi Ti T bulllt K = -1 GO TO 11

I 1 I I bull m if

CAI TY AND SOLVir

ro IO 1 [ [ 1 OT KKMAX

1 I -J f w K = I

CON 111 II RETURIt END

1968 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 20i9 SCJO

THIS Ptu M7

SPECIAL CAE THIS SUElPoUV |~ bull NO I S t R - gtpound I S

X ( K ) = - M X i GIVEN THC 11ATF 1

X(T)DOT = bull

P = 3UMMA0N I - - Q=5Utf)Ai ION R=SUNKATIJN | - i

TJ

L1A gt

or I T ALSO COI^PUTLH Tl-i bull A H lt 0 t v- WHERE

F T L D ( I ) = ( l l I X 4 U I K I -1gtlaquo0 T n - i l l C A T L D ( I ) = ( A T I ) gt I A I raquo I - I ATLI lC) bullbull i PH121 = SUMMATION 1= 0 bull ) Of bull 10i PH122 = SUMMATION I D I O bull - I u V U - WKP1(TKTK-1) = P H I 2 I ( r - r i i i l laquo T

REF D APPOLITO J A A l l r L E Al iV I I LINEAR STATIONARY CONINMCj Y5lty-k I N PP 2 0 1 0 2 0 1 1 DEC 196c AHO GELB A ( E D ) APPLIED U P T l A - c iTI MATO COURSE NOTES A SHORT COUR- C I A L M A I I r THE ANALYTIC SCIENCES CORF JIAi 1 VI I t r tDI I -

DIMENSION A ( 1 0 1 0 I B I I 0 1 0 ) 0 ( 1 0 1 0 ) P i 10 DIMENSION S ( 1 0 1 S U M ( 1 0 ) A 1 I lO CAPWI bull bull

2 PHI 21 ( 1 0 1 0 gt P H T 2 2 t O ) F T I IK t o I U I A ND = 10

I T I A L I 2 E THE MATRICES CALL ADOTBT CCAPWDFTLDN3N3Nl NDgt CALL AOOTB ( D FTLD DTLO Nl iMI N l ND) DO 2 1=1N1 DO 1 J raquo I N 1 O T L D I l J ) = DTLD(1 J ) DELTA P ( I J ) = 0 P H I 2 1 ( 1 J ) = 0 F T L D ( i j ) = 0

T I ) f L H

FINALLY

I-S K-7 l OR

l l r i r (ltgt I L I M l

331

2031 AT(I gt = A d I gt DELTA 2032 SUM(I) raquo 1 2033 Sill bull I 2034 PHI22(Igt_raquo I 2036 C 2 COMPUTE STATE NOISE COVARIANCE TRANSITION MATRIX WKP1(TKTK-1gt 2037 0 AND STATE TRANSITION MATRIX P(TKTK-igt 2038 KKM1 laquo KK-1 2039 DO 6 K=1KKM1 2040 DO 4 I=1N1 Ideg42 FTLD(IdegJ| N= (ATLDltI)laquoDTLDltIJ) - FTLOd J) AT( J) gtK 2043 3 PHI2K Jgt = PHI2HIJ) FTLDdJ) 2044 ATLOd) = AT(I)laquoATLD(I gtK 2045 4 PHI 22(1 ) = PHI22d) ATLD(1) 2046 5 CONTINUE 2047 DO 7 I=1N1 lo49 C N O T I J = S N C E A IS DIAGONAL PHI22 = (PHI22)T 2J50 6 WKPHIJ) = PH121(IJ)PHIZ2(Jgt I8I2 C 7 COMPUTE^duMffTHE INTERMEDIATE SUMMATION TIMES (DELTA) 2053 DO 15 J=2KK 2054 DO 14 I=Nl 2055 S([) = S() laquo AT(I)J 2056 14 SUMd) = SUMd) bull S( I ) 2057 15 CONTINUE loll C COMPUTE CONTROL TRANSITION MATRIX Q(TKTK-1) 2060 DO 18 I=1N1 2061 DO 17 J=1N2 2062 17 0(1J) = DELTASUM(I)laquoB(IJ) 2063 18 CONTINUE 2064 10 CONTINUE 2065 C COMPUTE NOISE TRANiTION MATRIX R(TKTK-1) 2066 DO 20 1=1Nl 2067 DO 19 J=1N3 2060 19 R d J ) = DELTASUMd ) laquo D ( I J ) 2069 20 CONTINUE 2070 CALL MATOUTP (PNlNl2HAKND) 2071 IF1N2NE0) CALL MATOUTP (6N1N22HBKNOgt 2072 CALL MATOUTP (RNlN32HDKND) 2073 CALL MATOUTP (WKP1NlNl4HWKP1ND) 2074 RETURN 2075 END 2076 2077 C 2078 2079 2080 2081 2062 20B3 2064

SUBROUTINE ATOB (ABNMND) COPIES (A) INTO ltB) DIMENSION A(1010)B(1010) DO 2 I = 7 N DO 1 J=IM B( lJ) = A d J) CONTINUE RETURN ENO 2086 2066 C 2087 C 2068 2089 pound090 2091 2092 2093 1 2094 Z 2095 3 2096 2097

SUBROUTINE ADOTB ltABCLMNND) ROUTINE PERFORMS FOLLOWING MATRIX MULTIPLICATION C(LXN) = AC-XMI BltMXNgt DIMENSION A(1010)B(1010)C(1010) DO 30 I = 1L DO 20 J bull IN C(lJ) = 06 DO 10 K e IM CdJ) = 0(1 J) AdK)laquoB(KJ) CONTINUE CONTINUE RETURN END

2098 SUBROUTINE ADOTBT (ABOLMNND) 2099 C ROUTINE PERFORMS F0LL0W1N0 MATRIX MULTIPLICATION 2100 C C(LXN) = A(LXM) BT(MXN) Sraquo2i S H E N S 2 N S -iMN) REFER TO MATRICES AFTER THEY ARE TRANSPOSED 2102 DIMENSION A(10 I 0)B(10 10)C(10 0) 2103 DO 30 I = 1L 2104 DO 20 J 1N 2105 C(lJI = 06 2106 DO 10 K = IM 2107 10 CdJ) = 0(1J) bull A(IK)raquoB(JK) 21OA 20 CONTINUE 2101 30 CONTINUE 2110 RETURN 21 1 1 END

SUBROUTINE ATOOTB (ABCLMNND)

332

pound113 C ROUTINE PERFORMS FOLLOWING MATRIX MULTIPLICATION 2114 C CU-XN) = AT(LXM) B(MKN) 2115 C DIMENSIONS (LMN1 REfFR TO MATRICES Al-TER THEY ARE TRANSPOSED 2116 DIMENSION A( 1 0 I 0) B( 0 103 C( 10 1 0) 2117 DO 30 I = IL 2118 00 20 J e IN 2119 CltIJl - 00 2120 DO 10 X = 1M 2121 10 COJ) = C(IJ) + AfKI)raquoB1KJ) 2122 20 CONTINUE 2123 30 CONTINUE 212D RETUilN 2125 END

2126 SUBROUTINE APLUSB CABCNMND) 2127 DIMENSION AC 1010)HI 10 I 0)C(ID10) 2128 DO 2 = 1N 2129 DO 1 J = 1 M 2130 I CMJ) = ACIJ) + Blt[J) 2131 2 CONTINUE 2132 RETURN 2133 END 2134 SUBROUT I igtIE AMINSB I A B C N M ND) 2 3 5 DIMENSION A l l 0 1 0 ) B l I 0 I 0 ) C I 1 0 1 0 ) 2136 DO 2 I = 1N 2137 DO 1 J = 1M 2138 1 C ( I J ) = A l l J ) - B l J gt 2139 2 CONTINUE 2IltI0 RETURN 2141 END 2142 SUDROUTIMF APLU B (A amp C N M MO) 2143 DIMtNoOH A l 1 0 1 0 ) B ( 1 0 1 0 ) C ( 1 0 1 0 ) 21(14 F PERFOIM FOLLOWING MATRIX OPERATION 2145 C C(NXM) - A(NXM) + BT(NXM) 2146 DO 2 1=1N 2147 DO 1 J=1M 2148 1 CCIJl = AIIJ) BCJ1) pound149 2 CONTINUE pound150 RETURN 2151 END 2152 SUBROUTINE ABAT IABCNND) 2153 C COMPUTES C = AraquoE-T FOR SPECIAL CASE WHERE CAgt IS DIASONAL 2154 DIMENSION A(10 1OiBiI 010)C(10 10) 2155 DO 2 1=1N 2156 DO I J=1N 2157 1 C(IJ) = AI I I )BC 1 J)AC J J) 218 pound CONTINUE 21 59 RE TURN 21 60 END

2161 2162 pound163 TR = 0 2164 DO 1 1-1N 2165 TR = TR bull AltI I gt 2166 RETURN pound167 END 216B SUBROUTINE XTAY ( X A Y Q N N D ) 216S C FINDS VALUE OF QUADRAT IC FORM Q 21 70 DI MENS I ON X ( I 0 J A ( 1 0 1 0 ) Y M 0 ) 2171 0 = 0 pound172 DO 2 J = l N pound 7 3 XA = 0 2 4 DO 1 I = 1 N 2 5 I XA = XA XI I ) A ( I J ) 2176 pound 0 = 0 + XAYltJ) 2177 RETURN 2176 END

2179 2180 C pound161 C pound162 C SUBROUTINE COMIUTFS THE INVERSE IF AN NXN REAL MATRIX (A) AND 2163 C RETURNS IT IN (AINV) (A) IS NOT DISTURBED IN THE PROCESS pound184 C GAUSSIAN ELIMINATION USING THE LU DECOMPOSITION AND pound185 C ITERATIVE IMPROVEMENT IS THE METHOD FOR SOLUTION 2186 C 2187 C 2188 C

333

Of UXiffi MrC iRiVTMr NO CLCVE (i MPLER COMPUTER SOLUTION iAIC iYS (EMS fPENlICE-HALL(1967) CHAPT 17

bulli I 9 J 1 i cgt t 2194 2 t 9f 2 1 97 bull 2U-gt 2199 praquo0lt i^Ol 203 SJ-Ofl 2 20J 220 2200 2209 2210 pound21 1 2212 2213 22)4 2215 216 2217 1 21H 2219 2220 2221 2tgt2 pound pound-223 2221 2225 2226 2227 2228 2229 C 2210 2231 2232 2233 2234 223 o 2236 2237

ON RETURN nERROR J IS THE ERROR FLAG IT SHOULD BE CHECKED I TIMOR - 0 EVERYTHING SEEMSfi OK lEMNO^ = -1 ROW WITH Ail ZfciW ELEMENTS WAS FOUND poundiFf-( = = -2 ZERO Puor ELEMENT WAS FOUND JCf oR- = -3 ITERATIVE IMPROVEMENT DtD NOT CONVERGE THE A MATRIX IS IL -CONDI nONED SUCH THAT NO SIGNIFICANT DIGITS OF THE TRJC ^OLuTlCN WERE OBTAINED IN THE ORIGINAL SOLUTION FROM SOLVE NOTE VARIABLE D MENS I ONI NG IS USED THROUGHOUT THIS PACKAGE ND - 312F Of DIMENSIONED ARHAYS IN CALLING ROUTINE r-N = T H E ACTUAL PROBLEM SIZE BEING USED (NNLEND OF COURSE)

DIMENSION Af1010)AINV(1010gtUL(1010)B(10)X(10) 2 SCALES I IQ)R( 0)OX10) ( IPS(IO) IFCNNEO1gtGO TO 10 ND = 10 CALL ntiCCMP (NN A UL SCALES IPS I ERROR ND) If- ( IEftRraquoRLTD) RETURN INDEX=1 DO 1 1=1NN iafNf-MiL iHE PROPER B VECTOR DO 2 J=1 NN B(Jgt=00 CONTINUE VOLvr FOR IMF COLUMN OF INVERSE Bt IND=X) = 1 0 CALL SOLVE (NNULBX I PSND) CALL iMFRUV (Nil A UL amp X R 3X IPS DIGITS TERROR ND) IF ( lERrtORLl 0 ~

-gtyigtMi COuUMN IN IN mdash v J=1HN AINV (JINDEX) CONTINUE INDE MNDEX+l CONTINUE RETURN SCALAR CASE CONTINUE JF(A) I 120 11 AINV = 1 A CRROR = O RETURN I ERROR = -2 RETURN END

RETURN ^E MATRIX X( J)

2P1amp SUBROUTINE prCOMP NN A ML 5 ^Al t S I PS 1 ERROR NDgt 2239 D I MEN- I ON A( ND NO UL ( Hi ND JCALF51 NO ) IPS(ND) 2240 N = NN 2241 C 2242 C INITIAL^ (PS UL AND SCALF3 2243 DO 5 I s 1N 224-1 J P S U ) s I 2245 ROWNRM a 00 2246 DO 2 J = 1N 2247 ULtIJ) = A(lJ) 2240 IF(ROWNRM-gt=Bjf UL(I J) )) 122 2249 1 ROWNRM = ABSfUL(IJ)J 2250 pound CONTINUE 2251 IF (ROWNRM) 3913 2252 3 SCALES(I) = I 0ROWNRM 2253 bullgt CONTINUE 2254 C 2255 0 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING 2206 NM1 s N-l 2257 DO 17 K = 1NM1 2250 BIG = 06 2259 DO 11 1 = KN 2260 IP = J P 5 U gt 2261 SIZE = ABSIULfIPK))laquoSCALES I IP) 2262 IF (SIZE-BIG) 111110 2263 0 BIG = SIZE 2264 IDXPIV s I 2265 11 CONTINUE 2266 IF (BIG) 139213 2267 13 IF HDXPIV-K) 141514 2263 14 J = |PS(K) 2269 IPS(K) = IPS(IDXPIV) 2270 IFSMDXP1VJ = J 2271 gt5 KP = IPS(K) 2272 PIVOT = UL(KPKgt 2273 KP1 = Kl 2274 DO 16 I = KPIN 2275 IP = I PS I I ) 2276 EM = -UL(IPKIPIVOT

334

2277 227S 2279 2280 C 2281 C 2282 2283 2284 2285 poundpound66 19 2287 2286 C 2289 C 2290 C 2291 C 2292 91 2293 2294 2295 2296

ULOPK) = -EM DO 16 ) = KP1N ULUPJ) = UHIPJ) bull EMraquoUL(KPJ) INNER LOOP USE MACHINE LANGUAGE CODING IF COMPILER OOES NOT PRODUCE EFFICIENT CODE CONTINUE 16 17 CONTINUE KP = IPSIN) IFtUL(KPN)gt bullERROR bull 0 RETURN ERROR EXITS I ERROR I ERROR I ERROR I ERROR RETURN t ERROR RETURN END

EVERYTHING SEEMED OK ROW WITH ALL ZERO ELEMENTS WAS FOUND -2 2ER0 PIVOT ELEMENT WAS FOUND -1 -1

2297 SUBROUTINE SOLVE (NNULBX[PSND) 2298 DIMENSION ULCNDND)B(NOgtXIND)IPStND) 2299 N = NN 2300 NP1 s Nlaquo1 2301 C 2302 IP = IPS(I) 2303 X(ll laquo B(IP) 2304 DO 2 I = 2N 2305 IP = IPSI) 2306 I Ml = 1-1 2307 SUM =00 2308 DO 1 J raquo 1IM1 2309 I SUM = SUM bull ULUPJ)laquoXU) 2310 H I D = BIIP) - SUM 2311 C 2312 IP = IPSCN) 2313 X(Ngt = X(NgtULt]PNgt 2314 00 4 I BACK o 2N 2315 I = NP1-IBACK 2316 C 1 GOES (N-1) 1 2317 IP bull IPS(I) 2316 IP1 = 11 2319 SUM = 00 2320 00 3 J = IPIN 2321 3 SUM - SUM bull ULCIPJ)laquoX(J) 2322 4X(I) = (X(I)-SUMgtUL(IPIgt 2323 RETURN 2324 END

2325 2326 2327 C 2328 2329 2330 C 2331 C 2332 2333 2334 C 233B 2336 2337 2338 2339 2340 2341 C 2342 2343 2344 2345 2346 2347 2348 2349 C pound350 C 23SI 2352 2353 2354 23S5 2356 2367 2388 2359 2360 2361 9 2362 C

SUBROUTINE It-IPRUV (NN AULB X RDX IPS DIQI TS IERROR ND) DIMENSION A(NDND)ULiNDN6gtBltN0gtX(N0)R(NDgt0XlNDgtIPStND) USES ABSU AMAXlti AL0G10O DOUBLE PRECISION SUM N a NN XXX EPS AND ITMAX ARE MACHINE DEPENDENT XKX EPS = 2raquoraquo(-47) ITMAX = pound9 XNORM laquo 00 DO 1 I bull lN 1 XNORM laquo AMAXKXNORMABS(X(l))) IF tXNORM) 323 2 DIBITS r -ALOOIO(EPS) GO TO 1U

3 DO 9 I TER bull I ITMAX 00 5 I bull 1N SUM bull 00 DO 4 J bull 1N 4 SUM bull SUM bull A(IJ)raquoXIJgt SUM raquo BltI) - SUM 5 R(Igt raquo SUM XXX IT IS ESSENTIAL THAT A(lJgtgtX(Jgt YIELD A DOUBLE PRECISION RESULT AND THAT THE ABOVE AND - BE OOUTLE PRECISION XXX CALL SOLVE ltNULRDXIPSND) OXNORM bull 00 DO 6 I bull IN T bull X(ll X(l) laquo XCI) DXII) DXNORK a AMAX11DXN0RMABS(X(I)-Tgtgt 6 CONTINUE IF 11TER-I) 8 78 7 DIGITS = -ALOG10IAMAX1(DXNORMHNORMEPS)) 8 IF IOXNORM-EPSltXNORM) 10109 CONTINUE ERROR EXIT

335

2363 C I ERROR = 0 OK 2364 C IERROR = -3 ITERATIVE IMPROVEMENT DID NOT CONVERGE THE A MATRIX 2365 C IS ILL-CONDITIONED SUCH THAT NO SIONIFICANT DIBITS OF THE 2366 C TRUE SOLUTION WERE OBTAINED IN THE ORIGINAL SOLUTION FROM SOLVE 2367 I ERROR = -3 2368 RETURN 2369 10 I ERROR = 0 2370 RETURN 2371 END 2372 SUBROUTINE NOISE (XBARCAPXXNND) 2373 DIMENSION XBAR(ND)CAPXINOND)X(ND) 2374 C RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS X(I) 2375 C ARE NORMALLY DISTRIBUTED ABOUT A MEAN VALUE VECTOR (XBAR) 2376 C WITH A (DIAGONAL) COVARIANCE ltCAPXgt 2377 C THAT IS 2378 C X - N (XBARCAPX) 2379 C NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX 2360 C 2381 00 10 1 = 1N 2362 10 X(I) = GN(XBAR(1)CAPX(Ilgtgt 2363 RETURN 2384 END

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2406

SUBROUTINE NOISEW (TCAPXXSIGMANND) DIMENSION CAPXINDND) XIND)SIGMAIND) COMMON I0 NINNOUTNTTYNRUNVER DATA NENTER O RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS XC I gt HAVE VARIANCE CAPXdI) CAPX BEING THE COVARIANCE MATRIX FOR X THAT IS CAPX o EIXXT) NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX XXX CAUTION XXX THIS ROUTINE HAS MEMORYUSE FOR ONLY ONE VARIABLE XX) THIS ROUTINE (NOISEW) USED FOR PLANT DISTURBANCE VECTOR (W) NOTEBY REMOVING STMT 1 BELOW THE ROUTINE WILL ACCOMODATE TIME-VARYING STATISTICS (IE CAPX(T)NECONST ETC) IF (NENTEREQNRUN) GO TO S NENTER = NRUN THIS FORM FOR TIME INVARIANT STATISTICS SUCH THAT STANDARD DEVIATIONS ARE CALCULATED ONLY AT BEGINNING OF RUN GENERAL CASE WOULD BE TO CALCULATE SIGMA(T) A FUNCTION OF TIME DETERMINE STANDARD DEVIATIONS FlhST TIME THROUGH 00 2 l=lN SIGMA(I) raquo SQRTCCAPXU)) DO 10 1 lt 1N 0 X(l) raquo GN(0SIGMA(l)gt RETURN END

2409 SUBROUTINE N8ISEV (TCAPXXSIGMANNDgt 2410 DIMENSION CAPXINOND)X(ND)SIGMA(ND) 2411 COMMON le NINNOUTNTTYNRUNVER 2412 DATA NENTER O 2413 C RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS X(Igt HAVE VARIANCE 2414 C CAPX(I1gt CAPX BEING THE COVARIANCE MATRIX FOR X THAT IS 2418 C CAPX = E(XXT) 2416 C NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX 2417 C XXX CAUTION XXX THIS ROUTINE HAS MEMORYUSE FOR ONLY ONE VARIABLE XX) 2418 C THIS ROUTINE (NOISEV) USED FOR MEASUREMENT ERROR VECTOR (V) 2419 C NOTEBY REMOVING STMT I BELOW THE ROUTINE WILL ACCOMODATE 2420 C TIME-VARYINS STATISTICS (IE CAPX(T)NECONST ETC) 2421 I IF (NENTEREONRUN) GO TO 5 2422 NENTER = NRUN 2423 C THIS FORM FOR TIME INVARIANT STATISTICS SUCH THAT STANDARD 2424 C DEVIATIONS ARE CALCULATED ONLY AT BESINNING OF RUN 2425 C GENERAL CASE WOULD BE TO CALCULATE SIGMA(T) A FUNCTION OF TIME 2426 C DETERMINE STANDARD DEVIATIONS FIRST TIME THROUGH 2427 DO 2 I=1N 2426 2 SIOMAU) bull SORTICAPXII I ) ) 2429 9 DO 10 I bull 1N 2430 10 X(I) - QN(0S10MAltl)gt 2431 RETURN 2432 END 2433 2434 C 2435 C 2436 C 2437 C 2436 C 2439 C 2440 C 2441 C 2442 2443 2444

FUNCTION GN (MUSIGMA) SUBROUTINE RETURNS A NORMALLY DISTRIBUTED (PSEUDO-) RANDOM NUMBER WITH MEAN (MU) AND STANDARD DEVIATION (SIGMA) THE ROUTINE USES (RAND()gt WHICH IS TO RETURN A (PSEUDO-) RANrampM NUMBER WITH UNIFORM DISTRIBUTION ON THE OPEN INTERVAL (01)

DATA NENTER O REAL MUSIGMA NENTER a NENTER

336

2445 pound446 2447 2448 2449 2450 2451 24S2 2453 2454 2455 2456

IF (NL-NTEREQ2) GO TO 2 VI 2 laquo RANLUKERNEL) - I V2 = 2 RANDEKERNEL) - 1 S = VI VI bull V2 V2 IF (SGE1) GO TO I

RAD = CRT 6N = sicrn RETURN GN = SIGMA NENTER - 0 RETURN

(-2 VI V2 RAD + MU

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 247S 2476 2477 2478 2479 2480 2481 2482 2483 2484 2465 2486

FUNCTION RANO (IY) ROUTINE REUIW A (PSEUDO-) RANDOM NUMBER UNIFORMLY LTI - fl- I BUTEO ON THE OPEN INTERVAL (0Tgt ROUTINE IS laquo u IABLE IE IT SHOULD WORK ON ANY MACHINE i SEE REF FOR JETAILS) REFFRITSCM F N UNIVERSITY OF CALIFORNIA LAWRENCE L I VI-MORF LABORATORY (PRIVATE COMMUNICATION) AND INTERNAL DOC -IENT NUMERICAL MATHEMATICS SECTION NOTE NO FEB 7 1973 UCLLL DATA M2 O I TWO 2 IF (M2 NE 01 SO TO 20 COMPUTE WORD SIZE OF MACHINE M = 1

10 M2 = M M = ITW0M2 IF (M GT M2) Oe TO 10 HALFM = M2 COMPUTE MULTIPLIER INCREMENT AND SCALE FACTOR u t c IIgt-gtL bull i r i i t n i IIUIH-I ii_n bull nnu IA = 8IFIX(HALFMlaquoATAN(1gt8gt + 5 IC = 2laquoFIX(HALFMraquo(05-SQRTI316gt) 1 S = 05HALFM COMPUTE THE NEXT RANDOM NUMBER

20 IY = IYlaquoIA IC IF (IY2 GT M2I IY = (IY-M21-M2 IF (IY LT 0) IY = (IYM2)M2 RAND - FLOATClY)S RETURN END

2487 2488 243U 2490 2491 2492 2493 2494 2495 496 2497

SUBROUTINE UEJAR (LTUIUUKNO) DIMENSION UKND3)IU(NDgtUltNDgt SUBROUTINE RETURNS THE INPUT VECTOR (U(IT)I=1L) IT USES OIERJAL FUNCTION Ul I I WHICH SETS EACH ELEMENT SEE (FUNCTION Ul) LISTING FOR MEANINO OF SWITCH (IU) AND ARRAY OF FUNCIION PARAMETERS (UK) EXTERNAL Ul DO 1 I=1L Ull ) = Ul(IUII) lUKNDgt RETURN END

2

2498 2499 2500 2501 2S02 2501 250-1 2505 2506 2507 2508 2509 2510 2511 251 2 pound513 2514 C 2515 3 2516 2517 C 2518 4 2510 2520 C 2521 5 2522 2523 C 2524 6 2525 2526 7 2527 2526 8

FUNCTION Ul ltIUlUKNDl U S R H U T N Ei RETURNS (Ul) AN ELEMENT OF AN INPUT VECTOR WHICH IS Abdquopound UFJlpoundM gE TME A s SELECTED BY (IU) INCLUDED TIME FUNCT ONS $ E I - T A S r f R ^ B E L 0 H PARAMETERS FOR THOSE FUNCTIONS ARE PASSED THROUGH (UK(IJ)) (I) IS THE VECTOR ELEMENT INDEX DSinBi0N U M N U 3 E N F deg R deg F 3 P A R A M E T E R S p e R INPUT |tj I S A SW|TCH TO SELECT TYPE OF FORCING FUNCTIONSEE BELOW GO TO (123456789)IUP1 ZERO ELEMENT Ul = 00 RETURN STEP INPUT OF MAGNITUDE UK(11) III =1X1111 RETURN RAMP INPUT OF 0A1N UKltI1) WITH INITIAL VALUE UK(I2) Ul = UK(I1)bull T + UKlt12) RETURN PARABOLIC INPUT HUbdquoV K 1 ) T T bull UK(I2)laquoT UK(13) RETURN AgtSIN(OMEGAraquoT PHI) INPUT Ul UKII1)raquoSIN(UK(I2)laquoT t UKII3)) RETURN GAUSSIAN NOISE INPUT WITH MEAN UK I I 1) AND STO DEV UK(I2) UI = GN lt UK ltI I )UK(12)) RETURN CONTINUE RETURN CONT1NUE

337

259 2530 2532

Rf- TURN CONTINUE RETJRN END

533 2534 25ii5 2536 2537 2530 2539 250 2541 as J 2

SU6P0UTINE MATNPT (AN MNAMEND) DIMENSION A(NDND) COMMON IO NINNOUTNTTYNRUN DO 1 1=1N READ ltNJNIOIgt ltACJJ)J=IMJ y DfllAT f 8E10 3 ) WRITK (N0UT102)NAME FORMAT ( IX A I-)- MATRIX IS) 00 C I = 1 N U f t l I t t M O U f 1 0 3 ) l-ORMAT ( IUI i X E RiiTURN END

25ltli 2 5 4 9 2 5 5 0 I O 2 5 5 1 25f 10pound 2 S M 2554 1 OCl

SUBRCJTlNf V i bull-laquo (XNNAMENDgt DIMLJVJIOI X C COHKOil M O hNOUTNTTYNRUN RiAP t NIC 10 ) fXC 1 gt 1 = 1 N ) FORMAT (poundT i 0 3) WR1 f i (NVlt I02JNAME FORMAT ( I K A 1 3 H VECTOR I S WRI7ENOUT103) lt X lt I 1 = 1 N ) TORMal ( 10lt 1 X E 1 0 3 M RETURN END

2557 SUBROUTINE MATOUTF ltANMNAMEND) 2558 LlMtMMON AiNDNO) 2559 COIIhON Q NI N N C W NT TY NRUN SSPO VRJ pound NOUT I T 1 )NAME 2561 IUI fORMAl IXA3H MATRIX IS) 2562 00 1 I=1 tN 2S-63 1 Wftl TE-NOUT I 0 2 ) ( A C I J raquo J = 1 M gt 2364 10 LirltMATl0( 1 F 1 0 3 ) ) 2$65 RL1URN 2566 END

li

SUBROUliNE VECOUTP (X N NAME ND) DIMENSION X(ND) COIMOlaquo io NINNOUTNTTYNRUN WKiIE(N0UTIC1(NAME FORMAT I1XAV13K VECTOR IS WRITE NOUT 102)(XlI 11 = 1 Ngt FORMATl IOC 1XE10 3) ) RETURN END

2570 SUBROUTINE DiiBUG (N L M LL T TO X XH G Y YH E U V P Pp I OUT ND) 257 C THIS ROUTINE USED TO GENERATE STRUNG-OUT LIST OF (ALMOST) ANY OF 2370 C THE PIVOliLEN VARIABLES AS TIME PROCEEDS IT IS MAINLY MtANT FOR lt3Araquo C OtBUGOIKi PURPOSED SINCE THE FOnM OF THE OUTPUT IS DIFFICULT TO 2560 C INTERPRET pound501 DI PENSION XI ND) XH N[l) G( NO NO) Y( ND) YH( ND) E(I-ID) W ND ) V( ND) 2562 2 PINONDIPPINDND) lOUT(lO) 2503 DIMENSION EQUALS10) 2S84 DATA EQUALS I 1 0raquo 1 C H mdash mdash - = -- 25B5 COMHON I0 NINNOUT NITV NRUN 2566 IFlIFQTO)WRIlpound(NOUT101JNRUN 256 o i roRwviormncBOouirCi OUTPUT I S AS FOLLOWS RUN 12) 2500 WRI TE(NOUT103)(EQUALS(I)1=1N) 2563 IO0 FORMATIX10A10) 2590 WRI1EIN0UTI02)T 2591 102 FORMATbull T = -E103gt 2592 0 THE CODE FOR ( 10UT( I ) 1 = 1 101 CAN BE DEDUCED FROM THE FOLLOWING 20S3 C 1EN STATEMENTS IF A OIVEN (IBUTIDI SS I ITS CORRESPONDING 2594 C VECTOR OR MATRIX IS PRINTED AT EACH TIME STEP 2595 IFUOuTI lltODCALL VECOUTP (XNIHXND) 2596 IF1I0UT 2)E01)CALL VECOUTP 1XHN2HXHND) 2597 IFIIOUT 3)EG11CALL MATOUTP GNM1HGND) 2596 IFI10UT 4EQ1CALL VECOUTP (YM1HYND) 2599 IFUOUTl 9) EQ 1 1CALL VF-COUTP (YHM 2HYH ND) 2600 IF(IOUT( 6)E01)CALl VFCOUTP (EN6H(X-XH)NO) 2601 IF(ICUT( 7)EQ1)CALL VCCOUTP (WLLIHWND) 2602 IF(IOUT( 6)EQ1JCALL VECOUTP IVM1HVND) 2603 IF1I0UTI 9)EQ11CALL MATOUTP (PNNTUPNO) 2604 IFlIOUTI101 EQ1)CALL MATOUTP (PPN N2HPPND) 2603 RETURN 2606 END

338

2607 2608 2609 C 2610 C 2611 C 2612 C 2613 C 2614 C 261 S C 2616 C 2617 C 2E18 C 2619 C 2620 C 2621 C 2622 C 2623 C 2624 C 262B C 2626 C 2627 C 2628 C 2629 C 2630 C 2631 2632 2633 2634 263B 2636 C 2637 C 2638 C 2639 2640 2641 C 2642 C 2643 C 2644 C 2640 C 2646 2647 2648 2649 26S0 2661 2652 2653 I 26B4 C 2693 C 2656 C 2697 C 2658 C 2659 C 2660 C 2661 C 2662 266Z 2664 2 2665 C 2666 C 2867 2666 pound669 2670 2671 2672 3 2673 2674 2675 A 2676 C 2677 2678 2679 2680 S 2681 6 2682 C 2683 2684 2665 2686 7 2687 C 2688 2689 2690 8 2691 C 2692 C 2693 2694 2699 1lt 2696

SUBROUTINE OUTPUTS (XNAMENCOLNTIMETOTlTST 2 XYPWIXYPWpoundTI TLES NTL NAME3T NCOLST 1 MAX JMAX NI N J NK gt ROUTINE X(Jgt N TIME TO Tl TCI) ST(IJK

1MAX JMAX(K) NINJNK

NAME NOTE

VARIABLES ARE AS FOLLOWS THE VECTOR OF LENGTH TO BE STORED FOR PLOTTING AT TIME WHERE TIME RUNS FROM INITIAL VALUE OF TO FINAL VALUE OF THE VARIOUS TIMES ARE STORED IN THE PLOTTING VECTORS ARE STORED IN ) WHERE 1 bull THE LAYER OF STORED VALUES OF THE VECTORS AT TIME T(I) J = THE ELEMENT INDEX ON X(J) AND K = THE NUMBER OF THE VECTOR STORED THUS IS THE MAXIMUM NUMBER OF POINTS tlN TIME) PER PLOT IS A STORAGE ARRAY OF THE LENGTHS OF THE K VECTORS ARE THE PHYSICAL DIMENSIONS OF THE APPROPRIATE ARRAYS IN THE CALLING PROGRAM

IS A SWITCH IT IS TO BE ZERO IF X IS A VECTOR IT IS TO BE SET TO THE COLUMN NUMBER IF X IS A COLUMN OF A MATRIX (USED ONLY IN LABELLING) IS A 3-CHARACTER HOLLERITH NAME FOR X USED FOR LABELLING (EG NAME laquo 3H XKgt IMAXLENI JMAX(KgtLENJ KMAXLENK DIMENSION X(NJ)T(NI)ST(NINJNK)JMAX(NK)NAMEST(NK) TITLES) 48 DIMENSION XYPW1tNI)XYPW2(N|gtNCOLST(NK) DATA K1 DATA 10 COMMON I0 NINNOUTNTTYNRUN IF A PROBLEM MATRIX HAS BECOME SINGULAR SO THAT THE PRESENT RUN IS TO BE ABORTED GO TO DUMP OUTPUT UP TO PRESENT TIME AND REINITIALIZE POINTERS FOR NEXT PROBLEM IFCNAMEEQ10H SINGULAR)GO TO 11 IF(TIMENETO) GO TO I INITIALIZE ROW LENGTHS FOR VARIOUS VECTORS TO BE PLOTTEDJMAX(K)) ALSO DETERMINE MAXIMUM NUMBER OF VECTORS TO BE PLOTTED (KMAX) STORE VECTOR NAMES AS THEY COME DOWN STORE (NAME) IN (NAMEST) STORE (NCOL) IN (NCSLST) TO SIGNIFY WHETHER (X) IS A COLUMN OF A MATRIX OR JUST A SIMPLE VECTOR KMAX bull K JMAX(K) bull N NAMEST(K) - NAME NCOLST(K) bull NCOL TM1 laquo TIME IF(KNEl) GO TO 8 GO TO 2 IFITIMEEQTM1gt GO TO 8 START A NEW LAYER AT NEXT TIME TM1 IS USED AS A MEMORY ELEMENT FOR SWITCHING IF TM1EQTIME THEN IT MEANS THAT THIS IS NOT THE FIRST VECTOR T( BE STORED IN THE SEQUENCE OF CALLS TO (0UTPUT3) IF TM1NETIME (BUT ACTUALLYIT EQUALS THE PREVIOUS TIME) IT MEANS (TIME) WAS JUST INCREMENTED IN THE CALLING PROGRAM SU6H THAT A NEW LAYER SHOULD BE STARTED IN STORING THE VECTORS (THUS SET K=1 1=11 AND T(HlaquoT1ME) K a 1 TM1 raquo TIME IFdNE IMAX) GO TO 7 1 IS AT THE ALLOWABLE MAXIMUM OF TIME POINTS PER PLOT UMAX) 00 THE PLOTTING DO 4 K bull IKMAX JMAXK raquo JMAX(K) DO 3 J bull 1JMAXK CALL XYPLOT CTSTI1JK)IJXYPWIXYPW2 2WMESTCK)NCOLSTIKi tlTLESNTLNRONNOUTNl) CALL TABULAR(TSTltt11KgtIJMAX(K)NJ 2 NAMEST(K)NCOLST(K)tlTLESNTLNRUNfojUTM) CONTINUE COPY PRESENT LAYER INTO FIRST LAYER FOR CONTINUATION PLOT DO G K ItKMAX JMAXK a JMAX(K) DO 9 J bull 1JMAXK SSNTINOE bullWlaquoIWltWKraquo RESET INDICES TO POINT TO FIRST PLOTTED VECTOR OF FIRST LAYER 1 bull I T(l) laquo TIIMAXI CONTINUE AT=START OF NEW LAYER (NEW TIME) INCREMENT I AND STORE T(U T(gt raquo TIME CONTINUE STORE PRESENT VECTOR X(J) INTO KTH VECTOR POSITION IN ITH LAYER JMAXK aJMAX(K) OO 10 J bull 1JMAXK ST(IJK) bull X(J) IF(TlMELTTI) GO TO 20

339

2697 IF(KLTKMAX) GO TO 20 2698 C AT THE END OF TIME INTERVAL (TOTI) FOR THE FINAL VECTOR 2699 C DO THE PLOTTING 2700 11 CONTINUE 2701 DO 18 K n 1KMAX 2702 JMAXK s JMAXIK) 2703 DO 15 J = IJMAXK 270-1 CALL XYPLOT ( T ST( 1 J K) I JXYPW1 XYPW2 205 2 NAMESTltK)HC0LSTltIOTITLESNTLNRUNNOUTNlgt 270b IB CONTINUE 2707 CALL TABULARIT ST( I 1 K ) I J M A X ( K ) NJ 2706 2 NKEOTltK1NCOLST(K| T ITLES NTL NRUNNOUTNl ) 27JM 16 COM r INUE 2710 WRITCOH 2711 WRlTElSXTd I I I 1 = 11 ) 2712 WRITE 5MSTI1 I1KMAX)1 I=1I ) 271 a C RESE1 INDICES FOR NEW PnOBLEM AS IN DATA STATEMENTS 2714 K = 1 2715 I = 0 2716 GO TO 99 2717 20 CONTINUE 2718 C ADVANCE PLOT VECTOR INDEX FOR NEXT CALL 2719 K bull K 1 2720 99 RETURN 2721 END

2722 2723 2724 2725 2726 2727 2726 2723 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

SUBROUTINE TABULAR tTXNTNNJ 2 NANENCOLTlTLESNTLNRUNNOUTNI) C ROUTINE GENERATES A TABULAR LISTING OF X(T1 X AN N-VEOTOR C ROUTINE VARIABLES ARE AS FOLLOWS C X(lJgt THE ARRAY OF N-VECTORS AS A FUNCTION OF TIME C STORED ROW-WISE C T(lgt THE CORRESPONDING TIMES FOR WHICH ELEMENTS OF X C WERE STORED C NT NUMBER OF POINTS IN TIME FOR VECTORS STORED C NA1E A 3-CHARACTER HOLLERITH NAME FOR LABELLING C TITLES(48) DESCRIPTIVE INFORMATION C NOUT LOGICAL UNIT NUMBER FOR OUTPUT C NRUN RUN NUMBER C NTL NUMBER OF TITLE CARDS C NlNJ DIMENSIONS OF X(NlNJ) AND T(NI) IN CALLING PROGRAM DIMENSION X(N1NJ)T(NI1TlTLES(48)LABEL(I 0) DO I I = 1N 1 LABEL ltI gt = NAME WRITEINOUT 101JNRUN 101 FORMATOhlRUN NO 12) IF(NTLEOO) GO TO 6 DO B I = 1NTL

5 W R I T E ( N 0 U T 1 0 5 M T I T L E S C I J ) J - l 8 gt 105 FORMAT(1X8AIOgt 6 CONTINUE

IF(NCOLNEO) GO TO 10 WRI TECNOUT 102)((LABELI II) llaquolN) 102 FORMATIIH TIMEI0(4XA31H(12IH))) GO TO 20 10 WRITEINOUT120)(ltLABELI)lNCOL)I-1Ngt 120 FORMATIIH TIME16(IXA3(HI|2IH I 21Hgtgt) 20 CONTINUE DO 2 I o INT 2 WRITE(NOUT1041TII(X1J)J=1Ngt 104 FORMATv11(1XE103)) RETURN END

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2778 2780 2781 2782

SUBROUTINE XYPLOT (XINYINNUMPTSNROWXY 2 NAMENCOLTITLESNTLNRUNNOUTND) C C REFMCCUE H K UNIVERSITY OF CALIFORNIA C LAWRENCE L1VERM0RE LABORATORY (PRIVATE COMMUNICATION) AND C PHD DISSERTATION UNIVERSITY OF CALIFORNIA BERKELEY 1979 C DIMENSION XIN(ND)YIN(ND)X(ND)Y(ND) DIMENSION POINTSIIOI gt BUTI6) Tl TLESUai IFINUMPTSLT2)G0 TO 999 C COPY INPUT VECTORS (XINYIN) INTO WORKING STORAGE (XY) DO 1 1=1NUMPTS XII) - XlNIl) Y(l) = YIN(l) 1 CONTINUE C WRITE OUT TITLE CARDS WRITEN0Ur6) 6 FORMAT1 Hi) DO 3 1=14 GO TO (301302 303303) I 301 IFILENTL1WRITENOUT3001)NRUN(TITLES(IJ)J=18) 3001 FORMAT3X9HRUN NO I22X8A10) IF( LOTNTL)WRITEINOUT 3011 gtNRUN 3011 FORMAT(3XraquoHRUN NO 12)

340

2 6 3 aaa 276U 2706 27iJ 2 0B 2 7a9 2790 2791 27 j2 2793 2794 2H 3796 2797 pound7laquoA 2799 000 D n l EU02 2603 2t04 pound609 2098 I

GO TO 3 (NRPVM IS lOU ELLMENT NUMBER (NCU- I IS COLUMN El tttetil NUMUER IF ( Y I N ) IS A

I F IS 7EK0 IF (Y IN) IS A SIMPLE VECTOR I F l I l ENTL) AND I NCOI NEO) )

2 WRI TENOUT 9n I JNAMENROVNCOL ( T ITLES( 1 I FORM- r O X A 1 1M( 12 1H 12 IIIJ 2X 8A10)

I K ( I L E N T L 1 AND (NCQL EQ 0gt ) 2 WRlTElNOUT JuSairAMENrrOW (TITLESC I J ) J =

bull- FORMA I ( 6 r A3 1 H ( I 2 1 H I 2X SAI 0 ) I F l I OTNVI I AND (NCOI NE0I I

2 U R I l t l TOUT -02C) NAME NROH NCOL I r-OfraquoMA- C3y A3 I H i 12 1H 12 1H)gt

t r i l l O T N I L ) A 0 INCOL E O O l ) 2 WRI rEltHOUTltC2ClN4MENReU

GO TO 3 I F t I I E N T L ) WRI TECI0U1 3031 ) i T I T L E S I J ) J = l

I bull 5RMA I I 1 5X DA 10 gt IFl I Xl NTL)WlaquoITE(IMUT5) CONTINUE

3Y THE Y AXIS

COLUMN OF A MATRl J)-1=18)

C-IO bull - gt v r FOF MAX 2 f gt 1 0 1 = 1 poundbullbullgt 1 2 0 C O N T I N U E 2 0 1 2 JJ-l 2 f t 13 YNAX V 1 ) 2 t t l 4 DO 10 J - l N U K P T S

H Y ( J ) L E Y M X ) G O TO 10 i 3 1 5 DO 10 J - l N U K P T S H Y ( J ) L E Y M X ) G O TO 10

at- i e Y N A X = Y ( J I t 1 J J = J bull t i 1deg now n r-iUE B 1 1 I I I T MOE A 2 0 t - Y ^ Y I J gt lt f f i x lt = X i I 1 xiti Y ( I ) - Y lt J J ) t ^ f ^ j M M X ( J J ) pound 0 Y ( J J ) = Y Y

Xlt J J l - X X pound b G l = M 1 2 r 7

i 1

i F ( 1 r J N U ^ I J n 3 0 TO 3 H GO TC 2 0 -( NT 1 NUE

CO 0 bull V t K u P ttNfWU OF X AND Y gt( J I XM 1 H bull X ( 1 ) F t 3 M A gt - - X lt 1 ) 2 r j 3 YltHN = Ylt 1 J lt j [ IAX -V ( 1 ) f V j 1)0 a l laquo l H L I P T S 2ampLgt6 I F ( 1 1 ) L r X M I N X M I N - t X d ) 2 0 j 7 raquo F ( X lt i raquo ( gt I M A X ) X M A X - X ( I ) 2 f 3 0 F ( Y ( 1 IUTYHtN)YMIN=Y(J) laquoJ9 I F ( Y U ) C I Y M A X ) Y M A X = Y a ) rraquo lt- j

( tT C O N T I N U E

f T THE S N U P O I N T S ^ f t f l 2 C A L L E M D r i S X h l N X M A X ) ipoundraquo 3 C A L l t l D l T S t Y M l N Y M A X )

H A I f U F I X AMD t E L Y C A L l t l D l T S t Y M l N Y M A X )

H A I f U F I X AMD t E L Y Zi - laquo i U T L X - lt X N X - X i laquo M N gt 1 0 0 0 2^ iG D F i Y i y M A A - Y M l N i 5 0 0 7 1 U f--rM i E I H i - P L O T bullbullbull 3 KK bull AB r ( AC i r i D E L X I o i f I S t2 l Flt0 = 0 ( - j I F ( I X N I N L L 0 Cigt A N D l 1- iAX 3E 0 0 ) ) I 2 E I 21 1 1 C O U N T = 1 0 2 pound ^ 2 L I S T = 1 a w Q Q t o g ^ - 1 ( i l 2 8 5 4 X l = l aoamps Z 2 - Y M A K - X U D E L Y 2 6 5 E - Y 7 1 - Y pound + D E L Y 2 0 5 7 1 A A = 0 2 0 8 0 l i ( ( Y 2 1 0 E 0 0 ) A N D ( Y Z 2 L E 0 0 D I A A = 1 2 0 0 9 0 0 1 0 J = 1 1 0 1 2 6 6 0 1 0 1 P Q I N i S ( J ) = 1 H 2 a c i 1 F ( 1 C O U N T N E 1 0 raquo G 0 TO 105 2 8 G 2 0 0 1 0 6 J - 1 1 0 1 2 2 G 6 3 1 0 6 P 0 I N T S ( J ) - 1 H 9 6 r t 1 0 5 C O N T I N U E 2 t ) 6 5 P O I N T S t 1 ) = 1 H 2 8 6 6 P a I N T S ( 2 1 ) = 1 H 2 6 6 7 P 0 1 N T S ( 4 1 ) = 1 H 2 laquo 6 B P O I N T S C 6 1 I s l H 2 0 6 9 P Q N T S ( 6 1 I s l H 2 8 7 0 P O I N T S t 1 0 1 1 = I H 2 6 7 1 I F I I Z f R O E Q 1 ) P G I N 1 S ( K K ) = 1 H I 2 3 7 2 I F ( I A A N E 1 1 G 0 TO 1 3 7

341

2R74 116 26a 1 37 2676 2577 1 02 2070 2679 21100 26BI 260 2r33 2r0l 1 10 2PH5 2606 260 2CJ8 1 1 1 20O9 2690 1 12 2691 2692 2893 2P94 2e95 1 13 2696 109 289 7 2690 2099 2900 2901 121 2902 2903 122 2904 2905 202 2906 999 2907 2906

2909 2910 C TH1 2911 C 2912 C 2913 c 2911 0 2915 c 2916 2917 2918 2919 pound920 r CHt 2921 2923 2924 2925 1 2926 2927 2926 2929 2930 2931 pound932 2 2933 C DEL 2934 2935 2936 5 2937 2936 2939 29-10 10 2941 2942 2943 2944 1 1 2gt145 20 2946 294 7 2946 2949 2950 2951 2952 2963 29S-1 C XXM 2955 2D56 2957 2956 32 2959 33 2960

101 1

COIN I I NUE YLOW-- tMAX XI DELY CON NJE l f ( l S r BTNUMf T t ) t3 igt TO 110 IFIYvLISTJ LI YLOWGO TO 110 K M X L I ST ) -XMIN) DFLX+1 0 I 0 I N T 3 I K ) = 1IIX L IST = L I S T M GO TO 102 CONTINUE IF ( I COUNTpound0 10 )00 TO 112 ICeUNT=ljUNTl WRI rElNOUT I 11 1(POINTSJ) J=l101) FORMATliXI01A1) GO TO 100 CON I INUE YY=YLOWgtDELY ICOUNT=I I F ( ( Y Y S T - I O E - 9 ) A N D I Y Y L T 1 O E - 9 ) ) Y Y = 0 0 WR PKNOUT 1 13) YY 1P01NTSlt J ) J = 1 1 0 1 ) FORMAT(2XEll 42X101AI ) CON)1NUE DO 121 116 Jt I - I - 1 BUT(I)=XN1N200DELXlaquoXI bdquo_ _ bdquo IF( (BUT( I) LT 1 OE-9) gtND BUI C I ) GT -1 OE-9) )BUTlt I 1=00 CONTINUE WRITElNOUT 122)(BUTJ)J= I 6) FORMAT 10X6(E103 1 OX) ) WRITE INCUT 202) FORMAT 1 51 ( 20h I ME I 01 MENS 13NLLSS)) CONTINUE RETURN END

REFMCCUE H K UNIVERSITY OF CALIFORNIA LAWRENCE LIVER1WRE LABORATORY (PRIVATE COMMUNICATION) AND PHD DISSERTATION UNIVERSITY OF CALIFORNIA BERKELEY 1978

bdquobdquo ~ -- bdquobdquobdquobdquo 25050075 10 I 1 1 25 1 SO 1 75 220025030035040045050607080901001112 5 315I 752025303540455060 708090100 OK XMINXMAX TERMS 1FIXMINNEXMAX1G0 TO 1 XMINXM1N-I0 XMAX=XMAXraquoI0 00 TO 999 CONTINUE OEL=XMAX-XMIN IFIDELOT00)60 TO 2 XX=XMAX XMAX=XMIN )MIN = XX 1 EL=-DEL CONTINUE IS POSITIVE AT THIS POINT VALUE1 0 IFIDELLE10)00 TO 10 CONTINUE IFIDELLTVALUEIGO TO 20 VALUE-VALUElaquo100 60 TO 5 CONTINUE IFIDEL GEVAlUE)GO TO 11 VALUE=VALUEraquo0 I GO TO 10 VALUE-VALUEIOO CONTINUE XX=XMINVALUE IXX=XX XX=IXX XX=XXlaquoI00 XXMIN=XMINlaquo10 0VALUE -XX XXMAX-XMAX100VALUE-XX 1FIXXM1NE000)00 TO 30 1FIXXM1N LTOOIGO TO 35 IN IS POSITIVE DO 32 1=238 AAA = A U ) IFIXXMINLTAAA1G0 TO 33 CONTINUE 1 = 1 -I XXMIN = AII I

342

pound961 GO TO 90 2962 35 CONTINUE 2963 C XXMIN IS NEGATIVE 2964 XXMIN=-XXMIN 2965 DO 36 1=238 2966 AAA=A(I) 2967 IF(XXMINLTAAA)GO TO 37 2968 36 OONT1NUE 2969 3 XXMIN=-A(I) 2970 30 CONTINUE 2971 IF(XXMAXEQ00)G0 TO 40 2972 IFCXXMAXLTOOIGO TO 45 2973 C XXMAX IS POSITIVE 2974 00 42 1=236 2975 AAA=A(1) 2976 IF(XXMAXLEAAA)G8 TO 43 2977 42 CONTINUE 2970 43 XXHAX=A(I) 297S GO TO 40 2960 45 COMT1NUE 2981 C XXMAX IS NEGATIVE 2982 XXMAX=-XXMAX 2983 00 46 1=238 2984 AAA=A(t) 2985 IF1XXMAXLEAAA1G0 TO 47 2986 46 CONTINUE 2987 47 1 = 1-1 298B XXMAX=-A(I) 2989 40 CONTINUE 2990 C SOLVE FOR NEW END POINTS 2991 XMIN=(XXtXXMIN)VALUE100 2992 XMAX = I XXtXXMAX) raquoVALJE100 2993 999 CONTINUE 2994 RETURN 2995 END

343

APPENDIX 6 DESCRIPTIONS AND LISTINGS OF POSTPROCESSOR PROGRAMS

All of the postprocessor programs listed in this Appendix have as their sole inputs the binary (unformatted) intermediate disc files PFILE or TFILE generated by PROGRAM KAIMAN see Figures Fl and F2 for their relationships to KALMAN and their own output files

CONTOUR generates contour plots of the surfaces [Ppound(Z)] at all measurement times tbdquo The idea for the format of the plots was taken from Case Study 26 in McCracken [83] the coding was this authors own

POFT computes and plots surfaces for Tr[P^ + N(zbdquo)] for increasing values of time tK+ The particularly efficient algorithms for the evalushyation of the trace function as in subroutines FVAL anci PVAL are called to the readers attention the amount of computation involved in generatshying the (51 x 81) point grids in these contour plots grows enormously with the size of the problem such that computational efficiency is of prime importance in their generation

PELEM plots the contour surfaces of the diagonal elements of the co-variance matrices [poundD(z K)] i = lgt2 n They show the decomposishytion of the trace of that matrix which led to the fundamental result for the infrequent sampling problem of Conclusion II

SIGMAT plots the family of curves for aj+bdquo(zpoundz) as functions of the position z in the one-dimensional medium for a set of consecutive times tK+N = ^K t K + Y K + 2 Y bull bull ) bull w n e r e Y is selected at the teletype This routine was instrumental in showing the asymptotic movement of the position of maximum variance in the output estimate with time see (654)

if MAXTIME was used to compare the two performance criteria Tr[P^(zbdquo)] and [Pp(Z|)] It showed that minimizing the trace at the time of the

344

measurement is not optimal whereas minimizin its first element is optishymal for large time

POSTPLT is used in various places to plot families of curves as functions of time resulting from multiple runs in KAIMAN Doing graphishycal displays with such a postprocessor that is a program which opshyerates on data generated by another (usuallyNlarger) program was found to have a number of programming and computationaladvantages Among

them were small program size ease of execution and versatility

K s-P0STFP was used to plot sections through the lPj(zbdquo)X surfaces in the study of the sensitivity of the optimal monitoring probIenV-resuIts to dimensionality of the model used ir the monitor

POSTSP plots o^(zjz) as functions of z for monitor models of vari- N

ous dimensions Numerous extensions of the programs listed here can be conceived

Among them is the use of the various plotters in conjunction with other programs the basic plotting routines are quite versatile in that sense In the case of the contour plots where the dimension of the measurement vector y must be m = 2 an obvious refinement is to replace the general purpose matrix inversion package with a simplified algorithm for invershysion of the statistics matrix

[4J1 s P ( K + N K + N ( S K ) ( trade ) T + ] V

in the covariance matrix correction algorithms for these cases T K + N is

a (2 x 2) matrix

345

P R C U W 1 [ O N T O I K ( P F I L E T A P F 3 = - f F I L E J 0 0 U T T A P E 3 = C 0 U T ) C A M - H A N O r ( pound H t - C J C A L I fct fiZtAHCQVi 4 0 0 Q U S W T ) N I N - 2 (OUT = 3

n m N f i - r i A t c I O I p lt i o i 0 ) C A P V ( I O I O J W K P I d o i o gt w $ S ( i o i o ) M I N I Ni u N CAPWt 1 0 1 0 ) M K h T f iV 7 L U M f 1 0 ) iMgtlaquo = 1 0 ti-(-iOH F R W N M lt - M A X A P C A laquo WKP1 W S S I S I NG

IIKE l lt 1 0 N r i 5 l 8 1 ) X ( 2 gt J S t l 9 gt S L 1 N E ( amp 1 ) S Y f 1 B C 9 ) D A T A 1H I H I J I I j 1 H 2 1 H 1 H 3 1H H 4 1 H 1 H 5

2 1H 1 H 6 1 H 1 H 7 1 H 1 H 8 1 I I 1 H 3 1 H WAT A o V P n i l 1 H 2 I M S 1 H - 1 1 H S 1 H S I H 7 1 H 8 1 H S l i I bull i U - i - j I I T I L 3 1 4 laquo J ( P P F M 5 1 ) f c O A L pound H ( 5 I ) S C U E V ( 1 1 ) S A M P L E ( 1 0 ) CAit MM 1 1 U 1 1 H I H + 4 - 1 H I H + ^ J - I H 1 H 4 laquo 1 H raquo H + 4 1 H

1 bullbullraquo 1 H H + 4 raquo 1 H 1 H 4a 1 H 1 H 4 raquo I H 1 H 4 1 H 1 H + n - C f l i F t - V I O H t C + 1 I 0 H I OH 0 9 +

P 4 - I O H 0 H 0 8 + 4 1 0 H 1 D H 0 7 + C - - 0 1 0 1 1 0 6 + J 2 1 0 H 1 0 H C Z C K J 1 2 4 TOM 1 0 H 0 5 + bullJ 4 1 C H 1 0 H 0 4 + 4 1 0 H 1 0 H 0 3 + G 4 raquo i O M I O H 02 + 4 1 OH j l O H 0 1 + 7 4 - O K 1 0 H 0 0

H A i - C V KV f l H O O 6 H 0 1 S H 0 2 S H 0 3 k W O 0 1 1 0 5 8 H 0 6 8 H 0 7 Q H O S Clt --gt) i l T H l 0

OAf gt n i L 7 - O H ^ L R O E T H 1 flhriRSl B H S E P O N D 6 H 7 H I R D e H F O U R T H P 6 h r I T T H OHS I X f H 4 8 H S E V E N T H 6 H E I Q H T H J 8 H N I N T H

D l T - l T i r i M L1DRM181 ) CAT A 111 H M I H 7 11-1 1 H 7 I H 1 H+ 7 - 1 H 1 Hlt 7 laquo 1 H 1 H+ 7 H

d l H v 7 laquo ) H 1 M - 7 x ) H 1 ^ 7 1 1 1 1H + 7 1 H 1 H + 7 1 H H

X M I N CAr i - r i l w

P L O T L I M I T S

laquoH- i laquo I M l N II N I L 1 0 T l L I M I T i r bull M L 7 ut ro to JI9 I T A M bull i l t H ( i l l J J 1 - 1 N gt 1 = N gt bull T i i gtti bull n K p i ( ) = i r bull U i N )

i M i I V W l | J ) J M N ) U l K ) M n bull ilt | j i 1 J l f = l U raquo i = - L L gt rltr lt - 1-lM t t W I V i I n bull - M ) laquo 1 M J I F i l h bull O J R ALraquo- N1M) lt r M L K S ( bull J J ) J lt 1 8 ) I - l N T L J

O H i 1MUE-K L - r - ) W n i l O - T L h P u M LIT 11 r-O II u) nn io duoo fit Af t ( N I N j n P l | J ) J = 1 N ) l = l N ) ( F i - N C - U 0 gt r F - 0 ( p H N ) T O U M i I 1 = 1 H ) I f d N o i (it C ) R i - O i N I N M pound L X i M ( I I = t M ) X ( 1 ) = X M I N ( 2 1 - V M 1 N C A L L VAL I X r M I N l K i A K - I K I N 0 0 pound I - I N r T 1 M I I H l - O f J T U L Y ltKltpound) E B M C A L L Y X ( f t bull-bull YM1M ( I - I l laquo O Y DO - I N A P I - I i ) bull x i i N + t J - i ) raquo n x

i UL r-VAL f X F i | J ) ) I F l T I I J l L l f M l f U F M I N - f U J ) n i igt r v r r A ) r M A x = F ( I J gt I o n I H L E f O H i l N U E Of ~ L f M A K t - C U N I N L N O p i l N O P ) WRI i F i i M O U l 1 0 1 ) 1 ( T I T L E ( I I ) bull I 8 ) S A M P L E ( N 0 P P 1 raquo

pound ( T 1 T L E S ( 2 J 1 J - I a ) FOfJMA ( bull I 0 gt C O t n O U R P L O T O F [ P ( K K ) ( Z lt K ) gt ] H A S A F U N C T I O N O F -

2 L 2 i K lt ] H O R I Z A N b [ Z I K U 2 V E R T 9 X T I M E E 1 1 4 1 3 I I X U A 1 0 O X A f - M E A S U R E M E N T A M X 3A ) 0 bull ) WPI lFHOjl IC7JDDRH 1 UIW1 T l I O X 0 1 A 1 S X 1 6 ( I H = ) ) h O K t O O I = K N V P 1 DO 9 J = l N X P 1 DO 5 K = l N L

36

59 21 100 201 101 102 22 103 202 104 105 23 106 203 107 103 24 109 204 110 111 25 112 1 13 20 1 14 206 115 1 16 27 1 17 207 1 18 119 120 121 260 122 123 28 124 125 203 126 127 128 29 129 30 31 32 350 33 34 35 35 235 36 37 36 38 39 37 40 237 41 42 38 43 238 44 4S 39 48 239 47 48 40 49 240 50 01 42 52 242 S3 94 43 SB 243 se 57 44 58 244 09 SO 45 SI 245 62 S3 47 laquo4 247 85 86 48 67 248 68 69 50 70 250 71 72 51 73 74 52 7S 100C 78 77 78 2S3 79 bull 0

lFliFMINlaquoKlaquoOFgtGTFWl-H-l)gt00 TO 6 CONTINUE SLINEIJ) = SIK1 I F l l F - N Y P 1 1 - l J D E O F M l N I S L I N E ( J ) = 1Hlaquo I F I I F I N Y P 1 M - I J M E Q F M A X ) S L I N E I J ) = 1H0 CONTINUE I F lt I 0 T 7 ) 0 0 TO 280 GO T 0 1 2 1 2 2 2 3 2 4 2 5 2 6 2 7 ) 1 WRITE(N1JUT201gtSCALER|I gt SL1NEBDRI Igt F 0 R M A T I A I 0 8 1 A 1 A I 8 X CONTOUR LEVELS) GO TO 1000 WRI(E(MOOT202)SCALEH1 IgtSLINEBDRI1gt F0RMATIA1061A1A18X AND SYMBOLS) 00 TO 1000 WRITE INCUT2031SCALEHI1)SLINEBORI1) FORMATA1081AlA18X16lt1Hraquogt) GO TO 1000 WRITEIN0UT204)SCALEH(I)SLINEBDRII) F0liMATIA108IA1A10XlaquoSYMB LEVEL RANGE) GO TO 1000 WRITEINOUT203)SCALEH(11SLINEBDRtI) GO TO 1000 WRITENOUT206JS0ALEHII)SLINEBDRII)FMAX FORMATA1061 A1A16X4H (0)Ell4) 00 TO 1000 WRITElNOUT207)SCALEHlt IgtSLINEBDRII) FORMATA1081A1A16X 16ilH-gtgt NSKIP a 1 NLEVEL = 9 GO TO 1000 IFIGT34)G0 TO 350 GO T0(282829)NSKIP FLEVEL a FM1N 2raquoNLEVELraquo1-NSKIPXDF WRITE(N0UT208ISCALEHII)SLINEBDRlt i) FORMATAI08IA1AI8Xlaquo IlaquoA1laquo)laquoEl I NSKIP = NSKP1 OO TO 1000 NSKIP = 1 NLEVEL = NLEVEL - 1 URITENSUT207)SCALEH(I)SLINEBOR1I SO TO 1000 LINE = 1 - 3 4 30 T0I35 3637 3839 40 36 42 43 4445 36 47 48 44 50 51 52) LI NE WRi TElt NOUT235)SCALEHII ISLINEBDRII) FMIN FORMATA1081A1At6X4H (a)Ell 4) SO TO 1000 WRITENOUT203)SCALEH(I)SLINEBORI) GO TO 1000 MRITECN0UT237gtSCALEHlt1)SLINEBDR(1gt FORMATCA1061A1AI 8XESTIMATION) GO TO 1000 WRITEINOUT238gtSCALEH(IlSLINEBDRI1) F0RMATltA10atA1A18XERROR CRITERION) 00 TO 1000 WRITENOUT239)SCALEH11gtSLINEBURII I FORMATCAIO 81 A1A1 8X bullCONSTRAINT raquo) SO TO 1000 WR1TECN0UT240gtSCALEH(IgtSLINEBDRI1)ERRLIM F0RMATIA1081AIAI12XEI14gt 00 TS 1000 WRITEIN0UT242ISCALEHI)SLINEBDRII) FORMATIAIOBIAIAIBXSOURCE NPUTraquo) 00 TO 1000 WRITENOUT2431SCALEHI)SLINEBDR(1) F0RMATlA1OBlAIA18XaC0VARIANCE CW)gt) 00 TO 1000 WRITE(NOUT244gtSCALEHltI)SLINEBDRI) F0RMATCA10B1A1A1) GO TO 1000 WRl-|E(NOUT245gtSCALEHU ) SLI NEBDRI I gtCAPWI1 1 ) FORMATltA10eiAlAI8XC Ell4laquola) OS TO 1000 WRITElNOUT247)SCALEHI1ISLINEBDRI) FORMAT tA1081 Al A1 6XMEASUREMENT) GO TO 1000 WRITE(N0UT248)SCALEH(I)SLINEBDRI1) F0RMATIA10S1A1A18XERROR COVAR [V]) 00 TO 1000 WRITEINOUT280)SCALEH(I)SLINEBDRII)CAPV(1IgtCAPVI12) F0RMATIA1LB1AlA1laquoXtF93 4XFBamp]bullgt GO TO 1000 WRITEtNOUT 2 5 0 ) 3 C A L 6 H I I S L I N E B 0 R U gt C A P V 1 2 D C A P V I 2 2 ) GO TO 1000

i - _ raquo WRJTEINOUT203)SCALEHltI ) SLINEBDRI I ) 1000 CONTINUE

UNITEINOUT1O7IB0RH WRITEINOUTZ83)3CALEV F 0 R M A T I 9 X 1 1 A 8 5 1 X [ Z I K ) ] I gt ) CALL MATOurf ( e N N IHPNOUT10) GO TO 3

347

181 99 CALL EX1TU) 182 END 183 SUBROUTINE FVAL ltZPI1) 184 C SEE PROGRAM KALMAN FOR THIS ROUTINE 185 END 186 SUBROUTINE HATOUTP (ANM NAME NOUT NO) 187 DIMENSION AINDND) 188 WRITEINOUTIOIjNAME 189 101 FORMATC10XA4I3H MATRIX IS) 190 00 1 1=1N 191 I WRITE(N0UT102)CAltIJ)JIM) 192 102 FORMATIIOX10CE103IX)) 193 RETURN 194 ENO 195 SUBROUTINE INVERSE INNAAINVI ERROR) 196 C SEE PROGRAM KALMAN FOR THIS ROUTINE 197 END

198 SUBROUTINE DECOMP ltNNAULSCALESIPSI ERRORND) 199 C SEE PROGRAM KALMAN FOR THIS ROUTINE 200 END 201 SUBROUTINE SOLVE (NNULBXIPSNO) 202 C SEE PROGRAM KALMAN FOR THIS ROUTINE 203 END

204 SUBROUTINE IMPRUV (NNAULBXRDXIPSDIOITSIERRORND) 205 C SEE PROGRAM KALMAN FOR THIS ROUTINE 208 END

348

1 PROORAM POFT (PFILETAPE2=PFILEPTOUTTAPE3aPT0UT) 2 C SET CNPLOT) TO THE NUMBER OF THE MEASUREMENT FOR WHICH THE CONTOUR 3 C PLOTS ARE DESIRED (I 2) SET IT TO ZERO (0) IF PLOTS 4 C ARE DESIRED AFTER ALL MEASUREMENTS CAUTION THERE ARE (UMAX) 6 C PLOTS ASSOCIATED WITH EACH MEASUREMENT EACH SPACED [KNSDTgt 5 C UNITS OF TIME AFTER ITIKI) FOR EACH MEASUREMENT GETS COSTLV 7 CALL CHANGE lt2HP) 8 CALL CREATE (SHPTOUT40000SWT) 9 NIN = 2 10 NOUT = 3 I I NTTY bull 59 12 OIMENSION A ( I O l O l W K P K I O 10 ) CAPM10 ) 0 ) P ( I O 10) 13 OIMENSION CAPWI10101 14 OIMENSION WSSIIOIO) 15 DIMENSION Z0UMd6gt 16 ZMAX bull 10 17 COMMON PROB NMZMAXPCAPVISINO IB COMMON PR0B2 AWKPIOTT 19 C 20 DIMENSION F ( 5 1 8 1 gt X ( 2 ) S ( 1 9 ) S L I N E I 8 I gt S Y M S ( 9 gt 21 DATA S IH 1 H 1 1 H 1 H 2 I H U I 3 1 H 1 H 4 I H I H 5 22 2 IH 1 H S I H 1 H 7 1 H 1HB1H 1 H 9 1 H 23 OATA SYMB 1 H I 1 H 2 1 H 3 | H 4 1 H 5 1 H 6 1H7 IHB1HS 24 OIMENSION T I T L E S 1 4 8 ) B 0 R ( 5 1 ) SCALEH(31 I SCALEVd I ) S A M P L E ( 1 0 ) 25 OATA BDR 1Hraquo 4raquo I H 1Hraquo 4 I H I H t 4raquo I H IHlaquo 4laquo I H 1Hraquo 41H 26 2 H 4 laquo 1 H 1 H ^ 4 - 1 H 1 H laquo 4 laquo 1 H 1 H 4 laquo I H I H raquo 4 raquo 1 H I H 27 OATA SCAIEH10H 1 0 bull 4 laquo 1 0 H 10H 6 9 gt 28 2 4laquo10H | 0 K 6 8 4 1 0 H 1 0 H 6 7 2 9 3 4laquotOH I O H 0 6 2 laquo 1 0 H 1 OH C Z ( K ) ) 2 30 4 IOH I O H 0 3 bull 31 5 4 I 0 H IOM 0 4 raquo 4 1 0 H 1 0 H 0 3 laquo 32 6 4 I 0 H 1 0 H 0 2 laquo 4 1 0 H 10H 0 1 bull 33 7 4gt10H IOH 0 0 bull 34 OATA SCAIEV 8 H 0 O 8 H 0 1 8 H 0 2 8 H 0 3 35 2 SHO4 8H0S BH06 OHO7 8H08 36 3 6H09 3H10 37 OATA SAMPLE 8HZER0ETH 38 1 8HFIMST 8HSEC0ND 8HTHIRD 8HF0URTH 39 Z BHFIFTH 8HSIXTH 8HSEVENTH 8HEIQHTH 40 3 8HNINTH 41 OIMENSION B0RHIamp1) bullbull IHraquo7laquo1H1H7IH1Hraquo7laquo1H1Hraquo7-IH 1Hraquo7laquo1H1H7raquo1HIH7-IHIHi 42 OATA B0RH1H71H 43 2 1Hraquo 71H1Hraquo71H 44 NL bull 19 43 NX = 80 16 NY = SO 47 NXP1 = NX bull 1 48 NYPI raquo NY bull 1 SET CONTOUR PLOT LIMITS u XMIN o O Bl XMAX o ZMAX 02 YMIN bull 0 B3 YMAX = ZMAX 84 DX bull (XMAX - XMIN1NX SB OY (YMAX - YMIN1NY 66 NTTY n 39 57 WRITEINTTY20011 50 2001 FORMATbull NPLOT KNS I I MA 59 READ(NTY2002)NPLOTKNS I I MAX 60 2002 FORMAT(31|0gt 61 R E A O ( N I N I M M L L N T L T O T 1 L I M I T 62 R E A O I N I N K I A I l J ) J laquo 1 N I t gt 1 N I 63 R E A O C N I N H I W K P W I J I J l N I U l N ) 64 R E A D ( N I N ) ( ( W S S ( I J ) J = I N gt I = 1N) 65 REAO(NINj((CAPW( J ) J a l L L ) 1 = 1 L L gt 66 R E A D ( N N I ( ( C A P y ( | J l J l M I U l K ) 67 I F ( N T L G T O ) R E A O ( N I N ) ( ( T l T L E S ( I J ) J = 68 3000 CONTINUE 69 READ(NIN)NOPTERRLIMDT 70 I F I N O P L T O ) QO TO S3 71 R E A 0 ( N I N I ( lt P ( 1 J ) J t l N ) I M N I 72 IF(NOPGTO)REAOlt lt I N ) i Z D U M d 1 I 1111 73 IF(N0POT0)KtAD(iilN)(ZDUM(l ) 1=111) 74 IF(NPLOTEOO) 00 TO 30D1 73 IF(NPLOTOTNOP) 00 TO 3000 76 3001 CONTINUE 77 N0PP1 bull NOP I 78 I I bull 0 79 3 CONTINUE 80 NS = KNSI I 81 TP = T laquo NSDT 82 X(l) XrtlN 83 X(2gt o YMIN 84 IFdl EODI CALL FVAL(XFMIN) 85 IFdlOT01 CALL PVAL(XFMINNS) 86 FMAX o FMIN 87 DO 2 l=lNYP1 8U C XII) HORIZONTALLY XI2) VERTICALLY 89 X12J raquo YMIN bull (l-l)laquoDY 90 DO 1 J=1NXP1

349

91 92 93 94 95 96 1 87 2 96 99 100 101 101 102 103 104 I0S I0S 107 10 100 109 110 lit 112 9 113 6 114 1 iS

l i e 9 117 M B 1 19 21 120 201 121 122 22 123 202 124 125 23 126 203 127 128 24 129 204 130 131 25 132 133 26 134 SOS 135 136 27 137 207 138 139 140 141 280 142 143 26 144 149 208 146 147 146 29 149 1S0 1BI 192 390 193 IS4 35 IBS 235 196 107 36 isa IBB 37 1E0 237 161 162 38 163 238 164 163 39 166 239 167 166 40 169 240 170 171 42 172 242 173 174 43 179 243 176 177 44 176 244

XIII = XMIN bull ltJ-1gtDX IF(IIEQO) CALL FVAL (XFIIJ)) IF (llGTO) CALL PVAL (XFCIJ)NS) IFIFIlJ) LTFMINIFMIN raquo FIIJ) IF(F(IJ)GTFMAX)FMAX = F(IJ) CONTINUE CONTINUE DF o (FMAK - FMIN)NL WRITECNOUT 101 )TP (TITLESI J) Jraquo18)T(TlTLES(2J)Jraquol6) 2 NSSAMPLE t N0PP1 ) F0RMAT(I10XCONTOUR PLOT OF TRACECP(KKraquoN)(Z(Kgt)J AS laquo 1 -FUNCTION OF

2 bull tZ(K)ll HORlz [Z(KI12 VERTlaquo9XlaquoTKgtNgtlaquoE114 3 I 1 X 8 A I 0 9 X T I K gt = E 1 1 4 1 I X B A 1 0 9 X laquo N bull laquo I 3 4 bull STEPS A F T E R 100XAraquoMEASUREMENTgt

WRITEINOUT 107)BOTH FORMAT) 10X 81AI 9 X 1 6 1 1 H O ) 0 0 1000 I NYPl DO 9 J M N X P I DO 6 K M NL I F I I F M I N raquo K laquo D F gt G T F ( N Y P I laquo 1 - I J ) ) Q O TO t CONTINUE S L I N E I J I bull S I K ) I F K F l N Y P W l - I J I I E Q F M I N l SLINEltJgt raquo 1Hraquo I F C i n N Y P H l - l J H E Q F M A X ) SU INE(J ) bull 1M0 CONTINUE I F 0 T 7 I Q 0 TO 280 GO T 0 1 2 1 2 2 2 3 2 4 2 9 2 6 2 7 ) I W R I T E C N 0 U 2 0 l s C A L E H l I S L I N E B D R I ) F 0 R M A T ( A 1 0 B 1 A I A I 8 X CONTOUR LEVELS) 0 0 TO 1000 WRITE1NOUT202)SCALEH( I ) SL INE BDRltI) FORMAT(AI0eiAlAl8Xraquo AND SYMBOLS) 00 TO 1000 WRITE(N0UT203)SCALEHltI)SL1NEBDRI1) F0RMAT(A108IA1A18X 16(1 H O ) 00 TO 1000 WRITE(NOUT204)SCALEHI)SLINEBORI1 I FCRMAT(A1081A1A18XSYMB LEVEL RANGE) CO TO 1000 WRITEIN0Ur203)SCALEH(I)SL1NEBDR(I) 00 TO 1000 WRITEltNauT206)SCALEH(lgtSLINEB0RCIgtFMAX rORMAT(AIO6IAlAI8X4H (0)El 14) 00 TO 1000 WRITEINOUT207)SCALEH(I)SLINEBDR(I) FORMAT(A1081A1A18X16(IH-gt) NSKIP = 1 NLEVEL = 9 SO TO 1000 IFCI OT34)00 TO 380 00 TO(282829)NSK1P FLEVEL raquo FMlN bull C2NLEVELraquo1-NSKP)DF WRITE(N0UT206)SCALEHIIISLINEBDS(I)SYHB(NLEVEL)FLEVEL FORMATA1081A1A16X ltA1)E11 4) NSKIP NSKIP CO TO 1000 NSKIP bull 1 NLEVEL raquo NLEVEL - t WR|TEtN0UT207)SCALEH(l)SL1NEBDRUI OO TO 1000 LINE I -34 OS T0(39 3637 38 3940 38 42434449 3b 474844SO91S2)LINE WHITENOUT23S5SCALEHII)SLINEBDRI1gtFMIN F0RMATIA1081AIA1laquoX4H (laquo)Elt4) GO TO 1000 WRITEIN3UT203gtSCALEH(1)SLINE80R(II 00 TO 1000 WRITE(NOUT237)SClaquoLEM(I)SLINEBDR(I) FORMATA1061A1A16XESTIMATION) SO TO 1000 WRITECNOUT23S)SCALEH(I)SL1NEBDRI) FORMATA1081A1A1laquoXERROR CRITERION) OO TO 1000 WRITEINOUT39)SCALEHltIgtSLINEBDRII) FORMATA1081AIA19XCONSTRAINT laquoraquogt 00 TO 1000 WRITE(N0UT240gtSCALEHltI)SLINEBDRlI)ERRLIM FORMATA108IA1AI1SXEl 14) SO TO 1000 WRITENOUT242)SCALEH(1ISLINEBDRII) FORMAT I At 061AlA18XSOURCE INPUT) 00 TO 1000 WRITE1N0UT243)SCALEH(I)SLINEBDRI) FORMAT(AlO6lMA16X COVARIANCE tWJraquogt OO TO 1000 WRITEINOUT244gtSCALEH(1)SLINEBORI) FORMATIAI061A1AI) OO TO 1000 WRITEINOUT245ISCALEHII)SLINEBDRI)CAPWi11)

3S0

1laquo1 245 F0RMATltA10 8 IA1 A1 8X laquo [ laquo E 1 l 4 laquo ] a ) 182 0 0 TO 1000 183 47 URITEltNOUT247)SCALEH(l gtSLINEBORltI 1 164 247 FORMATCAIOSIAIAISX MEASUREMENT) IBS GO TO 1000 1SB 48 WR1TE(N0UT248)SCALEHUgtSL1NEBDRI I ) 187 248 F0RMATCA1081A1A18XlaquoERR0R COVAR CV1 = laquo1 188 00 TO 1000 189 SO WRITEltNOUT2S0)SCALEH(1)SLINEBDRI1JCAPVCll)CAPV(I2) 190 250 F0KMATltA10B1A1AIBXlaquo|laquoFS34XF36raquo]laquogt 191 00 TO 1000 192 51 WRITEltN0UT250)SCALEHU) SL INEBDRUgtCAPVlt2 l ) C A P V ( 2 2 gt 193 GO TO 1000 194 52 WRITE(NOUT203)SCALErll l ) SLINE BDRU ) 199 1000 CONTINUE 19B WR1TE(N0UT107)B0RH 197 WRITE(N0UT253)SCALEV 198 253 FORMAT 9X 11A8 SIXlaquo[ZCKgt]Ibullgt 199 CALL MATOUTP (PNN1HPNOUT10) 200 CALL EMPTV(NOUT) 201 1 1 = 1 1 1 202 1FII I LE UMAX) SO TO 3 203 F(NPLOTEOO) GO TO 3000 204 99 CALL EXIT 209 END

208 SUBROUTINE FVAL (ZTRP) 207 COMMON PROB NMZMAXPCAPVISINO 200 DIMENSION P(1010)C(1010)CAPVlt1010)PSII 11010) 209 DIMENSION Z(I)Wl(1010)W211010) W3lt10 10) 210 NO = 10 211 PI gt 314159266 212 00 12 1 = 1ft 213 DO 11 J=1N 214 II C(IJ) = 6oSltltJ-l)laquoPIZUgtgt 219 12 CONTINUE 216 C FIRST COMPUTE IPSII1 [ClaquoPltK-1K)laquoCT1INVERSE 217 DO 5 A deg l n 218 DO 2 I C raquo I N 219 W K I A IC ) bull 0 220 00 I | 0 gt I N 221 1 M H I A I C I bull W K I A I C ) bull C U A ID )raquoPt 10 ICgt 222 2 CONTINUE 223 00 4 IBraquo1M 224 W2IIAIB) raquo CAPVUAIB) 225 DO 3 |E=1N 22B 3 W2UA IB) = W2(IAIB) WlIIAIE)laquoCCIBIE) 227 4 CONTINUE 228 B CONTINUE 229 CALL INVERSE CMW2PSIII ERR) 230 IF(IERRLTO) OO TO S91 231 C COMPUTATION OF TRCPCZK)ltKKgt1 232 TRP = 0 233 00 10 lAIN 234 TRP o TRP bull PIIAIA) 23B 00 7 ICIM 236 U1PI gt 0 237 DO 6 IDolM 235 6 UIPI = W1PI 239 7 TRP bull TRP -240 10 CONTINUE 241 I SI NO bull 0 242 99 RETURN 243 991 ISINO 3 244 RETURN 245 END

246 SUBROUTINE PVAL (ZTRPNS) 247 C CALCULATES TRACE(PIKKNS)) FOR INS) TIME STEPS ltDTgt BErcND (TIME 24S COMMON PROB NMZMAXPCAPVISINO 249 COMMON PR0B2 AWKPIOTT 250 DIMENSION P11010)CAPVI1010)Alt1010)WKP1C1010)Z(2) 251 DIMENSION CI10I0)PS1I(1010)PKPI11010) 252 DIMENSION W1lt1010)W2(1010)W3(10 10) 253 PI bull 314109266 254 C 258 C FIRST UlTH THE VECTOR OF MEASUREMENT POSITIONS CZ) FIND THE 256 C CORRECTED COVARIANCE MATRIX IW2) FROM THE LAST VALUE OF THE 257 C PREDICTED COVARIANCE MATRIX (P) UN COMMON) AT TIME (TIME) 2S6 C 259 0 0 12 l = 1M 260 DO 11 J J I (J 261 I I C ( I J ) a COSMJ-1 lPIgtZlt t ) ) 262 12 CONTINUE 263 C 264 C NEXT COMPUTE [PSII 1 on CCraquoPCK-1 l laquoCT1 INVERSE 2ES C 266 DO S lAIM

351

267 DO 2 I C raquo 1 N 268 W 1 I A I C ) bull 0 269 DO t 10= 1 N 2 7 0 1 W W I A I C ) raquo W K I A 1 C 1 bull CltI A I D ) raquo P 1 I D 1 C gt 271 2 CONTINUE 272 DO 4 IB1M 273 W2IIAIB) raquo CAPVIIAIB) 274 DO 3 |EdegN 275 3 W2(IAIB) W2(IAIB) bull W1CIAIE)laquoC(IBIE) 276 4 CONTINUE 277 S CONTINUE 276 CALL INVERSE (MW2PSIII ERR) 279 IFIIERRLTO) GO TO 991 260 C 261 C COMPUTE CP(KK)) MATRIX BUT FIND ONLY DIAGONAL ELEMENTS 2B2 C TO BE USED TO INITIATE TRACE CALCULATION 263 C 264 DO ID I AIN 385 PKPIIIAIAgt PltIA1A) 286 00 7 IC=IM 287 WIP1 =0 266 00 6 ID=1M 269 6 U1PI = W1PI laquo UI(IOIA)PSII(IDIC) 290 7 PKPKIAIA) bullgt PKPKIA IA) - W1PIlaquoWI(IC I A) 291 10 CONTINUE 292 C 293 C COMPUTATION OF TR[PIKKNS)] 294 C PREDICT THE COVARIANCE MATRIX AHEAD (N3gt STEPS IN TIME 295 C COMPUTE ONLY THE DIAOONAL ELEMENTS SINCE THE TRACE IS REOUIRED 296 C 297 00 16 K=1NS 298 DO 19 lolN 299 15 P K P K I I ) = A lt l I M P K P M I l ) raquo A C I l gt WKP1 lt I I ) 300 16 CONTINUE 301 TRP o 0 302 DO 17 I a 1N 303 17 TRP = TRP bull PKP1 (1I) 304 ISINQ = 0 305 99 RETURN 306 991 I SING o 3 3D7 RETURN 308 END

309 SUBROUTINE MATOUTP (ANMNAMENOUTND) 310 DIMENSION A(NDND) 311 WRITE1N0UTlOllNAME 312 101 FORMATlt20XA41OH MATRIX IS) 313 DO I I=1N 314 1 WRITEINOUT 102HACI J) Jlaquo1 M) 315 102 F0RMATI20X10E103) 316 RETURN 317 END

318 SUBROUTINE INVERSE (NNAAINVIERROR) 319 C SEE PROGRAM KALMAN FOR THIS ROUTINE 320 END

321 SUBROUTINE DECOMP (NNAULSCALESIPSI ERRORND) 322 C SEE PROGRAM KALMAN FOR THIS ROUTINE 323 END

324 SUBROUTINE SOLVE (NNULBXIPSNO) 325 C SEE PROGRAM KALMAN FOR THIS ROUTINE 326 END

327 326 C 329 SUBROUTINE MPRlV (NN A ULBXRDX IPSOIGI TS IERRORND) SEE PROGRAM KALMAN FOR THIS ROOTINE END

352

1 PROORAM PEIEM (PF1LETAPE2=PFILEHE0UTTAPE3degPE0UT1 2 C SET (NPLOTI TO THE NUMBER OF THE MEASUREMENT FOR WHICH THE CONTOUR 3 C PLOTS ARE DESIRED (1 2) SET IT TO ZERO (0) IF PLOTS 4 0 ARE DESIRED AFTER ALL MEASUREMENTS 5 CALL CREATE (5HPE0UT40000SWTgt S NIN bull 2 7 NOUT bull 3 S NTTY bull SS 9 DIMENSION AttO10gtWKPt(1010)CAPV(1010)Plt1010) 10 DIMENSION CAPWMOtO) 11 DIMENSION WSSdO 10) 12 DIMENSION ZDUMI10) 13 ZMAX bull 10 14 COMMON PROS NMZMAXPCAPV1SIN3 15 C IS DIMENSION F(B1SI)X(21S(19)SLlNE(ei)SVMBI9) 17 DATA S 1H 1HI1H IH21H )H31H 1H41H 1HB 18 2 IH JtHBIH iH71h 1HB1H 1H9IH 19 DATA SVMB (HIIM21H3lH4IH51HS 1H7IHB1H9 bull0 DIMENSION TITLESlt48)iBDR(Bt)SCALEHltai)SCALEVlt111SAMPLE(10) 21 OATA BDR IH4laquoIH)H4laquoIH1H4laquoIH1H4raquoIH1H4raquo1H 22 2 1H4raquo1H 1H4laquo1H11Hlaquo4laquo1M1Mlaquo4raquoIH1Hraquo4laquo1H1Hraquo 23 DATA SCALEH10H l04laquo10H 10H 09 Z4 2 4gt10H 10H 08 raquo4laquo10H 10H 07 bull 25 3 4raquo10H 10H 08 raquo2laquo10H 10H tZtK)J2 26 4 10H 10H OB bull 27 5 4gtI0H 10H 04 bull4raquo10H 10H 03 28 6 4gt10H 10H 02 bull4laquo10H 10H 01 bull 29 7 4laquoI0H IOH 00 bull 30 DATA SCALEV SHOO 8H01 8H02 BHOO 31 2 BH04 8H05 laquoH0laquo 8H07 8H08 32 3 OHO9 3H10 33 DATA SAMPLE 8HZER0ETH 34 I 8HFIRST 8HSECON0 BHTH1RD 8HF0URTH 35 2 8HFIFTH 8HSIXTH 8HSEVENTH 8HEIGHTH 3B 3 8HNINTH

37 DIMENSION BDRHtSII 38 DATA BDRH1H7raquo1HIHraquo7laquo1H1H7raquo1HIH7laquo1HIH7laquo1H 39 2 1Hraquo7raquo1H1Hlaquo7laquo1H1H71H1H7laquo1H1H7laquo1HIH 40 NL raquo 19 41 NK a 80 42 NY o 50 43 NAPI bull NX bull 1 44 NYP1 NY bull 1 49 C SET CONTOUR PLOT LIMITS 48 XMIN O 47 XMAX = ZMAX 48 YMIN bull 0 49 YMAX raquo ZMAX 50 OX = (XMAX - XMIN1NX 51 DY = (YMAX - YMIN1NY 52 NTTY raquo 59 53 WRITE(NTTY2001) 54 2001 FORMATa NPLOTgt 55 READ INTTY2002)NPLOT 56 2032 FORMAT(IIO) 87 READ(N NINMLLNTLTOTlLIMIT 58 REAO(N N1(AUJgtJlaquoINI1-1N) 59 REAO(N NKIWPIIIJ) Jlaquol N)IbullINgt 60 REAO(N N)((WSS(IJ)J=1NgtIlaquo1N) 61 REAO(N NH(CAPW(1Jgt Jdeg1 Li) lraquo1LLgt 62 REAOtN N)((CAPV(IJ)JraquoIM1Iraquo1M) 63 IF(NTLOTO)REA0(NINgt((T|TLESIIJ) JJI8)|a|NTL) 64 3000 CONTINUE 65 RpoundAD(NIN)NOPTERRLIMDT 66 IF(NOPLTO) 06 TO 99 67 READ(NINU(Plt I J ) JMNgt llaquo1N) 68 IFltNOPQTOgtREAD(NINgt(ZOUM(l)1=1Ml 69 IF(N0p3TO)REA0ltNIN)(ZDUM(l) 1=1 Ml 70 IFtNPLOTEQOl 00 TO 3001 71 IF(NPLOTQTNOP) 00 TO 3000 72 3001 CONTINUE 73 N0PP1 raquo N0Plaquo1 74 1 1 = 0 75 3 CONTINUE 7J K M ) bull XMIN 77 X(2) a YMIN 78 IFUIEOO) CALL FVAL (XFMIN) 7S IF(IIOTO) CALL PVAL(XtIFMINgt 80 FMAX = FMIN 81 DO 2 lalNYPI 82 C X(l) HORIZONTALLY Xlt2gt VERTICALLY 83 X(2) a YMIN (1-1gtraquo0Y 84 DO I JlaquoINXP1 85 X(1gt a XMIN bull (J-1UDX 68 IF(IIEQO) CALL FVAL (XFltIJgt) 87 IFIIIOTOI CALL PVAL(X llFUJ)) 98 IF(F(IJ)LTFMIN)FMIN raquo FllJJ 89 IF(F(IJJ0TFMAX1FMAX laquo F(IJgt 90 1 CONTINOE

353

95 100 96 97 96 99 100 101 101 102 103 104 105 100 107 10 109 109 110 1 1 1 1 12 5 1 13 6 114 1 IS 1 16 9 117 118 1 IS 21 120 201 121 122 22 123 202 124 125 23 126 203 127 126 24 129 204 130 131 25 132 133 26 134 206 135 136 2 T

137 207 136 139 140 141 280 142 143 10 144 14a 700 146 147 146 29 149 ISO 151 152 350 153 1S4 35 155 pound35 156 157 36 158 159 17 16Q -37 161 162 38 163 238 164 165 39 166 239 167 168 40 169 240 170 171 42 172 242 173 174 43 17S 243 176 177 44 178 244 179 180 45

CONTINUE DF t IFMAX - FMININL IF II1E00) WRITE CNOUT100) T(TlTLES(IJ)J18gtSAMPLEltN0PP1gt 2 ltTITLESr2J)Jraquo18I FORMATbullI10XC0N13UR PLOT OF TRACEPIKKraquoNgt(Z(K))1 AS raquo 1 FUNCTION OF 2 [ZIKgtJ1 HORIZ CZIK112 VERT9XTIMEEl 1 A 3 l1X8A109XAa iKEASUREMENTl1XeA10gt IF (llGTO) WRITE (N0UT101) T ( TITLES I J I J 18) SAMPLE(N0PP1 ) 2 lt T I T L E S ( 2 J ) J = l 6 gt I I l l

FORMATOI IOX CONTOUR PLOT OF TRACECP(KKN) ( Z ( K ) ) I AS 1 FUNCTION O F 2 bull t Z lt K ) ) 1 HORlZ I Z ( K ) 1 2 VERT9X T I M E El 1 4 3 I I X e A I 0 9 X A 8 M E A S U R E M E N T 1 1 X 8 A 1 0 9 X 4 E L E M E N T 1 2 1 2 laquo ) raquo gt

WR1TEIN0UT107JBDRH FORMAT 10X61A1 9X 16lt 1H3gtgt DO 1000 m N Y P I D9 9 J l NXPI 0 0 5 K raquo l N L I F I I F M I N K O F I G T F ( N Y P I I - I JDOO TO 6 CONTINUE SL1NE(Jgt = SIK) IFC(FINYP1raquo-1J))EO FMIN) SLINE(J) 1H IFIiFINYPIH -I J I I EOFMAXI SLINECJ) 1H0 CONTINUE IPC I QT 7gtG0 TO 280 GO T0I21222324252627)I WRITEiNOUT201ISCALEHII I SLI NEBDRU ) FORMATIAIOetAlAIBX CONTOUR LEVELSI 60 TO 1000 WRITE IN0U1202ISCALEHII ISLINEBDRltI) FORMATIAIOBIAAI8X ANO SVMBOLS) GO TO 1000 WRITE(NOUT203)SCALEH(llSLINeBOR(lI F0RMATIA1081AI Al 6X 161 IH) ) GO TO 1000 WhlTE (N0UT204lSCAIEMI)SLINE60R(I) fGRNAUftlOeiAlA16XlaquoSYMB LEVEL RANOEgt GC TO 1000 WRITpoundltNa120nKCALEHI I I SLI NE BDRlt I ) GO 10 1000 mP 11 El NC1UT206 gt SCALEHtl)SL1NEBDRC t ) FMAX FORMSTAIO01A1A1BX4H (01 E H 4) 00 TO 1000 WRI re N0LlT207)SCALEH( I gt S L I N E B 0 R lt I ) F0liMAT(A1081AlA18X 1611H-U NSKIP raquo I NLEVEL 9 60 TO 1000 IF 11 GT 34)00 TO 350 00 TO(282829)NSKIP FLEVEl = FMlN lt2laquoNLEVELlaquo1-NSKIP)DF WRITE(NOUT20B)9CALEHfI)SLINEBOR(11SYMB(NLEVEL1FLEVEL FORMATA081AlAI8X 1gtA1)E114) NSKIP - NSKIP GO TO 1000 NSKIP = 1 NLEVEL - NLEVEL - 1 WRITFINOUT207)PCALEM( I 1SLINEBOR(Igt GO TO 1000 LINE I - 34 GO T0(3536373839403642434445 364748 44505152)LINE WRITE(N0U1235ISCALEH(I1SLINEBORII)FMIN FORMATAtOeiAlAIex4H 1)El 141 GO TO 1000 URITE1N0UT203)SCALEH(I ISLINEBDR(I) W3 TO 1000 WRI|EIN0UT237)SCALEM(IgtSLINEBDRII) F0KMAT(A061A1A1OXEST I MAT ION) GO TO 1000 WR|TtiN0UT238)5CALEM(lgtSLINEBDRII) FORMATA1081AIAIBXERROR CRITERION) OO TO 1000 WRITEINOUT239ISCALEHII ISLINEBDRII) F 0 I M A T ( A 1 0 B I A I A I 8 X laquo C 6 N S T R A I N T =bull) GO TO 1000 WR1TEINOUT240)SCALEH1I)SLINEBDRC1)ERRLIM FORMAT(AIO81 A)A1 I2XEII4) GO TO 1O00 WRITE(NOUT242)SCALEHltI)SLINEBOR(I) FORMAT(A1081A1A18XSOURCE INPUT) OS TO 1000 WR I TE lt NOUT 243) SCALEH (I I SI I NE BDRlt I ) FORMATAIO81AlAl8XC6vARIANCE [Wlraquogt 00 TO 1000 WRITECNOUT244)SCALEH(I)SLINEBDRI I F0RMATIA1081AIA1) GO TO 1000 WRITENOUT 245ISCALEH I gt SLII-BDR( I gt CAPWC 11)

354

1raquo1 245 F0RMATtA)081A1Al8)traquot raquoE1I4laquoJ) 162 GO TO 1000 1S3 47 WRITEINOUT247I3CALEHIIgt3L1NEB0Rlt1gt 184 247 F0RMATltA10elAlAI0XMEASUREMENTlaquogt IBS 00 TO 100D 1laquo8 48 WRITEINOUT248)SCALEH(I)SLINEBDR11 ) 187 248 F0RMATCA10 81A1A18XERROR C6VAR CV1) 188 00 TO 1000 188 SO WR1TElNOUT2a0gtSCALEHII)3LlNEB0Rtl)CAPV(l1)CAPVII2gt ISO 200 F0RMATCA10 BlAl A1BX[laquoFO34X FB4laquo)bullgt iai oo TO IOOO 192 B1 WRITEINOUT250gtSCALEH(I)SLINE8DR(IgtCAPVI21gtCAPVI22gt IB3 OO TO 1000 104 02 WRlTEINaUT203)SCALEHltIgt9LINEBDRltI) 155 1000 CONTINUE 108 WRITEINOUT1071BDRH 197 WRITEINOUT253)SCALEV 198 293 F0RMATI9XI 1AOOIXtZIKgt11gt 1SB CAIL MATOUTP IPNNIHPNOUT10) 200 CALL EMPTY(NOUT) 201 I I laquo I I bull 1 202 IFltI I IEN) 00 TO 0 203 IFINPLOTEQO) 00 TO 3000 204 99 CALL EXIT 205 END 206 SUBROUTINE FVAL IZTRP) 207 C SEE PROGRAM NEWPT FOR TH1S ROUT INE 208 END

209 SUBROUTINE PVAL (ZI IPI I) 210 C RETURNS (llll)TH ELEMENT OF (PIKraquoIK1)) 211 COMMON PROS NMZMAXPCAPVISINO 212 DIMENSION PI 10 10)Clt1010)CAPVI10 10)PSIIlt1010) 213 DIMENSION Zlt1gtWTlt1010SW2l1010)W3tl610gt 214 ND bull 10 2IB PI bull 314IS926S 213 DO 12 ldeg1Mj 217 DO II JraquoIN SIB II CIIJ) a COSlltJ-tgtlaquoPIraquoZII)gt 215 12 CONTINUE 220 C FIRST COMPUTE tPSI I ) tClaquoPltK-1K)raquoCTJINVERSE 221 00 5 IAgt1M 222 DO 2 I C= I N 223 WH jAIC) bull 0 224 00 I I Da 1N 225 1 H11IAIC) raquo WHIAIO bull OUA IOXPIID IC) 226 2 CONTINUE 227 DO 4 16=1M 228 W2I1AIB) a CAPVIIA IB) 229 DO 3 lE=lN 230 3 W2ltIAIB) a W2(IAIB) bull W1(IAtElaCCIBIE) 231 4 CONTINUE 232 B CONTINUE 233 CALL INVERSE (MW2PSIIIERR) 234 IFCIERRLT0) OO TO 991 235 C CALCULATION OF tP(ZK)IKK)11 I 233 PI I P(1111) 237 OO 7 ICraquo1M 238 W1PI raquo 0 239 00 6 IDraquo1M 240 e U I P I laquo W I P I laquo w H i D i n p s i m o i c ) 241 7 Pll deg Pll bull W1PIgtUIIICII) 242 ISINO a 0 243 99 RETURN 244 991 I SI NO a 3 245 RETURN 24B END 247 SUBROUTINE MATOUTP (ANMHAMENOUTND) 241 DIMENSION A(NDND) 249 WRITEINOUTIOilNAHE 250 101 FORMAT26xA413H MATRIX IS) 251 DO 1 l-lN 252 1 HRlTE(N0UT102XAtlJ)Ja1M) 253 102 FORMAT120X10E103) 254 RETURN pound50 END

256 SUBROUTINE INVERSE (NNAAINVIERROR) 287 C SEE PBOBRAM KALMAN FOR THIS ROUTINE 256 END

355

2Braquo SUBROUTINE DECSHP INN A M SCALES IPS IERRORND) 260 C SEE PROGRAM KALMAN FOR THIS ROUTINE Z01 END

28S SUBROUTINE SOLVE INN UL B X IPS ND) 283 C SEE PROGRAM KALMAN FOR THIS ROUTINE pound04 END

2Bs sect5lt5yiIHbdquo l3 p RyY IH NltjHV-j tA5iHJ r 8gt D I O I T S ERROR ND) BB7 END

rsvanuv i i MC bull n r n u v i n i l m uu ttf r n w n SEE PROGRAM KALMAN FOR THIS ROUTINE

356

1 PROGRAM SIGMAT ltPFILETAPE2=PFILES8UT TAPE3=S0UTgt 2 CALL CHANGE C2HHS) 3 CALL CREATE lt4HS0UT40000SWT) 4 NIN raquo 2 8 NOUT raquo 3 6 DIMENSION SIGZdOl IZdOl ) 7 DIMENSION A(I0 10) P O O 10) CAPVdO 10) WKP1 d O lOlWSSdO 10) 5 DIMENSION CAPWtlO10) ZUUMdO) Tl TLES(48gt 0 ND raquo 10 10 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 11 XNAME = 10HP0SITI0N Z 12 YNAME = I0HS1G(ZKlaquoNgt 13 PNAME = 10HTIME TKraquoN 4 ZMAX 1 0 15 XMIN deg 00 16 XMAX ZMAX 17 NX c 00 10 NXP1 NXraquoI 19 DX e (XMAX-XMIN)ZNX 20 NTTV bull 63 21 WRITE1NTTY1001) 22 1001 FORMATbull NPLT3 NSKIPgt) 23 RCADINTTY1002)NPLTSNSK1P 24 1002 F0RMATlt2I0) 20 READ(NIN)N MLL NTLTO T - L I M I T 26 READir i lN I I l A ( l J ) j i | N l = l N ) 27 R E A D I N I N X W K P I d J ) J M N gt I = 1 N gt 28 R E A D I N I N I U W S S l J ) J = 1 N ) I = 1 N ) 29 R E A O l N I N M I C A P W d J ) J u l LC ) I = 1 L L ) 30 REAON INM(CAPVd J ) J raquo I M gt 1 1 M 1 31 IFINTLGT0 gtREADC NI N M C TI TLES d J) J= 1 8 gt I deg 1 NTL) 32 9 CONT1NUE 33 REAO(NININOPTERRLIMDT 34 I F ( N O P L I O ) GO TO 99 35 R 0 lt N I N M P d J gt J raquo l N ) l raquo 1 N gt 36 f INOr lSTOgtREAoiNINgtlzDUMd l l gt 1 m 37 I F lt N 0 P O I 0 gt R E A 0 ( N I N ) ( Z D U M lt I ) I raquo 1 M ) 38 FHIN bull SIGMA ( 0 ) 39 FMAX = FMIN 40 DO 3 I I O N P L T S 41 PVALUE = t laquo ( I l - l ) laquo D T laquo N S K I P 42 DO 1 I - 1NXP1 43 Z ( l ) XMIN bull lt1 -1 )laquoDX 44 S I U 2 I I ) - S I G M A I Z d gt) 45 I CONTINUE 46 CALL MULTPLT C Z SIGZ I I XNAME YNAME PNAME PVALUE Tl TLES NTL NOUD 47 DO 2 K-lNSKIP 48 2 CALL APATW (APWKPINND) 49 3 CONTINUE 60 11 laquo -1 61 CALL MUL1PLT (ZSIGZI IXNAMEYNAMEPNAMEPVALUETlTLESNTLN0UT1 62 GO TO 6 63 99 CONTINUE 64 RVALUE = (US8I1 IlWKPII 11gtlaOT 66 YNAME = I OHS GMMWSS) 6D PNAMt laquo 10HT1ME TO SS 57 DO 101 ldeg1N 68 DO 100 J = IN 39 100 HIJI i WSSIIJ) 60 101 CONTINUE 61 C ZERO OUT FIRST ELEMENT OF (WSS) 62 Pd I) = 00 63 00 102 lalNXPI 64 Z(l) bull XMIN bull (l-l)aDX 65 SIG^I|) bull SIGMA(Z(I)) 66 102 CONTINUE 67 1 1 = 1 68 CALL MULTPLT (2SIOZI IXNAMEYNAMEPNAMEPVALUETlTLESNTLNOUT) 69 II = -1 70 CALL MULTPLT ltZSIGZ I IXNAMEYNAMEPNAMEPVALUETlTLESNTLNOUT) 71 CALL EXIT 72 END

73 FUNCTION SIGMAIZ) 74 C SEE PROGRAM KALMAN FOR TIHIS ROUTINE 75 END

78 SUBROUTINE APATW (APWNNDI SD DIMENSION A d O 10)Plt 0 lOIWdO 10) 81 DO 2 1=1N B2 DO 1 J=1N 83 I P(IJ) laquo A d l)laquoPdJ)laquoA(JJgt bull W d J ) 64 2 CONTINUE

357

87 SUBROUTINE NULTPLT (XINYINNXNAMEYNAMEPNAMEPVALUE 08 2 TITLESNTLNOUT) 89 DIMENSION XlN(101)YlN(101)X(1010gtYC1010)PARAMI10) 90 DIMENSION TITLESI48) 91 MAXPTS o 101 02 IFINLTO) 00 TO 90 93 NUMPTS = NlaquoMAXPTS 9lt1 NPLTS = N 98 PARAMI Ngt = PVALUE 9G DO 1 1=1MAXPTS 97 II = IN-I(MAXPTS bull I 96 XltI I) = XINI1 I 99 YlI I) = YINII) I oo i com i NUE 101 RETURN 102 90 CONTINUE 103 CALL PARALST IXYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 104 2 TITLES NTLNOUT) 106 CALL PARAPLt (KYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 106 2 TITLESNTLNOUT) 107 RETURN 100 END

109 SUBROUTINE PARALST (XYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 110 2 TITLE-SNTLNOJT) II I DIMENSION X(1010)Y(10IO)PARAM(IO)SYMBOL(10)EQUALS(11)TERMlt11) 112 DIMENSION TITLpoundS(48gt 113 DATA EQUALS 11laquo 10H========== 114 DATA SYMBOL 1H01H11H21H3H41H51H61H71H81N9 1 IS IFINTLEQO) 00 TO 2 116 DO 1 I= 1NTL 117 I WRITEINOUT101)I TITLESIJ)J1laquo) 118 101 FORMAT1IX8A10) 119 2 WRITEINOUT102IPNAMF1PARAMI)1=1NPLTS) 120 102 FORMATbull TABULAR LIST OF PLOTTED PARAMETRIC CURVES 121 2 A1010I1XE103)) 122 NPLTSPI = NPLTS1 123 WRITEINOUT101)IEOUALS(I)1=1NPLTSPI) 121 104 F0RMAT(A10101IXAID)) I 25 WRITE1NOUT 103)(SYMBOLI) 1bull1NPLTS) I2J 103 FORMATIPOSITION Z bull 10SIOiZKA1bullgt bullgt) 127 WRITEINOUT 104)(EQUALSI)=1NPLTSP11 126 DO 6 1=1101 129 TERMI1) = XII) 130 00 4 J = l N P L T S 131 4 T E R M I J laquo l l raquo Y K J - 1 I raquo I 0 1 1 ) 132 5 HRITE1N0UT1 06MTERMIK) K = I NPLTSP1 ) 133 106 FORMAT(tl0310(1XEI03)gt 134 RETURN 136 END

136 SUBROUTINE PARAPLT ltXYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 137 2 TITLeSNTLNOUT) 138 DIMENSION XI I 010)Y1010)SI 1010)PARAM10) 139 DIMENSION SYMBOL10) 140 DIMENSION TITLESI48) 141 DIMENSION POINTS101)BUT(6) 142 DIMENSION SSTI1010) 143 DATA SST 101bullIHO 101laquo1H1101bullIH2101bullIH3 1011H4 101raquo1H5 144 2 101IH6 I011H716U1H8161IH9 145 DATA SYMBOL 1HD 1HI 1H2 1h3 1H4 1H5 t-IS 1H7 1H8 1H9 146 DO I 1=1NUMPTS 147 1 SI I) = SSTI) 146 IFINUMPTSLT2100 TO 999 149 C WRITE OUT TITLE CARDS 150 WRITEINOUT6) 161 6 FORMATIH1S 152 DO 3 1=14 153 00 TO (301302302302)I 15D 301 IF(ILENTL) WRITEINOUT2001)YNAME(TITLESilJ)J=18) 155 2001 FORMATI3XA102X8A10) 156 1FIIGTNTL) WRITE1N0UT2002)VNAME 157 2002 FORMATI3XA10I 158 00 TO 3 159 302 1FI1 LENTL)WR1TE(N0UT2003)ITITLESII J) J=l8) 160 2003 FORMATI5X8A10) 161 IFII OTNTL) WRITE1N0UT5) 162 3 CONTINUE 163 URITEIN0UT5I 164 5 FORMAT1H 1 165 C 166 C Rt-ORDER B THE Y AXIS 167 C 166 C SOLVE FOR MAX

358

169 1=1 170 20 CONTINUE 17f JJ=M 172 YMAX-YIM 173 DO 10 J=INUMPTS 171 IFIYIJILEYMAXIGO TO 10 175 YMAX=Y(J) 176 JJ=J 177 10 CONTINUE 170 C INTERCHAN8E 179 YY=Ytl) 160 XX=X(I) 1S1 SS = S U ) 182 YCI)=YtJJ) B3 X(Igt=X(JJ) 184 Sill bull S(JJgt 185 Y(JJ)laquoYY I8G XltJJ)raquoXX 187 S(JJ) = SS 188 1raquo11 189 IFIIEONUMPTS)00 TO 30 190 GO TO 20 191 30 CONTINUE 192 C SOLVE FOR MINMAX OF X AND Y 193 XMlNuXtl) 191 XMAX=XC1) 195 YM1N=Y(1) 196 VMAX=Yltgt 197 00 2 1 bull= 1 NUMPTS 19B IFIXII)LTMINJXMINraquoX(I ) 199 IFIXd gtGTXMAX)XMAXraquoXC1gt 200 IF(Y(IILTYH1N)YMINYU) 201 IFltY(l)OTYMAX)YMAX=YltIgt 202 2 CONTINUE 203 C RESET THE END POINTS 204 CALL ENDPTSIXMINXMAX) 20B CALL ENDPTS(YMINYMAX) 206 C CALCULATE DELX AND DELY 207 DELXMXMAX-XMINV1000 208 DELY=(YKAX-YMINgt500 209 C GENERATE THE PLOT 210 KK=ABS(XMIN) 0ELX1 0 211 IZEROO 212 I F ( ( X M I N L E O O ) A N D C X M A X G E 0 0 ) gt I Z E R 0 = 1 213 IC0UNT=10 214 L1ST=1 215 00 100 1=1 51 2 1 6 XI=I 217 YZ2=YMAX-XIraquoDELY 218 V lti =YZ2raquo0ELY 219 IAA=0 220 IF ICYZ1 G E O 0 ) A N D lt Y Z 2 L E O O gt gt I A A = l 221 00 101 J 1 1 0 1 222 101 POINTSCJgt=lH 223 lF( ICOUMTNE10gteO TO 105 224 DO 106 1 = 1 1 0 1 2 225 106 P O I N T S ( J ) deg l H 226 lOt CONTINUE 227 POINTS( 1 )raquo1H 228 POINTS 21)=IH pound29 POINTSI 411=1H 230 OINTS( 61gt1H 231 gt01NTSI B1)gt1H 232 P O I N T S 1 0 1 ) laquo I H 233 1FCIZEROE01IPOIMTS(KKgt=1H1 234 IFIIAANEIIGO TO 137 235 DO 136 J1101 236 136 POINTSIJIOH-237 137 CONTINUE 238 YLOHaYMAX-KUDELV 239 102 CONTINUE 240 IFIL1STGTNUMPTSIG0 TO 110 241 IFtYltLIST)LTYLOW)QO TO 110 242 K=(X(LIST)-XMIN)DELX10 243 POINTS(K) - S(LIST) 244 LIST=LISTraquo1 245 GO TO 102 246 IIO CONTINUE 247 IFCICOUNTEQ10)00 TO 112 248 ICOUNT=ICOUNTraquot 248 WR1TEIN0UT 1 I I XPOINTS(J) J=1 101) 250 111 FORMATIBXI01A1gt 251 GO TO 100 252 112 CONTINUE 253 YY=YL0W8ELY 254 ICOUNT=1 255 IFlt(YYQT-10E-9)ANDIYYLT1OE-9))YY0O 256 WRITEltNOUT1131YY ltPOINTSIJ)Jraquo1101) 257 113 F0RMATI2XE1142X101A1) poundiS 100 CONTINUE

359

239 00 121 I-16 260 XIraquo1-1 2G1 BUT(I)raquoXMINraquo200raquoDELXraquoX1 262 IFlt(BUngtLT10E-9gtAND CBUTCI ) ST -I OE-9) )BUT( I ) 00 263 121 CONTINUE 264 WRITEtNOUT122)I BUT(J)J=16) 268 122 FORMAT10X6IE10310Xgtgt 266 WRITE(NOUT26o4)XNAME 267 2004 FORMATlt61XA10gt 26B WRITECNOUT3000IPNAME((SYMBOLI)PARAM(I gt gt 1 = 1 NPLTS) 269 3000 FORMAT1IXl8ilaquo=laquo)raquo PARAMETER VALUE 270 2 raquo AND SYMBOLIXl8ltlaquoraquoraquogtraquo SYMB raquoAl0IX18Craquo-laquo) 271 3 10( laquoA1raquo) raquoE114)gt 272 WRITEltN0UT6gt 273 999 CONTINUE 274 RETURN 270 END

276 SUBROUTINE ENOPTS(XMINXMAX) 277 C SEE PROGRAM KALMAN FOR THIS ROUTINE 278 END

360

1 PROGRAM MAXTI ME (PF1LETAPE2=PFILEMOUTTAPE3=M0UTgt 2 CALL CHANGE lt5HMAXT) 3 CALL CREATE I4HMOIJT 1 OOOO SWT) 4 N1N = 2 5 NOUT = 3 6 ND = io 7 DIMENSION A(1010P(1010)CAPVI1010)WKPllt1010)WSSC1010) B 2 CAPWdO 10)CAPNO(1010)1TlME(110)TRPltll6)PPI10 10) 9 3 ZSTC102 10gtTITLES(48gt 10 READNlN)NMLLNTLTOTlLIMIT 11 READltNIN)(ltAI1JgtJ=1Ngt=1Ngt 12 REA0ltNIN)lt(WKP1(IJ)J=1N)1=1Ngt 13 READCNINXCWSSCl J) J=1 N)1=1N) 14 READININUCCAPWCI J) J=1LLgt =1LLgt 15 READCN1N)(CCAPVClJ)J=lM)i=lM) 16 lF(NTLGTO) PEADCNIN)((IITLESCIJ)J =18)I=1NTL) 17 REAOCN1N)NOPTERRLIMDT IB READ(NIN)C(CAPM0CIJgtJ=1N) t = lN) 19 3 CONTINUE 20 READCNIN)NOPTERRLIMiJT 21 I F ( N O P L T O ) GO TO 4 22 READCNINHCPCI J ) J= 1 N ) 1 =1 N) 23 READ(NIN)ltZSTCI2N0P)1=1Mi 24 READCNINKZSTCIlNOP)1=1M) 25 C NOTEOROER OF STORAOE OF OPTIMAL ZK-VF-CTORS IS REVERSED THAT 1 26 C ZKlaquo FOR TRACE INDEX COMES OUT OF KALMAN FIRST BUT 13 STORED 27 C IN ZST(I2NOP) WHEREAS ZK FOR PI 1 INDEX COMES OUT SECOND 28 C AND IS STORED IN ZSTCI1NOP) ALL THIS TO PLOT PUU THEN TRACE I 29 C BUT IS STORED IN ZSTC11NOP) 30 C ALL THIS IN ORDER TO PLOT P11 FIRST THEN TRACE HERE 31 GO TO 3 32 4 CONTINUE 33 DO 50 I 1=12 34 IFI1IEQ1) WR1TECN0UT102) 35 102 F0RMAT(1 CRITERION NUMBER 1 PLOTTED WITH SYMBOL (1) 36 2 MINIMIZE tP(KK+N)]11 WITH RESPECT TO Z(K)laquo 37 3 laquo K T TRPgt 38 IFUIEQ2) WR1TECN0UT103) 39 103 FORMATlaquo CRITERION NUMBER 2 PLOTTED WITH SYMBOL 12) 40 2 MINIMIZE TRACECPCKKNgt] WITH RESPECT TO Z(K) 41 3 laquo K T TRP) 42 NOP = 0 43 CALL ATOB(CAPMOPNNNDgt 44 CALL ATOBCCAPMOPPN NND) 45 T = TO 46 K = 1 47 20 CONTINUE 48 TEST = TR(PPN) 49 IF(TESTGEERRLIM) GO TO 28 50 TIME(K) = T 51 Tnp(K) = TEST 52 WrtlTECNOUT101gtKTTEST 53 101 FORMATCII02E103) 54 IF(TGTTI) GO TO 45 55 1FCKE0110) GO TO 45 56 T = T bull DT 57 K = K + 1 56 CALL ATOB ltPPPNNND) 53 CALL PREDICT (ApWKPlPPN ND) 60 GO TO 20 61 26 CONTINUE 62 IFCKOT1) T = T - OT 63 NOP = NOP bull 1 64 CALL CORRECTCZSTUUNOP)PCAPVPP S1NGNMNDgt 65 GO TO 20 66 45 CONTINUE 67 XI I = 1 I 68 CALL MULTPLT (TIMETRPI IK10HT1ME TKN 1OHTRPIKKraquoN) 89 2 10H CRITERIONXiiTITLESNTLNOUT) 70 50 CONTINUE 71 11 = -1 72 CALL MULTPLT [TIMETRP I IK 1OHTIME TKN 1UHTRPCKKN) 73 2 1PH CRITERION XIITITLESNTL NOUT) 74 CALL EXIT 75 END 7C SUBROUTINE PREDICT (APWPPNND) 77 DIMENSION AC 1010)PC 10 16)WC1010)PPlt1010) 78 C PERFORMS THE ONE-STEP PREDICTION 79 C PP = ltAPA-TRANSPOSE) bull W 80 C WHERE A IS A DIAGONAL STATE TRANSITION MATRIX 81 DO 2 I = 1 N 82 00 1 JMN 83 1 FPUJ) = ACI I H f l l J I U I J J) bull W(I J) 84 2 CONTINUE 85 RETURN 86 END

361

SUBROUTINpound CORREOT(ZPCAPVPPI SI NONHND) DIMENSION P(10 10)Clt1010)CAPV(1010)PS1I(1010)PP( 1 0 10) DIMENSION Z(1)W1(1010)W2[1010)W3(1010) PI = 3 14159266 DO 12 I=1M DO 11 J-1N 0(1 J) - COSKJ-1 )PIraquoZ(Igtgt CONTINUE [CraquoP(K-K)CT]INVERSE 97 DO pound IC=I^N 96 Wl(IAIC) = 0 99 U 1 |D1K 100 1 WK1AIC) = MKIAIC) bull C(I A 1D)laquoPlt1DICgt 101 2 CONTINUE I OS DO 4 1 B= 1 M 103 WZMAIB) = CAPVdA IB) 104 DO 3 IE-1N 105 3 W2(IABgt - W2IIAIB) Wl ( I A E)raquoClt IB IE) 106 4 CONTINUE 107 5 CONTINUE 108 CALL INVERSE (MW2PSI1IERR) 109 IF(IERRLTO) 00 TO 991 110 C COMPUTE FULL ltP(ZK)(KKJ) MATRIX 111 DO 10 IA=1N 112 DO 7 10=1M 113 W3(IACgt = 0 114 DO 6 10=1M 115 6 W3(IAIC) = W3(]A[Cgt bull Wl(IDI A)laquoPSI1(ID IC) 115 7 CONTINUE 117 00 9 IB=1N 1 IB W2(IAIB) = P(IAIB) 119 DO ( IEgt1n 120 euro U2IIAIB) = W2(AIB) - W3ltI A IE)W)(1EIB) 121 PPUAIB) = U2UAIB) 122 S CONTINUE 123 10 CONTINUE 124 ISINS = 0 125 99 RETURN 126 991 I31Ne = 3 127 RETURN 126 END

129 SUBROUTINE ATOB (ABNMND) 130 C SEE PROGRAM KALMAN FOR THIS ROUTINE 131 ENO

132 FUNCTION TR(AN) 133 C SEE PROGRAM KALMAN FOR THIS ROUTINE 134 END

135 SUBROUTINE INVERSE (NNAAINV I ERROR) 136 C SEE PROGRAM KLMAN FOR THIS ROUTINE 137 END

I3S 139 C 140 END

141 SUBROUTINE SOLVE (NNULB X I PS ND) 142 C SEE PROGRAM KALMAN FOR THIS ROUTINE 143 END

141 145 C 146 END

147 SUBROUTINE MULTPLT (XNY[NNNPTSXNAMEYNAMEPNAMEPVALUE 148 2 TITLESNTLNOUT) 149 C SEE PROGRAM S1GMAT FOR THIS ROUTINE 150 END

151 SUBROUTINE PARAPLT(XYNPLTSNUMPTSNEACHXNAMEYNAMEPNAMEPARAM 152 2 TITLESNTLNOUT) 153 0 SEE PROGRAM SIGMAT FOR THIS ROUTINE 154 END 155 SUBROUTINE ENDPTS(XMINXMAX) 156 C SEE PROGRAM KALMAN FOR THIS ROUTINE 157 END

362

1 PROORAM POSTPLT ltTFILETAPE2=TFILEPPOUTTAPE3=PP0UTgt 2 CALL CHANGE C3HPPgt 3 CALL CREATE (5HPP0UT10000SWT) A N I N = 2 B NOUT o 3 6 DIMENSION YNAMEC2)PNAMEC2) 7 DATA YNAME 1OHTRtPKK+N]10HSIG(KKNgt e DATA PNAME IOHTRACELIM IOHSIGMALIM 0 DIMENSION T1MElt110gtXTC110)TITLES(48) la II raquo 1 1 CONTINUE READlt NIN)NMLLNTLTO T1 LI Ml T ERRLIM IF(NLTO) 00 TO 50 1FCNTLGT0)READ(NIN)(CTITLESlt1 JgtJ=18gt 1=1 NTL) READltNIN)NPTS 6 READltNINMTIME(1) I=1 NPTSgt 7 READININHXTCI gt U 1 N P T S gt S WRITEltN0UT101)YNAME(LIM1T) IIPNAMECLI MlT)ERRLIMYNAMEtLIMIT) - 101 F0RMATO1raquo PLOT OF raquoAIOlaquo VERSUS TIME PL0TTE6 WITH SYMBOL 2 laquo ESTIMATION ERROR LIMIT laquoA10laquo = laquoE103 3 laquo TIMEraquoA10gt 00 2 1=1NPTS 2 WRITECN0UT102)TIMElt1)XT(Igt 102 F0RMAT(2E103gt

CALL MULTPLT T IME XT I I NPTS lOHTlMiT TK+N 2 YNAMEltLIMlT) PNAMEltLiMIT) ERRHMTlTLSSNTLNOUT

1 1 = 1 1 + 1 GO TO 1

50 11 = - 1 CALL MULTPLT (TIMEXTI INPTS 1CHTIME TKN 2 YNAMEILIMT)PNAME(LIMIT)ERRLIM TITLESNTLNOUT) CALL EXIT END

SUBROUTlNE PARAPLTtXYNPLTSNUMPTSNEACHXNAMEYMAMEPNAMEPARAM iEE PROGRAM SIGMAT FOR THIS ROUTINE END

40 SUBROUTINE ENDPTS(XMINXMAX) 41 C SEE PROGRAM KALMAN FOR THIS ROUTINE 42 END

363

i PROGRAM POSTFP [PFILETAPE2=PF1LEFPCUTTAPE3=FP0UTgt 2 CALL CHANGE C3HraquoFP) 3 CALL CREATE C5HFPOUT1OOO0SWT) 4 DIMENSION 2(10)X(I 10)FXlt10) 5 COMMON PROB NMZMAXAPCAPVWKPIWSSISINO 6 DIMENSION Alt1010)Plt1010)CAPVC10lO)bKP1ClO10)WS3lt1010) 7 DIMENSION CAFWi1010) 8 DIMENSION TITLESI4agt 9 NIN = 2 10 NOUT = 3 I I NTTY = 59 12 YNAME = 10HCPCKKgt311 13 PNAME = 10HDIMENS NS 14 DZ = 001 15 ZMAX =10 16 1 WRITECNVTY1001) 17 1001 F8RMATlraquotZ(Kgt32=raquogt 18 READCNTTY002)Z(2) 19 1002 FORMATCE103) 20 IF(Z(2)LTO) GO TO 99 21 REWIND NIN 22 1 1 = 1 23 3000 CONTINUE 24 READltNINgtNMLLNTLT0T1LIMIT 2 5 I F ( N L T O ) GO TO 5 0 26 R E A D lt N I N ) lt C A lt I J gt J = l N ) 1 = 1 N 27 R E A 0 C N I N ) C I W K P I C 1 J gt J = 1 N ) l = l Ngt 28 READCNINHIWSSCI J ) J = 1 N gt l = 1 N gt 29 R E A D ( N I N gt ( I C A P W ( l j S J = 1 L L gt l = l L L ) 30 R E A D ( N I N ) ( ( C A P V ( I J ) J = 1 M ) 1 = I M ) 31 I F C N T L 0 T 0 ) R E A 0 lt N 1 N H I T 1 T L E S lt I J ) J raquo 1 8 ) 1=1NTL) 32 READ(NINgtNOPTERRLIMDT 33 READCNINMCP(IJ)J = IN)I=1Ngt 34 DO 5 1=1101 35 Z(1) = (I-1)DZ 3S X(l) = Zltgt 37 CALL FVALCZFXI1)) 38 5 CONTINUE 39 WRITElt NOUT101)Zlt 2)NN 40 101 F0RMATCraquo1laquolaquo PLOT OF [P(KK)]11 FOR CZ(K)]2 = laquoE103 41 2 raquo VERSUS I-0S1710N [ZtK)]l FOR MODEL DIMENSION NS = laquoI2 42 3 raquo PLOTTED WITH SYMBOL (laquo11raquo)raquo 43 4 raquoCZ(K)1 [l=CKKn1laquo) 44 CALL MULTPLT ltXFX I I1011OHtZCK)J 1 45 2 YNAMEPNAMEZC2)TITLESNTLNOUT) 46 II = II bull 1 47 GO TO 3000 48 50 CONTINUE 49 CALL MULTPLT (XFXI II 0110HCZIK)11 50 2 YNAMEPNAMEZC2)TITLESNTLN0UT1 51 30 TO I 52 99 CALL EXIT 53 END

54 SUBROUTINE MULTP-T ltXIN YIN NNPTSXNAME YNAME PNAME PVALUE 55 2 TITLESNTLNOUT) 56 C SEE PROGRAM S1GMAT FOR THIS ROUTINE 57 END 58 SUBROUTINE PARAPLTCXYNPLTS NUMPTS NEACHXNAMEYNAMEPNAMEPARAM 59 C SEE PROGRAM SIGMAT FOR THIS ROUTINE SO END

61 SUBROUTINE ENDPTSCXMINXMAXgt 62 C SEE PROGRAM KALMAN FOR THIS ROUTINE 63 END

64 SUBROUTINE FVAL CZPll 65 C SEE PROGRAM KALMAN FOR THIS ROUTINE 66 END

70 SUBROUTINE DECOMP ltNNAULSCALES I PSI ERRORND) 71 C SEE PROGRAM KALMAN FOR THIS ROUTINE 72 END

73 SUBROUTINE SOLVE CNN ULBXI PSND) 74 C SEE PROGRAM KALMAN FOR THIS ROUTINE 75 END 76 SUBROUTINE IMPRUV ltNNAULBXRDXIPSDIOlTSIERRORNO) 77 C SEE PROGRAM KALMAN FOR THIS ROUTINE 78 END

364

1 PROGRAM POSTSP CPFILETAPE2=PFILESPOUTTAPE3=SPOUT) 2 CALL CHANGL lt3HSP) 3 CALL CREATE (5HSP0UT1O00O SWT) 4 DIMENSION ZltI 0)XIIIOJFX(I 10)PBUMC10101XOUMlt10) 5 COMMON PROB NMZMAXAPCAPVWKP1WSSISINO 6 DlMEMS IOPI A(10 lOJPI 1010gtCAPV(10 101WKPI(10101WSSlt1010) 7 DIMENSION CAPW11010) 8 DIMENSION TITLES(4 1S) S N1N = 2 10 NOUT = 3 11 yNAME = 10HSIGMA2(Z) 12 PNAME = 10HDIMENS NS 13 DZ = 001 1A ZMAX = 1 0 IS 1 CONTINUE IS REWIND NIN 17 1 1 = 1 1laquo 3000 CONTINUE 19 HEAD C Nl M) N M LL NTL TO Tl LI Ml T 20 IF(NLTO) copy6 TO 50 21 READININX ltAdJ)J=1N)l = lNgt 22 REA0(NIN)((WK|1U J I J= I N) U l Ngt 23 READ(NIN)((WSS(I J) J=I N) l= l N) 24 READltMNH(CAPWI1J)J=1LLI U I L L ) 25 READINlNHICAPVdJ)J=1 M)1=1Ml 2S IFfNTLGTOlREAOCNINldTlTLESd J ) J=1Bgt 1 = 1NTL) 27 REAtXNINlNOPTERRLlMDT 28 HEAOCNlNldPDUMd J) J=IN) l = lN) 29 RLADIN1NgtN0PT (ERRLIMDT 30 READ(NINMltPdJ)J=1Ngt I = 1N) 31 READltNIN)(XOUM(I)1=1M) 32 READ(NIN) (XDUMd) 1 = 1M) 33 3 CONTINUE 34 READCNIN)NOPTERRLIMOT 35 IF(NOPLTO) 00 TO 4 36 READ(NINI((PDUMdJ)J=1N)I=1N) 37 READiNINKXDUMdgtl=1Mgt 38 READININMXDUMd ) 1 = 1M) 39 GOTO 3 40 4 CONTINUE 41 DO 5 1=1101 42 I d ) = lt1-1gtraquoD2 43 laquo(ll = Zll) 44 FXd) = SISMAIZd )) 45 5 CONTINUE 46 CALL MULTPLT (XFX I 1101lOHIZ(K)11 47 2 YNAMEPNAMEZlt2gtTITLES NTL NOUT) 48 II = I I + 1 49 00 TO 3000 50 50 CONTINUE 51 WRITEINOUT10IINN 52 101 FORMATraquo1- PLOT OF SI0MAgtraquo2(Z)gt 53 2 VERSUS POSITION Z FOR MODEL DIMENSION NS = laquoI2 51 3 = PLOTTED WITH SYMBOL ltlllaquogtraquogt 55 II = -1 56 CALL MULTPLT (XFX I 1 101lOHCZ(K)31 57 2 YNAMEPNAMEZlt2)TITLESNTLNOUT) 58 CALL EMPTY(NOUT) 59 99 CALL EXIT 60 END 61 FUNCTION SIGMAC2) 62 C SEE PROGRAM SIGMAT FOR THIS ROUTINE 63 END

SUBROUTINE MULTPLT (XINYINNNPTSXNAMEYNAMEPNAMEPVALUE SEE PROGRAM SIGMAT FOR THIS ROUTINE END SUBROUTINE PARAPLTIXYNPLTSNUMPTSNEACHXNAMEYNAMEPNAMEPARAM 2 TITLESNTLNOUT) SEE PROGRAM SIGMAT FOR THIS ROUTINE END

SUBROUTINE ENDPTSIXMINXMAX) SEE PROGRAM KALMAN FOR THIS ROUTINE END

365

REFERENCES

1 Abadie 0 Ed Integer ana Nonlinear Programrning Application of the GRG Algorithm to Optimal Control ProblemsNorth-Holland 1970 pp 191-211

2 Abadie j gt t poundd integer and Nonlinear Prograirming Numerical Exshyperiments with the GRG Method North-Holland 1970 pp 529-536

3 Aoki M Optimization of Stochastic Systems Academic Press 1970

4 Aoki M and J R Huddle Estimation of the State Vector of a Linear Stochastic System with a Constrained Estimator IEEE Trans on Automatic Control Vol AC-12 No 4 1967 pp 432-433

5 Aoki M and M T L i Optimal Discrete-Time Control System with Cast for Observation IEEE Trans on Automatic Control Vol AC-14 No 2 1969 pp 165-175

5 Aoki M and H Toda Parameter Adaptive Resource Al location Problem for a Decentralized Dynamic System IEEE Trans on Automatic Control Vol AC-20 No 2 1975 pp 192-200

6 Arnold L Stochastic Di f ferent ia l Equations Theory and Appl i -cations Wiley 1974

7 Athanc H On the Determination of Optimal Costly Measurement Strategies for Linear Stochastic Systems Automatica Pergamon Press Vol 8 1972 pp 397-412

8 Athans M The Matrix Minimum Pr inc ip le Information a nd Control Vol 11 1968 pp 592-606

9 Athans Ht et aU Suboptima) state Estimation for Continuous-Time Nonlinear Systems from Discrete Noisy Measurements Proc of the 1968 Joint Automatic Control Conference pp 364-377

10 Athans M and P L Falb Optimal Control Mc Graw-Hill 1966 11 Athans M and F C Schweppe Gradient Matrices and Matrix Calcushy

lations Massachusetts Institute of Technology Lincoln Laborashytory Technical Note 1965

366

12 Athans M and F C Schweppe Optimal Waveform Design via Control Theoretic Concepts Information and Control Vol 10 1967 pp 335-377

13 Atre S R and S S Lamba Optimal Estimation in Distribute Processes Using the Innovations Approach IEEE Trans on Automatic Control Vol 17 No 5 1972 pp 710-712

14 Ballinger D G Instruments for Water Quality Conitoring Environmental Science and Technology Vol 6 No 2 1972 pp 130-133

15 Bar-Shalom Y A Cohen and R E Larson Modeling and Optimizashyt ion of an Effluent Pollution Surveillance System Proc of the IEEE Conference on Decision and Control 1974

16 Bar-Shalom Y et al Application of Stochastic Control Theory to Resource Allocation Under Uncertainty IEEE Trans on Automatic Control Vol AC-19 No 1 1974 pp 1-7

17 Bensoussan A Optimization of Sensors Location in a Distributed F i l te r ing Problem Proc of the International Symposium on the S tab i l i t y of Stochastic Dynamical Systems Coventry England 1972 pp 62-84

18 Berg P H and J L McGregor Elementary Partial Di f ferent ia l Equations Preliminary Edition Hoi den-Day 1964

19 Berkovec J W A Method for the Validation of Kalman Filter Models Proc of the 1969 Joint Automatic Control Conference pp 488-493

20 Beveridge G S G and R S Schecter Optimization Theory and Practice McGraw-Hill 1970

21 Breazeale G Jand L E Jones Digital Adaptive Sampling Proc of the 1971 IEEE Conference on Decision and Control pp 381-382

22 Brewer J W Control Systems Analysis Design and Simulation Prentice-Hall 1974

23 Brewer J W and H Hubbard Mathematical Optimization ot the Monitoring and of the Surveillance o Fickian Diffusion (Research Proposal private communication) 1974

367

24 Brewer J W and S F Moore Monitoring An Environmental State Estimation Problem ASME J of Dynamic Systems Measurement and Control 1974 pp 363-365

25 Byrne G D and A C Hindmarsh A Polyalgorithm for the Numerishycal Solution of Ordinary Differential Equations Univ of California Lawrence Livermore Laboratory Report UCRL-75652 974 ( to appear i n ACJA Trans Hath SofolaquoareU

26 Bryson A E Jr and V-C Ho Applied Optimal Contrcl B la isde l l

1969

27 Cooper C- A and N E Nahi An Optimal Stochastic Control Probshylem with Observation Cost Proc of the 1970 Joint Automatic Control Coherence pp 723-728

28 Coppel W- A Stability and Asymptotic Behavior of Dfferential Equations Heath 1965

29 DAppolito J A A Simple Algorithm for Discretizing Linear Stationary Continuous Systems Proc of the IEEE Vol 54 No 12 1966 pp 20102011

30 Denham U F and J L Speyer Optimal Measurement and Velocity Correction Programs for Midcourse Guidance AIAA Journal Vol 2 1964

31 Ueslau A A L A Gould and F C Schweppe Dynamic Estimation of Air Pollution IEEE Trans on Automatic Control Vol AC-19 No 6 1974 pp T04-910

32 Desoer C- A Notes for a Second Course on inear Systems Van Nostrand Reinhold 1970

33 Draper N R and W G Hunter Design and Experiments for Parameshyter Estimation in Multiresponse Situations Biometrikg Vol 53 No 3 and 4 pp 525-533

34 Duff G F and D Naylor Differential Equations of Applied Matheshymatics Wiley 1966

35 Dwyer H A and T J Petersen Tine-Dependent Global Energy Modeling J of Applied Meteraquoroloqy Vol 12 No 1 1973

368

36 Epes A G A Distributed Parameter Model of Mans Impact on the Radiation Properties of the Global Environment MS Thesis Department of Mechanical Engineering Univ of Caifomia Davis 1972

37 Fleming W H Functions of Several Variables Addison-Wesley 1965

38 Forsythe 3 E and C B Moler Computer Solution of Linear Algeshybraic Systems Prentice-Hall 1967

39 Fcss A S Department of Chemical Engineering Univ of Cal i forshynia Berkeley (private communication)

40 Frbberg C E Introduction to numerical Analysis Addison-Wesley

1969

41 Freeman H Discrete-Time Systems Wiley 1965

42 Fr i tsch F H Univ of Cal i fornia Lawrence Livermore Laboratory (private communication)

43 Gear C W Numerical I n i t i a l Value Problems in Ordinary Dif ferenshyt i a l Equations P r e n t i w H a l l 1971

W Gelb A Ed Applied Optimal Estimation MIT Press 1974

45 ijndbole S S Kalman F i l te r ing with No A Priori Information About Noise - White Noise Case Ident i f ica t ion of Covariances IEEE Trans on Automatic Control Vol AC-19 No 5 1974 pp 561-563

46 Goldberg E i (Convenor) Marine Pol lut ion Monitoring Strategies for a National Program U S Department of Commerce (NOAA) 1972

47 Goudreau G L Evaluation of Discrete Methods for the Linear Dynamic Response of Elastic and Viscoelatic Solids PhD Dissertation Department of Civil Eng1ni-raquoring Univ of Calishyfornia Berkeley 1970

48 Gura I A An Algebraic Solution of the State Estimation Problem AIAA Journal Vol 7 No 7 196S pp 124Z-1247

369

49 Gura I A Extension of Linear Estimation Techniques to Nonlinear Problems J of the Astronautical Science^ Vol XV No 4 1968 pp 194-205

50 Uura I A and A B Bierman On Computational Efficiency of Linear F i l ter ing Algorithms Automatica Pergamon Press Vol 7 1971 pp 299-314

51 Gura I A and R H Gerstein Interpretat ion of n-Dimensional Covariance Matrices AIAA Journal Vol 9 No 4 1971 pp 740-742

52 Gura 1 A and L J Hendrikson A Unified Approach to Nonlinear Estimation J of the Astronautical Sciences Vol XVI No 2 1968 pp 58-78

53 Hausman R F J r Function Optimization on a Line Segment by Golden Section Univ of Cali fornia Lawrence Livermore Laborashytory Report UCIO-30002 1971

54 Hausman R F J r Univ of C l i f o rn ia Lawrence Livermore Laborashytory (private communication)

55 Herring K D and J L Helsa Optimum Measurements for Int imat ion IEEE Trans on Automatic Control Vol AC-19 No 3 1974 pp 264-266

56 Hersh R R The Effects of Noise on Measurements Made in a Disshytr ibuted Parameter System MS Theris Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1972

57 Hindmarsh A C GEAR Ordinary Di f ferent ia l Equation System Solver Univ of Cali fornia Lawrence Livermore Laboratory Report UCID-30001 Rev 3 1974

58 Hindmarsh A C Linear Multistep Methods for Ordinary Di f ferent ia l Equations Method Formulations S tab i l i t y and the Methods of Nordsieck and Gear Univ of Cali fornia Lawrence Livermore Laboratory Report UCRL-51186 1972

59 Hisiger R S An Investigation into a Measurement Uncertainty Principle for a Distributed Parameter System Driven by Noise MS Thesis Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1971

370

60 Hsia T C On a Unified Approach to Adaptive Sampling System Design Proc ot the 1972 IEEE Conference on Decision and Conshyt r o l PP- 618-622

61 IBM System360 Scient i f ic Subroutine Package Programmers Manual Version I I I Fourth Edit ion International Business Machines Corporation White Plains New York 1968

62 IEEE Special Issue on Linear-Quadratic-Gaussian Problem IEEE Trans on Automatic Control Vol AC-16 No 6 1971

63 Inglehart S C and C T Leondes On the Computational Advanshytages of Stagewise-Optimal Observers IEEE Trans on Automatic Control Vol AC-19 No 2 1974 pp 147-149

64 Jazwinski A H Adaptive F i l t e r i ng Automatica Pergammon Press Vol 5 1969 pp 475-485

65 Oazwinski A H Stochastic Processes and F i l ter ing Theory Academic Press 1970

66 Kaiman R E A New Approach to Linear F i l ter ing and Prediction Problems Trans of the ASHE J o r Basic Engineering Series D Vol 82 1960 pp 35-45

67 Kaiman R E and R S Bucy New Results in Linear F i l te r ing and Prediction Theory Trans of the ASHE J of Basic Engishyneering Series D Vol 83 1961 pp 95-108

68 Karnopp D C Random Search Techniques for Optimization Problems Automatica Pergamon Press Vol 1 1963 pp 111-121

69 Karnopp 0 and R C Rosenberg Analysis and Simulation of Mul t i -por Systems MIT Press 1968

gt0 Karreiran H F Ed Stochastic Optimizaton and Control In t roshyduction to Stochastic Optimization and Control by S E Dreyfus Wiley 1968 pp 3-23

71 Knuth D E The Art of Computer Programming Volume 2Seminumerishycal Algorithms Addison-Wesley 1969 pp 103-108

377

72 Kokotovif P V and W R Perkins (Convenors) Singular Perturbashytions Order Reduction in Control System Design Proc of a Special Symposium at the 1972 Joint Automatic Control Confershyence (published by the ASHE)

73 Kramer L C and M Athans On Simultaneous Choice of Dynamic Conshytrol and Measurement Strategies for Stochastic Systems Proc of the 1972 Joint Automatic Control Conference pp 176-181

74 Kramer L C and M Athans On the Application of Deterministic Optimization Methods to Stochastic Control Problems IEEE Trans on Automatic Control Vol AC-9 No 1 1974 pp 22-30

75 Kushner H J On the Optimum Timing of Observations for Linear Control Systems with Unknown Initial State1 IEEE Trans on Automatic Control Vol AC-9 No 2 1964 pp 144-150

76 Lange R University of California Lawrence Livermore Laboratory (private communication)

77 Leondes C T and L M Nov-ik Reduced-Order Observers for Linear Discrete-Time Systems IEEE Trans on Automatic Control Vol AC-li No 1 1974 pp 42-46

78 Leondes C T Ed Advances in Control Systems Kalman Filtering Techniques by H W Sorensen Academic Press 1966 pp 219-292

79 Loscutoff W Modal Analysis and Synthesis of Linear Lumper1 -Parameter Systems PhD Dissertation Dept of Mechanical Engineering Univ of California Berkeley 1968

80 Mac Cracken M C ei at Annual Report Department of TransporshytationCI matlc Impact Assessment Program Univ of Califorshynia Lawrence Livermore Laboratory Reports UCRL-51336 UCRL-51336-74 m d UCRL-51336-75

81 Mac Cracken M C at at Initial Application of a Multi-Box Air Pollution Model to the San Francisco Bay Area Pro of the 1972 Joint Automatic Control Conference pp 694-700

372

82 Mac Robert T M Spherical Harmonics Pergamon Press 1967 83 He Cracken D D FORTRAN with Engineering Applications Wiley

1967

84 Mc Cue H K Jr Stabilization of Distant and Local Power System Disturbances by Optimized Field Control PhD Dissertation Dept of Electrical Engineering and Computer Sciences Univ of California Berkeley 1975 (and private communication)

85 Heditch J Stochastic Optimal linear Estimation and Control McGi-aw-HllT 1969

86 Mehra R K Approaches to Adaptive Filtering IEEE Trans on Automatic Control Vol AC-17 No 5 1972 pp 693-698

87 Hehra R K Maximum Likelihood Identification of Aircraft Pashyrameters Proc of the 1970 Joint Automatic Control Confershyence pp 442-444

88 Hehra R K On the Identification of Variances and Adaptive Kalman Filtering Proc of the 1969 Joint Automatic Control Conference pp 494-505

89 Mehra R K On-Line Identification of Linear Dynamic Systems with Applications to Kalman Filtering Proc of the 1970 Joint Automatic Control Conference pp 373-382

90 Meier L Combined Optimal Control and Estimation Proc of the Third Allerton Conference on Circuit and System Theory 1965 pp 109-120

91 Meier L Ill et at Dynamic Programming for Stochastic Control of Discrete Systems IEEE Trans on Automatic Control Vol AC-16 No 6 1971 pp 767-775

92 Meier L Ill et al Optimal Control of Measurement Subsystems IEEE Trans on Automatic Control Vol AC-12 No 5 1967 pp 528-536

93 Heirovitch L Analytical Methods in Vibration MacMillan 1967

373

94 Michelsen M L H B Vak i l and A S Foss State-Space Formushylat ion of Fixed-Bed Reactor Dynamics Industr ial and Engineershy s Chemistry Fundamentals Vol 12 No 3 1973 pp 323-328

95 Moore S F The Application of Linear F i l t e r Theory to the Deshysign and Improvement of Measurement Systems for Aquatic Enshyvironments PhD Dissertation Dept of Civ i l Engineering Univ of Cal i forn ia Davis 1972

96 Murray-Uasso M A The Modal Analysis and Synthesis of Linear Distributed Control Systems PhD Dissertat ion Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1905

97 Nahi N E and I M Weiss Bounding F i l te rs in the Presence of Inexactly Known Parameters Proc of the 1971 IEEE Conference on_Decision and Control pp 154-159

98 NATO jYOC of the AGARD Conference No 68 1970

99 Petersen T 0 A Numerical Study of the Planetary Boundary Layer with an Analysis of Parameter Sens i t iv i ty PhD Dissertat ion Dept of Mechanical Engineering Univ of Cal i forn ia Davis 1975

100 Pl iska S R Optimal Observations for Minimum Variance F i l t e r i ng IEEE Trans on Automatic Control Vol AC-19 No 1 1974 pp 79-80

101 Prado G ObservabilityEstimation and Control of Distributed Parameter Systems PhD Dissertation Dept of Electr ical Engineering Massachusetts Inst i tu te of Technology 1971

102 Preston A and P C Wood Monitoring the Marine Environment Proc of the Royal Society of London B 177 1971 pp 451-462

103 Radcl i f fe C W and W J Comfort Constrained Minimization of a Function of Many Variable Univ of California Lawrence Livermore Laboratory Report UCRL-51577 1974

104 Relquam H A Method for Optimizing Pollutant Emissions -in an Airshed Atmospheric Environment Pergamon Press Vol 5 1971 pp 57-64

374

105 Sage A P Optimum Systems Control Prentice-Hall 1968 106 Sano A and M Terao Measurement Optimization in Optimal Process

Control Automatica Pergamon Press Vol 5 1970 pp 705-714

107 Sauer G J and J L Melsa Stochastic Control with Continuously Variable Observation Costs for a Class of Discrete Nonlinear Systems IEEE Trans on Automatic Control Vol AC-19 No 3 1974 pp 234-239

108 Scharf L L and 0 L Alspach On Stochastic Approximation and an Adaptive Kalman Filter Proc of the 1972 IEEE Conference on Decision and Control pp 253-257

109 Schulz D G and J L Melsa State Functions atid Linear Control Systems Mc Graw-Hill 1967

110 Schweppe F C Radar Frequency Modulations for Accelerating Targets Under a Bandwidth Constraint IEEE Trans on Military Electronics Vol MIL-9 No 1 1965 pp 25-32

111 Schweppe F C and D L Gray Radar Signal Design Subject to Simultaneous Peak and Average Power Constraints IEEE Trans on Information Theory Vol 12 No 1 1966 pp 13-26

12 Seinfeld J H A Textbook on Environmental Monitoring (to be published Circa 1975)

113 Seinfeld J H Optimal Location of Pollutant Monitoring Stations in an Air Shed Atmospheric Environment Pergamon Press Vol 6 1972 pp 847-858

114 Seirfeld J H and W H Chen Estimation of Parameters in Partial Differential Equations from Noisy Experimental Data Chemical Engineering Science Pergamon Press Vol 26 1971 pp 753-766

115 Seinfeld J H and W H Chen Optimal Distribution of Air Pollushytion Sources Atmospheric Environment Pergamon Press Vol 7 1973 pp 87-lt3

116 Seinfeld J H and L Lapidus Computational Aspects of the Optishymal Control of Distributed-Parameter Systems Chemical Engishyneering Science Pergamon Press Vol 23 1968 pp 1461-1483

375

117 Shoemaker H D and G B Lamont Optimal Measurement Control Proc of the IEEE Conference on Information and Control 1971 pp 624-625

118 Sneddon I N Fourier Transforms He Graw-Hil l 1951

119 Soeda T and H Ishihara Application of Kalman F i l te r ing Method and N-Observability Principle to the Prediction of the Atmosshypheric Pollution Levels Tokushima University and Takamatsu Technical College Japan (date unknown)

120 Stone R Univ of California Lawrence Livermore Laboratory (private communication)

121 Takahashi Y M J Rabins and D H Auslander Control and Dyshynamic Systems Addison-Wesley 1970

122 The Analytic Sciences Corp Course Notes mdashA Short Course on Kalman F i l t e r Theory and Application The Analytic Sciences Corporation Reading Mass 1969

123 Timothy L K and B E Bona State Space Analysis An Introducshyt i o n He Graw-Hil l 1968

124 Vak i l H M L Michelsen and A S Foss Fixed-Bed Reactor Conshyt ro l with State Estimation Industrial and Engineering Chemshyis t ry Fundamentals Vol 12 No 3 1973 pp 328-335

125 VandeLinde V D and A Lavi Optimal Observation Policies in Linear Stochastic Systems Proc of the 1968 Joint Automatic Control Conference pp 904-917

126 Wells C H Application of Modern Estimation and Ident i f icat ion Techniques to Chemical Processes American Inst i tu te of Chemshyical Engineers J Vol 17 No 4 1971 pp 966-673

127 Westley G W A Linearly Constrained Nonlinear Programming Algoshyr i thm Oak Ridge National Laboratory Report ORNL-4644 1971

128 Westley G W Oak Ridge National Laboratory Oak Ridge Tenn (private communication)

129 Wilkenson J H Rounding Errors in Algebraic Processes Prentice-Ha l l 1963

376

130 Wlshner R P et at A Comparison of Three Non-Linear F i l t e r s Automatics Pergamon Press Vol 5 1969 pp 487-496

131 Young J W Modal Simpli f ication of a System of B i la tera l ly Coupled Diffusive Elements With Applications to Global Atmospheric Pollutant Transport Problems PhD Dissertat ion Dept of Mechanical Engineering Univ of Cal i forn ia Davis 1974

mr

Page 3: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …

HOTICE

copy t o

- f t

a i l - i gf

LAWRENCE UVEPIORE LABORATORY UnmsityotCaHorr^VmmmCalifarigtW550

UCFSL-51837

TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL MONIYOPING

THE INFREQUENT SAMPLING PROBLEM Kenneth D I lcnetitel

(Ph D T h e s i s )

Ms da te June 1975

then cinplorm miklaquo

tubibi oi iltipraquoiuibiLigt fu urriilnnof inraquo ciai-

prooia disdoird tu rrpiri

TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL MONITORING

THE INFREQUENT SAMPLING PROBLEM

Kenneth D Pimentel University of California Lawrence Livermore Laboratory

Livermore California

ABSTRACT

An environmental monitor is taken to be a system which generates estimates of environmental pollutant levels throughout an emironmental region for all times within a time interval of interest from measureshyment data taken only at discrete times and only at discrete locations in that region This study addresses the following optimal environshyment monitoring problem determine the optimal monitoring program mdash the numbers and types of measurement devices the locations where they are deployed and the timing of those measurements mdashwhich minimizes the total cost of taking measurements while maintaining the error in the pollutant estimate below some bound throughout the time interval of interest

Diffusive pollutant transport in distributed environmental systems is treated with the method of separation of variables to obtain a set of stochastic first-order ordinary differential state equations for the process Techniques of optimal estimation theory are applied to this set of state equations yielding a set of matrix estimation error co-variance equations whjse solutions are used in accuracy measures for the resulting estimates in the synthesis of optimal monitors

ii

The main results are associated with the infrequent sampling probshylem If the estimation error constraints imposeJ upon the monitor are sufficiently lax the solution for the optimal monitoring program results in relatively long times between required measurements This leads to drastic simplifications in the solutions of the problems of optimally designing and sequencing the measurements where only certain terms in the solutions of the estimation equations are found to effect the reshysponse for large time This dominance of certain asymptotic terms is seen as a potential area for future application in more complex environ-bullintal pollutant transport problems

Owing to the ease in their interpretation numerical applications for one-dimensional diffusive systems are included to illustrate the main results though all the results are shown to generalize to the three-dimensional case Considerable use of graphical computer output is made which clearly exhibits the features of the infrequent sampling problem An extensive list of references in areas relevant to the optishymal monitoring problem completes this report

TABLE OF CONTENTS

Page

TITLE PAGE i ABSTRACT ii ACKNOWLEDGMENTS viii DEDICATION xii LIST OF CONCLUSIONS xiii NOMENCLATURE xiv CHAPTER 1 INTRODUCTION 1

CHAPTER BACKGROUND AND PROBLEM STATEMENT 7 21 Background 7 22 Problem Statement 1

CHAPTER 3 NORMAL MODE MODELS FOR DIFFUSIVE SYSTEMS 19 31 Separation of Variables for the Diffusion

Equation 23 32 One-Dimensional Diffusion 25

321 No-Flow Boundary Conditions 26 322 Fixed Boundary Conditions 33

33 Two-Dimensional Diffusion 35 34 Three-Dimensional Diffusion 40

CHAPTER 4 MODEL DISCRETIZATION AND APPLIED OPTIMAL ESTIshyMATION 42

41 Discretization of the System Model 43 4 1 1 The Systen Model Equations 43

412 The System Disturbance Stat is t ics 46 42 Optimal Estimation - The Kalman F i l t e r 47

421 Optimal Estimation 4 7

2 2 Summary of F i l t e r A l go r i t hm SO

CHAPTER 5 OPTIMAL DESIGN AND MANAGEMENT OF MONITORING

SYSTEMS 52

51 Monitoring and the Kalman F i l t e r 5 2

52 One-Dimensional Piffusion with No-Flow Boundary Conditions 5 6

iv

CHAPTER 5 (Continued) 53 The Design Problem for a Bound on the Error

in the State Estimate 57 531 The Infrequent Sampling Problem 57 532 The Effect of a priori Statistics 66 533 Fixed Number of Samplers at Ech

Heasurment and Fixed Error Limit 70 534 Variable Number of Samplers 73 535 Analytical Measurement Optimization 74 536 Numerical Measurement Position Optishy

mization 77 537 Numerical Measurement Quality Optishy

mization 82 54 The Design Problem for a Bound on the Error

in the Output Estimate 84 541 The Minimax Problem 84 542 Determination of the Position of Maxishy

mum Variance in the Output Estimate 94 55 Diffusive Systems Including Scavenging 98

551 The Infrequent Sampling Problem 100 5 6 One-Dimensional Diffusion with Fixed Boundshy

ary Conditions 105 57 Extension to Monitoring Problems in Three

Dimensions Systems with Emission Boundshyary Conditions 112

58 The Managemeit Problem 122 581 Optimality in the Scalar Case 123 582 Extension to the Vector Case mdashArbishy

trary Sampling Program 132 583 Extension to the Vector Case - Infreshy

quent Sampling Program 133 5E4 Suggestion of a Heuristic Proof for

the Vactor Case 136 59 Extension to Systems in Noncartesian Coordishy

nates General Result for the Infrequent Sampling Problem 138

CHAPTER 6 NUMERICAL EXPERIMENTS 142 61 Problems in One-Dimensional Diffusion with No-

Flow Boundary Conditions 143 62 Problems with Bound on State Estimation Error 157

621 Asymptotic Response of State Estishymation Error 157

v

CHAPTER 6 (Continued) 622 Optintality of Measurement Locations 176 623 Comparison of Performance Criteria 176 624 Effect of Instrument Accuracy 178

63 Problems with Bound on Output Estimation Error 180 631 Asymptotic Responses of Output Estishy

mation Error 188 632 The Effect of a priori Statistics 192 633 Problems with a Fixed Number of Samplers

and Constant Error Bound i99 634 The Effect of Level of Estimation Error

Bound upon the Optimal Monitoring Probshylem 209

635 Examples of Various Levels of Bound upon Output Error 210

636 The Effect of Time-Varying Error Bound upon the Optimal Measurement Design 218

637 The Effect of Time-Varyir^ Disturbance and Measurement Statistics upon the Optishymal Monitoring Design and Management Problems 223

638 Variable ruirher of samplers 227 639 Sensitivity o Results for the Infrequent

Sampling Problem to Model Dimensiorslity 231 6310 Problems Including Pollutant Scavenging 249 6311 Problems with Multiple Sources 257

64 Optimality in the Management Problem 265 CHAPTER 7 SUMMARY AND RECOMMENDED EXTENSIONS OF THE MAIN

RESULTS 268 71 Summary 268 72 Recommended Extensions 270

APPENDIX A DISCRETIZATION OF THE STATE EQUATION 276 APPENDIX B DISCRETIZATION OF THE STATE DISTURBANCE

STATISTICS 278 APPENDIX C STATE AND ERROR COVARIANCE PREDICTION WITHOUT

MEASUREMENTS 285

Vi

APPENDIX D ANALYTICAL MEASUREMENT OPTIMIZATION 289 Dl Minimize Estimate Error 289 D2 Minimize Estimation Error and Estimation

Cost 295 D3 Results 237

APPENDIX E NUMERICAL MEASUREMENT QUALITY OPTIMIZATION 299 APPENDIX F DESCRIPTION AND LISTING OF PROGRAM KALMAN 303 APPENDIX G DESCRIPTIONS AND LISTINGS OF POSTPROCESSOR

PROGRAMS 343 Gl Program CONTOUR 345 G2 Program POFT 348 G3 Program PELEM 35^ G4 Program SIGMAT 356 G5 Program MAXTIME 360 G6 Program POSTPLT 362 G7 Program POSTFP 363 G8 Program POSTSP 364

REFERENCES 365

vii

ACKNOWLEDGMENTS

Many people in a variety of situations have contributed to my doctorial program Academicians colleagues fellow employees and supervisors and members of my family To all of these and more go my gratitude and sincerest good feelings

To John Brewer who started it all for me in automatic controls as an undergrad at Davis this stuff sure beats gear design To the Faculty at Berkeley thank you all Yasundo Takahashi tried to teach me what a state vector was just when I thought I had it he added noise and everything got stochastic To Robert Steidel who helped with my Masters and introduced me to that Lab out there in Livermore To Joseph Frisch who got me the job in the Controls ab and the TAship thanks so much To Dan Mote and Bob Donalu^on out there in eigenspacemdash it finally sank in To Charles Desoer and William Kahan for the clarity which came through their rigor

To the Faculty at the Davis Campus which somehow when I got back was no longer the University Farm my gratitude Dean Karnopp cleaned up my head about systems with one causal stroke Walt Loscutoff not only conveniently graduated from Berkeley so I could have his TAship but he also conveniently went to Davis where I could watch him on TV and have him hulp with my orals

To Charles Beadle and Mont Hubbard who helped with the manuscript thank you for your many hours which might have been more amusingly spent I truly appreciate your help

And then full circle back to John Brewer who has been a continual source of fascination inspiration perspiration frustration and

yiii

resuscitation you are a thesis advisor and friend par exoellenae Your patience understanding and nurturing have not all gone for naught Thank you so very much as I look forward to a long continuing potentially mellower relationship

Howard McCue by far deserves the most thanks of all my colleagues He sat through more baloney poked holes in more theories but learned more about computers from me than anybody else And look where it got you Howard sure do love those computers dont you Thanks too tc Larry Carlson Steve Johnson and Frank Melsheimer for making those days at Berkeley what they were And special thanks to Jerry Alcone for findshying it in his heart to graduate so I could have his office you still owe me a handball it the back too Alcone And at Davis thanks to Steva Moore and Jeff Young who sewed the seeds for a lot of what came from this study

Thanks to the many at Lawrence Livermore Laboratory who have seen fit to employ me while finishing my education Wally Decker and Walt Arnold as Department Heads in Mechanical Engineering have supprted me far beyond what I ever expected I sincerely intend to pay back in my career at the Lab Gene Broadman as Division Leader has helped in ways which mark M m as one of the best in my book John Ruminer and Jerry Goudreau were just the kinds of supervisors we needed great ones

And then there was is and ever shall be Gerry Wright He put up with me put me down got put down and got fed up Hope he forgives Howard and I someday for going back for his Masters Sincerely thank you for all your help Ger all of it for its always been considerable

1x

To Chuck Mi l le r Nort Croft Al Cassell and Gail Dennis did you hear

the one about t h i s Portagee who finished school I knew you hadnt

And f i na l l y to Mildred Rundquist She is no secretary no t yp is t

no c le r ica l type She is a typographical ar t is t - -pure and simple The

i s j s and ks are hers The equations are a l l hers Even some of the

figures are hers And with a l l that my respect appreciation and f r iendshy

ship w i l l always be hers Thanks M i l

To the people of th is country through the United States Energy Research

and Development Administration thank you for your support To the people

of the State of California through the University of Cal i fornia and the

Lawrence Livermore Laboratory my gratitude extends Thank you a l l for

making th is research possible

To Dr Justin Simon a special f r iend in a special way thank you

for your encouragement your kicks i n the mdash your understanding and the

lack of i t Yob now and I know how important a l l this was for me to do

You are the best at what you do and I or we may s t i l l r i p o f f your leaded

glass some day

To my parents who thought i t never could be done i t s done Thank

you for everything you gave me

To ray mother- and father- in- law youve always been there and that s

always counted Your encouragement is ever appreciated I know what f i n i sh shy

ing th is means to you and Im proud that Im able to give i t

The approach of the conclusion of my doctoral studies has prompted a

wide variety of responses from those closest to me From my daughter

Jennifer whos almost f i ve I missed you today From my son John

x

whos almost three Daddy don go wurk anymotmdashstay home now

And from my wife Janet who alone knows how old she rea l ly i s I

dont believe i t Thank you Hunny for always being there and yes

i t is done Now whered you want that pool

DEDICATION

for Jyp PhD

LIST OF CONCLUSIONS

Page

Conclusion I 60 II 64 III 64 IIIA 78 IV 69 V 69 VI 71 VIA 71 VIB 218 VIC 224 VID 224 VII 73 VIII 84 IX 90 X 90 XI 92 XII 94 XIII 105 XIV 112 XV 121 XVI 127 XVII 132 XVIII 1 4 1 XIX 247

Conjecture A 137 B 140 C 230

xU

NOMENCLATURE

Symbol Description

A ( t ) A Continuous-time dynamic system matrix

B ( t ) B Continuous-time deterministic input d is t r ibut ion

matrix

C( t ) C Continuous-time measurement matrix

Cbdquo Discrete-time time-varying measurement matrix at

bullbull time t K

cpound The optimal measurement matrix at time t

C(zK) Measurement matrix as a function of the vector z K of measurement positions at time t bdquo

C Generalized modal capacitance D( t ) D Continuous-time stochastic disturbance d i s t r i shy

bution matrix

pound bull bull Unit matrix with ( i j ) t h element equal to one

~ J and a l l other elements zero

F Pollutant mixing ra t io

G K + Kalman gain matrix at time t R +

I Ident i ty matrix

J Performance cr i te r ion

J(t) First monitor performance criterion estimation error in optimal state estimate at time t

Jbdquo(ct) Second monitor performance criterion value of pollutant concentration estimation error at that point c in the medium where it is a maximum at time t~

K Diffusion coef f ic ient discrete-time index f ina l

value of a discrete-time summation index

L 2L Length of a one-dimensional di f fusive medium

M n Covariance matrix for i n i t i a l state

Symbol Description

N Final value of a discrete-time summation index

P Region in space over which pollutant transport problem is defined

Pbdquo Corrected state estimation error covariance ma-~K t r i x at time t conditioned upon a l l past measureshyments including the measurement at time t

1 P K + 1 Predicted state estimation error covariance matrix

at time t^ +-| conditioned upon a l l past measurements up to ard including the measurement at time t K

v -K+N^-K Predicted state estimation error covariance matrix

at t i ire t K + f j conditioned upon a l l past measurements up to and including the last measurement at time t( and a function of the measurement matrix at timt t bdquo

p ( t ) P Continuous-time state estimation error covariance

matrix

R Generalized modal resistance T Discrete-time integration step-size T r F i rs t monitoring error constraint maximum allow-

able error in the estimate of the monitor state vector

Tr Ppound + N(zj) j Predicted value of the trace of the state estima-l ~ N - t ion error covariance matrix at time t |^ + N condishy

tioned upon a l l past measurements up to and includshying the optimal measurement at zjlt at time t K

V( t ) V Continuous-time measurement error covariance matrix

W(t) W Continuous-time state disturbance covariance matrix

X A matrix used in derivations

Y A matrix used in derivations

c Scalar measurement coefficient used in optimal management problem derivations

c(c) c Readout vector mapping modal states into pollutant concentration at point pound in space

Symbol Description

e Base of natural logarithms (= 271828 ) surshy

face emissivity coeff ic ient

e T Exponential of the matrix [AT]

e Unit vector with i th element equal to one and a l l other elements zero

e (z) Eigenfunction associated with the nth eigenvalue

evaluated at position z

f Stochastic pollutant source term in the transport equations

g Deterministic pol lutant source term in the transshy

port equations

h Emission boundary condit io coeff ic ient

i Vector or matrix element index

j Vector or matrix element index m The dimension of the noise-corrupted measurement

measurement error and measurement position vectors y R y K and z K

j u Mean value of i n i t i a l state

n Discrete-time summation index

n The dimension of the^state and optimal state e s t i shymate vectors x K and x K

p Scalar state estimation variance used in optimal management- iroblem derivations

p The dimension of the deterministic input vector a(t)

r The dimension of the stochastic state disturbance vector w(t)

t Continuous value of time t K The Kth discrete value of time i Convolution of deterministic input vector over the

time interval EtKt|+j

xv 1

Symbol Description u(t) y Continuous-tine deterministic Input vector v K Discrete-time measurement error vector at time tj y(t) v Continuous-time measurement error vector -K+l Convolution of the stochastic disturbance vector

over the time interval [ t K t K + 1 ] w(t) w Continuous-time stochastic disturbance vector x Derivative with respect to time of the state

vector x x K Discrete-time state vector at time t K

xpound Corrected value of the optimal state estimate at time t|lt conditioned upon all past measurements inshycluding the measurement at time t x[ Predicted value of the optimal state estimate at time t K +i conditioned upon all past measurements up to and Including the measurement at time tbdquo x(t) x Continuous-time state vector x(t) x Optimal estimate of continuous-time state vector vbdquo Discrete-time noise-corrupted measurement vector bull at time t K

y(t) y Continuous-time noise-corrupted measurement vecshytor

z Position in a one-dimensional diffusive medium z Position of maximum error (variance) in the estishymate of the pollutant concentration over all values of 7 In a one-cffmenslonal medium zbdquo Discrete-time measurement position vector at time

zj Vector of optimal measurement positions at time t K

z Vector of deterministic input point source loca-~u tlons

xvll

Symbol Description Vector of stochastic disturbance point source loca-

w tions

0 o Zero matrix or vector

a Pollutant scavenging parameter r K + 1 r Time-invariant discrete-time stochastic disturbance distribution convolution matrix for the fixed time step T = (t K + 1 - t K) A K Amount of correction to scalar state estimation varshyiance for a measurement at time t K used in the opshytimal management problem derivations ATr Amount of correction to the trace of the state estishymation error covariance matrix for a measurement at time t|( used in the optimal management problem derishyvations S(t-x) Dirac delta function Kj Kronecker delta function

e A convergence criterion 5 Position coordinate vector for a point in a region

P in a diffusive medium n An intermediate transformation variable 0 A matrix used in certain derivations Eigenvalue or separation constant u Terms involved in determination of eigenvalues for

n emission boundary conditions pound(t) 5 Pollutant concentration at point z in space at

time t (Ct) Optimal estimate of pollutant concentration at

point c In space at time t 4bdquo(z) 5i Discrete-time pollutant concentration at point z

K and time tbdquo

xvlli

Symbol Description

I ( z ) L Optimal estimate of discrete-time pollutant corcen-K t ra t ion at point z and time t

5 (z) I n i t i a l pollutant concentration as a function of bull0

ulim

posit ion z in the medium

= 314159

p A convergenc measure

a 2 ( c t ) Variance in the optimal continuous-time estimate of pol lutant concentration at point z in space at time t

ol(z) Variance in the optimal discrote-time estimate of the pollutant concentration at point z and time h

0 ^ J M ( Z I ^ Z ) Predicted value of the variance at time t K + N in the K N ~ K discrete-time estimate of the pol lut ion concentrashy

t ion at point z conditioned upon measurements up to and including the last measurement with posit ion vector z K at time t K

deg K + N ~ K Z Predicted value of the maximum value over a l l values of z of the variance in the pollutant concentration at time t K + r j conditioned upon a l l past measurements up to and including the optimal measurements at zj at time t K

oK(zJz) Corrected value of the maximum value over all values of z of the variance in the pollutant concentration at time t K conditioned upon all past measurements including the optimal measurements at z at time t K

o Second monitoring error constraint maximum allowshyable error in the estimate of the pollutant concenshytration anywhere in the medium Time used in certain definitions and derivations

An intermediate matrix used in various derivations Scalar measurement error variance used in optimal management problem derivations

xix

Symbol Description

C i gt Time-invariant state t rans i t ion matrix for the ~- ~ f ixed time step T 5 ( t K + 1 - t K )

( t K + t bdquo ) Time-varying state t rans i t ion matrix between times t K and t K + 1

X A matrix used in certain derivations

C + i t I Time-invariant discrete-time deterministic input d is t r ibu t ion convoution matrix for the f ixed time step T = ( t K + t K )

g bdquo + a Discrete-time convolution of the continuous-time state disturbance covariance matrix W(t) over the interval L i t K + - | J

a The discrete-time matrix convolution of the matrix N g K + where N terms in the series are included

a The l i m i t of the discrete-time matrix convolution SS pound2 as N approaches i n f i n i t y with i t s (1 l)-element

to zero

ltD Scalar state disturbance variance used in optimal management problem derivations

- Approximately equals = Identically equals or is defined as gt Greater than raquo Much greater than

lt Less than lt Less than or equal to lt Proport^irtf to or goes like Approaches or goes to - raquo Implies or infers

d [ - ] Total d i f fe ren t ia l operator

g r [ bull ] [ bull ] Derivative with respect to time of the variable in brackets

Symbol Description _3_ 3c

_i 3C

a

diag [bull]

EL-]

min

min max Z K Z

Partial differentiation of a variable with respect to the scalar c Partial differentiation of a variable with respect to the vector c

Partial differentiation of a variable with respect to the matrix C A vector whose elements are the diagonal elements of the matrix enclosed in brackets Expectation operator for a random variable vector or matrix Limiting operation as N approaches infinity Maximum over all scalar values of z Minimum over all vector values of z K

Simultaneous minimum over all vector values z K and maximum over all scalar values z

n=l Tr[-]

bullh

n-l

N r j

Summation from 1 to N over all values of the index n

Trace operator of the matrix enclosed in brackets The 1th_ element of the vector enclosed in bracket [a]^ 1s also denoted a The (ij)th element of the matrix enclosed in brackets [A] 1s also denoted A ^ Transpose operation for a vector or matrix Inverse operation for matrices

A matrix with (ll)-e1ement equal to u and all other elements zero

A matrix with (ll)-element equal to zero and all other elements equal to the elements of the matrix A

xxl

Symbol Description

6 o -cj

A diagonal matrix

p gt 0 The matrix pound i s posit ive def in i t i ve

ltbull I n f i n i t y

CHAPTER 1 INTRODUCTION 1

The problem of the optimal monitoring of pollutants in environshymental systems concerns the minimum cost estimation of pollutant levels throughout a region while maintaining the errors in the estimates within a given bound The optimal monitor synthesis problem considered in this thesis logically separates into the two monitoring subproblems of optimal design and optimal management Optimal monitoring system design includes the specification of a model for the physical system the choice of measured variables measurement devices and their spatial distribution in the medium The optimal management problem concerns finding the best sequencing of measurements in time to result in the minimum cost sampling program The optimal monitor is then defined as that solution of the design and management problems together which results in the minimum cost measurement program necessary to maintain the error in the pollutant estimate below a given bound over the time interval of interest

This is a departure from most studies in the optimization of systems with cost for observation in that use is not made of a comshybiner performance criterion which typically consists of the time integral of a weighted combination of measurement cost and estimation error Insteid in this study advantage is takrn of the separation of the design and management problems whose two solutions separately determine the characteristics of the measurements at the required sample times and the timing of those measurements themselves Thus estimation error is not minimized but rather bounded in a

2

fashion which corresponds with actual applications where legal limits are placed upon allowable errors in the pollutant level estimates in environmental monitors It 1s bounded In such a manner that the minimum total number of samples is necessary over some time Interval resulting in the minimum cost monitoring program

The separation of the monitoring design and maiagement problems was proposed by Brewer and Moore [24] Moore [95] has considered application of such corcspts to the area of aquatic ecosystems where the Extended Kalman Filter 1s applied to the highly nonlinear equashytions of the dynamics of population growth of aquatic constituents This thesis instead concentrates upon strictly linear processes in the hope that the mathematical simplifications possible there may be extendable to the nonlinear case in future studies In the optimal estimation of the state vector of a linear discrete-time stochastic system the Kalman Filter [66] provides a particularly elegant computational solution The two equations for prediction and correction of the associated state estimation error covariance matrix have been conjectured by Brewer and Moore [24j as containing the key to the solution of the management problem it is shown here that they indeed do lead to a problem structure which results In the optimal solution of not only the management problem but to that of the design problem as well

Owing to the anticipated complexities of the optimizations assoshyciated with the various parts of the monitoring problem advantage 1s taken of the simplicity of the separation of variables technique in the theory of linear partial differential equations In obtaining orshydinary differential equation models for distributed systems (see Berg

3

and McGregor I18J) In reducing the resulting state spaces for such normal mode models to spaces of finite dimension the quantitative methods recently developed by Young I131J 1n atmospheric modeling greatly extend the area of applicability of such analytical techniques In particular nonhomogeneous anisotropic media may be handled by the spatial discretization of the medium Into component subregions over which constant average values for system parameters are sufficiently accurate Component coupling by the use of pseudo-sources to make up for differences in the normal mode submodels is the key factor given by Voung which allows for the simple approximation of the dynamic reshysponse of large varied distributed environmental systems The existshyence of these techniques underlies the studies 1n this thesis in their extension to large scale practical problems in environmental monitoring

With the use of a finite-dimensional normal mode state model the resultant continuous-time state equations are discretized in time for use in the Kalman Filter The natura of the Kalman Filter is now well known 1n its applications in the aerospace field Recent applishycations in more diverse areas (see for example the special issue 1n IEEE [62]) have established It as a powerful tool of broad scope 1n the field of system estimation Its numerical advantages over other optimal estimation techniques (well documented 1n Gelb [44]) make it the logical choice for use in environmental monitoring systems where processes of Interest may dictate the use of huge models to obtain desired levels of spatial arid temporal resolution in the results

4

The main results of this thesis concern the special class of monishytor addressed In the infrequent sampling problem This case is charshyacterized by high levels of allowable pollutant estimation error which result in relatively long periods between required sample times These long times between samples allow the transient terms involved in the growth of the uncertainty in the pollutant estimates to reach steady-state values so that only asymptotic solutions of the estimation error covariance equations need be considered in the design and management problems This drastically simplifies the solution of the monitoring problem for the case of infrequent sampling

Applications of the theory developed here are seen to arise in any environmental or other dispersive system where the dynamics of the disshypersal of the pollutant or variable involved is dominated by diffusion and where convective transport can be ignored This rules out its use in air quality monitoring systems on a regional basis where convection typically dominates diffusion in pollutant transport by a ratio of 301 [76] However as developed by others cited in Young 1131] models of pollutant transport on a global scale are often based upon diffusion as the dominant mechanism of dispersal In fact examples in Young indishycate that the normal mode modeling techniques mentioned earlier can be successfully applied to global atmospheric modeling where only diffusion is included as the dispersion mechanism

An interesting extension of the results of this thesis might be to a study involving assessment of the climatic impact of flying a fleet of SSTs upon the protective ozone layer in the atmosphere (see for exampls Mac Cracken et al [80]) In such an application knowing where and when to best sample atmosphere pollutant levels could greatly

5

facilitate validation of numerical atmospheric models in initial applishycations and greatly reduce long-range monitoring costs upon implementashytion of such a program

Groundwater systems seem to be a probable area of application as indicated in what follows though no experimental verifications have been attempted Systems involving heat transfer by conduction which involve stochastic heat sources could find application for the theory of the infrequent sampling problem For example in nuclear reactor cooling systems a central control computer could be time-shared to consider only the best sites for temperature measurement in the walls of the pressure vessel over time

The need for better environmental monitoring has been described in the literature [4695102] typical measurement costs have been tabulated [14] Propagation of uncertainty in distributed systems has been considered in some detail 15659101] Related studies using other approaches do not address the monitoring problem either as it separates into the design and management problems or with the drastic simplifications which arise in the infrequent sampling problem (see the work of Seinfeld [113] Seinfeld and Chen [114115] Seinfeld and Lapidus [116] Reiquam [104] Bensoussan [17] Soeda and Ishihara [119]) Thus there is a naed for improvement of the synthesis procedures for monitoring systems in large scale environmental problems

The thesis is organized into seven chapters and seven appendices to keep things even Chapter 2 summarizes work by others in germane problem areas and defines the scope of the present study Chapter 3 develops briefly the normal mode modeling technique of the application of the method of separation of variables Chapter 4 deals with the

6

time-discretization of the associated f in i te set of continuous-time

ordinary differential state equations and summarizes the more salient

features of Kalroan Fi l ter Theory Chapter 5 presents the main theory

associated with the infrequent sampling problem punctuated with conshy

clusions as they can be made Application and demonstration of the

analytical results of Chapter 5 are made in the numerical examples of

Chapter 6 in which more conclusions are seen to follow In Chapter 7

the main results for the optimal monitoring problem for the case of inshy

frequent sampling are collected in summary and possible extensions for

future study indicated Some of the more routine analytical developshy

ments as well as al l of the computer program listings are gathered

in the appendices A rather extensive l i s t of references relevant to

the optimal estimation monitoring and measurement system design probshy

lems completes this document

7 CHAPTER 2 BACKGROUND AND PROBLEM STATEMENT

This chapter begins with a suiroary of representative work done by others In fields of Importance to the environmental monitoring problem An attempt Is made to present a reasonably complete survey of pertinent literature in the hope that future researchers may benefit from the sources this author has utilized

The broad area of optimal measurement system design is then narrowed greatly in scope as it applies to problems In certain classes of environshymental pollutant transport The problems of the optimal design and management of environmental quality monitoring systems are finally stated in the contexts of two cases for bound on the allowable error In either the monitor state or the monitor output estimite

21 Background

The major topics of concern in the study of environmental monitorshying systems in this thesis include the following mathematical modeling in dispersive environmental systems the numerical treatment of certain classes of partial differential equations the stability and asymptotic solutions of systems of ordinary differential equations optimization of a function of several variables deterministic dynamical system theory stochastic system theory and optimal estimation optimal measurement sysshytem design in lumped and distributed parameter systems and finally monishytoring system synthesis for environmental applications

Considerable Interest has been turned to problems In the dispersal of pollutants In environmental systems in recent years Some typical contributions 1n the areas of the atmospheric sciences include the modelshying of air pollutant transport on a regional basis [81 J the climatic

8

impact of f l y ing a f lee t of SSTs in the upper atmosphere I80J studies

1n the parameter sens i t iv i ty of models of the planetary boundary layer

[3599J and studies of models of the global transport of pollutants

[36131] In one recent study by Young [131J the classical methods of

applied mathematics were successfully applied to the solution of global

pol lutant transport problems in a unique way that takes advantage of

analytical results available fo r certain classes of part ia l d i f fe ren t ia l

equations By the expansion of solutions for such equations in i n f i n i t e

series form followed by quant i tat ively meaningful truncation of those

serious solut ions approximate solutions for otherwise Targe d i f f i c u l t

problems can be obtained This procedure involves coupling together

solutions for problems in adjacent subregions to e f f i c i en t l y approximate

the response in larger areas The theory for such Fourier-type expanshy

sions is now well established [183482118J but the unique extensions

made by Young possess the potential for applying classical normal-mode

analysis long associated with problems in the mechanics of l inear solids

[9347] to a far braoder class of problems including environmental

pollutant transport in nonhomoqeneous anisotropic media

This author follows Young in the application of normal-mode technishy

ques to problems in the solution of the dynamic equations of environmental

pollutant transport Such methods y ie ld f i n i t e sets of ordinary d i f f e r shy

ent ia l equations whose solutions form time-varying mul t ip l iers for the

spatial mode shapes which comprise the normal mode solut ion bond graphs

are seen to of fer a concise graphical representation of such normal mode

models (see for example Karnopp and Rosenberg [6S]) The study of the

numerical treatment of systems of ordinary d i f fe ren t ia l equations is a

fundamental part of the solution of the monitoring problem when using

9

the normal mode approach recent advances 1n the numerical solution of general nonlinear time-varying possibly stiff ordinary differential equations are typified by the work of Gear [43] Hindmarsh [5758] and Byrne and Hindmarsh [25] Analytical treatments can be found in Coppel [28]

In the case of linear time-Invariant ordinary differential equashytions the class involved in the infrequent sampling problem considered in this study the powerful techniques of linear system theory can be used (see for example Desoer [32] Takahashi et at [121] Brewer [22] Freeman [41] Timothy and Bona [123]and Schultz and Helsa [109]) In the actual implementation of algorithms associated with the solutions of such linear systems certain topics in matrix theory in numerical analysis prove to be useful [3840129] Involved in the optimal design problem in monitoring system synthesis are the problems associated with the optimization of a function of several variables Beveridge and Schechter [20] is found to be an excellent reference in this area while Fleming [37] provides a more firm background in the theory of a function of several variables A gradient routine by Westley [127] was chosen for the constrained minimization of the nonlinear objective functions associshyated with the optimal design problem Such gradient methods are conshytrasted for example with the work of Radcliffe and Comfort [103] in which constrained direct search methods are presented which do not involve the use of derivatives of the objective function gradient methods are found to offer computational advantages over direct search methods in their application to the optimizations involved in the optimal design problem In the particular problems of finding the position of maximum uncertainty in the pollutant estimate for the monitoring problem with

10

bound on error in the output estimate root finding methods for finding zeros in the derivative of the expression for the error were found to be superior to direct search methods for such scalar maximizations (see Hausman [5354])

The field of optimal state estimation in stochastic dynamic system theory is well developed in what it offers for vhe solution of the optishymal monitoring problem Gelb [44122]makes a particularly lucid presenshytation of the more practical topics in applied estimation theory the original work of Kalman [66] and Kalman and Bucy [67] still stand as basic reference material for the concepts involved Sorensen (in Leondes [78]) presents a concise introduction to Kalman Filter techniques Meditch [85] also presents a clear development of the optimal filter Aokr [ 3] contains a considerable amount of material concerned with speshycial topics in stochastic system theory as does Sage [105] Jazwinski [65] is sufficiently complete in its rigor to serve as one single refershyence in the area of stochastic processes and filtering theory for more fundamental material in the theory of stochastic differential equations including a particularly rigorous development of the Kaliran-Bucy Filter see Arnold [ 6]

The Special Issue of IEEE Transactions on Automatic Control Decemshyber 1971 dealing with the Linear-Quadratic Gaussian Problem [62] ofshyfers an extensive collection of topics in optimal estimation theory It Includes a well edited bibliography which should be a basic resource to any researcher 1n this field The proceedings of a special confershyence sponsored by NATO [98] summarizes many military and aerospace apshyplications of estimation theory

11

There are many special topics In estimation theory which could prove of Importance In future extensions of the work in this thesis to practical applications in nonlinear systems Of them adaptive filtershying 1s of particular importance see the work of Mehra [86878889] Jazwinski [64] Berkovec [19] Godbole [45] Nahi and Weiss [97] and Scharf and Alspaeh [108] Extension to nonlinear estimation are conshysidered in Wlshner et aZ[130] Athans et al [9 J Hells [126] Gura [49] and Gura and Hendrikson [52] Moore uses the Extended Kalman Filshyter as cited earlier in his work on the monitoring problem [95] As well as Moore others have examined the effects of using an imprecise model in the optimal filter upon the performance of optimal estimation schemes among them are Jazwinski [65] who considers the area of filter divergence at length Aok1 and Huddle [4 ] Leondes and Novak [77] and Inglehart and Leondes [63]

The area of theory most closely allied to that of the optimal monishytoring problem is known variously as optimal estimation with cost for observation optimal measurement system or subsystem control or the opshytimal timing of measurements Aoki and Li [ 5] were among the first to address such problems along with Meier [909192] Athans uses his Matrix Minimum Principle [ 8 ] along with the work of Schweppe [11] in an application in continuous-time systems this work is strongly based upon direct extensions of optimal control theory (see Bryson and No [26] or Athans and Falb [10]) Schweppe [12110111] has made developments of op timal measurement strategies in radar applications Denham and Speyer [30] did some early work in midcourse guidance Kramer and Athans [73 74] have made recent rigorous contributions to the mathematics associated with the combined optimal control and measurement problems along with PIiska [100]

12

Other studies Involving the optimal timing and use of measurement data include Kushner [75] Breazeale and Jones [21] Sano and Terao [106] Hsia [60] and Dreyfus [70]

Some of the most germane references found in the area of optimal measurement system design include Cooper and Nahi [27] Sauer and Melsa [107] Vande Linde and Lavi [125] Herring and Melsa [55] Shoemaker and Lamont [117] and Soeda and Ishlhara [119]

Studies which concentrate on monitoring and measurement system optishymization in distributed parameter systems include the work of Seinfeld [112113114115116] Draper and Hunter [33] Reiquam [104] Bensoussan [17] Atre and Lamba [13] Murray-Lasso [96] and Prado [10lJ

Bar-Shalom et al [is] consider monitoring systems much like those considered here but for a far more general class of problem Moore [95] and Brewer and Moore [24] serve as the inspirational basis for much of what is developed in this thesis

22 Problem Statement

Consider a region into which pollutants are being injected by a colshylection of deterministic and stochastic point sources Two problems in the monitoring of the pollutant levels in that region over time are conshysidered in this study

First suppose that measurements are required of pollutant levels for the purpose of closed-loop control in which case feedback signals are to be constructed to control seme of the amounts of pollutant being emitted into the medium An example might be thermal pollution near a power station where it is required to optimally monitor temperatures in the surrounding area for the purpose of closed-loop control of the mean

13

power level Assuming that a model can be constructed for the dynamics of the pollutant dispersal in the form of a finite set of first-order orshydinary differential equations whose solution forms the state vector for the model of the process (see Desoer 132]) It is well known that the mean square length of the error between the state vector and the esshytimate of the stochastic state vector fs given by the trace of the estishymation error covariance matrix for such a stochastic process as a funcshytion of time (see Kalman [66]) Thus if it is required to minimize the mean square error 1n the estimate of the stochastic state vector a suitshyable choice for the performance criterion for the optimal monitor with bound on maximum allowable error in the state estimate is

J(t) = Tr[p(t)] (21) where

P(t) = E (x(t) - x(t))(x(t) - x(t)) T ( )

is the estimation error covariance matrix for the optimal estimate S(t) of the state x(t) both of dimension n at time t E[-J denotes the exshypectation operator applied to the random argument and (bull) denotes the transpose operation Here

n

Tr[A] = T [A]^ (23) n=l

is the trace function The notation [ALj means the (ij)Jh_ element of the matrix A

Second suppose legal limits are placed upon the maximum error in the estimate of the pollutant level itself allowable at any time anyshywhere 1n the medium This case represents a problem of practical interest where a monitor might be used on-line to detect infractions of legal pollutant concentration levels in some airshed or watershed

14

Let the concentration of a pollutant of interest as a function of space and time bt denoted by Ut) Define

5(ct) = c(c) T x(t) (24) where x(t) as before is the state vector of dimension n of pollutant dispersal in the region is the coordinate position vector of the point where the concentration pound is being calculated and where c(c) is a vector (typically of eigenfunctions in the spatial coordinates c for the case of normal mode models) which maps the state x into the concentrashytion at the point pound In this application the function of the monitor is to provide an estimate (st) of pound(ct) such that the maximum error between the pollutant concentration and its estimate is maintained below a given constraint or bound for all times of interest and throughout the medium spanned by t Thus a measure of the uncertainty or error in the estimate of the pollutant level at some point c anywhere in the medium is given by the variance in the estimate C(t) denoted by a (ct)

Derive using (22)

o 2(Ct) B E (c(st) - C(t)) Z

= E ^(5) T(x(t) - x(t))c(c) T(x(t) - x(ty

- E[jc)T(x(t) - x(t))(x(t) - x(t) )Tc(s)J

= c ( 5 ) T E[(x(t) - x(t))(x(t - x(t))TJc(c)

= ztflMsty- lt 2 - 5 gt Thus the variance in the estimate of the pol lutant concentration i t s e l f

also termed the monitor output anywhere in the medium can be expressed

d i rec t ly in terms of the monitor state estimation error covariance mashy

t r i x P(t) and the readout vector pound() Hence a logical choice for a

15

performance criterion for the monitoring problem with bound on maximum allowable error in the output estimate is

J 2(ct) = a2(poundt)

= max a (t)

= max c(c)TPCt)c(c) 5 = StffytM) (2-6)

where C is the position of maximum variance in the estimate of uie pol shy

lutant concentration or output at time t

Thus the two estimation error c r i t e r i a to be considered here are

given in (21) and (26) for the optimal monitoring problems with bound

on state and output estimation error Once an error c r i te r ion is seshy

lected in a given problem the requirements of the optimal monitoring

system design problem are to select the optimal choice of monitor model

complexity the optimal number and qual i ty of measurement devices to deshy

ploy and their optimal locations in the environmental medium fo r a l l

measurement times tlaquo over the time interval of interest The added reshy

quirement of the problem of optimal monitoring management is to select

the optimal measurement times t K such that together with the results for

the optimal design problem the minimum cost monitoring program is found

which maintains the chosen estimation error c r i t e r ion within i t s bound

throughout the time interval of interest

This is a somewhat d i f ferent approach from those taken in the o p t i shy

mal design of systems with measurement cost by previous authors Athans

[ 7 ] defines a scalar cost functional which is a l inear combination of

the tota l observation cost and the mean square error in the estimate of the

variables of interest As in a l l problems with such combined performance

16

criteria most of which are direct extension1 of the original concepts of optimal control relative weighting parameters are required amongst the cost and estimation error terms to make the criteria adjustable to the needs of a specific problem (see Bryson and Ho [26] or Athans [10] regarding the concepts of optimal control See Athans [7] Kramer and Athans [73] Athans and Schweppe [12] Meier et al [92] Shoemaker and Lamont [117] Cooper and Nahi [27] Sauer and Melsa [107] Vande Linde end Lavi [125] Kushner [75] Sano and Terao [106] Dreyfus in Karreman [70] and particularly Aoki and Li [5] for examples of work in the area of optimal system design with measurement cost) The choice of such weighting parameters inevitably complicates the measurement system deshysign problem Particularly in applications in the environmental area combining the minimization of costs associated with measuring a process with the minimization of a measure of the errors made in the estimation of the variables in that process does not seem to address the correct problem In any practical implementation legal limits would be placed upon estimation errors allowable in the pollutant estimates On the other hand the use of a combined performance criterion typically admits arbitrarily high estimation error levels at certain points in time since the objective of the optimization is to minimize the time integral of the performance criterion not its instantaneous value Thus the minimization of a performance criterion involving the time integral of a weighted combination of measurement cost and estimation error is not solving the right problem in the context of an environmental monitor

Thus the separation of the optimal monitoring problem into the problems of optimal design and management leads to a problem structure which conforms better to the requirements in actual applications than

17

do those which come from the application of principles of optimal conshytrol with combined quadratic performance indices

If at all measurement times the cost of making a measurement of a given quality is a constant then the total cost of the required monishytoring program over the time interval of interest is directly related to the number of times a measurement of a given quality has to be made scaled by some cost weighting factor which is typically a function of the accuracy of the measurement instrument involved Roughly speaking then the total cost of the whole monitoring program is an increasing

function of the total number of individual samples which must be taken over the time interval of interest in order to maintain the value of the selected estimation error criterion within its bound over that entire time interval With this assignment of measurement cost as a function of measurement instrument accuracy then the two optimal monitoring probshylems to be considered in this study are defined as follows

The Optima] Monitoring Problem of the First Kind -Find the optimal number and quality of measurement deshyvices their optimal locations in the medium and the opshytimal measurement times such that the total cost for the measurements required to maintain the estimation error in the state of system below a given bound over the time interval of interest is minimized (27)

The Optimal Monitoring Problem of the Second Kind -Find the optimal number ana quality of measurement de-vices their optimal locations in the medium and the opshytimal measurement times such that the total cost for the measurements required to maintain the maximum estimation error in the pollutant concentration anywhere in the meshydium below a given bound over the time interval of inshyterest is minimized (28)

Notice that in the above problem definition the choice of model complexity for use in the monitor - the order of the model and perhaps certain aspects of its structure mdash has been excluded It is reintroshyduced later in Chapter 6 in a sensitivity analysis of monitor performance

18

as a function of the number of normal mode states retained in the series solution approximation for the dynamic equations involved

In what follows the problem stated in (27) or (28) are equivashylents referred to as the optimal monitoring problems with bound on error in the state or output estimate respectively

The next chapter considers normal mode models for pollutant transshyport which result in sets of first-order ordinary differential equations of the initial value type these are commonly known in system theory as continuous-time state equations (see Desoer pound32])

In Chapter 4 these continuous-time state equations are discretized in time (see Freeman [41]) for computational implementation and for use in the Kalman Filter in the optimal estimation problem In Chapter 5 attention is finally returned to consideration of the monitoring problems stated above

19

CHAPTER 3 NORMAL MODE MODELS FOR DIFFUSIVE SYSTEMS

The transport and dispersal of a particular pollutant in some reshygion P can be described by the following partial differential equation

K = 5 F + p P $ F laquoF + f + 9 O-1) where

F = mixing ratio of pollutant (grams of pollutant per kilogram of medium)

f = gradient operator y = local velocity of medium

p = mass density K = diffusivity coefficient

a = scavenging rate coefficient

f = stochastic pollutant source term (grams pollutant per unit time per kilogram of medium)

and finally g = deterministic pollutant source term (same units as f)

The terms of the right-hand side of (31) represent respectively (1) forced convection (or advection) (2) Fickian diffusion (3) environmental degradation (or scavenging) of pollutant from the region (4) stochastic and (5) deterministic pollutant production within the region

For some environmental media particularly the atmosphere the propshyerties p and K vary in space and time In some cases (31) will not be an accurate description where K may also vary with direction of diffusion andor the scavenging term may require a far more complicated description The above equation describes the transport of only a single pollutant species F if more than one pollutant is being considered an equation

20

like (31) is required for each one where more terms may be necessary to describe chemical reactions among the various pollutants if they exist Another case where (31) may be an incomplete description is with a meteorologically or hydrologically active pollutant one which can change the energy balance of the medium an example is a pollutant whose presshyence effects optical properties within the region For this latter case the full enevgy and momentum equations of fluid mechanics must be augshymented to (31) to complete the mathematical description of pollutant dispersal [3536] Thus modeling pollutant transport in general is seen to involve a great deal of analytical difficulty

While approaches to the solution of (31) typically evolve from the use of finite difference methods [808199] the extensions of modal analysis techniques proposed by Young [131] to pollutant transport probshylems will be used in this study The powerful results which come from the application of normal mode analysis are felt to extend directly to finite difference models as will be suggested at the end of this report thus use of normal mode models is not a real restriction

In order to gain insight Into the mathematical relationships involved in monitoring the dispersion of pollutants in time and space consider a more tractable simplified version of (31) namely

| | = wh - a + f + g (3)

where 5 - concentration of pollutant (grams of pollutant per

cubic meter of medium) The simplifications adopted in using (32) 1n place of (31) include the following mass density p is assumed to be constant which allows the use of concentration instead of mixing ratio as the dep3ndent variable

21

when the fluid can be assumed incompressible spatial variation of the diffusivity K is negligible and advection is dominated by diffusion as the principle mechanism of transport

Since (32) is linear in pound and since the main emphasis of this study iraquo upon the stochastic nature of its solution the deterministic source term may be eliminated since its effects could be added later to the stochastic solution by the method of superposition The result is

fsect = ltregh - a + f (33) This equation forms the basis for this study It is the stochastic difshyfusion equation including scavenging written in arbitrary coordinates (it should be noted that (33) equally well describes stochastic heat transfer in solids including radiation to the surroundings)

The above assumptions mean that applications of the results which follow to problems in atmospheric pollution are remote at best However (33) is sometimes used for long time scales in global atmospheric studies (see references cited in [131]) In such cases C is interpreted as the pollutant concentration averaged over mixing times sufficiently long that local wind velocities can be viewed as small scale effects of large scale eddies However application of the results to be developed around (33) are thought to be possible in groundwater systems or thgtse surface water systems for which local velocities are small

It should be noted that spatial variation in the density and difshyfusivity can be reintroduced into the problem to extend the results of this work to inhomogeneous anisotropic regions This can be done by dishyviding the region P into component subregions in each of which the asshysumption of constant p and K Is a reasonable approximation Young pound131]

22

has shown that by coupling such component submodels together low order models of relatively high accuracy are able to be formed

For now ignore the inclusion of poll tant scavenging in the transshyport equation It will be introduced later as 1t effects the results for the optimal monitoring problem for diffusive transport alone in Chapshyter 5 Thus with this final simplification the stochastic partial difshyferential equation governing Fickian diffusion results

|| = K7 25 + f (34)

Various methods exist for solving (34) but owing to its simplicity and useful areas of application the method of separation of variables will be used to convert (34) into an infinite expansion of ordinary difshyferential equations ir time whose solutions multiply related eigenfunc-tions in space Study has been made of the number of terms to retain in the expansion for adequate accuracy [131] Determination of this number will not be of concern here though its importance will be demonstrated by example in Chapter 6

Development of a finite set of continuous-time state equations of the form

amp = ampS + B (35) y = Cx + V (36)

from the application of the method of separation of variables to (34) is followed by developments for problems with media of various dimensions in the remainder of this chapter More rigorous theory regarding the separation of variables technique 1s summarized and referenced in [131]

23

31 Separation of Variables for the Diffusion Equation

Here the solution of the inhomogeneous stochastic di f fusion equation

(34) in arbi t rary coordinates is expressed as a f i n i t e set of normal

mode state equations of the form (35) with the use of the method of

variatiOTi trf parameters fcee Berg and fttftrego-r [ I S ] p 152)

Begin by considering the homogeneous counterpart to (3 4) namely

sectsect = KV2C (37)

Assume a solution for of the form

5(Pt) = x(t)e(P) (38)

where P is some point in the medium P Substitute th is into (37) to

obtain

x(t)e(P) = Kx(t)72e(P) (39) or

m=^- raquobullraquogt The left-hand side is a function of t and the right-hand side is a funcshytion of P so that for arbitrary P and t both must equal a constant the so-calle separation constant or eigenvalue Choose this constant to be -X so that the following separated equations result

i(t) + Xx(t) = 0 (311) V 2e(P) + | e(P) = 0 (312)

The equation in time (311) Is already seen to be in the form sought 1n (35) The spatial equation (312] 1s the Helmholtz equation which together with the boundary conditions for the medium forms an eigen-problem over P the region of interest The resultant eigenfunctions e (P) can be used to form bases for solutions of (37) assume a solution of the form

24

C(Pt) = 2 ^ x n(t)e n(P) (313) n=l

Substitute this into the inhomogetieous diffusion equation (34) to obshytain

oo oo

) i n(t)e n(P) = K ^ x n(t)7 2e n(P) + f(Pt) (314) n=l n=l

The eigenfunctions are distinguished by the property of orthogonality which can be stated as

[ 0 n + m ebdquo(P)em(P) dp = (315) rebdquo(P)em(P) dp -

n = m the integration occurring over the whole region P Use th is property in

(314) together with (312) to obtain

E i n ( t ) 1 e nlt P gt e n P gt - - laquo ] [ M ^ e n lt P V P gt d

+ f (P t )e m (P) dp (316) JP

The orthogonality then reduces (316) to the following set of first order ordinary differential equations

+ I f(Pt)ebdquo n(tgt deg -xM + I W^K^ dp (317)

The integral in (317) is the contribution to the nth mode due to the source term f(Pt) If f(Pt) can be expanded in a series of eigenfuncshytions it can be given by

25

f(Pt) = ) f n ^ n ^ - ( 3- 1 8 )

Multiply by e m(P) integrate over the region and apply orthogonality again to obtain

f fn(t) = f(Pt)en(P) dp (319)

Jp

where fbdquo(t) is the modal input for the ntjn_ differential equation Thus wit 19) (317) may be written in the compact form

xbdquo(t) = - y n ( t ) + f n(t) n = 12 (320)

This infinite sequence of ordinary differencial equations is known as the set of normal mode state equations and together with the mode shapes given by the eigenfunctions e n(P) they comprise the normal mode solution in (313) of the inhomogeneous diffusion equation (34)

The remainder of this chapter will concern forms for the eigenfuncshytions e (P) the spatial side of the problem This will involve solving for the eigenfunctions once the coordinate systems are specified and boundary conditions given Thus finding e n(P) the eigenvalues n and solving for the source terms fn(P) will be considered next for a range of different problems Solving for the time response x (t) will be apshyproached in Chapter 4

32 One-Dimensional Diffusion

Here w i l l be considered the problem of di f fusion in a one-dimensional

medium Classical ly th is is the problem of heat conduction between two

i n f i n i t e paral lel f l a t plates The problem also embraces that of po l lu t shy

ant d i f fusion where d i f f u s i v i t y constants dominate in one coordinate

26

direction only Consider then the system described schematically as

follows

bullgt f rtrade w l

^1 Sources f rtrade 1 r 1 t ~ J

Measurements

2 f

2L gt

- i gtJ Measurements

2 f

- 2 laquo^ 2 f

Figure 31

321 No-Flow Boundary Conditions - For the system of length 2L

described 1n Figure 3 1 the following specifies the related i n i t i a l -

boundary value problem

Bpoundjfcjabdquo K 3fpoundi5ja t f ( 2 l t t g ( 2 gt t )

dz-

gjC(0t)=0 5fc(2Lt)s0j

CUO) = bdquo

f^zt) ^ W l ( t ) ^ z - zw y

E[w(t)j = 0

EJytJw^T)] = W6(t - T)

f 2 ( z t ) H bdquo 2 ( t ) laquo ( z - z W z )

E w 2 ( t f = 0

(321)

(322)

(323)

(324)

(324A)

(324B)

(325)

(325A)

27

Erw2(t)w2(T)J = W2 laquo(t - T) (325B)

g i ( z t ) = u^t) oz - z u (326)

Thus the system represents diffusion in a one-dimensional medium of

length 2L and diffusivity K with no influx or efflux of the diffusing

substance at the ends The in i t ia l condition throughout the medium is

chosen as a constant 5 Q There are two stochastic point sources f j at

z = z and f at zbdquo with zero means and constant covariances given by W-l lt- Wn

W and W respectively One determnistic source of strength u^(t) acts

a t z - y Measurements y j ( t ) and y 2 ( t ) are taken at points z 1 and z Expresshy

sions ior these measurements in terns of the resulting system of normal

mode state variables are sought

As in (313) begin the analysis by assuming a solution of (321)

of the form CO

pound(zt) =2__ x n(t) cos ((n - 1) j f z) (327) n=l -

Substitute this into (321) to obtain

xbdquo(t) cos ((n-Dfz) n=i

n=l + f(zt) + g(zt) (328)

Right-multiply by cos Um-1) - z) integrate over the length of the medium and invoke the orthogonality of the eigenfunctions to obtain

28

2 r2L 2Lx n ( t ) = - (n - D 2 i | | x n ( t ) + f ( z t ) cos ( j n - 1) ^ z)dz

+ g (z t ) cos f ( n - 1) g f z ) dz n = l (329) 4=0

2 f 2 L

Lxbdquo( t ) = -(n - D 2 f - x n ( t ) + f ( z t ) c o s N n - 1) j f z ) dz

+ g(z t ) cos ( (n - 1) j f z)dz n = 2 3 ( 3 3 0 gt 4=0

The above may be generalized into one in f i n i te set of f i r s t -o rder ordinary

d i f fe ren t ia l equations in state-space form f i r s t by making the def in i t ions

n = 1 ^L 2L (n-l) zCTr2

n = 2 3 ^mdash (331)

(n-l)2lt7T2

With these definitions the complete normal mode solution for the one-dimensional stochastic diffusion equation equation (321) may be written as the sequence

n ( t ) = bull rr n ( t ) + r I f ( z t ) c o s ( ( n - ^ i f z ) d z

+ ^ - g (z t ) cos f (n - 1) g f z j d z n = l 2 n 4=0 ^ (332)

Thus the concentration pound(zt) is found by solving the modal equations (332) and substituting nto the ssumed solution (327) To do this

29

the solution must fit the initial condition so that

s0

CO

bull ) x n(0) cos((n - 1) ^ - z )

For this case it is easily seen that

x(o) = e 0

x n(0) = 0 n = 23

(333)

(334)

Point sources are the most straightforward types of inputs to represhysent in normal mode form (see Mac Robert I 8 2 ] p 124) The stochastic and deterministic sources are transformed as follows

2L

z=0 f^zt) cos ((n - 1) gf z)dz

-r (t)laquo(2-zH)cos(n-l)fz)dz

i(-raquopound) w(t) n - 12 (335A)

Similarly for f(zt)

-2L J - j f 2 (z t ) cos ((n - 1) 2Tz)dz

n -4=0

c i c o s f t n - l j ^ z ) w ( t ) n 12 (335B)

The deterministic term is

30

J- g(zt) cos((n - 1) z) n -4=0

dz

- | ^ c o s ( ( n - l ) ZL z u J u ^ t ) n = 12 (336

If the infinite series in (313) and (327) are truncated after term ngt the retained modal equation may be written as follows

0 deg Kit

O -lt-D2

1 traquo (ltraquobullgt if s )

(337)

bull with initial condition x^O) x7(0)

xbdquo(0)

(338)

The noise-corrupted measurements

1 c o s ^ z ) cos ((n-1) ^ Z l )

1 c o s ( z 2 ) cos((n-l)jf2 z) (339)

31

In summary the stochastic initial-boundary value problem (321) - (326) las been transformed through the method of separation of variables into a truncated sequence of first order ordinary differential equations (337) with initial conditions (338) Measurements made of the system are exshypressed as in (339) These equations comprise the state and output equations which may be written as

x = Ax + Dw + Bu (340)

y = S + v (36)

As in equation (34) most of the examples of interest here will exclude terms like gu in (340)

Once the truncated sequence of normal mode state equations is deshytermined the resulting pollutant concentration at any point z in the medium for any time t may be found as follows

e(zt) = Y x n(t) cos ((n - 1) |f zj ( 3 4 1 )

Finally insight into the structure of the finite normal mode model of the one-dimensional diffusion process may be gained by portraying relashytionships (337) (338) (339) and (341) in a bond graph [69] see Figure 32 The table at the bottom of the figure defines the functional relationships involved in the coefficients b c and d these are in actuality all modulated transformer elements

32

DETERMINISTIC b SOURCE

1

1 tt

1 -Hyendeg 1 trade NOISV

MEASUREMENTS

A h H yen 0

bdquoltbull

bull laquo ^ 5 ^ 7 l rs ((bull ) f((-gt5f-0 raquoraquo(laquobullI ffr) I ((-I) ^i)

Figure 32 Bond graph of normal mode state measurement and output equations used In the monitoring problem

33

322 Fixed Boundary Conditions - Consider the initial-boundary value problem

M | laquo t i K pound s ^ t i + f ( z gt t ) C 3 i 4 2 )

UOt) = 0 6(2Lt) = 0 (343) S(z0) = 0 (344) f(zt) = w(t)6(z - z w ) (345)

E[w(t)] - 0 (346) E[w(t)w(t)] = WS(t - T ) (347)

The essential difference from lthe problem in Section 321 is in the nature of the boundary conditions The so-called fixed boundary condishytions of (343) are referred to as the Dirichlet conditions by others (see Berg and Mc Gregor [18] Section 36) They represent the physically rare situation where the pollutant concentrations at the ends of the medium are fixed to some specified source levels as functions of time here those levels are arbitrarily chosen to be zero This difference manifests itself in the form for the eigenfunctions e (z) and eigenshyvalues x n

In this case assume a solution of (342) of the form

C(zt) = ) x n(t) sin (n bullpound z Y (348)

Substitute (348) into (342) r ight mult iply by sin ( m ^ f z ) integrate

over the length of the medium and invoke orthogonality to obtain

2 f 2 L

L n t ) = - n 2 bull x n ( t ) + f ( z t ) s i n ( | | pound z) dz (349) Jz=0

34

As before generalized modal resistances and capacitances may be defined n = 12

4L T~ST iTKir

Thus the general modal state equation 1s

(350)

Vgt - bull i bullltgt+ J_ fltzlaquogts1n ( n poundz)dz-(3-51gt The general solution (348) must satisfy the initial condition or

00

e(zo) = o =2_ V 0 ) s i n ( if z C 3 5 2 )

from which n=l

xbdquo(0) = 0 n = 12 (353) The stochastic forcing term 1s treated in a manner similar to (335A) for the case with no-flow boundary conditions

If the Infinite series in (348) is truncated after tern n the fishynite set of normal mode state equations results as follows

lb

o

44 o

laquo bull $ [bullsin (ST)

raquoltt) (354)

Note that the major difference in the dynamics between systems with no-flow at the boundaries (as In Section 321) and systems with fixed boundary concentrations (as in this section) is In the first element of

35

the matrix A In the former it is zero in the latter it is less than zero This implies that the initial condition of the first mode of the problem with no flow at the boundaries will remain unchanged in time whereas that of the fixed boundary concentration problem will vanish for large time This difference is central to the considerations of Chapter 5

33 Two-Dimensional Diffusion

Consider the diffusion of a pollutant in a thin flat three-dimenshysional volume For simplicity consider the region to be of rectangular shape with sides of lengths 21^ 2L 2 and 2L 3 in the C 5 Zraquo a n d 3 c o ordinate directions as shown in Figure 33

Figure 33

If the vertical height 2L 3 is small in comparison to the horizontal dishymensions 2L 2 and 2L 3 the gradient of the pollutant concentration In the C direction can be neglected so that the average concentration In the vertical direction can be assumed for the concentration throughout the vertical dimension for any horizontal location

36

Two dimensional di f fusion applies to such a simpl i f ied model Conshy

sider the case of di f fusion in a homogeneous medium with no-flow boundshy

ary conditions and with r stochastic point sources at various locations

in the medium The init ial-boundary value problem in two dimensions may

be wr i t ten for th is model as fol lows

3 2C(gt) 3 2 5U t ) N

H ( S t ) at

36(Ct)

1

3euro(t)

t) bdquoVg(pound

1 raquolaquo1 + f ( s t ) (355)

0 5 = 0 1 = 2 L r

- g ^ mdash - 0 C2 = 0 5 2 = 2L2i (356)

pound(50) = pound 0 (357)

E[w(t)] = 0

E t y U J w ^ T ) ] = W^t t - T ) 1 = 12 r (358)

The no-flow boundary conditions (356) correspond to the case which has interesting practical applications where many such models may be coupled together to span a larger possibly inhomogeneous region The initial pollutant concentration throughout the medium is chosen to be a constant in the initial condition (357) for simplicity r individual stochastic point sources each located at I = c I are described by the ~ wi [ w i wi^J relationships in (358)

The separation of variables of this two-dimensional initial-boundshyary value problem proceeds much like the one-dimensional case However in this case owing to the inclusion of two spatial dimensions the

37

eigenfunctlons 1n the general case (313) w i l l be products of independent

functions of the two space variables as follows

laquolaquonltSgt E en(laquolgtemltS2gt c o s (J 1 5q-laquo l ) c o s ( ^ h ^ ( 3 - 5 9 )

Thus assume a solution for (355) of the form

5 ( ~ C t ) L L x nm ( t e trade ( pound )

n=l m=l

= Z J Xtradegt(t) cos ( J - gt 217 1 ) ( j 1 1 ^ ^ lt 3 - 6 deggt This is a direct extension of the one-dimensional form in (327)

Applying the same techniques used in the one-dimensional problem leads to the following resultant normal mode problem formulation for the two-dimensional case (for details see Voung [131] p 76 Duff and Nay-lor [34] p 148 Mac Robert [81] sect 13 and particularly Berg and He Gregor [18] Chapter 10)

Define the generalized modal resistances and capacitances v and C as In (331) where v 1s either n or m as in (359) and u 1s either 1 or 2 to correspond with coordinate Ci or cbdquo as follows

R v C v

v = 2 3

2 L U

v = 2 3

(v - 1 ) Z L T I 2 2 L U

v = 2 3 (v - I )2KTT2

2 L U

(361)

As in the one-dimensional case substitute the assumed solution S(jt) given in (360) into the differential equation (355) right-multiply by eigenfunction e U ) integrate over the medium and use orthogonality

38

Transform the i n i t i a l condition (357) in a manner similar to (333) and

(334) and the set of igt stochastic point sources as was done in (335A)

Truncate the double- inf in i te series solution in (360) to include n terms

in each coordinate direct ion in order to obtain the following f i n i t e set 2

of n normal mode state equations

11

21

x n x21

X l bull -feyen7) nl

x l 2 bull(yen7 + yenF) 12

m 0 - ( bull ) xnn

1717)() i ^ - c ) ^ ^ ^ ) -

laquopoundcos ( F S) yenTeos ( )cos (fc S j

^-^)r)-fgt^0

w(t)

w 2(t)

raquobdquo(t)

(362)

with initial condition given by

39

Xbdquo10) x 2 1(0)

Vllt 0 )

x2(0)

x (0) o

(363)

For m noise-corrupted measurements y = Cx + y (36)

as in the one-dimensional case the measurement equation is written as follows

(D(i) raquoraquo(j^raquo2l)ltraquo(5q)

^bull )5frlaquoi) c 0 ( lt ^S)

Lw bull i

gt 2 1it)

bull

2

v

(364)

In the state equation (362) the position of the i t | i point source is

written as

(365)

where the components in each coordinate direction and c are as in

40

Figure 33 Similarly for the jth measurement position in the measureshyment equation (364)

i 5 gt (366)

also as shown in Figure 33 (do not confuse the subscript j with time indices used in later chapters here locally z^ means the vector of the coordinates of the jth measurement position)

The result is that the two-dimensional diffusion problem results in sets of normal-mode state and measurement equations which are directly related to those in the one-dimensional problem The only differences are that here SHOTS of the eigenvalues occur in the diagonal A matrix and products of the eigenfunctions occur in the C and D matrices The order of the system ie the number of states retained goes as the product of the number of modes retained in each coordinate direction Thus for the same number of modes n for each coordinate to obtain accuracy in the solution comparable to that for n modes in the one-dimensional prob-lem a total of (n) modes must be included in the two-dimensional model Dimensionality thus grows as the number of modes in one dimenshysion to a power equal to the number of space coordinates describing the domain of the medium in the problem

34 Three-Oimensional Diffusion

The results for the two-dimensional case can be extended directly to three-dimensional regions In applicable coordinate systems (see refershyences listed in Section 33 for conditions under which this extension is possible) In this case solutions may be assumea to be products of

41

eigenfunctions in the three spatial coordinates and may be written degdeg to traquo

( 5 t = L Z L x i w r ( t ) e n^lgt e bdquoA 2 gtM 3gt- lt 3- 6 7gt n=l m=l r=l

TII details of the development are identical to those in the two-dimenshysional case and lead to the same forms for the A D and C matrices in (362) and (364) except that the diagonal elements of A are sums of eigenvalues for eigenfunctions in three not two coordinate directions and the elements of D and C are triple products of the one-dimensional eigenfunctions Dimensionality of the resultant system of state equations goes as (rc)

Three-dimensional examples are included in the discussion of monishytoring systems in Chapter 5 where the development is carried further

It should be pointed out that the method of separation of variables used in normal mode analysis applies in other coordlante systems as well (eg cylindrical and spherical) See any of the references cited in Section 33 for their development

42

CHAPTER 4 MODEL DISCRETIZATION AND APPLIED OPTIMAL ESTIMATION

The purpose of this chapter 1s two-fold First the continuous-time normal mode state equation models of Chapter 3 are transformed into disshycrete-time recurrence relationships for use in the Aalman Filter The statement of these discretization methods is separated from the continushyous-time model development of the previous chapter since they stand alone and can be applied to a variety of modeling techniques which reshysult in systems of first-order ordinary differential equations In addishytion to the normal mode modeling techniques developed above they would for example apply equally well to uncoupled differential-difference models resulting from applying modal analysis [79] to finite-differshyence models [47] or to models resulting from using collocation methods [94] Thus the discretization methods outlined here are general and form a logical connection between the more familiar theory of continuous-time dynamic processes commonly associated with distributed system modelshying and the theory of discrete-time dynamic systems where the majority of applications have been limited to the fields of control system and aerospace system analysis and synthesis

Second the optimal estimation problem is defined and its solution with the Kalman Filter is stated While details of its development are referenced in the literature a concise summary of an algorithm combinshying the simulation of the response of the model of a physical process with all necessary calculations for the optimal estimation is included at the end of this chapter

43

41 Discretization of the System Model

411 The System Model Equations - The systems under considerashy

t ion are typ ica l ly modeled with sets of continuous-time f i r s t -o rder

ordinary d i f fe rent ia l equations of the form

x = Ax + Bu + Dw (41)

y = Cx + y (42)

where the etatietios of the i n i t i a l state x (0 ) disturbance vi(t) and meashy

surement error v ( t ) are given by

E[x(0j ] = m 0

E[x(0)x(0) T ] = M 0

E[w(t)] = Q

E[w(t)w(x)T] = W(t)6(t - T ) (43)

E[v(t)] = o

E[y(t)v(T)T] = y(t)s(t - x)

E[x(0)w(t)T] = 0

E[x(0)y(t)T] = 0

E[w(t)v(T)] = 0 (43)

The discrete-time counterpart of the above is

~ X K+1 = SW^K + ~ J K+1 + raquoK+1 W-laquo)

K+1 = SK+I^K+1 + X K +1 bull W-Sgt

where the dr iv ing functions are defined by

44

J^+l raquo(t K + 1t)B(t)u(t) dt (46)

~K+1 K+1

j(t K + 1t)D(t)w(t) dt C47)

These two terms are convolutions of the deterministic and stochastic inshyputs and ) the state transition matrix defined by the matrix differshyential equation

I = Araquo (tt) = I (48)

In the above the system matrices A B C and p may be functions of time For the time-invariant case however certain simplifying obsershyvations and approximations may be made Let the time step be fixed ie T = (tv+i (bull) a n d obtain (see Appendix A)

amp1 MlVTV-efiT-I+AT + p - t ^ j mdash (49)

-K+l I)AB

T ( I + 2T CA1) + 57 (AT)2 + )sect (410)

= T(J + 2J-(AT) + 3I (AT)2 + )D (411)

With these definitions i t is possible to discretize the problem which

results in a form necessary for the Kalman Filter The discrete form of

the state equation becomes

K+1 amp1laquoK + amph + poundK+SK- ^ J 2

45

Here it is assumed that the input terms u K and w are sampled at time tbdquo and held constant over the interval ti t lt tv+i t n a t isgt

u(t) = u(t K)

laquo(t) = w(tK) t K lt t lt t K + r (413)

This assumption reduces the calculation of the convolutions for u bdquo + 1 and

w K + in (44) given by pound46) and (47) to the far simpler matrix-vector

mult ipl icat ions in (412) above This is possible since the matrix ser-

ies for K and r pound + in (410) and (411) are analy t ica l ly exact expresshy

sions for the convolutions when the variables are sampled and held as in

(413)

The matrix series in (49) - (411) are c lear ly impossible to evalushy

ate exactly The truncation of those series to a pract ical balance beshy

tween accuracy and computational load has been suggested by H M Paynter

(see Brewer [ 22 ] Ch 8) The number of terms k retained in the series

is found as a function of the maximum size of the elements of the matrix

[AT] A bound on the size of the remainder in the series is used to deshy

termine where the series should be truncated Standard integration

techniques (e g Runge-Kutta or l inear multistep methods) are not used

here under the assumption that i f the time stepsize T = ( t j + - t K ) is

su f f i c ien t ly small smaller than the smallest character ist ic tiroes in

the system response then the accuracy of the truncated series approxishy

mation w i l l be suf f ic ient for the purpose of th is study

46

412 The System Disturbance Stat is t ics - I t can be shown

(Jazwlnski [65 ] p 100) that the convolution w K + 1 of the stochastic

variable w(t) in (47) 1s i t s e l f a zero-mean white Gaussian sequence

with covarlance matrix given by

0 K + 1 1 K+1

= I ( t K + 1 t ) 0 ( t ) W ( t ) D ( t ) T 5 ( t ^ t ) 1 d t (414)

This term represents the increase in uncertainty in the estimate of the system state over the time interval T = (t K + - tbdquo) due to the stochastic disturbance term w(t) as in (41) This term is used in the error co-variance equations in the Kalman Filter in the next section

W(t) is a deterministic quantity so the integral in (414) does not involve a stochastic integrand However its numerical integration in general is still far from trivial For this reason a recursive method for the evaluation of amp + 1 will be used a method which closely follows the truncated series approximations for bdquo + + 1 raquo and I V developed in Appendix A

The development of the algorithm to compute Q+ is detailed in Appendix B The method involves differentiating gbdquo + in (414) with respect to time resulting 1n a matrix Riccati equation Hamiltons equations are then found for the Riccati equation which are then solved as a state transition equation Partitions of its state transition mashytrix are shown to comprise the resultant expression for fi An iterative numerical technique (see DAppolito [29]) is used in the actual implemenshytation

47

Suffice it to say here that a method is used to find state transishytion matrices $ and $bdquo (see Appendix B) such that

OK+1 = 2lt T )$22 ( T ) T- lt 4 - 1 5 )

42 Optimal Estimation -The Kalman Filter 421 Optimal Estimation mdash State estimation in dynamic systems

is covered widely in the literature Various developments of the Kalman Filter for optimal estimation can be found in Kalman [66] Kalman and Bucy [69] Sorensen in Leondes [78] Sage [105] Bryson and Ho [26] Heditch [85] Jazwinski [65] and 1n an extensive Bibliography in IEEE [62]

The reader is referred to any of the above for analytical derivashytions of the Kalman Filter equations The emphasis here is upon their implementation taking advantage of properties peculiar to the models being used in this study

The optimal estimation problem and its solution in the Kalman Filter are now described Given is the discrete-time dynamical system described by the following difference equations

raquoK+1 bull K +1K + amp1laquoK + 4lK C416)

K+1 =poundK + 1K + 1 + X K + T laquobullgt

Here x K is an n-vector u an p-vector w an r-vector and y K and v R

raquoi-vectors The vectors x w and v are white normally distributed ranshy

dom vectors with the following statistics

48

ECs 0] = m Q E Xo So 3 gt pound [ K ^ = 2 E KSj = y^Kj

E t y ^ = 2 E K J = Vty

E o KKJ = Q E _5o raquoK = 2raquo

E raquoK l j bull 9-

(418)

A notational convenience will be that for a normally distributed random vector 5 with mean value p and covariance Z pound is described as follows

K N(uZ) (419) The recursive linear estimation problem for the system above is to

determine an estimate x K of the state x at tj that is a linear combinashytion of an estimate at t| and the measurement y K which minimizes the expected value of the sum of the squares of the errors in the estimate that is that estimate which minimizes

$-$-$bullbull (420)

I t has been shown (see Kalman [66]) that the following comprises a

f i l t e r which generates the best estimate in the mean-square sense of

(420) of the state of the stochastic system (416) - (418)

The predicted error covariance matrix PJ+1 is defined by

K+1 x K

~K+1 K+1 ) (K+1 ~K+lJ (421)

and represents the error in the predicted estimate 3pound + 1

o f X K + 1 a t K+1

based upon measurements up to and inc lud ing y K a t t bdquo and i s given by

~K+1 5K + 1 poundK$K+I + 8 K + r (422)

49

Eg ^ H0- (423)

Note in equation (422) that Q K +i 1s the uncertainty in the estimate due to the stochastic input w(t) acting over the interval tbdquo lt t lt tK+- in the state equation (41) This is discussed 1n Section 412 and at length in Appendix B This is pointed out here since many references for the Kalman Filter assume a discrete form for the stochastic input which 1s sampled and held as in (413) and (416) In those cases the so-called disturbance distribution matrix r+ in (416) comes Into the preshydicted error covariance equation as follows

EK+1 = K+1EK$K+1 + ^ K + l ^ K + T

where Wbdquo is the sampled value of the disturbance covariance matrix W(t) at t = tbdquo in (43) In this thesis since the system being studied is continuous in nature equation (422) will be used instead

The Kalman gain for the optimal filter may be shown to be

K T f K T j 1

-K+1 = EK+l-K+l[K+lEK+l-K+l + -K+lj bull ( 4 2 4 gt

The predicted state estimate at time t K + knowing measurements at times up to and Including t K is

amp1 4l~K + amp1-V lt-25) laquoS = bull (426)

The corrected state estimate at t K + 1 including the measurement at

raquopound bull amp 1 + ~GK+1 ffK+1 fiK+l8K+l] bull ( 4 2 7 gt

time t| + is

50

And finally the corrected error covariance matrix at t bdquo + 1 given statistics of the measurement at t bdquo + 1 is

E pound I bull [l bull - G K + I pound K + I ] E K + I [ I - SK+IpoundK+I ] T + sectK+I~ V K + IsectK + I T - lt 4- 2 8gt

An alternate form of the above can be shown to be

$ 1 - [ l bull e K + ipound K + i ]~ p K + r (4-zraquo)

Each form has Its own advantages as will be shown in the next chapter Note the choices for the initial conditions for the covariance equashy

tion (423) and the state estimate (426) They are precisely those given for the system itself in (418) This 1s the best Information available about the initial state to use 1n the filter It turns out that if knowledge of these initial conditions 1s Imprecise the effect upon the later values of the state estimate diminishes as new measurements are processed

422 Summary of Filter Algorithm - For convenience the system simulation equations and Kalman Filter equations are listed together as in Figure 41

The equations 1n Figure 41 are sufficient to both simulate a physical system((416) and (417)) when the actual system cannot be used and to compute the filter calculations themselves The computational cycle 1s as 1n the figure Time is initialized to zero K = 0 and each equation computed Upon completion of one cycle time 1s Incremented and the recursion 1s carried out again until the final time of interest is reached

SI

K+I = K+I2K + ampISK + TK+ISK- 5O bull N(Sto ftgt (416)

ampi - slampW + 9 m bull E - Ho (422)

^K+1 deg EK+1~K+1 poundK+IEK+IpoundK+I f poundK+IJ (424)

K _ 4K JK VK JO K+1 ~K+1 K + iK+lV 0 3 0

(425)

poundK+I = SK+I^K+I + XK+I (417)

jK+1 _ K - r c Jit -| K+1 K+1 raquoK+1 L~K+1 K+lIC+lJ (427)

Etrade [l - SK+IpoundK+I]EK+I[I - sectK+IpoundK+I] T + S W S K + I sect K + I T (428)

Figure 4 1 System simulation aad Kalman Fi l ter computation

52

CHAPTER 5 OPTIMAL DESIGN AND MANAGEMENT OF MONITORING SYSTEMS

The purpose of this chapter is to propose a method of solution for the monitoring problem as stated in Chapter 2 The models for various processes considered in Chapter 3 are discretized using the methods of Chapter 4 for computation in the Kalman Filter The structure of the filter is studied in the context of the monitoring problem in order to obtain a set of monitoring design and managment equations Properties of these equations are examined in detail to yield the optimal solution for the monitoring problem for the case of time-Invariant systems with constant source and measurement noise statistics and time-invariant estimation accuracy constraint Numerical examples to illustrate the conclusions follow in Chapter 6

51 Monitoring and the Kalman Filter

As stated in Chapter 2 two variations of the monitoring problem arise in practice The first is to maintain the error 1n the estimate of the state of the system beow some bound over the complete time intershyval of interest The emphasis on limiting the error in the estimate of the state arises in the use of that estimate In closed-loop state feedshyback applications where high accuracy in the state estimate is of primary importance The second variation in the monitoring problem is to mainshytain the error in the estimate of the output the system variable itself everywhere in the medium below some bound throughout the time interval of Interest The system variable could be pollutant concentration radiation level temperature etc The thrust behind maintaining high

53

accuracy in the knowledge of the system variable cones with application in the detection problem where it is required to know to some degree of certainty where and when a pollutant concentration exceeds a legal limit

Both of these variants can be approached within the structure of the Kalman Filter As described in Chapter 4 the filter provides an optimal estimate of the state of a linear stochastic prrcess optimal in the sense that the expected mean-square error between the estimate and the state Itself is minimized Thus when taking a measurement of an actual physical system the Kalman Filter uses the information obtained In the measurement 1n the best way 1n order to update the estimate of the state The discrete-time recursive nature of the filter provides a fertile structure from which the solution to the monitoring problem can grow

In either case with a bound on state or output estimate error the basic structure of the problem is the same to take the fewest total number of samples over a given time interval in order to maintain the error in the estimate within some bound This says nothing about the number of samples to be made at each measurement time whether or not that number changes from measurement to measurement whether sample locashytions move from measurement to measurement just that when the time inshyterval is over the least number of samples were necessary to insure the accuracy of the estimate

As summarized 1n Figure 41 the first step 1n the Kalman Filter algorithm 1s to Initialize the estimate of the state vector and state estimate error covarlance matrix (from (426) and (423)) The state esttate and its error covariance matrix are then predicted ahead one

54

step in time 11416) and (422)) Sefore each measurement the Kalman gain 1s computed (424) Next a measurement 1s made of the process Itshyself (417) which starts the correction phase of the algorithm The new information from that measurement 1s used to correct the estimate of the state (427) and the statistics associated with the measurement are used to correct the error covariance matrix (428) Finally the time is incremented and the new corrected values are used to reinitialize the prediction equations at the beginning of the algorithm so that the algoshyrithm may be repeated for the next cycle

This sequence of predicting taking a measurement correcting preshydicting taking another measurement etc was the original calculational form of the Kalman Filter (see Kalntan pound66]) Since then applications to guidance and orbit determination for example have resulted in splitting apart the prediction and correction phase allowing for reshycursive prediction of many cycles before a measurement is taken and its corresponding correction made pound301 [44] [65] Moore [95] has shown how this splitting applies In use of the Extended Kalman Filter in monishytoring system design for nonlinear aquatic ecosystems (see Jazwinski [65] for detailed discussion of the Extended Kalman Filter) Thus separating the prediction and correction of the estimate has been suggested as a beginning for the solution to the optimal monitoring system design and management problems (see Brewer and Moore [24] and Brewer and Hubbard [23])

Suppose then that the Kalman Filter algorithm is initialized as usual but instead of taking measurements at each cycle sampling 1s deshyferred until it 1s absolutely necessary to gain more information about the actual system throufh a measurement in order to mlt- intain the error 1n the estimate within some bound This seems like an approach which

55

would logically lead to the fewest number of samples over a given time interval but in fact the optlmaltty of sampling only at times when the error limit is reached is difficult to prove Since it can be shown that for certain special cases the minimum cost measurement program is to sample only when the estimation error is at its limit assume for now that the optimality of such a sampling schedule extends to all cases in order to proceed in the development of relationships for the optimal deshysign problem defer until later proof of the fact that sampling at the limit is the optimal solution of the management problem

Once the bound is reached it is necessary to take a measurement A major phase 1n the monitoring problem is at hand that referred to as the design problem [24] At a measurement time the design problem seeks to answer the following questions

1) What is the best number of samples to take for this measurement

2) What are the best types of samplers to deshyploy

3) Where are the best sites in the medium at which to locate the samplers

The term bes appears in all these questions but best Is what sense In the context of the monitoring problem here posed best can only mean In the manne- which will lead to the fewest total number of samples being taken over the entire time Interval of interest Thus if the assumption of the previous paragraph is true that is if it 1s optimal to sample at the estimate error limit only then the goal of the design problem should simply be to answer (1) (2) and (3) above such inat the time when the error bound is next reached is maximised Then if at each measurement the time to the next measurement is maximized overall the number of measurement times should be minimized

56

However this doe not take into account changing numbers of samshyplers at various measurements For now ignore this part of the problem in order to establish firm results about the case where the same number of samplers are used at each measurement time deferring until later remarks about the general problem

Thus the result in the solution of the design problem also solves the management problem that of the optimal timing of the measurements With this framework established for solution of the monitoring problem first the case of bound on error in the state estimate is considered then that of bound on error in the estimate of the system variable or

output will be dealt with

52 One-Dimensional Diffusion with No-Flow Boundary Conditions

A most important recent application of normal mode analysis is the bilateral coupling of diffusive elements (see Young [13TJ) Throjgh simshyplifying infinite order normal mode models in a quentitative manner it is possible to approximate the characteristics of an inhomogeneous medium by coupling together homogeneous models This is done by assuming no-flow or Neumann boundary conditions at the junctions and introducing pseudo-sources to account for resultant differences The technique readily extends to multiple space dimensions and is thus very powerful

With the practical importance of this technique established [131J the case of ore-d1mens1onal diffusion with no-flow boundary conditions is a fundamental system to consider 1n optimal monitoring system design and management This case is used as the basis for all the theoretical developments in the following sections For completeness extensions and applications of the results to other diffusive systems are considered in the last sections of this chapter

57

53 The Design Problem for a Bound on the Error in the State Estimate

531 The Infrequent Sampling Problem - In the statement of the recursive linear estimation problem in Chapter 4 the Kalman Filter was stated to be that filter which minimiz 5 the mean-square length of the error vector between the estimate of the state and the state itself of a linear stochastic system That is for all times tbdquo it mirimizes

Notice from (420)and (429) that the covariance matrix is defined by (

EK~K+1 ~K+V~ K+l K+l ltamp]bull lt5-)

that is at time t K + the covariance matrix just after the sample is K+l given by PK+-i- It can be seen from the aDOve that

^K+l bdquo YfcK+l W E ^ x ^ - x K + v ) [ ^ - x R + 1 ) I - T r | p mdash I (52)

Thus in order to minimize the mean-square length of the estimation error vector for a measurement at time t+ that measurement should oe chosen which minimizes the trace of the corrected covariance matrix Thus the choice of a convenient scalar performance index for the probshylem of maintaining the error in the state estimate within some bound is to use the tvaae of the estimation error covariance matrix

Returning then to the requirements of the design strategy of the last section it is necessary to choose a measurernt so that in this case the time when the trace of trie covariance matrix next reaches its

limit will be maximised This might be thought to be the same thing as finding that measurement which minimizes the trace of the covariance matrix at the time of the measurement but as will be seen these are not necessarily equivalent To study the evolution in time of the

58

trace of the covariance matrix repeat the equations for the predicted

and corrected covariance matrices

pK+1 ~K+1

where

[l - sect K + 1 pound K + l ] pound K + 1 [ l - sect K + l S K + l J + 5 K + 1 V K + 1 G K + 1

T (428)

sectK + I - ~ P U K + I [ S K + I amp I S K + I + K + I ] lt 4- 2 4gt Use (424) and (429) to obtain

Note that the two forms for p^Jj (428) and (53) can be shown to be equivalent (see Sorensen [78]) Both are listed since It Is u n shyknown that the former is superior computationally from an accuracy point of view 1n that it tends to preserve the pos1t1ve-def1n1teness of the covariance matrices better (see Aoki [ 3 ] ) but the latter is much simpler to manipulate analytically Thus (53) rill be used 1n all the analysis involved in the solution of the monitoring problem and in any numerical gradient algorithms resulting from that analysis whereshyas (428) vriU be used directly In the filter calculations themselves

To make the problem tractable constrain the range of the problem as follows

Assumption Only systems of the form (340) will be considered tthere the eyetem matrix A aontrol matrix g and disturbance matrix D are all time-invariant and c laquo where the disturbance noise oovarianos matrix W and measurement noise oovarianae matrix V are aonaiant

With this assumption initialize the algorithm at time t Q by setting the

covariance matrix in (422) to tfQ Then predict to time t to get

Pdeg = j H 0 j T + n (55)

59

where the subscripts have been dropped owing to the condition of assumpshytion (54) and $ for a fixed time step Is given 1n (49) Next it is necessary to check to see if the error limit which may be called Tr_ has been reached That 1s 1s

TS lrlim

I f not advance in time to t 2 and predict ahead again

Edeg bull laquoET + 5

Check again

I f not

$ZM$ + 4flraquo + Q (56)

[4 TrIBI gt Tr I i f f l

Edeg - JE 2V bull 0

2 0 2^ T

bull t39(jS3 + S 2S Z + 3 T + 8gt (57) Assume that fter K steps the limit is finally reached From Appendix C (57) can be generalized to the form

bull f sn-VlT eS - raquo bull gt s^V 1 bull (58)

It is now necessary to make a measurement Apply (53) to obtain for the measurement at time t K

Note here that from assumption (54) y 1s a constant thus no subscripts but Q K 1s net Q K 1s what 1s available to change 1n the design of the

60

measurement to be taken It is again to be chosen to maximize the time over which prediction may take place before the limit on the trace of the predicted covariance matrix is reached at the next measurement That is find Q K at time t K such that N is maximized where

DK ANbdquoKN T An-l nn-l T K 1 M

pound K + N EK + gt 4 Si (510)

and (511)

In developing a strategy for the choice of Gi to maximize N the properties of (510) the matrix solution of the linear matrix recurshyrence (422) are now considered Since the recurrence is linear In P its solution may be decomposed into the zero-input response and the zero-state response these terms are more commonly known as the homogeneous or unforced and particular or forced solutions in differential equations or dynamic system theory The first term in (510) is seen to involve only the initial state of the covariance matrix just after the sample at time t K the zero-input response The second term the zero-state response has nothing to do with the covariance at time t K and involves only the strength of the disturbance noise ft An observation can thus already be stated

Conclusion I The selection of C K at time t K to maximize t ^ the time of the next measurement is solely a function of PR and not the forcing function (CI)

This can be seen by rewriting (510) as follows

61

T T pound K + N ( C K ) - J N E pound ( G K ) N + ) n 10raquo B 1 bull (512)

Here it is seen that the predicted value of the covariance matrix at time t K +bdquo is a function of the measurement matrix back at time bdquo However only the first of the two terms in the expression for the predicted co-variance matrix involves that measurement matrix

Thus in order for t bdquo + N to be as large as possible before condition (511) is met it is required that the trace of the covariance matrix at time t K + N be minimized by the appropriate choice of the measurement matrix at time tbdquo This presents a formidable problem in the general case The general solution might be approached through the use of dyshynamic programming or through a direct search algorithm structured as follows

(1) Pick in sone manner Q|q (2) Predict ahead to time t K + N using (512) until (3) Tr[PJlt + N(C K i)] gt T r J i n

(4) Store N in N return to (1) (5) Stop when convergence to largest possible Nj Is assured (513)

Such a procedure could be quite costly to execute since it is a direct search technique rather than a technique for which an analytical expresshysion for the gradient of the objective function cn be found Also each evaluation of the objective function that is the finding of each Nj when (3) 1s satisfied Involves carrying out the solution of the mashytrix equation (422) N ( times (It should be mentioned that since the interest here is only in the trace only the diagonal terms of (422) need be computed each time but this 1s still costly nonetheless)

Since an algorithm of the type In (513) is cumbersome at best seek more concise solutions for the problem in (510) and (511) To do

62

this more information ci the structure of the process Involved Is necesshysary that is more knowledge of the forms of $ and Q Suppose the sysshytem which $ represents is a one-dimensional diffusion process with no-flow boundary conditions see Section 321 for such a system Suppose that the problem 1s formulated in normal modes so that the system matrix from (337) 1s given as

o A =

KIT

o bull lt - I ) 2 F

(514)

Thus for this time-invariant system matrix i ts state transition matrix

for the time step T = ( t K + 1 - t K ) according to (49) is given by

O

pound laquo T

Kn2

T ~~7 4LZ

o -0-1) ^ T

(515)

Notice that with the ordering of the eigenvalues in the system matrix in (514) the diagonal elements of laquo written t^ exhibit the following property

11 raquo 11 1+1 1+1 bull ^ deg l23n-l (5 where n I s t h e number of states retained in the normal mode mode and is thus also the dimension of the square matrices 6 and Choice of

63

a normal mode model has resulted 1n this unique relationship in (516) which allows drastic simplification of the optimization problem in (510) and (511)

Expand equation (510) to obtain

pK

tnlv iwl nraquo1

ML fir1

C517)

From the form of (517) using property (516) shows that for N large

the first term of (510) 1s given by

(518)

1 and j i- 1

64

Thus for N sufficiently ^rge all that 1s left of the homogeneous term 1n (610) at time t K + [ ) U -ie first element of g at time t R This result together with Conclusion I yields

Conclusion II For N large the following are equivalent r bdquo - (1) Find C K which minimizes Tr[EK+N(CK)J i (2) Find CKwh1ch minimizes ^ ( C K ) J CII)

From the discussion just after (512) 1t 1s obvious now that the choice of pound K gt for the optimal measurement matrix at time t K can be stated as

Conclusion III For (Llarge to maximize t|lt+N the time when Tr|E^+H(CK)J gt Tr j i m choose cj at time t K which minimizes ( E R ^ K O H (CIII)

Thus for the asymptotic case of N sufficiently large so that (518) applies within some tolerance level the monitoring problem is solved Such an infrequent sampling program may well apply to many physical sysshytems where the dynamics of the transient response are fast in comparison to the time between samples The above conclusions reduce the monitorshying system design problem to one of minimization of the (ll)-element of P in (59) a procedure for which writing the gradient of the objecshytive function is straightforward

In order to more fully understand the nature of the solution (510) consider the second term the zero-state response in (510) and (517) This term is a matrix convolution of the disturbance covarlance matrix Q and the statf transition matrix 4 As such it possesses qualities of convolutions of other linear processes Write the general element for the second term of (517) as

8 l l 5 l a i j L l W l a n d j ^ l (519) n=l

65

From property (516) 0 gt lt 1 1 + 1 Recognizing the products (ijtj) in the convolution term 1n (517) as conmon ratios in geometric progressions the element of the matrix convolution may be seen to apshyproach the limit

L n d j f 1(5-20)

Thus a l l the elements in the second term of (517) go to steady-state

constants as N gets large except the f i r s t which grows monotonically

as a ramp with slope [ f l j i i

Thus (510) may be wri t ten schematically as

+ pK -K+N

o c a sS

(521)

where the (1l)-elements of the matrices are shown partitioned from all the other elements of those matrices- this 1s a notatlonal convenience used throughout what follows From (521) the simplified relationship for the trace can be written as

[CCeK^^K^NMll^r^J Tr|P^bdquorc^| - |P)(Cbdquo)| + H[BJi + Tr| 8 I- (522)

The meaning of Conclusion II becomes clear In that changing the nature tbdquo by char

only through P K lt G K ) J it at time t K + N Then

(523)

of the measurement at time tbdquo by changing C effects the value of Tr P pound T N ( Q K ) only through P K lt G K ) J f o r N sufficiently large Also say the equality in (511) is just met at time t K + N gt Then

(523) can be used to demonstrate Conclusion III From (520) and with

66

a as defined In ( 5 2 1 ) 1 t Is seen that for various choices o f Cbdquo in SS - K

( 5 2 3 ) T r rn ] remains Invar ian t so long as N remains s u f f i c i e n t l y l a r g e LSSj

Thus In the equality In (523) the f i rs t two terms on the right-hand

side always sum to a constant and as CK 1s chosen to minimize IPKCK)J

N 1n the second term Is maximized Conclusion I I I 1s thus seen to hold

whenever the limit 1n (518) 1s approached

A graphical depiction of the relationships 1n (522) and (523) 1s

shown In Figure 51 In Figure 51A a representation of a typical plot

of the ful l trace of P over tine is shown while 1n Figure 5IB the eleshy

ments of the asymptotic approximation In (522) are drawn Writing the

trace of the matrices In (517) obtain

-W=fe]bdquo+[4^ [44 laquo[laquobdquo bull m2zEfv~) + bullbullbull+ r^yr lt5-24gt

As N grows large (524) t~-t to (522) but during the Initial transient period the last terms of both lines of (524) are going through changes These changes account for the approach to the asymptotic slope near time tu In Figure 51A

Notice how If a different choice of C K results In a smaller value of | P K ( C K ) 1 Figure 5IB that the start of the plot would be transshylated downward with the same offset of Tr[(jJ to result in a longer time

SS interval before the limit Trlim 1s reached again

532 The Effect of a priori Statistics - Choice of H Q and m Q

in the filter equations (416) and (422) has come under considerable study ever since the introduction of the Kalman Filter Much effort has gone Into identifying these terms in actual applications and consider-

67

Tr[ppound+H]

T r [ $

(A) Actual response

Trlpound]

Vim

T-reLj

gt _ T1i

raquo - T 1 M

(B) Asymptotic approximation

Figure 51 Schematic representation of the basic relationships In the Infrequent sampling problem

68

able time spent in assessing the sensitivity of the results to lick of knowledge of the Initial statistics Attention 1s now turned to these topics within the framework of the above results for the case of Infreshyquent sampling

It 1s required to find the effects that various values for M Q the matrix of 1mt1al uncertainties 1n the estimate of the state xX have upon the optimal measurement system design poundbdquo for che first measurement at time tbdquo For the case of bound on (58) It is necessary to sample when at time t For the case of bound on error in the state estimate from

bull [ p 0 K ] c T r [ V T + ^ J n 1 S J n l T gtbull ^ U m - lt 5 - 5 gt

n=l

If K lo sufficiently large at the f i rs t sample so that (518) approxishy

mately applies then (525) may be written as

[]u Mil + T [

s^ l r t i m ( 5 2 6 gt

as 1n (523) Thus only the (lf)-element of matrix H Q 1s of any signishyficance 1n the first sample for K sufficiently large Furthermore sines Tr[ f ] is a constant for various choices of H Q the remaining two

SS terms 1n the left-hand expression of (526) sum to a constant over all choices of M_ To deduce the significance of this write out the mashytrices for (525) in a manner similar to (521)

K Pdeg = $K tyfV 1 (5-27)

n=l for K large (518) allows (527) to be written as

69

]11 K[n ] n 0

pdeg - + +

o O a is

(528)

Note that 1f (520) applies then a par t icu lar ly important result fo l lows

namely that the ( l l ) -element of the predicted covariance matrix at the

f i r s t measurement time is given by

K L K ^ I l laquoSn)= laquowst (529) no natter what HQ may be

For the measurement i t s e l f E K i s used in the following expression

Pdeg - PdegC iyK+v]$- (530)

But from (528) since for K large a is f i xed and since (529) holds is

making the optimum choice C of C^ 1n (530) Is independent of the Inishytial error covariance matrix H Q but directly related toTr which is summarized in the following

Conclusion IV For K large determination of the optimum measurement matrix C K at t K 1s determined by the error limit Trlim and is independent of HQ (CIV)

Conclusion V For K large the only effect (jg has upon the monitoring program is in determining with T r z f m the time of the first measurement t K (CV)

Thus if the constraint T r ^ in (525) Is such that (518) and thus (526) hold choice of the Initial condition for B 0 is of little imporshytance However in practical applications the better approach to the identification of the a priori statistics is to concentrate analytical efforts upon the identification of only the (11)-element of Mg and not ujon identifying the full matrix in cases where the simplifying approxishymations of the infrequent sampling problem apply In this manner a better estimate of the first state should be possible for the same

70

analytical effort leading to a longer time before the first sample is necessary

533 Fixed Number of Samplers at Each Measurement and Fixed Error Limit - Thus far little has been said about the number of sampling devices to be deployed at each measurement time Consider here what happens when the same number of samplers m is to be used at each meashysurement Consider further the case when the error limit placed upon the uncertainty in the state estimate Tr m is the same throughout the problem

Suppose a sample has just been made at time t K In order to study the optimal designs which arise-at different measurement times consider the next two sanples which occur at times t|+N and t K + N + f ) Since T r J i m

1s constant If both N- and N 2 are large in the sense of (518) obtain the following conditions at the two sample times

^ U j ap()] n

+ Wi + T r s f lrnlt r K+N I r K+N lt

gt Tr lim

(531)

(532)

Since Tr[ 8] is the same for both measurements for the case of the

equality in both (531) and (532) I t is seen that

[i$o]n bull W T = p(eK + N l) + NgCfl (533) 11

Now if the full matrices In (532) are written out obtain

r p

K + N l l - PK+N N 2 r s j u

0 1 ^ Jl1 + 1 + N 2

O O ss

(5-34)

71

Substituting N 1 for N in (5211 comparing with C534) and using (533) leads t o

K+N it K + l E K + N = ER+N +N N l a n d N2 s u ^ 1 c 1 e n t 1 y large (535)

Thus the predicted covariance matrices at each sample time must be equal

The corrected coyarJance xoatrices just after both samples magt then he

written from (53) as follows

K+N p -K+N

laquo[c PK C C V T + V T V PK (c (536A) LfK+N^K+N^tyiK+N JJ SK+tl^KtH^K

l + N 2 raquo K+N bdquo K+N bdquo T

l+Nj^K+N+N2 ) EK+NJ+NJ^K+N ) EK+N^NJ^K+N ]poundK+N+N 2

r K+N T 1-1 K+N v [EK+NJ+N^K+NJ+NJI^K+N^K+NJ+NJ + -J ^ K + N + N K + N N J pound K + N )bull

(536B)

By recognizing that the two predicted covariance matrices are equal from (535) equations (536) lead to the most important result for the monishytoring problem

Conclusion VI For the infrequent sampling moni-toring problem with a fixed number of samplers and conshystant error 11mlt the optimal design of the monitoring system - the optimal number of sensors and their placeshyment - need only be done once for the same design is optimal for all other measurement times (CVI)

Also from (535) and (536) can be seen Conclusion VIA In the optim) monitoring probshy

lem measurement times are equally spaced (CVIA) These relationships ara Illustrated in Figures 52A and 52B The firsv curve represents a typical trajectory of the full trace while the second the asymptotic approximation Since P pound + N = E K + N + N bull t h e resulting optimal measurement matrices pound K + N and C K + N + N must be the same

72

r K + N I T l ~ p

r + +

^mdash Time

N [g]

(B) Asymptotic approximation

Figure 52 The infrequent sampling problem with fixed number of samshyplers and constant error bound

73

534 Variable Number of Samplers - The case where the number of samplers to be deployed at each measurement time may vary 1s 1n general quite difficult However in cases where (518) applies the case of infrequent sampling results can be obtained If the error limit Tr is constant over the time interval of interest then the result derives immediately from Conclusion VI

Conclusion VII For the case of infrequent sampling the optimal number of samplers to use may be found by reshypetitively solving the optimal design problem for CJJ at the fi rst measurement over the range of gt=1 tc m-n sam-plers then extending the results over the full time intershyval to find which C^ as a function of m leads to the fewshyest total number of samples The optimal number of samshyples to take at each measurement time is the same for all measurement times (CVII)

Thus for infrequent sampling the optimal number of samplers to use is seen to be constant at each measurement and that optimal number can be found in a computationally straightforward manner at the first measureshyment time

Even though the optimal number of samplers to use at each measureshyment is a constant it is important to note that at any specific sample time the optimal number of samplers to use is independent of the number used in the other samples This can be seen by comparing (531) and (532) as was done in (533) If m samplers had been used at time tbdquo

in the left-hand side of (533) m+ could have been used at time t K + bdquo in the right-hand side Since for the case of the equality the two suras in (533) must be equal if the dimension m K of the measurement on the left-hand side were smaller than u+u on the right-hand side then in general P K would be larger than PixJ a n d simultaneously N smaller than N Thus in the case of infrequent sampling at the sample time t K + N in (531) the value of the covariance matrix Ppound +bdquo for use in (536A) to determine C^ + N at time t R +bdquo is no longer truly a function of CJ nor

74

of mK Its dimension This 1s so since the sumnEjSCcj) + f t g^ - l in

(531) is a constant i f CjS changes so wil l N to maintain the sum at

that constant Thus since Trig] in (531) 1s fixed and since the SS

Cher two terms form a constant the trace Tr K 1 ~K+Ni o n t h e l e f t - h a n d

side is determined only by the error limit itself T r ^ Hence P pound + N

for N- large does not directly depend upon C K even though such a funcshytional relationship is implied by writing P pound + N (cpound) Thus various numshybers of samplers could be used at different sample times However it is only in considering the solution over the full time interval of inshyterest that the overall optimum is seen to be the use of the same number of samplers at each measurement This concept is demonstrated at length in the example in Chapter 6

535 Analytical Measurement Optimization - Thus far the optimal monitoring problem posed in Section 52 socialized to the casii of bound on error in the state estimate has been found to be equivalent to the minimization of Pj^(CK) as a function of Q K in Conclusion III Little has been said however about the actual determination of ct the optishymal choice of Cbdquo which minimizes the objective function Pu(Cbdquo)

~K L~ KJn As is well known analytical methods of obtaining extrema are supeshy

rior to numerical methods wherever analytical methods exist (see Beveridge and Schechter [20]) Analytical solutions to extremization problems usually exist however only for very special cases A fortushynate situation arises in the present case since some work has already been done in dealing with extrema and derivatives of the trace functional (see Athans and Schweppe [11] and Athans [8 ])

Pursue an analytical solution of the optimal design problem which with the simplifications of Conclusion III may be stated as follows

75

Find the optimal measurement matrlc C K such that lE^K^n 1S m1n1m1zed- C 5- 3 7)

This Is minimization of the first element of the corrected covariance matrix after a sample at time tbdquo over all choices of possible measureshyment matrices C K Analytical methods exist for approaching an allied problem which may be stated as follows

Find the optimal measurement matrix C K such that Trrj^(CK)] is minimized (538)

As shown in Conclusion II these are not the same problems (538) is minimizing the trace at the time of the eample whereas by Conclusion II (537) is equivalent to minimizing the trace for times far beyond the

aample time However techniques for the solution of (538) could prove to be applicable to (537)

Motivated by the computational efficiency of an analytical solution an attempt is thus made to solve

3 7 TK)]-9- lt 5- 3 9gt The notation in (539) means taking the partial derivative of the trace of P K ( pound K (a scalar) with respect to pound (a matrix) This concept has been developed by Athans and Schweppe [11] and applied to a similar probshylem by Shoemaker [117] In order to find the stationary matrix solution of (539) extensions of concepts of finding extrema in ordinary calshyculus are made to the case of scalar valued functions of a matrix

Consider the system starting at time t Q For a measurement at time t K seek C K such that using (59) in (539)

76

As detailed in Appendix D the result is

C = 0 (541)

This can be seen to correspond with the case of taking no measurements such that the extremum found in (540) is actually a maximum not a minishymum An initial attempt was made at constraining the range of C in such minimizations with the method of Lagrange multipliers with no success

more study is still needed of such analytical techniques One study is currently underway by Shoemaker I117J in which restricted classes of probshylems are treated through the use of analytical techniques such methods were not found to be appropriate for use in this study since they require n measurements at each sample time a severe restriction

Alternate performance indices to that used in (540) yield matrix equations whose solutions are not known so that the analytical approach with the trace function is not found to be fruitful see Appendix D

It can be shown that attempting to solve the more germane problem of finding Cjl in (537) such that

(542) 3CJ [~K(poundK) 11 also results in sets of equations for which solutions are not known An even more appropriate optimization problem might be to maximize the time itself between required measurements For the discrete-time formulation used here however this is equivalent to finding

where N is the number of timesteps between samples Solutions to this problem were pursued but led to less conclusive results since due to the discrete nature of N many choices of C resulted in the same maxishymum value for N Thus the analytical approach though instructive in

77

the erea of matrix calculus is abandoned as a means of solving the monishytoring problem (see Appendix D for details of gradient matrices for the trace function and its calculus)

536 Numerical Measurement Position Optimization - In the last section attempts were made at analytical minimization of TrIP KCbdquo)I or E K ^ K M W 1 t n respect to the matrix Q R itself A fundamental question underlies extremization of measurement functionals directly with respect to the elements of the measurement matric Cbdquo once Q K is found how is it related to the vector of actual optimal sensor locations in the medium z K None of the studies of measurement system optimization found in the literature adequately addresses the optimal measurement design problem from the point of view of optimal placement determination

The normal-mode formulation of the diffusion problem is introduced as a means of tying together Q K and z For the case of one-dimensionai diffusion with the no-flow condition at the boundaries from (339) write Q K as a function of z as follows

1 cos^z) cos(2fz) co((n- 1)^2)

1 cos^Zg) cos(z^-z2y COS((K - 1) 2^2) poundLzK) s

( laquo )

(543)

Thus C K is a continuous function of zK so that all the conclusions deshyveloped thus far apply with pound(z K) substituted for C_K and for minimizashytion with respect to zbdquo Instead of Cbdquo

For example with the use of C(z) as defined in (543) Conclushysion III may be written as follows

78

Conclusion IIIA For N large to maximize t K + N the time when TraquoTE|(+N(C|[ZK)))gtTIpoundWII choose that z K at time t K which minimizes [P^Ctzj^))] (CIIIA)

Consider the problem of the minimization of the scalar-valued objecshytive function pSfc(z K)) of a vector z R Such problems hae received considerable attention (An adequate coverage of the various techniques may be found in Beveridge and Schechter [20]) The monitoring problem where the allowable positions of the samplers are constrained to H e sonewhere within the region of the medium suggests consideration of ton-strained optimization techniques There are various types of constrained minimization methods methods requiring use of only the objective function itself (so called direct methods) methods which require the objective function and its gradient (first-order gradient methods) and those which 1n addition require the Hessian of the objective function (second-order gradient methods) Sscond-order gradient methods are often the fastest of available methods [l03] Thus in the interest of numerical efficiency such second-order methods are considered

Define the objective function of interest to correspond with Conshyclusion IIIA

JltKgt -= [edegK - E K pound T ( laquo K ) ^ K gt $ V + x T ^ e S ] - lt5-44gt As shown by Athans and Schweppe [11J for the case of the trace operator TrlO the total differentia am) trace operators are linear so that

(see Appendix D) d Tr[X] = Tr[dX] (545)

Similarly in (544) what may be called the []^-operator is also linear being a linear part of the trace so that

d [ X ] n = [ d X ] n (546)

79

From Appendix D

Define dX1 = -XHdX) 1 (547)

T 5 |c(z K)PdegC T(z K) + VJ (548 (546) (547) and (548) are used with (544) to find the gradient of the objective function which may be written as follows

^W-LiESfe^r E^

^SEfeOVfer^] (5-49gt

where the unit vector e H [00100] the l in the ith element Thus the gradient of J( K) may be written analytically in a straightshyforward manner Note that the inverse need be cc-mputed only once per evaluation of the gradient and that 1t is an (n x m) matrix not an (w x laquo) matrix Usually the number of measurement sensors m 1s smaller than the number of states in the model n so that this inversion is computationally manageable (As a historical note this quality of Inverting the smaller (m x m) matrix was one of the important features inherent 1n the practical utility of the Kalman Filter see Jazwinski [65])

For the second-order gradient of J ( J K ) known as the Hessian adopt for the time being the following notation

(1) Drop the time subscript K the tildas and the funcshytional relationship so that C = C(j K) P H gdeg

lt2gt c i s S 7 S ( 8 K )

lt3gt c i j E 8 i 7 5 i 7 G ^ - lt 5- 5 0gt

80

With (550) differentiate the ith element of (549) with respect to the jth element of zbdquo to obtain the UraquoJ)th element of the Hessian as follows

ra^ijj bull -[C^VCR - K^fclW+ c K c T ) T l c p

- P C V 1 lt(c1)cT + CP(C|)gtTYCJ)P

+ PCT T 1 ^ ^ ) - P^CJJT^CJ^CVCP

+ P C V 1 (C^PC 1 + C P ^ ^ T V C J J P C V C P

- PCV 1 (C 1 J)PCV 1 CP - PCT1(C)P(CT)T1CP

+ P c V ^ P c V 1 ^(cJPC 1 + Cp(cj)gtT CP

- PCV^CJPCV^CJP - P(CJ)T1CP(C])T1CP

+ P C V V ^ P C 1 + CP^JOT^CP^JJT^P

- PCTT1(c i)p(rI)T1CP - P c V c P ^ c J ^ C P

+ P C V C P ^ T 1 (C^PC 1 + CP^JHT^CP

- PcVcP^TjT^cJpJ (551)

This represents only one term if the m x n Hessian matrix which would be given by

where L is a unit matrix The computational efficiency of second-order gradient methods is seen

to be lost in the horrendous task of defining the Hessian of the objective function and for that reason first-order gradient methods are nought

81

Before going on to first-order gradient methods a word about direct search methods 1s in order While in general less efficient than gradishyent techniques direct search methods possess the distinction of not reshyquiring an analytical expression for the gradient an important practishycal advantage This is of significance first since it permits a user to proceed much more rapidly from his problem statement to its coded form for numerical solution Secondly and more importantly the vast majority of physical problems do not admit the writing of an analytical expression for the gradient so that for those problems direct search methods are all that is available An interesting example of a direct search technique is that due to Radcliffe and Comfort [103] j R w nich Powells unconstrained conjugate directions minimization procedure withshyout derivatives [l03] is extended to the case including nonlinear equality and inequality constraints However in the monitoring problem it is a straightforward process to define a gradient of the form (549) so that first-order gradient methods are preferred over direct methods for their computational efficiency

The algorithm chosen for finding the minimum of J( K) in (514) was written by G W Westley and is named KEELE [127] It is an algorithm to find a loaal minimum of a function of many variables where the variables are subject to linear inequality andor linear equality constraints It represents an extension of a Davidon variable metric procedure reported by Fietcher and Powell [127] using gradient projection methods (see Rosen [54]) to include the case of linear constraints

Note how in the monitoring problem it is necessary to constrain the ranges of the variables so that resultant monitoring positions bear physhysical significance to the problem statement Note also how only linear

82

not nonlinear constraints are required each of the elements of zl must satisfy a constraint of the form

0 lt z lt 2L i = l2m (553)

where the one-dimensional medium 1s of length 2L Note how this algorithm and all gradient algorithms seek only

local not global minima The only way known to approach solution of the global minimization problem is by solving a sequence of local minishymization problems starting from different initial guesses until some meashysure indicates probable convergence to the global minimum (see Beveridge and Schechter L20]raquo p 499 and Radcliffe and Comfort [i03]P- 3) For this reason KEELE has been modified to include random initialization of the starting vector zbdquo This technique has beer found to yield satisshyfactory results provided a sufficient number of random starting points is used 1n each attempt at finding a global minimum in J()

Thus within the probability that the best local minimum found is the global minimum the optimal positioning of the m samplers at any time tbdquo is considered solved

537 Numerical Measurement Quality Optimization - The last quesshytion left to answei at a measurement ltime 1n the design problem of Secshytion 51 is what types of sensors to deploy at a samnle Consider the filter equations of relevance for a measurement at time tbdquo

y K laquo C(z K)x K + y K (554)

Ppound = Pdeg - PdegC(z K) Tfc(z K) PdegC(z K) T+ yj C(z K)Pdeg (555)

83

h PdegCCz K) T|c(z K) P^ (z K ) T + VJ (556)

As presented in Chapter 4 the noise-corrupted measurements 1n (554) are

characterized by mean vector and covariance matrix given as follows

E[vK]i o

M Thus the additive measurement noise forms a sequence of zero-mean white Gaussian random vectors with covariance given by V To conform to this problem structure the only variables lnft to determine in specifying the sensors at a measurement are the strengths of the noise terms in vbdquo as defined by their covariances tha elements [V]^ of the covaHsnce matrix y From the theory of random variables if the measurements in (554) are made with independent sensors the elements of ybdquo the individual random errors among the samples taken will be uncorrelated For this case V is a diagonal matrix which leaves only the specification of the m Elements [JfJlfi i = 1raquo2gt bullbulllaquoampbull The diagonal elements of y may DO interpreted as the mean-square values of the errors in each of the m samples Thus their sizes 4re inversely related to the quality of the measurement inshystrument used so that if a high quality sample is desired for tybdquo] 4 gt then

mdashK 1

OfJii should be small and vice versa Thus if the sole objective In the solution of the monitoring probshy

lem is to minimize the total number of samples necessary over the entire time interval the optimal choice of measurement instruments is clearly that choice which leads to the most accurate measurement - use the highest accuracy sensor available If on the other hand the more meaningful

84

measure of minimizing the total monitoring program cost is to be used in the overall optimization a more complicated problem structure results Contributions to the total cost could include costs associated with every sample that is taken a quantized cost range associated with available measurement instruments of various accuracies etc Tradeoffs result between taking a large number of low accuracy measurements and a small number of high accuracy measurements at a sample time

Though this aspect of the total problem is an important part of the complete optimal design it is left for later study with an outline of the structure of its inclusion within the infrequent sampling problem framework given in Appendix E

What is clear from the conclusions so far is that once the optimal choice of measurement instruments is made for one sample that choice is optimal for all other samples which leads to the final result for the monitoring design problem with bound on error in the state estimate

Conclusion VIII For the case of infrequent samshypling the complete solution of the optimal monitoring design problem with constant bound on error in the state estimate - the determination of the optimal number of samplers to use at each measurement their optimal locashytions and the optmal choice of measurement instrument accuracies -may be obtained at the first measurement time with the same design being optimal for all other measurement times (CVIII)

54 The Design Problem for a Bound on the Error in the Output Estimate

541 The Minircax Problem - The second form of tha monitoring de-siqn problem is considered in this section It is required to make the fewest measurements possible over the time interval of interest while maintaining the error in the estimate of the pollutant concentration itshyself the output within some bound everywhere in the medium This is a

85

more complex situation than that of maintaining the error in the state within some bound the pollutant concentration over the whole region must lie within the error constraint so that the entire region must be conshysidered when testing for violation of the constraint

At time t let the pollutant concentration at a point z in a one-dimensional diffusive medium of length 2L be given by

pound K(z) = c(z) Tx K (558)

where the vector c(z) for the scalar output C K(z) is much like the meashysurement matrix Q(zbdquo) for the veotor measurement ybdquo in (543) and is given by

poundz)T - lcos pound zjcos ^ 2 ^ z J c o s ((n-1) jfj- (559)

Equations (558) and (559) are formalizations of the s2Hes expression in (341) and can be seen schematically in the bond graph in Figure 32 The pollutant concentration at any point is thus simply the sum of the modal concentrations at that point in the medium

Equation (558) applies for the estimated pollutant concentration from the filter as well and may be written as

C K(z) = amp(z) Txdeg (560)

where xbdquo is the value of the state estimate predicted to time tbdquo from time t n (see (C18) in Appendix C) it is required to maintain the error in this estimate to be within some bound Since K(z) is a scalar random variable an expression of the error between the estimate 5 K(z) and the actual value pound K(z) in the mean-square sense is the variance in the estishymate The variance in the estimate of the output in (560) is found to be

86

O 2K C Z ) ^ E [ ( pound K U ) - 5 K U ) ) 2 ]

-=|w Tft-^)(sw TiS-J) T] = E [ e ( z ) T ( s O - x K ^ x K T c ( 2 ) ]

5 S(z)TPdege(z) (561) where the last line follows from the definition of the predicted covari-ance matrix equation (421) Thus at time tbdquo associated with the estimate of the pollutant concentration at any point i given by K(z) is its variance o(z) a measure of the error in that estimate which is merely a function of the predicted state estimate error covariance matrix whose properties are by now well established

Since the monitoring problem with a bound on the error in the outshyput stipulates that everywhere in the medium at all times over the time interval of interest the fewest number of measurements must be made to keep the error in the output below a limit the concern is with checking the maximmi value of the variance ot(z) for all z over the length of the medium as time goes on to find when the error limit is reached The asshysumption is as it was for the problem with bound on error in the state estimate that at the time when the error in the estimate of the output reaches its limit a measurement should be made That measurement should be made so that the time before the error limit is next reached is maxishymized extension of the local optimal design for one measurement period to the overall time interval is assumed possible the proof of which will be considered later in Section58 dealing with the optimal management problem

87

Suppose at time tbdquo the variance In the estimate of the output at some point z in the medium is in violation of the error limit defined as

degUmgt t h a t 1 S gt

a2K(z) gt 4bdquo (562)

It is required to make a measurement at time t K that will result 1n the longest possible time say t K + N when the error limit is reached again This will occur when at some point z in the medium the maximum value of the variance over all other locations in the medium exceeds the limit This suggests the following algorithm for finding the optimal measurement design at time t R that will result in the longest time t K + p | when another measurement is necessary

1) Select in some manner a measurement design at time t K and make a measurement

2) Predict ahead to time t K + 1 31 Find the position z of the maximum variance

max a ( z) z K+l 4) Test for violation of the error limit

max o~ (z) gt c z K+l K m 5) If violated go to (6)

If not violated increment time one step and return to (2)

6) Store the time when the limit was violated 1n N

7) Check for convergence to the global maximum t K + N If not satisfied return to (1) reinitialize time to t K and select a different trial meashysurement If comergemce has accwrved the optimal deshysign is that which resulted in largest N^ the longest time tbdquo N - call it t K + N (563)

Such a direct search technique would be costly to implement The effishyciencies of gradient techniques do not apply since a gradient of the obshyjective function (which would literally be N- the time to the next meashysurement) with respect to the measuremsnt design variables cannot be

expressed analytically Thus more information 1s sought from the strucshyture of the problem to avoid using direct search methods

As in Section 537 exclude for now the choice of measurement instrushyment accuracy from the monitoring design problem Consider only the choice of the number of samplers m to be used in the measurement at time tbdquo and their optimal locations which are the elements of the ra-vector z Then the algorithm (563) may be concisely written as a minimax problem as follows

Find min max abdquobdquo (zbdquoz) gt a bull (564) z z K +N ~K ^m

In general such a minimax problem is quite difficult requiring advanced techniques of mathematical programming for its solution However in the case of infrequent sampling the solution of (564) is virtually complete in the earlier results of this chapter

In order to solve (564) from the definition of crpound(z) in (561) obtain the following

deg K + N M = s( Z) Tepound + N(S | fkltz) bull s( 2 ) T

K ) bullpound nV nl

( ) lt 5 6 5 gt

where

EKSK) bull bull $ ( Z K ) T [ C ( Z K ) P deg C ( Z K 7 bull v] 1 C ( K )Pdeg ( 5 6 6 )

is the corrected error covariance matrix jus- after the first measurement at time t K as a function of C(-) of zbdquo in (543) Expand (565)

T N (z K z) - c(z)TJNp|J(zKgtN c(i) t S ( z ) T V n W 1 pound(z) (567)

n=T

to find the same combination of zero-lnp t response and zero-state response that was found in equation (510)

89

For the physically interesting case of no-flow boundary conditions

in one-dimensional d i f fus ic the eigenvalues of A in the state equation

(41) lead to the ordering of the terms in J given by property (516)

For N sufficiently large conditions (518) and (520) are satisfied so

that (567) may be written as matrices to show

bdquo2 M a[ -(pound0 bullbullbull] M

[l co5(^z) ]

[ raquobull(poundlaquo) bullbullbull]

li[n]

O

o

1

J (ft)

Kir2)

a ss

bull()

(568)

from which the most important result for the monitoring prohlem with bound on output error derives for N sufficiently large

4^KZY [amp)]bdquo + N t 8 ] H + Slaquo 2gt T| Spound^) (5-69) Notice that In the asymptotic case for N sufficiently large even though 2

a +jj at time tbdquo +bdquo is a function of both zbdquo the positions of the measureshyment devices at time tbdquo and z the location in the medium where the varishyance is being tested at time t K + N the functional relationship tepcviateA

90

into Independent functions of each argument The selection of measure ment positions z K Is seen to effect only | E K U K ) exactly as 1t did 1n the problem with bound on state error (see equation (5-22)) The location z In the medium where a^ + N Is being tested effects only the variance associated with the steady-state terra of the matrix convolution of the input disturbance statistics here the matrix 8 was defined 1n (520) and (521) The second term on the right-hand side of (569) N [ g ] 1 1 ( represents the increase in uncertainty in the estimate of the first mode which has a constant value throughout the medium and thus 1s a function of neither zbdquo nor z

This may be summarized as follows Conclusion IX For infrequent sampling the varishy

ance in the estimate of the pollutant concentration the output of the monitor at time t|lt+N separates into indeshypendent functions of the measurement positions at time t|lt and of the pollutant concentration position at time K+N- (CIX)

Returning to the minimax problem stated in (564) application of Conclusion IX leads to the following fortuitous result

Conclusion X For infrequent sampling the followshying problems are equivalent () Find z at time t|lt and z at time t|lt+N such that

(2) Find z at time t K and zat time t K +f| such that m j I - K ^ K U H + N[~-1n + T pound ( z ) T deg e ( z ) - aim- (c-x)

- K gt- SS This result reduces the solution of the monitoring design problem from the oi-|etely unmanageable task of (563) to the relatively simple comshybination of two separate problems in minimization and maximization Solushytion of the former 1s Identical to that treated 1n the monitoring problem with bound on error 1n the state estimate as detailed in the section on

91

numerical measurement position optimization Section 536 Finding zpound

Ni 1s minimized results in the smallest con-at time t such that tribution due to the initial covariance at time t K to the variance in the output at time tj + N

Solution of the latter problem the maximization of the variance due to the steady-state convolution matrix at time t bdquo + N is developed in the following From (517) and (521) an expression for the variance associated with the zero-state or forced response in (567) may be exshypanded as matrices as follows

N

S(z)7Y bull n W - l T c ( z ) = s ( z ) W ) bull lmdash1 I f

[ laquo(i0-raquo] flu poundWbdquoX oX^n -

iPl n i

1

amp) (570)

bull J As before

N

^^ijL^w^^j ( s - 2 deg) n=l s s

so that every element of the matrix convolution in (570) approaches its steady-state value as N becomes Urge except the first which grows as a ramp with slope [nJii- Thus for N large

A T S ( z ) T J11 S(z) H[8]bdquo + c(z) T c (z) (571)

n=l

92

It is to be emphasized that as the limit in (520) is approached the variance associated with the matrix convolution (571) separates into a t1me-vary1ng term and a term which is a constant Thus for N sufficiently

9 large the only term involving z in the expression for oj+N(zz) is not

a function of time and can be precalcylated independently of the actual time that che error limit cC is reached in (564) This separates de-termnization of the maximum over z of a^ + N(zbdquoz) from the actual value of N and thus t|+Nraquo provided only that N is sufficiently large for (520) to apply

The relationships in Conclusion X are portrayed graphically in Fig-ure 53A and B Figure 53A depicts the actual evolution of a with time whereas 53B shows the asymptotic relationships of (569) The important point is that the last term in (569) the term involving z has the same

maximum as a function of z at each sample so iony as the number of time steps between each pair of samples is sufficiently large Thus

Conclusion XI The position of the maximum varishyance in the estimate of pollutant concentration at the time each measurement is required in the monitoring problem with bound on error in the output is independshyent of time provided the time between measurements is sufficiently large and is thus the same position at every measurement (CXI)

The procedure for the solution of the infrequent monitoring problem with bound on error in the output estimate is as follows

(1) At time t|( solve for the optimal measurement posishytions Z|( such that

(2) Compute ffilusing the relationships LSSJ

[4-T^te bull - bull [raquo]bdquo-

93

mjn max o K + N( Kz)

max CT^(Z)

(A) Actual response

Time

min max o^iz^z)

Time (B) Asymptotic approximation Figure 53 The Infrequent sampling problem with bound on error in the

output estimate

94

(3) Find N large enough that the infrequent sampling approximations appiy that is so that

[sL^LW^^^ and j f 1 (4) Find z the position where the variance approaches its steady-state maximum where

ltbull = max c(z) T a c(z) SS z S~S~ (5) For the pair (zpoundz) predict the solution to time

lK+N w n e r e

(6) Reinitialize time tv = t^+Nibull and return to (1) for next measurement t W (572)

All of the results for the monitoring problem with bound on error in the state estimate apply here as well permitting statement of the final result for the monitoring problem with bound on error in the outshyput estimate

Conclusion XII For the case of infrequent sam-pling the complete solution of the optimal monitoring design problem with bound on error in the output estishymate mdash the determination of the optimal number of samshyplers to use at each measurement their optimal locashytions the optimal choice of measurement instrument accuracies and the position of maximum variance in the output estimate at each measurement mdashmay be obtained at the first measurement time with the same design being optimal for all other measurement times (CXII)

542 Determination of the Position of Maximum Variance in the Outshyput Estimate - In the solution procedure (572) steps (3) and (4) must be developed First from the form of

1 bull n gt 22 raquo 22 bull Kn gt deg ( 5 7 3 )

as seen in (515) Thus in the determination of the number of terms necessary 1n the computation of the matrix convolution [ft] In (3) from N (570) and (520) the critical terms In the matrix those which approach

95

the i r steady-state values slower than a l l the others can be seen to be

[ n ] 1 9 and [pound2 ] 5 1 where from (570) N u N

(574)

As a measure of how rapidly the series in (574) grows as N increases deshyfine

4N-1 4N-1 plj 4A vao

as the ra t io of the contribution to the series for [ f iL- dnp to seep N N 1 J

compared to the contribution from step 1 in the series Thus a meaningful

check for approaching the steady-state value of the convolution is to

f ind N su f f i c ien t ly large that

P^j lt E i j = 12 n i = j f l (576)

where c 1s some practical convergence c r i t e r i on

Since Q I t s e l f is a covariance matrix (see Appendix B) i t is posishy

t i ve -de f in i te hence [8 ] i o = telov T n u K 1 l c a n D e readi ly seen from

(573) (574) and (575) that the series for terms [Q3 and poundpound ] grow N e K i x

more slowly than a l l the others (excluding of course M bdquo ) since N

p12 p21 gt p1j a 1 1 o t h e r ( 1 j ) ( 5 7 7 )

Thus a convenient measure for the convergence

Um [n] = [n] ltdeg 8 SS

is simply to find for just the second element of 2 2 that value of

N such that for some convergence accuracy e

N-1N- 4N-1 N 11 raquo22 22 S-2 c - bdquogt Plraquo - ~mdashZ A mdash 09 e- (578) It n22 22

96

Thus for the infrequent sampling approximations to apply within some

tolerance e at least N time steps must occur between sample times so that

steady-state conditions are adequately approached

In order to f ind the maximum in step (4 ) that i s f ind z such that

c(z) 52 c(z) is maximized an analyt ical approach is f i r s t sought Since SS ~

the problem is a simple extremization of a scalar-valued function of a

single variable elementary calculus techniques apply so that for some

value of z K a necessary condition for an extremum is

From Conclusion IX and (569)

(580)

a f lt amp f l M - 3 F | ^ n

+ ^ S bull poundU)T|s amp(z

i s ( z ) T ) | E ( 2 ) t c ( Z ) T | ( i c ( z ) ) SS SS

Recalling that since U is a covariance matrix

0 = 8 gt

SS SS

so that

al 0 K + N M S 2 ( l l^) )8 e (z )

Thus

S(z) 1 l cos( ^ z j cos^2 ^ z ) |

pound^J = 0 2 f s 1 n ( 5 f z ) - 2 2 f - s i n ( 2 ^ z )

97

M N ( M gt 2 poundpound-ltbull-i [(i - H c o s Ibull 2 taj ( 5 8 )

i-i j - i

2 For an extremum in vt N(zz) set (581) to zero from which it is seen clearly that for finding the solutions of (579) analytical methods are

of little nee

The numerical solution of (579) using (581) and (569) however is straightforward Since the derivative can be so concisely written it is well known that solving for the roots of (579) then checking the value of the function (569) at each root so as to classify each extrema in order to arrive at the global maximum is superior to direct one dimenshysional search methods (such as golden section or Fibonacci search) which do not employ derivatives (see [20] and [53]) Thus any of the widely available root solving methods for nonlinear equations could be suitable for the determinization of z at the maximum cf crK+N(Z|z) (see foi exshyample [61])

55 Diffusive Systems Including Scavenging

Return now to the original problem of monitoring diffusive pollutant dispersal including anvironmental degradation or scavenging of the pollutshyant The relevant transport equation from (33) is given as

| | = KV 2 - a + f (582)

where a is a smaller parameter This equation describes di f fusion in an

arbi t rary homogeneous region P where the small term -a accounts for the

scavenging of the pol lutant from the medium The scavenging term is

typ ica l ly much smaller than either the source or di f fusion terms and

usually leads to a slowly-changing component in the system response

98

Application of separation of variables to the homogeneous form of (582) leads to the following state and Helmholtz equations

x(t) + tt + )x(t) = 0 (583)

7 2e(P) + pounde(P) = 0 (584) Comparison with equations (311) and (312) for the case of simple difshyfusion the case in (34) with a E 0 shows that the only difference in the associated eigenproblem i In the rates of response in the time equashytion The equation regarding the spatial response is identical with that for the case of simple diffusion Thus all the eigenvalues are seen to be shifted by the same amount a the value of the scavenging parameter itself

Notice that nothing has been said that restricts this result to specific coordinate systems boundary conditions etc It 1s a general relationship between the eigensystems of (34) and (582) Thus the modal state equations for the case with scavenging may be written

n(t) = -(Xn + oe)xn(t) + f n(t) n = 12 (585)

where f bdquo ( t ) is the modal input to mode n (see (319)) Comparison of

(585) with (320) for the case of simple di f fusion shows that the probshy

lem with scavenging changes the response of the system with no-flow

boundary conditions to that of a problem which l ies somewhere between

simple di f fusion with no-flow boundary conditions and simple di f fusion

with f ixed boundary conditions I t would seem from what we have seen in

the infrequent sampling problem thus far that for the cases where a

is small in (582) extensions of the ear l ier results of th is chapter to

the problem including scavenging should be possible

99

Another way of seeing how the inclusion of the term -aE in (582 effects the structure of the eigenproblem associated with (582) can be shown by reconsidering the one-dimensional example of Section 32 Conshysider here only the homogeneous response Thus the problem may be stated as follows

bull^tl K 3 ^fi - g(zt) (586)

M|Mi0 ^f^EOi (587) SfzO) = 5 0(z) (588)

Now make the transformation (see Mac Robert [82] p 33) S(zt) = n(zt)eat (589)

Substitute (589) into (586) to obtain

nfzt)^-] + ^ ^ - B a t = K i ^ f L e- a t - an(zt)e-at (5

which reduces to ^1=K^ (691)

3 t 3z 2

But the eigensystem for (591) given boundary conditions (587) is just that for the problem of simple diffusion already discussed in Section 32 from which the homogeneous solution may be written as

^3 - K ( n - l ) 2 ^ nizt) = 2 ^ x

npounddeggt e 4 L cos f(n - 1) J zj (592) n=l ^

where the initial conditions for the modes are given by

100

x n(0) bullr n(z) cos (n - 1) 2L y dz (593)

Sibstitution of (593) into (589) then yields the important result for the case including scavenging

- _K(n-l) 2-Lt S(zt) = e 0 1 ^ xn(0) e 4 L cos Un-1) ^ zj

n=l CO

n=l (0) e

K(n-l) 2 _ C 4L 2 + ltxgtt ((n-l)^z) (594)

Thus the solution to the problem including scavenging has exactly the same eigenfunations as the case without scavenging and a set of shifted eigenvalues each of whose elements is just that of the problem without scavenging shifted by an amount a

551 The Infrequent Sampling Problem - Consider a one-dimensional diffusive system described as follows

Source

Measurements i

1 2

Figure 54

-S(zt)

2Llt - raquo bull

at S z i (595)

101

3z U 32 bull

S(zo) = 5 0

f(zt) = w(t)6(zw bull bull z )

(596)

(597)

HvWh = 0 E[w(t)w(r)] = Wlaquo(t - T ) (598)

After s impl i f icat ion of the series solution of the homogeneous probshy

lem in (594) to a f i n i t e number of terms n i t can be seen from the

form of (337) for the problem without scavenging that the fol lowing set

of modal state equations resul ts

1

- ( $ bull )

o

o

(bdquo-bdquo=pound)

a

w(t) (599)

f COS (lt-gtlaquoraquo) |

102

with in i t ia l condition

x(0) = [ 5 0 0 0 ] T (5100)

The measurement equation is exactly that of (339) for the case with no scavenging

Thus comparison of the dynamic matrix for the case with no scavshyenging in (337) with that in (599) for the inclusion if the a-term shows the one major difference for the Infrequent sampling problem In the former [ A ] ^ = 0 while In the latter [ A ] ^ = -a + 0 Thus the first modal state variable will fn general exhibit a relatively slow reshysponse governed by the term e The effect of the initial condition x(0) will decay at that rate whereas it remained constant in the case with no scavenging This leads to differences In the asymptotic propshyerties of the solutions which are developed in the following

Consider the time discretization of (599) The state-transition matrix laquo given in (48) for the A matrix in (599) is

o m o 4 - ) 2 S + a gt

(5101)

where the integration step T s (t K + - t K ) Assume as before that the problem starts at time t- with initial estimation error covariance mashytrix given by tf0 Assume further that at time tbdquo the estimation error constraint is reached so that a measurement is necessary at time tbdquo It

103

Is required to design the measurement by finding the optimal measurement position vector zt so that the time when the error constraint 1s next reached 1s maximized

Consider the evolution of the predicted estimation error covarlance matrix with time after the sample at t R

nl Expand the above as matrices as was done for the case with no scavenging in (517) to obtain

amp amp ) bull fetoiMi [ilaquo

M

nSl T5t B H

CS3bdquo nraquoi

(5103)

104

Now 1f a in (595) is su f f i c ien t ly small then the diagonal elements of

J cal led ^ i = 1 2 n w i l l be related in (5103) by the fol lowshy

ing ordering property

^N N 1 gt $j| raquo bdquoj2 gt ltjgtN gt 0 (5104)

Using (5104) the matrices in (5103) may be approximated by the follow- ing expression for N large

-K+N(-Kgt

[dtei

o

[Q] v 6 2 ( n- igt u

O 8 ss

(5105) Comparison of (5105) with (521) for the case with no scavenging shows the expected result that here the asymptotic matrix solution approaches that of just the (11)-element of th matrix with time plus the steady-state matrix n due to the forcing function

SS For the monitoring problem with bound on error in the state estimate

from (5105) the trace of the estimation error covariance matrix Is given by

N

Tr[EK-Hl(sK 3 - [ E K ( S K J l + Kill Y l i n 1 gt + T r [ | s J ( 5- 0 6 )

n=l which is similar In form to (522) for the problem without scavenging The only differences H e in the first two terms on the right hand sides of (522) and (5106) Both pairs of terms describe the response of i p K l I with tirno i n the former case the response is that of a fm$]]

w1th time ramp with slope [fl]- starting at efegt] bullvv In the latter case the

11

105

response starts from the same value but then slowly approaches a finite steady-state value in the limit as N + laquo much like all the othar terms do in the matrix The main difference is that the (11)-element of P K + N ( z K ) grows much much slower to its final value than all the other

K elements of P D + N ( z K ) this is the result of requiring the scavenging parameter a to be small leading to property (5104)

A graphical depiction of the trace of (5102) and its asymptotic approximation in (5106) is shown ii Figure 55 Comparison with Figshyure 52 for the case with no scavenging shows the difference in the asshyymptotic responses

For the monitoring problem w h bound on error in the output esti-mate using the form for Ppound+N(poundK) in (5105) in the equation (568) deshyveloped earlier leads to

N

lt 4 N amp gt Z ) a [K(4U + I83bdquo Y bull i i ( n 1 ) + e ( ) T

S V ( Z ) - ( 5 1 0 7 )

n=l Comparison of (5107) with (569) for the case with no scavenging shows the same asymptotic properties as exhibited in the problem with bound on error in the state estimate above which leads to the general result for the problem with scavenging

Conclusion XIII For diffusive systems with scavengshying all the results for the infrequent sampling problem for normal diffusion apply directly so long as the scavengshying parameter is sufficiently small (CXIII)

56 One-Dimensional Diffusion with Fixed Boundary Conditions

Consider the case of a one-dimensional diffusive system with the pollutant concentrations at the ends of the medium fixed at known values throughout the time interval of interest This case was modeled in

106

Tr[P]

Tr[P2]

(A) Actual response

(B) Asymptotic approximation Figure 55 The infrequent sampling problem for systems with scavenging

compare to Figure 52 for systems with no scavenging

107

Section 32 2 Such systems are of much lesser practical Importance than those with ho-flow boundary conditions since It 1s difficult to find many physical situations of any significance where fixed end conditions occur (see Brewer [22] and Young [131])

For such a system the following state and measurement equations apply

x = Ax + Dw y = Q + X

where from (356)

4|Z

A i

o - 4 KiT 5

O -ltraquo)2 K pound 4

D 2

E = raquo(poundl) s 1 n( 22Ti)

Sfff (bullgt)

(5108) (5109)

(5110)

From tne definition of A above and 4 1n (48) and (49) the state transishytion matrix for fixed boundary concentrations is given as follows where the time step T = (t K + - t|A

108

4llt o

raquoST -44 (511)

r 2 Kn T

4L Z

Comparing this transition matrix with that from the case for no-flow boundary conditions (see (515)) shows how the fundamental difference in the two normal mode expansions effects the dynamical responses of such systems In the case with no-flow boundary conditions [] = 1 whereshyas for the case with fixed concentrations at the boundaries 0 lt [Jl lt 1

This difference manifests itself in ways which effect both the monishytoring problems with bound on error in the state and output estimates Consider the predicted covariance matrix equation from time tbdquo to time

S-K+N A M I Pbdquo +

n=l

$ V From (5111) l e t

M = A l l

Then (510) may be expanded as f o i l ows

12

(510)

(5112)

109

[laquo

[lto [4 fll B1

n1 n=1 (5113)

Comparing (5113) with (517) for the case with no-flow boundary condishytions shows that the properties of first elements of both matrices in (517) which proved to be crucial to the simplicity found in the infreshyquent sampling problem do not hold in the case with fixed end concentrashytions

However as in the case with scavenging notice that owing to the ordering of the eigenvalues in the A matrix in (5110) there is a corre sponding ordering in the elements of such that for Pbdquo+ in (5113)

gt A N gt 0 1 gt (f^ gt lttgt22 (5114)

Notice from the matrix A that for the first two terms 4X 1 X 2 (5115)

so that the second mode decays four times faster than the first Thus the two dominant eigenvalues are widely enough separated to proceed with apshyproximations for an infrequent sampling problem

Use (5112) in (5113) to obtain 1 1

amp

o

Braquongt bulli- )

O (5116)

no which is exactly the same result as in (5105) for the case with scavshyenging The trace of (5116) follows the form of (5106) for the scavshyenging problem so that for the monitoring problem with bound on error in the state estimate all the results for the infrequent sampling probshylem apply Trajectories for Tr[ppound + N(zpound)] would appear similar to those for the problem of no-flow boundary conditions including scavenging as shown in figure 55 the rate of approach to steady-state for the (11)-element of P pound + N would be faster if X 1 for this problem is larger than a

in the former problem For the monitoring problem with bound on the error in the output

estimate the case of fixed boundary conditions causes a confusing relashytionship in the minimax problem for finding the location of maximum varishyance in the output estimate From the approximation for P pound + N in (5116)

LEHlt

o [sln(^z) sin ( i r f ) ] ISA

o

sin (tpoundj

sin k plusmn )

[1laquo(poundraquo) m (]pound) - ]

8 ss

sin ( JT )

sin (2 j f ) (5117)

I l l

where c(z) Is derived from the def in i t ion of pound (z t ) in (348) Thus

for N large

V ^ T + sin yz]_ ZJL8J-- ^ bull s~ s~

n=l

which is of the form

0JJ+N(2Kraquo Z) = a ( 2 K z N ) + e^ z N gt + E 2 ) (5119A) = a(z K)|3(zMN) + B(z)6(N) + E( Z ) (5119B)

It is required to find zjj and z such that for N large

4^1) = JjJ T degK+N( ZK Z)- (5-120) From the separation of functions in (5119B) it is clear that finding zt should be done exaotly as before that is

Find zj at t K such that [ t ^ ) ] bdquo = [ ^ Jin ^ ^ It would appear that knowing zpound the optimal measurement positions

for the measurement at time tlaquo one could then substitute its value dishyrectly into (5118) to solve for the position of maximum variance z at time t K + N- However as seen 1n (5119B) the terms (a 8 y) and (B 6) are functions of time t K + N gt such that the relationship between (agy + 86) and (e) in (51198) is always changing A general statement of a separashytion principle like (569) for systems with no-flow boundary conditions cannot be made for the case with fixed boundary conditions However if more knowledge exists about the specific problem under study for example if in (5118) [n] raquo [ Q ] i j i and j f 1 then the term (Blaquo) In (5119B) may dominate the right-hand side of that equation for N large such that

112

for such a special case

T C K+N(K Z ) = trade X s i Z [ t z

What is clear about the general case is that the minimax problem in (5120) simplifies to (1) finding z in the minimization in (521) as before then (2) evaluating the position z for the maximum oy +bdquo(z Kz ) in (5118) iteratively as N increases until for some t R + N o^ + N(z^z) gtcC The latter procedure is greatly simplified using the approximashytions of the infrequent sampling problem as can be seen by comparing the simplicity of the expression for aj + N in (5118) with the complicated

V

expression that would have resulted had the full matrices for P K + [ in (5113) been involved instead

Thus results for the infrequent monitoring problem with no-flow

boundary conditions extend with restrictions to the case with fixed boundary conditions

Conclusion XIV For N large all the results for the infrequent sampling problem with no-flow boundary conditions with bound on error in the state estimate extend to the case with fixed boundary conditions The results for bound on error in the output estimate do not all extend to the case with fixed boundary conditions in general however application of the infrequent samshypling problem approximations does drastically simplify solution of the functionally interdependent minimax problem to the solution of two independent problems in minimization and maximization (CXIV)

57 Extension to Monitoring Problems in Three Dimensions Systems with Liiission Boundary Conditions

As a means of demonstrating the power of the results for the infreshyquent sampling problem consider extensions to diffusive systems in three dimensions examples of applications might include pollutant transshyport in estuaries or bays and radiation level detection in settling basins

113

or in groundwater systems Suppose there is a rectangular three-dimenshysional region into which known stochastic sources are injecting pollutshyant In the case of bay estuary or settling basin systems the upper surface of this region would interface with the earths atmosphere whereshyas in groundwater applications the upper surface of this hypothetical region could coincide with the local level of the water table The reshyquirement of the problem is to place the fewest number of sampling stashytions at the best locations on the surface of the region taking the fewshyest number of samples over a given time interval in order to maintain the error in the estimate of the concentration ttceoughout the three-dimenshysional volume below a given bound This is an interesting variation of the general problem in three dimensions where sources may occur anywhere in the volume but measurements are required to be taken only on one surshyface of the volume

The validity of the description of pollutant transport in such sysshytems by the use of Fickian diffusion has not been thoroughly studied However it seems reasonable to assume that if small enough subregions which may be called components are considered thtn coupling large numbers of such component subregions together each of which is governed by its own diffusion equation could result in a system of submodels which could be used to model a large possibly inhomogeneous anisotripic medium Thus this example is presented for its conceptual interest as a starting point toward a more sophisticated approach to solutions for pollutant monitoring problems of this type

Assume the component subregion is described schematically as in Figure 56 One of the v generalized sources w ^ t ) is shown somewhere in the volume with its position vector defined as

114

Figure 56 Three-dimensional component subregion for a three-dimensional monitoring problem

115

Sw S 1 L M 2 3 Sw S K c w laquosw t 1 = 12 P (5122)

One of the set of m generalized measurements y is shown on the surface with its position given by

2j S [ Z V Z V 2 L 3 ] T J = 12 m (5123)

If the size of the rectangular region 1s sufficiently small the dif-fusivity throughout the medium may be approximated as a constant The boundary conditions of the submerged surfaces are chosen to be of no-flow type so that other such components may be coupled together in order to approximate inhomogeneous material properties over larger regions (see Young [131] Chap 3)

At the upper surface of the component the assumption is made that a no-flow boundary condition adequately models the characteristics of the pollutant exchange across the upper boundary of the region In problems involving transport of a volatile soluble contaminant in water systems (like DDT or disolved radioactive wastes) this assumption could be changed for instance to include emission of the pollutant into the atmosshyphere at the earths surface An approximate model of such emission is Robins boundary condition (see Berg and He Gregor [18] Sections 36 and 49 Mac Robert [82] p 28 and Duff and Naylor [34] Section 73) The only difference such a modification makes in the normal mode analysis is in the eigensystem which results for the coordinate direction which 1s similar in form to that for no-flow boundary conditions but has intershyesting conceptual differences (see 118] Section 49)

Suppose the initial pollutant concentration throughout the medium i given by the function 5 0(c) Thus the initial-boundary value problem for this system is defined as follows

amp bull (

bull bull bull Cj raquo 0 e - ^

K2 2 deg 0raquo 2 = 2L 2

c 3 = 0 3 = 2 L 3

c(co) H e 0 i Ml

116

t)t (5124)

(5125A)

(5125B)

(5125C)

(5126)

iMiltgtlte - s )^ - s 2 ) 6 ( c 3- s 3 gt E^tt)] = 0

E[w(t)w(T)] = W6(t - T ) i = 12 r (5127) The no-flow boundary conditions are specified for all surfaces by

(5125) The initial condition as a function of the spatial coordinate vector 5 is given in (5126) while the stochastic point sources with their statistics are described in (5127)

The essential difference between this problem and the two-dimensional case treated in Section 33 is in the extension to eigensystems in three dimensions and the resultant increase in dimensionality as mentioned in Section 34

Begin the analysis by assuming a solution in separated variables of the form

^ bull ^ L I L L W ) wsgt pound=1 nR n=l

mM e U l gt e m ( 2 en^3gt- ( 5 1 2 8 gt Jt=l m=l nlt

117

From the one- and two-dimensional problems 1n Chapter 3 elgensystems for

the coordinates C 1bull amp 2 and 3 given boundary conditions (5125) can be

w i t ten down Iranedlately as follows

h TT~ 4 = 12 (5129A) 11

(5129B) e l(5 1) = cos U - 1) mdash- c I

= R T m = l 2 (5130A) m m

e m (c 2 ) = cos ( m - l j j j - e j (5130B)

=^4~ bull n = 1 2 (5131A) n n

e n k 3 ) = cos ( n - l ) ^ - 3 (5131B)

The generalized modal resistances and capacitances the Rs and Cs above

are exactly those given for the two-dimensional case in (361) As before

substitution of C(ct) in (5128) into the differential equation (5124)

right-multiplying by eigenfunctions integrating over the volume and apshy

plying orthogonality results in the following generalized normal mode

state equation

fat14 Jf bdquo lt 5 t ) cs ( lt ) a q e 0 c ( - n pound ) C 0 S (ti1gt i ^ W r (5132) The initial conditions for x(t) are found as follows from (5126) and

(5128)

~] ~=LLL x raquo c o ) e U i gt ^ ^J- ( 5 1 3 3 )

xf npl n=l If CQ(C) 1S expandable 1n a triple Fourier series then x J l m n(0) is given

N

118

as Allows (see Mac Robert [82] p 43)f

r Z h r 2 4 r 2 L 3 W deg gt bull r r r o(-5) e i ( igt ^ eM d 3 d t2 d i (5134)

m n -^bullo-tj-o-tj-o

where the eigenfunctions are given in (5129) through (5131)

The stochastic point sources are transformed into modal inputs in a

similar fashion

r c V f (5 t ) efc) ^ ( ^ e n U 3 )d 3 d 2 d i

tradeltXs2H3) where treating the point sources as distributions the eigenfunctions in (5135) are evaluated at the coordinate positions of the ith point source

Truncating the triple Fourier series in (5128) and retaining n terms in each results in a set of state and measurement equations entirely anashylogous to those for the two-dimensional problem in Section 33 The dishyagonal element for A for the (ijk)-th equation is

bull^--jk4i+S ( 5 136 )

so that the eigenvalues of the three-dimensional problem are simply the

sums of those for one-dimensional problems written in each of the three

coordinate directions Similarly (see (362) and (364)) the elements

of the D and C matrices are merely triple products of the eigenfunctions

Thus the similarity with the two-dimensional case is well established

Notice that in the discretization of the elements of A from (5136)

and Table (361) [A] = 0 so that ct^ = 1 thus all the results for

the Infrequent sampling problem with no-flow boundary conditions extend

(laquo i = 12 (5135)

119

directly to multidimensional regions Thus regardless of the dimensionshyality of a region 1f no-flow boundary conditions exist at all boundshyaries the monitoring problem may be treated in a straight orward manner with thp techniques of the infrequent sampling problem

Consider the Inclusion suggested earlier of the emission of pollutshyant into the atmosphere at the surface of the component subregion at C = 2L A model for such emission (see Mac Robert [82] p 28) ibdquo given by the following homogeneous boundary condition

3(Ct) 33

bull+ h[e(poundt) - C 3(c rC 2)] = 0 5 3 = 2L 3 (5137)

where pound is the pollutant concentration in the atmosphere over the surshyface = 2Ltaken to be constant over time Thus the atmosphere acts like a pollutant source with constant concentration pound) h is a constant relating the emlsslvity of the surface e to the diffusivity within the component subregion by

h 5 eK (5138) Berg and Mc Gregor([18] Section 49) show that the eigensystem for a one-uimensional system with a no-flow boundary condition like (5123C) at C = 0 and a boundary condition with emission of the form (5137) at -g = 2U can be described as follows

V ^ = (n - D s r + V n = l2 (5139A)

e n(5 3) = cos (5139B

where J T must be a positive root of the transcendental equatio ^ tan (213^)= h (5139C)

ion

120

A graphical solution of (5139C) shows that there is an ordering of the roots y T 1 such that for u

gt p gt P 2 gt gt p n gt u n + 1 gt gt 0 (5139D)

For example for 2L 3 = 1 and h = 01

n 1 2 3 4 5

03111 31731 62991 94333 125743 (5139E)

Thus it is found that an ordering in this problem exists such that for

V 0 gt A gt Xj gt n = 12 (5139F)

Since the eigenvalues for the three-dimensional problem are the sums of those in eigenproblems written in the three independent coordinate dishyrections 5 c 2 and cbdquo from (5136) it 1s seen that if an emission boundary condition is used at s = 2L 3 the crucial first eigenvalue in the A matrix is given by

Xlll = (deg + 0 + v 2J (5140) 2

where p 1S the first eigenvalue for the modified elgensystem (5139) This leads to an ordering for the matrix elements such that

1 gt n gt 2 2 gt (5141)

so the the concepts developed for the infrequent sampling problems for the cases with fixed boundary conditions and scavenging apply here as well It should be noted that since P 1 gt 0 the first eigenfunction 1n (5139B) will be a function of c 3 so that the minimax problem possesses

121

the modified separation property of (5119) for the case of fixed bound ary conditions Thus the case of practical interest accounting for emisshysion at a boundary is seen to fall within the framework of the infrequent sampling problem

Conclusion XV For N large the results of Conclushysion XIV tor the case with fixed boundary conditions are seen to extend to regions with emission or radiation boundary conditions (CXV)

Another interesting point about the structure of this type of monishytoring problem is that pven though the dynamic response of the process must be computed for the entire region 1n three-space the measurement position optimization is constrained to a two-dimensional subspace that is to the surface

C 3 = 2L 3 (5142)

This reduces the domain of the optimization considerably and emphasizes the power and versatility of constrained optimization techniques In Section 536 a first-order gradient technique with linear constraints was described In the context of the problems of this section the power of such a technique is demonstrated in being able to express the requireshyment (5142) directly as an equality constraint upon the domain of 5 3 in the optimization

In the application to groundwater problems a more practical problem scatement might be to constrain measurements to be taken anywhere down to a depth e below the upper surface of the component subregion that is to a depth E below the water table This form of a constraint is readily placed upon the domain of the optimized variables as follows (see (553))

For the position of the jth measurement device require that z -J3

the element of z^ in the 5 coordinate direction be limited to (2L 3 - e) lt Zj lt 2L3 j = 12m (5143)

122

the form of a constraint for the optimization algorithm must be z s W lt 5 - 1 4 4 gt

thus decompose the single inequality constraint in (5143) into two of the form (5144) to obtain

zi 2 L 3 -

- Z j lt (2L3 - c) (5145)

Thus the subspace for the measurement posit ion optimization consisting

of a layer of depth e beneath the surface of the region is entered into

the optimization algorithm as two simple inequali ty constraints on the

elements z given in (5145) J 3

Thus formulation of a three-dimensional pol lutant monitoring probshy

lem over a homogeneous region with various boundary conditions amounts

to a straightforward extension of the methods used for one- and two-dishy

mensional problems In addi t ion confining the admissible region for

optimal monitor placement is a natural application of constrained op t i shy

mization techniques

58 The Management Problem

Thus far consideration has been given solely to the problem involved 1n the design of a measurement - the number and quality of measurement sensors and where they should be placed - in order to minimize the total number of samples necessary over some time interval It is the requireshyment on the other hand of the management problem to determine at what times within that time interval the measurements should be made in order to minimize the total number of samples necessary overall

123

It is desired to prove that the optimal management program is to

sample only when the error criterion for the state or output estimate

has reached its limit In general this is a difficult fact to establish

Results are clear for the scalar case however and (algebraically tedishy

ous) constructive proofs for a system with only two normal mode states

and one measurement device indicate that such a sampling program is also

optimal for the vector case However obtaining a comprehensive proof

that sampling only at the limits is optimal for multidimensional normal

mode representations remains an elusive task Heuristically the verishy

fiable resilt for scalar systems still seems to be extendable to the

multivariable case as will be shown

581 Optimality in the Scalar Case - Consider a scalar system whose Kalman Filter covariance equations (see Chapter 4 Figure 41) can be reduced to

(5147)

where ui and v are the disturbance and measurement noise variances p is the variance in x and c is the scalar measurement coefficient

Assume the process starts at time t Q In order to deduce the optishymal sampling program compare the two following monitoring programs which correspond to sampling at the error limit (2) and sampling before-the error limit is reached (1)

(1) Predict to t 1 sample at time t] and predict ahead to tfj (2) Predict to t N then sample (5148)

The optimality of one program over the other will be established after time t K + N by the determination of which of the two has the smaller

bdquo K + 1

= PK+1 v

PK+I = PK+1 PK+I C K+I + v

124

variance p since both wil gtve used the same number of measurements (one each)

a starting point make the assumption that the characteristics of the measurements at the two times (specified by cjL and v in (5147))

2 are the same The more general case where v can vary and c at t in

2 the first measurement program and cf at t N in the second may be differ-

2 2 2 ent is commented upon later Thus for now let ct = cz H c at both samples Case (1)

(A) Predict from t Q to t

0 J- j p1 = Sgt MQ + lto

(B) Sample at t

1 = P V

h = P pdegc 2

+ v

= (ltj2u0 + u) = (ltj2u0 + u)

_ ($ 2 u Q + u ) c 2 + v

(C) Predict to t^ N-l

pj = ( 2 ) N _ 1 P ] + 2 I n=l

-) laquo

(5149)

(5150)

(5151)

Case (2)

(A) Predict to t N

Pbdquo = () bullN Z n-l (bull ) i

n=l

( V bull pound (V

(5152A)

(5152B)

125

(B) Sample at t N

N 0 W+ (5153)

It is required to show that in (5148) program (2) is optimal (which is an analogous case to sampling at the limit in the monitoring problem when pH gt p 7 an error limit) This can be shown by finding conditions under which

(5154)

To illustrate the relationships involved in the optimality of such a monitoring program consider Figure 57

P

P N lt P N

Figure 57 Relationships involved in scalar optimal manageshyment program

126

The optimality of case (Z) is verified if after both programs have included one measurement after time tK+f- the variance for case (2) is below that of case (1)

In order to prove (5154) proceed as follows Consider the amount of correction A to the variance p at a sample as the difference between the predicted and corrected values at the sample time From Figure 57 then define

Al - (P bull P i ) lt 5 1 5 5

A N a (pdeg - p|j) (5156)

t wil be shown in what follows that if pj is a monotonically increasshying function of t K then

(PN gt P) bull (AN gt A l ) - ( G- 1 5 7) Then predict A ahead in time to tbdquo to show

(AN gt A) -ofy gtpjj) (5158)

which proves (5154) Finally it is necessary to show that if sampling at t N is superior to sampling at t then for all times t N + R after t

( P J gt P K ) - ( P J + R gt P NN

+ R (5-159) i

F i r s t consider the evolut ion of p pound + bdquo a f t e r a measurement a t time

bdquoK PK+N ( bull ^ bull ^ ( bull V V

n=l

where if the measurement after tbdquo is the first measurement

P K pK pdegc 2 + v

(5160)

(5161)

127

Since pdeg gt 0 and c Z gt 0 in (5161)

gtl lt Pdeg (5162) that is the variance in the estimate is (expectedly) decreased at a measurement In general the variance or uncertainty will grow beshytween measurements or at least it will under certain conditions upon

K 2 the combination of pj^ lttgt and ltu in (5160) those conditions which are of interest in the monitoring problem Thus restrict the study here to systems which possess monotonically increasing values of predicted varishyance as shown in Figure 57 Hence require that

(5163) Next consider the corrections in (5155) and (5156) To deduce

the inference in (5157) from (5149) through (5153) find

PNdeg gt P-

A - P - P

-5

V -0 2

V L J

V

I 2 + V

(5164)

(5165)

To find conditions under which

A N gt A 1 (5166)

substitute (5164) and (5165) into the above cross multiply by the

denominators aid collect terms to obtain

[(PS)2Plt2 bull ( P ^ ] gt [(-fif bull (ptfv] (5167)

from (5157) and (5167) follows Conclusion XVI For the scalar case of the monishytoring management problem and for problems with increasshying uncertainty 1n the state estimate between sample times the amount of correction made to the predicted variance In the state estimate Is an Increasing funcshytion of the predicted value of the variance at the time of the measurement (CXVI)

128

This concept of the comparison of the amounts of estimation error corshyrection at different measurement times Is suggested in a later section as the basis for a proof in the extension of these results to the vector case

In order to prove (5154) establish now the inference in (5158) Referring to Figure 57 and using (5151) and (51528) obtain

n 0 J PN PN (bullJ-pfL L

n=l V ) m

N-l

bull c 2 ) N - ] P E ^ V

However for a stable system

i i 1

[ P N - P N ] S V Thus by construction from Figure 57

[ gt gt l] [Pi gt P]

7 N-l i V 9 I1

() Pi + gt ( ) ltraquo n=l

bullA]

from which (5158) follows Finally to demonstrate (5159) for case (1) in (5148)

Plaquo+R

ft o R i 9 n-l

= ( ) Pf| + ) ( ) I n=l

(5168)

(5169)

(5170)

(5171)

(5172)

and for case (2)

129

n=l from which (5159) is obviously seen to follow regardless of the value

o o of ltr Hence if pfj gt p ^ m gt some error limit sampling at the limit is seen to be optimal at the sample time and optimal thereafter Thus in the scalar case (2) is the best monitoring program

o Notice how no restrictions were placed upon 4 lto or v except that the system must be stable and to and v as variances must be positive Thus Conclusion XVI includeb both the zero eigenvalue case for $ = 1 and the negative eigenvalue case where 0 lt ltjgt lt 1 Thus it is a general reshysult for scalar models where the asymptotic properties (518) and (520) of the infrequent sampling problem need not necessarily apply

Thus the verification of (5157) through (5159) prove that for a p

fixed measurement position reflected in c and fixed instrument accuracy fixed by v sampling at the estimation error limit is optimal

In the original comparisons for monitoring programs (1) and (2) 2 2 2

the assumption was made that ci = c in (5150) and cjj = c in (5153) The general case is now considered where the characteristics of the meashysurement at time t in program (1) are free to differ from those at time t N in (2) that is c f cjj

The objective of both monitoring programs under the earlier problem definition is to provide a sampling schedule which requires the least

overall number of samples necessary to maintain the estimation error beshylow its limit at all times An important observation for the scalar

case is that for a measurement at time t maximizing the time t K + N beshyfore the error limit is again reached is strictly equivalent to minimizshying the estimation error just after the sample at time t K (this may not

130

be the case in the extension to the vector problem due to the linear combinations of increasingdecreasing responses inherent in theTr[-] and g- [J functions this case is considered later) Thus the Objecshy

ts n tive of sampling schedule (1) is to choose c such that p is minimized and that of sampling schedule (2) is to find that cjj which minimizes pjj The optimality of the two is then established by determining which proshygram after time t N results in the smaller estimation error that is in determining which of Pu(c| ) and pbdquo(cjj ) is the smaller at time t N

for the scalar case it can be shown that the optinal measurement positions reflected in c and oL must be independent of the time each measurement is taken independent of the value of the variance at the times of the measurements and they must strictly be equal to each other To see this compare the first line of (5150) for a sample at time t with the case for a sample at time t N in (5153) Examining the denomishynators of the two expressions leads to the observation that the optimal choice for c in both cases must be the same In order to maximize the time until the estimation error limit is next reached after each measure-

1 N ment p-j and p N must be minimized at the times of those measurements From the forms of the expressions for the corrected variances this is achieved when the denomiators in both cases are maximized Clearly this occurs at the same common value

c 2 = c 2 = c 2 (5174) Thus for the eaalar case the optimal measurement positions as detershymined by c are seen to be independent of the value of the variance p at the times of the measurements and which is actually the same thing independent of time The same Is obviously true of the selection of the best Instrument accuracy as reflected In the measurement error variance

131

v which leads to the general result for the optimal management problem for scalar systems

Conclusion XVH For the scalar case of the tnonl-toring management problem the optimal sampling program is to sample only when the estimation error criterion 1s at its limit (CXVII)

Notice that the results in Conclusions XVI and XVII are general in that no restriction has been made which would limit them to the infreshyquent sampling problem only The infrequent sampling problem is obviously included under them as a special case

582 Extension to the Vector Case mdash Arbitrary Sampling Program mdash Consider the general case with n states retained in the normal mode exshypansion for the model m measurements at r stochastic disturbances for the monitoring management problem with bound on error in the state estishymate As in the scalar case assume the process starts at time tlaquo then compare the following two arbitrary monitoring programs

(1) Predict to t] sample at t and predict to t N (2) Predict to t N then sample

In the problem with bound on error In the state estimate the optimal program will be that which has the smallest value of Tr[P] after t N The relevant equations are for prediction

T r 8- T

ampN

s W +XVV-1 (s-176)

nl

on

nl

and for correction

Assume that the same measurement matrix pound Is used in both sampling programs

132

Ce Q ) (A) Predict from t Q to t

pound = H 0J T + Si (5178)

(B) Sample at t^

Ei bull Si - EdegE T [CPC T + y] _ 1cpO

=(5oJ T + s ) - ryo~ T + s)s T|9(io~ T + ~)~T + xl pound(JHoS T + ) s lt 5 - 1 7 9 )

(C) Predict to tbdquo using (5176) obtain N-l

pound - H Y H - l T +XV _ l T

n=l

^ n=l

- ^ ( J M Q J 1 + Q)pound T fe ( jy 0 T + Q ) E T + y l C ( M 0 T + s ) 1

(5180)

Case (2)

(A) Predict t N

(5181)

n=l

(B) Sample at t N

EM bull eS - E 0

N C T [ Q B deg G T bull y j 1 c E deg

N N

bull (V T + A pound r 1osn _ l TV ( t V T + Z J 1 ^ 1 ^ 7

^ n=l ^ n=l

x U v T + f laquon v- i T V + J V v T + Z jnlsslT (5182)

133

In order to establish the optimal1ty of program (2) it is required to find conditions on J a and MQ such that

Trjjpjj gt Tr[pJjJ (5183)

In general this is difficult to accomplish owing to the complexity inshyvolved in comparing traces of inverses of matrices Since it is so difshyficult to say anything at the symbolic level of (5180) and (5182) an example with n = 2 lt = l and r = 1 was developed algebraically which resulted in the same result as found with the scalar case in Conclusion XVII However an analytical result for the general case has not been found

Thus a general result for the optimal management problem for the vector case has not been obtained analytically though the results for the scalar case do suggest extension to the vector problem Numerical determination of the optimal sampling schedule for specific problems though tedious should be possible with dynamic programming (see Meier et al [92] for a related problem)

583 Extension to the Vector Case - Infrequent Sampling Program -Following the discussion for the scalar case where it was found that the amount of correction to the estimation error criterion was directly proportional to its predicted value at the time of a measurement it is desired to show the following for the vector case of monitoring with a bound on error 1n the state estimate

(A) Predict to time t K sample there and find the correction

poundTrK 5 Trfe - EJ J (5184A)

(B) Predict to time t K + N then sample and find the correction

134

ATr K+N 4degtrade - amp (5184B)

(C) Show that

(5184C)

(D) Finally predict the case in (A) ahead to t K + N and show

(5184D)

Graphically these relationships are shown in Figure 58 which is simply

the vector analog to Figure 57 for the scalar case

the cas

A T rK+N raquo i T r K

I K 1

Figure 58 Asymptotic relationships for Tr[pound] in the vector optishymal management problem

135

It 1s assumed that tines t K and t K + N are sufficiently long to pershymit the approximations in the infrequent sampling problem (518) and (520)) to apply at each sample With these simplifications obtain from (522)

T E H 4 + K deg + T r | j s

~PK = Edeg - efej [ s K $ T

K

+ y ]V p deg -K+N[~K+NEK+N poundK+N + ^J

pK+N -K+N ampamp CK+NEK+N

For consistency as before assume that

~K = poundK+N E ~

a t both measurement t imes Thus in (5 184A)

ATrbdquo = Tr

S i m i l a r l y for (5 184B)

ATr K+N [amp4 pound p K + N E + J

(5185)

(5186)

(5187)

(5183)

(5189)

(5190)

(5191)

I t is required in (5184C) to compare ATrK in (5190) with ATr K + N in

(5191) Making substitutions for pjj and Pdeg+ N for the matrices in (5185)

and (5186) shows that the only difference in pound[ and Ej + N is in the

valua of their (ll)-elements see the second terms in (5185) and (5186)

This results from the infrequent sampling approximations

Even with this simplification analytical comparisons in (5190)

and (5191) could not be found to substantiate (5184C) Approaches used

included use of the following theorem from matrix theory for the inversion

of a partitioned matrix

136

THEOREM I f fln is nonsingular then the inverse of the part i t ioned matrix

6

is given by

where

laquo11 Siz

A21 _ 1

1 5 2 2

A 1 + Xltf^X 1 - sect _ 1

e 1 1 e1

ilaquo x = 6 n f l

1 2

sect = ~22 ^21~

I - A 2 l A i r

(5192)

Attempting to use (5192) in comparing (5190) and (5191) where the

par t i t ion i s taken to ive A include only the ( l l )-elements of those

matrices shows that allowing only the ( l l ) -element of K and P + N to

be d i f ferent effects every element in the inner inverses in (5190) and

(5191) thus use of (5192) does not seem to help

I t was thought that use could be made of the

MATRIX INVERSION LEMMA For pound gt 0 and V gt 0

E - EpoundT[poundpoundST + y]_1poundpound = O f 1 + s V 1 ^ 1 (5193) (see Sorensen in Leondes 1781 p 254)

However though the number of terms in ATr K and ATr K + f | decreases the complexity in their comparison increases Thus the pursuit of an analytical statement for the solution of the optical management problem in the vector case was abandoned

584 Suggestion of a Heuristic Proof for the Vector Case - For the general management problem (of which the infrequent sampling problem is only a special case) the following heuristic proof is offered in substantiation of the optlmality of sampling only at the error limit when the model state is a vector

137

Suppose the problem started at time tQ and now is at time tbdquo The following two sampling programs as before are to be compared

(1) Sample at t|lt and predict to t +f (2) Predict to t K + N and sample (5194)

For consistency assume again that the same measurement matrix C is used in each case Then the optimality of (2) over (1) can be shown by provshying that at t K + N gt

T r ~K+N f o r C a s e ^ lt T r ~K +N f deg r C S S e ^ (5195) The above may be proven with a simple extension of the scalar results of Conclusion XVI to the vector case This extension can be made after making the following

Coniecture A The absolute values of the individual elements of the predicted covariance matrix in the linear recurrence (5175) are monotonically increasing functions of time (CA) Numerical experiments have shown the above to be true but an analytical proof has not been obtained Assume the conjecture to be true in what follows

The optimality of case (2) can be established by reasoning as folshylows at the first measurement time tbdquo

(1) Assume the measurement associated with the matrix C effects allthe modal state variables that is information is gained in the estimate of each state of the filter at a measurement (2) The information obtained in each mode decreases the absolute value of every element of the covariance matrix during a meashysurement

(3) Conjecture A implies that the absolute values of all the eleshyments of the predicted covariance matrix [PR+N3 at time t +tj are larger than those of [pound$] at time t|lt

(4) Then from Conclusion XVI for the scalar case the absolute value of the correction to each element of [J$+N] at t K + N should be greater than that to each element of [E$] at t|lt

(5) By the uniqueness of the solutions of linear recurrences the elements of [P|lt+M] for a sample at time t^+o must thus be smaller in absolute value than those of rPKM] at tiMM for a sample at t R K + N N N (5196)

138

A graphical interpretation of this even for a small number c reshytained modes adds more confusion than clarification to the above Such a pictorial description would follow Figure 57 for the scalar case where such a graph can now be thought to apply to eaah element of the (n x n) covariance matrix

If the above construction has validity 1t applies to both the trace of the state estimate error covariance matrix and to the variance of the system output estimate anywhere in the medium Thus in both the moi toring problem with bound on state estimate error and that with bound on output estimate error the optimal management program would be to sample only when the error criterion reaches its limit

Though a proof has not been found the concepts presented here may prove to form a basis for future solution of the optimal management probshylem for the multidimensional case

59 Extension to Systems in Woncartesian Coordinates General Result for the Infrequent Sampling Problem

Duff and Naylor [34] in Chapter 6 on the general theory of eigenshyvalues and eiaensystems discuss at length conditions under which partial differential equations of applied mathematics are separable Results are given there of conditions under which eigensystems for given coorshydinate systems can be found The results presented in this thesis for the Infrequent sampling problem based upon properties (518) and (520) extend directly to systems 1n any coordinate system for which complete orthogonal eigensystems can be found the requirement Is only that the first eigenvalue must dominate the asymptotic response a condition which has been seen to admit a wide variety of suitable boundary condishytions As developed in Young [131] no-flow boundary conditions can be

139

used in conjunction with pseudo-sources at the boundaries of actual sysshytems in the coupling of component models to one another greatly extendshying the applicati n of infrequent monitoring theory

The results of Conclusion XIV for systems with fixed boundary conshyditions extend as a worst case to systems in any separable coordinate system where a complete set of orthogonal eigenfunctions nay be found In those cases fidegd boundary conditions or emission or radiation boundary conditions lead to the modified separation property in (5119) this results in the necessity of solving for the position of maximum variance in the output estimate in the monitoring problem with bound on output error as a function of time This is not a serious difficulty and does boast the property that as in Conclusion XII for no-flow boundshyary conditions once the position of maximum variance is found at the first sa pie that position will be the position of the maximum varishyance for all subsequent samples Thus the time-varying maximization in (5119) and (51ZC) for one-dimensional diffusion with fixed boundary conditions or for systems with emission or radiation boundary conditions as in Conclusion XV need be solved only at the fivet sample the same result applying for all other samples the result extends directly to all systems of higher dimension in separable coordinates with complete orthogonal eigensystems

The more ideal results of Conclusions VII and XII for systems with no-flow boundary conditions appear to also extend to systems in arbitrary coordinate systems where again complete orthogonal eigensystems exist The requirement in order for the solution of the minimax problem to be Independent of time in Conciusion XI is that the eiaenfunction associated with the dominant eigenvalue in this case the zero eigenvalue be inde-

140

pendent of the spatial coordinates Consistent with this requirement make

Conjecture B For diffusive systems in any coordishynate system where solutions may be expressed in terms of a complete orthogonal eigensystem the case of no-flow boundary conditions leads to a dominant eigenvalue of zero modulus and an associated eigenfunction which is independent of the spatial coordinates (CB)

Examples include diffusive systems in cylindrical coordinates For a system with a no-flow boundary condition at radius r = R the eigenfunc-tions are Bessel functions the eigenvalues are the positive roots of

3 pound J 0 ( A R ) = 0 (519)

the first of which is zero The eigenfunctions are e n(r) = J 0(A nr) (5198)

but since A = 0 the fir-it eigenfunction is independent if r (see Mac Robert [b2] for n extensive treatement of Bessel functions in the area of spherical harmonics)

Another example concerns radial and latitudinal atmospheric pollushytant transport on a global scale (see Young[131] Chapter 4) It can be seen that eigenfunctions in the radial direction are Bessel functions while those in the latitudinal direction are the Legendre polynomials Both eigensystems possess zero first eigenvalues and related eigenfunc-ions which are independent of the spatial variables

In cases such as these the complete separation of the minimax problem as in Conclusion X into two independent problems in minimization and maximization both of which may be solved independently of time leads to in elegantly simple solution of the infrequent monitoring problem with bound on error in the output estimate

141

The following general results for diffusive systems in various dishymensions and coordinate systems summarize the extension of the one-dimensional results of this chapter o the general case in multiple dimensions

Conclusion XVIII The complete solution of the deshysign problem for an infrequent sampling monitor may be determined at the first sample time the results being optimal for all subsequent sample times The optimal sampling management program appears to be to sample only when the estimation error criterion is at its limit These results apply to diffusive systems in separable coordinate systems with homogeneous boundary conditions where complete orthogonal eigensystems exist and to normal mode models of arbitrary finite dimension

(CXVIII)

142

CHAPTER 6 NUMERICAL EXPERIMENTS

Examples are presented in this chapter which serve to numerically substantiate many of the analytical results of Chapter 5 The discrete-time Kalman Filter algorithm of Chapter 4 is programmed as shown in PROGRAM KALMAN (see Appendix F) using the normal mjde problem formulashytion of Chapter 3 and the time-discretization algorithms of Chapter 4 and Appendices A B and C The first-order gradient optimization algoshyrithm with linear constraints described in Section 536 (see Westley [127]) is coded as SUBROUTINE KEELE and included as part ot KALMAN For the case m = 2 for the optimal positioning of two noise-corrupted meashysurement devices and for a one-dimensional diffusive medium it is found to be convenient to generate contour plots of the value of the estimate error criterion (either Tr[Ppound + N(z K)] or [ P J ^ f z J L j ) as a function of the two measurement device position coordinates IKJi and f z K ] 2 at various times t bdquo + bdquo The surfaces shown in these plots with the high level of information they contain were instrumental in arriving at many of the conclusions of Chapter 5

The basic problem to be considered is developed in the following section various examples based upon it to demonstrate the more salient features of the infrequent monitoring problem are included in subsequent section

143

61 Problems in One-Dimensional Diffusion with Ho-Flow Boundary Condishytions Method of Solution

Consider a one-dimensional problem in diffusion including scavenging described as follows

Figure 61 One-dimensional Diffusive system example

For the pollutant concentration pound(T) consider the following initial-boundary value problem

3 5 uraquo 5 = 0 x = U

W e(cO) = V cos ((n - D f E )

(61)

(62)

(63)

The single stochastic point source 1s defined by

144

U U T ) = OI(T)S(C - c j

E[OI(T)] = 0

E[u(T)agt(T2)] = Wlaquo(T - x 2 ) (64)

In the interest of generality transform the problem to dimension-less functions of time and space as follows

t = poundl bull

a fix K

W T raquo (65)

Substitution of (65) into (61) yields the following dimensionless form

for the one-dimensional diffusion initial-boundary value problem 9

| f = S-l - 05 + f(zt)j (66)

bull amp i | f pound U 0 z = o z = 1 (67)

n laquoz0) = cos (n - 1) irzj) (68)

n=l

and where the dimensionless point source is given by

f (z t ) = w(t)lt5(z - z w )

E[w(t)] = 0

ElXt^wttg)] = Wa^ - t ) (69)

With these generalizations the modal resistances capacitances and eigenvalues from Table (331) become the following for the dimenshysionless problem with scavenging

145

n = 1 raquo

n = 23 2 n = 23 (n-l)V

The forcing terms from (335) become

((n-l)V + a)

[ c n cos ((n - 1)TT z w)jw(t)

concentration at any point z CO

pound(z t ) = ) x n ( t ) cos fn - UirzV

12

The pollutant concentration at any point z from (335) becomes

(610)

(611)

(612)

For a sufficient number of modes to be both theoretically interesting and computationally expedient choose n = 5 for the number of terms retained in the expansion in (612) This choice will be studied later as to its effect upon the outcome of the infrequent sampling problem

Thus the modal state equations may be written in dimensionless variables as follows

1 -o

2 bullU2+a) k3 - -(47i 2+a)

4

5

-(9ir z+a)

0

J +

o x l x 2

3

4

+

lt 5

2 cos (IT Z W ) 2 cos (2ir z j 2 cos (3ir z w) 2 cos (4 z )

w(t)

(613) The initial pollutant distribution (z0) is chosen as in (68) so that from (333) the initial modal state variables are written simply as

146

8(0) = m Q (614)

The covariance of the error in the estimate in the Initial state 1s chosen to be

005

Bo s raquoo 001 o

000001

o 000001 (615)

000001 For m = 2 the two noise-corrupted measurements in the vector y are given by

X pound i v

raquo1 1 cos(nz) cos (2irz) 1 cos(nz2) COS (2irz2)

r l1

x 3 x 4

v(t) v 2(t)

(616)

where the mean value of the measurement noise E[y] 5 o (617)

Choose the position of the stochastic source as z w = 03 (618)

For this case scavenging is ignored so that a = 00 (619)

Let the source and measurement noise statistics be defined by the folshylowing covarlance matrices

W = 0125 (620)

147

OOSO 0 (62i)

0 0025 A typical output record of the problem description from KALMAN Is

shown in Figuure 62 The data corresponds to a problem with a bound on the error 1n the state estimate where the error limit Tr = 0075 At each measurement time NSEARCH pound 5 random starting vectors are to be used In the measurement position optimizations The Initial guess for the measurement positions Is chosen as zbdquo = pound015015] (called Z) The computed values for A and D are shown For a steps1ze of OT 5 001 the so-called Paynter number raquo 35 that is the number of terms used in the series approximation for e- In (49) for an error criterion of EPS = 000001 The state transition matrix pound + 1 (called AK) and the discrete disturbance distribution matrix lpound + 1 (called OK) from (412) are computed along with the Incremental disturbance noise covariance matrix g K + 1 from (414) and Appendix B (called WKP1) The steady-state disturbance covariance matrix n from (519) and (520) including the

r - SS term | ft I ) Is listed as WSS along with the number of tlmesteps NSS

Nn necessary for the Infrequent sampling approximations to be valid see (578) for the value e - 100EPS (same EPS given above)

For the monitoring problem with bound on error in the state estishymate a measurement is necessary whenever at time t bdquo + N Tr[gpound+N(zpound)T gt Tr At each sample an attempt 1s made to locate the global optimum of the measurement position vector jJ + N such that

For the initial guess of z K + H = [015015]1 and for NSEARCH S 5 other randu^ starting vectors the constrained first-order gradient algorithm

DISCft i Te KALHAN F I L T E R SIMULATION PROGRAM V E R S 2 7 5 ftOV f

PFJ03LE1 INPUT JS AS FOLLOWS

EXAMPLE TO SHOW GROWTH OF T R A C E I P ( K K + N ) J Slf l lFACE WITH T I 1 E T ( K N ) ITS SHAPE APFRCACHES THAT OF I P l K K h l l SURFACE ASYHPTOTI ALLY FOR LARGE H

WO VECTOR I S

1OODE00 1OCOEOO

CAPMO MATRIX IS 500DE-O2 -DElaquo00

-OCraquoOC 1000E-O2 OE+CO -OE+OD CE+O0 -CE+OO -CE+OO -OE+OP CAPW MATRIX IS 1250E-01

CAPV MATRIX IS

10D0EO0 tOOOE00 IOODE+OO

-OEDO -OEraquo00 000E-05 -OE+OO -OE+OO

-OE+OO -OE+OD OE00 OOOE-03 -OE+OO

-OE+OO -OE+OO -OE+OO -OE+OO 1OOOE-03

2W VECTOR IS 3000E-01

Z VECTOR IS 1500E-0 1500E-01

NUWSEft OF POINTS FOR RANDOM SEARCH INITIALIZATION IN5EARCH) bull

THIS IS A MONITORINS PROBLEM OF TKE FIRST KIND WITH A CONSTRAINT ON THE ALLOWABLE ERROR IN THE STATE EST MATE THE ESTIMATION LRROR CRITERION IS THE TRACEIPltKK+N)3 THE CONSTRAINT ON THE ERROR IU THE STATE ESTIMATE IS FIXE) AT

Figure 62A Problem description from PROGRAM KALMAN

PARAMETERS FOR SYSTEM DESCRIPTION ARE

D IFFUSION CONSTANT K 1O00E+O0 LENOT OF MTPUW L = 1 OO0E-00 SCAVCKSINO RATE ALPHA = OE+OO

MATRIX I S - O E D D OE+OO

017+00 - 9 8 7 C E + O 0

OEOO OE+OO

OF+03 OEOD

OE00 OE+OO

MATRIX 1 5

1 O0JE+O0 1 1 7 6 E + 0 D

- 6 1 0 0 E - 0 1 - 1 9 0 2 E + 0 0 - 1 6 1 8 E + O D

OE+OO

OEDD bull3 94BE+01

OE+OO

CEOO

OE+OO CE+OD

OE+OO CE+DO

CE+OO OE+OO -eee3Eoi OEraquoOO

OE-00 -1S79E+02

1OOOE+00 bullOE+OD DEC0 OE+OO OE+CO

DK MAT)

10DDE-02 1119E-02 -5106E-03 -126CE-C2 -a134E-C3

OE+DO OOeOE-01 CE+OO OE+CD OE+DO

OE+00

OE+OO 673BE-01

OE+OO

OE+OO

OE+OO OE+OO OE+OO 1ME-D1 CE+OO

OE+OO OE+OO OE+OO OE+OO 2062E-0T

WKPt MATRIX I S

1 2 S 0 E - D 3 1 3 9 9 E - C S - S 3 B 3 E - 0 raquo l Q 7 6 E - 0 - 1 0 1 7 E - 0 3 1 3 3 B E - P 3 1 S 6 B E - 0 3 - 7 1 6 0 E - 0 4 - 1 7 7 6 E - 0 3 - I 1 5 2 E - 0 3

- 6 3 B 3 E - 0 4 - i e 6 E - C 4 3 3 0 1 E - 0 4 6 2 7 pound E 0 4 0 4 5 3 E - 0 4 - 1 3 7 0 E - 0 3 - I 7 7 6 E - D 3 8 2 7 0 E - 0 4 2 1 1 5 E - 0 3 I 4 2 7 E - 0 3 - 1 0 1 7 E - 0 3 - 1 1 S 2 E - 0 3 5 4 D 3 L - 0 4 1 4 2 7 E - 0 3 9 9 2 I E - 0 4

WSS MATRIX I S

9000E-02 143BE-02 - I 9 5 7 E - 0 3 -2 C77E-03 14d6E-02 A7MG-03 - 1 M 0 E O 3 - 2 0 3 2 E - 0 3

-1 957E-03 -I e^OE-03 6047E-04 1 I45E-03 -2 677E-03 -20(2E-Q3 1145E-03 254GE-03 - I 231E-C3 -I 4 1 E - 0 3 6333E-04 1 559E-03

bull1281E-03 bull l 417pound 03 6333E-04 1559E-03 1-036E-O3

THE NUMBER OK TEftK$ I N THE TRUNCATED MATRIX CCMVOLUTION SERIES FOR THE STEAOT-STATE VALUE OF tUSS) NSS 71

Figure 62B Problem description from PROGRAM KALMAN

150

KEELE produced the results for the first measurement partially shown in Figure 63 The global minimum is chosen as the best minimum found after the NSEARCH + 1 attempts

Figure 64 is a time history of Trlppound+N(zJ)] that is a plot of the performance criterion with the optimal measurement positions from time t K used in its evaluation between measurement times t K and t K N Three sample times are shown at t = 009 048 and 088 At each samshyple the optimal positions of the m = 2 measurement devices with covari-ances given in (621) are found such that the time to the next sample is maximized Examples of actual state and optimal state estimates are shown 1n Figure 65 In the plots those labeled X() are plots of states with time those labeled XH() (mnemonic for ( or x-hat) are the corresponding state estimates

In assessing the globil optimality of zpound and P found at time t K

(as in (62)) contour plots are constructed for the objective function [P^(j K)] 1 1 plotted against [z K] horizontally and Is K] vertically The minimum plotted value is noted with a the maximum with a 0 In between are nineteen equally spaced levels denoted with the symbols ()( )(D( )(2)( )(9)( )(U) The actual evolution of the optimizashytion calculations can be followed with such contour plots in order to understand the procedures of the algorithm More importantly study of the contours serves as an important method of understanding the nature of the design problem since the plots convey a level cf information otherwise not available through tabular listings or other means

At each sample time say t K + N the predicted covsriance matrix IK+N is written out for post processing and after the entire time intershyval in the monitoring problem is covered contour plots of the

THE NUMBER OF CALLS TO FVAL IG 1 1309346B3E-02 1ODO00000E+00 213471279E-01

THE KUKBER OF CALLS TO FVAL IS 7 127494646E-02 1OOOOOOOOElaquo00 1C3265064E-01

THE NUriBHR OF CALLS TO FVAL IS t 1 367C4440E-02 437O71939E-01 601669468E-OI

THE KUM3CR OF CALLS TO FVAL IS 19 12644I4E9E-02 21 J255890poundgt01 515S4B271E-01

THE NUMBER CF CALLS TO FVAL IS 1 146922GD4E-02 374187311E-01 B92S8163eE-01

THE NUMBER OF CALLS TO FVAL IS IS 1264J1463E-02 211254872C-01 S15347999E-01

THE NUMBER OF CALLS TO FVAL S 1 162042943E-02 5O7662490E-01 laquo00351916E-01

THE KUKBER OF CALLS TO FVAL 13 13 12B441469E-02 2t126264SE-01 3155529S3E-01

THE NUMBER OF CALLS TO FVAL I S 1 1SB617996E-02 3a5314991tgt01 27e840503E-01

THE NUMBER OF CALLS TO FVAL IK 11 126982870E-02 6621772E5H-01 1 67144930E-01

THE NUMBER OF CALLS TO FVAL IS 1 132010362E-02 2273t1246E-01 663S29703E-01

THE NUMBCR OF CALLS TO FVAL 16 442 1 E6441469E-02 2 U235SC4r-01 6I3540379E-O1

BEST LOCAL MINIMUM FOUND AFTER B TRTS I S 126441469E-02 211234672E-01 315347999E-01

Flpure 63 Sunmary of results of minimization of F P ^ Z ^ ] at the f i r s t sample time from SUBshyROUTINE KEELE r K ^ K ltJ l l

eooooE-o2

B3000E-02

42500E-OZ

X X X x ) x x x x x bull x x x x x x x x x x x x x X X X X X X X X X X X X X X X X X X X X X X X X X X - X X X X X X X X X X X X X X X X X X X X X X A X X X

x x x x x X X X X X X X X X X X

x x

Figure 64 Time response of TrJpK+MfZ|)Jraquo the performance criterion for the optimal monitorshying problem with bound on error in the state estimate samples occur at t K = 00D 048 and 088

B6900E-01

S5BOOE-01

947O0E-01

X X

X X

X X

x

X

X

X

X X X

X X X X X

X

X

X

X

X X

X X

X X

X X

XX XX

X

x X X X

X X X

XX

X X X X

X X X K X

X X

X

X

X

X

XX X X X

XRXX

XX XX

X X

X XXX

X

X

K

Figure 65A Trajectory of the f i r s t modal state [ K + N ] raquo versus time t K + f J

1OO3Opound00

xxxxxxxxxxxxxxxxxwoooutxxxwuwxxxxxxxxxxx

xxwoouooc

XXWOWKXXXXX) OIMXXXXXXXXXXXXXXXXW ucwxxxx

Figure 65B Trajectory of the optimal estimate of the f i rs t modal state time t K + s bull [ -K+NJ T versus

1000OElaquoO0 X

XXXJUUM WWXXX

-IOOOOE-01

Figure 65C Trajectory of the second modal state [SR+H] 2 versus tine t K + N

6000GE-01

JOOCIE-01

ZOOOOE-Ot

IX

1 X

I X

1 X

1 X

I X I X

I X I XX I X 1 X 1 X I X I X I X 1 X

i V I X 1 ft K XX XX XXX xxxx xxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 65D Trajectory of the optimal estimate of the second modal state I E K + N ] versus time t K + N- L J 2

157

[ppound +J)(z + N)] surfaces are made for each sample time Much use of

these plots is made in what follows

62 Problems with Bound on State Estimation Error

621 ftsyaptotic (tesporso of Stats Estimation Error mdash Fov the

monitoring problem with bound on allowable error in the estimate of the

modal state vector i t is necessary to make a measurement whenever for

a time tK bullK+N

T BK + N(SK) i T r l t a (623)

that i s whenever the trace of the error covariance matrix predicted

from the last measurement at positions z bdquo at time t bdquo to time t K + N reaches

the estimation error l i m i t T r

In order to numerically substantiate the fundamental results for

the Infrequent sampling problem contained in conclusions I I I I I and

I I IA the relationship between T l lpoundJ( + N( K)J and [pound()] is now conshy

sidered Suppose the monitoring problem is started at time t Q with

PS 5 Hbdquo as the i n i t i a l value of the error covariance matrix le t i t s -0 -0 value then be predicted ahead to lime t bdquo when

Tr[pdeg]= Tr i V nV l T gt T r z i r a (624)

at which point a measurement must be made The monitoring design probshy

lem is to choose pound at time t K so that the maximum time t K + N results when

For a measurement at 2 K the corrected estimation error covanance mashy

t r i x 1ltmed1ately af ter the measurement is given by

158

$(h) - PKdeg - $ ( [5(2K)EK-C(K)T + secthgt ampbullgt where

^ K )

1 cos (TTZ) cos (2TTZ)

1 cos (irz2) cos (2TTZ 2) (627)

In order to generate a contour plot of Tr[ppound(jK)] from (626) plot values of Tr[Pj(zK)] for all values of the elements of zraquo over the full length of tne medium (0 lt z lt 1 and 0 lt z lt 1 in (627)) The surface for the first sample at t R = 009 1s shown 1n Figure 66

To study the evolution of the trace of the predicted error covari-ance with time as a function of the measurements at time tbdquo let

-PK+I(SK) bull lt(SK)S T +

~PK+2(K) lti(Kgt T + 8

n=l (628)

Contours of the traces of the above predicted covariance matrices at tines t K + t K + 5 t K + 1 0 t|+11 and t K + 5 as functions of jo are shown in Figure 6-7 Notice how tht global minfmum moves with time ote also how the error 1n the estimate In the region near the stochastic source (z w = 03 along both coordinates z 1 and z 2) Increases in v ^e as time grows relative to the rest of the surface due to greater uncershytainty in the estimate in that area

CONTOUR PLOT OF TRACE[P(KK+Ngt(2(Kgt11 A3 FUNCTICI CF [Z(K)31 HORIZ C2(KM2 VERT EXAMPLE TO SHOW CROWTH OF TRACECPIfcK+Hll SURFACi UlTH TIME TIK+N) ITS SHAPE APPROACHES THAT CF [P(KK1J11 SURFACE ASVMPTOTICALLT FOR LAROE H

10 393 44 3 222 599 44 3 222 555 44 3 222 39 44 33 222 3 44 33 222

OS bull 44 33 222 44 33 222

444 33 222 444 33 222

444 33 222 06 444 33 222

4444 33 22 4444 33 22Z 4444 33 222

4444 33 222 07 bull 4444 33 22

4444 33 22 4444 33 22

4444 33 22

444444 33 22 0 6 M4444 33 2 1

4444 33 222

44 333 22 1 U f K l l Z 333 22 1

3333333 222 1 0 3 333 222 I

Z2222 2222222222

2222 33 4 S 6 77 2222 33 44 S laquo 77 2222 33 44 3 6 77 2222 33 44 3 66 777 2222 33 44 3 3 BB mdash 2222 33 44 S3 06 2222 33 44 S3 i-2322 33 4 S 61 2222 33 4 S 6L

222 33 44 33 66 222 3 44 S3 66 222 33 44 S BBS

222 33 ~

8(138 99999999 BUSS 99999999 S03B 999999B9 1)388 99903399 03986 93999999

777 888886 S9 J9999999 7 6883886 9999939999999 777 8838888 9S99999999

7 77 68868688 95J99 777 eeeeasses

77777 6888888688 77777 866886868666888

777777 6086666868886 666888686

04 -111111 111111 1111111 1111111 03 +1111111

1111111 i u m i m m 111111

oa + i i n

22222222222222222 22222222222222222222222

22222222 2222222 22222 22222 2222 333333 2222 222 3333333333 222 222 333333333333 222 222 33333333333 222 222 333333333 2222 2222 2222 222222 22222

2222222222 222222222 22222222222222222222

222 33 4 33 6G6 777777777 22 33 44 S 3 66S 7777777777 22Z 3 44 33 6663 7777777777777

22 3 3 4 4 3 3 GGXC 77777777777777 22 33 4 33 BE5636 77777777777777 222 33 44 33 3pound66S6GS6 777777

22 3 44 353 -36666666666666666 22 39 44 533S 6666666666666666686 22 33 444 355553553 222 39 4444 33333333553533353355333353333

22 33 44444444 222 333 4444444444444444444444444444 2222 3333333333333333333333333333 lt

22222 222222322222222 2222222222222222222222222pound222222

2222Z222222 11111111111111111111111111 t i l 111 m i l -

1111111111111111111111111111111111111 11111111 111111 111111111 111111 1 i u u i n 11111 11111 11111 11111 11111 11111 _ 11111 0

22222222222222 222222 01 +333333 2222 3933 2222 4444 333 222 44444 333 222 444 33 222 OO + 444 33 222 HH

urn i n i t i n

1 l 1 l l I 1 t l 1 l 1 1 1 l 1 1 1 1 U 1 l m i n i u m t m m t i i n n n i i

2222222222222 2222222 22222222222222222222222222222222 2222 3333333 222 333333 3333333333333333333333399333333 2222 3333 222 333 4444444444 222 33 44444444444444

TtK+N)raquo 90000E-02 T(K bull SO000E-O2 N bull O STEPS AFTER FIRST MEASUREMENT

T K S S S (S) (91

d616pound-02 3369TE-02

i e i (6)

33166E-02 32440E-02

(7) C7) 31713E-02

3O690E-O2 16) (6) 30265E-02

29540E-Q2 (3) (31

26814E-02 26089E-02

(4) (4)

27364E-02 26539E-02

(3 ) (3 )

23914E-02 23163E-0Z

(2) (2gt

244E3E-02 23738E-02

(1) lt1gt

23013E-02 22268E-02

(8jraquo 21363E-02 ESTIMATION ERROR CRITERION CONSTRAINT bull

78000E-02

figure 66 Contour plot of TnP|[(Sv)| a t f i r s t measurement time t K = 009

ITS SHti-e APPROACHES THAT CF lPtKKgt311 EbRFAC ~ IAYMPTOTICALLV FOR LAROE N

tZ(K)32 0 5

laquo 4 444

44444 ltgt444 4144 4444

444 3 444 3 444 33

222 222 222

2222 2222 2222 2222

i 222 pound2

2222 222 272 2ZZ

-1J4 444 44 444 44

33 222 03 222 33 222 33 22 333 333 2 3133 22 33333 222 2222 22222 222222

11111 1111111 111111 Mill 1111 111

111 1 111

22222 33 4 5 66 7 8338 9999999 0-22222 33 4 S 66 7 8e88 S999939 22222 33 4 S 6 7 BBC3B 933999S9 22222 33 4 5 6 7 7 8B380 99992939 22222 33 4 S 63 7 eSBGQ 93939993 22222 33 44 S3 66 77 6C8E68 933^9999999 222222 33 44 S3 60 777 8386888 99999S93999 22222 33 44 0 66 777 683B(8d S9999939 22222 33 4 55 6S6 7777 CSBBBSBB 2222 33 44 53 66 77777 088888888 22I-2 33 44 5 66 777777 08866886888 laquobull 2222 33 44 55 St 6 777777 8833668888880 222 33 A S3 664 77777777 88888888 222 33 44 55 tB-1 7777777777 111 222 3 44 55 6iC6 77777777777 11111 222 33 44 55 60566 7777777777777 1111111 222 33 44 55 UE66666 7777777777777 II 111 111 22 33 44 555 666666S666 777777 11111111 222 3 44 551 66666666666666 111111111 222 33 44 6-5 66666666G666666666

III 111111 2 2 3 3 44 pound5^5533553 66666 1111111111 222 33 444 5355355555533555555555 1111111111 222 33 4444ltM 55555 11111111111 222 3333 444444444444444444444444444444 11111111111 2 2 2 333333333 111111111111 22222 33333333333333333 111111111111 22222222pound22222222222222222222222 111111

222222 22222222222222222

222222 22222 2222 33=3 22222

2222 333333333333 222 222 33333333333333 222

2222 33333 333333 2 2 2 2222 33333 33333 222 222 33333333333333 2 2 2 2222 3333333333 2222 22222 pound222 1

222222 222222 11 2222222222222222

1111111111 111111111111 111111111 II 1111111 II II 111111 1111 1111111111 n i m i i i i 111111 H I m m 11111 i n i i

pound22222222 22222

333333 2222 3333 222

444lt] 333 222 441444 333 2pound22 4M444 33 222

1111111 1111111 1111111 111111 111111 1111111 1111111 1111111 111111

111111111111111111111

11111111 111111111111 11111111111 1111111111

111111 222222222

2222222 2222222222222222222222222222 2222 333333

2222 333333333333333333333333333333333333333 2222 3333 333333333333333333333333 222 3333 3333333333333

TCKNgt 10000E-01 T(K) bull 90000E-02 N bull 1 STEPS AFTER F r RST HEASUHEHENT

SYPcopy LEVEL RANGE

-s-srapoundsi m 35902E-02

35248E-02

i 34594E-02 33940E-02

33265E-02 32631E-02

i 31977E-02 3 1323E-02

30668E-02 30014E-02

s 29360E-O2 26706E-02

26051E-02 27397E-02

i 26743E-02 26CB9E-02

3434E-02 247eOE-02

(copy) 24T26E-02 ESTIMATION ERROR CRITERION CONSTRAINT =

750D0E-D2

12SJCE-013

Figure 67A Contour plot of measurement

T rfei(0] U K+1 010 one timestep af ter f i r s t

161

r w S z

m m n_ lnM bull MM ampnm J 5 8

pound8 SS8

totacopy t^f

I WW

laquo5S N K Jill timctmo B O O

ltoia mio v mm vn hi

ogtn M O W --

- w o n mdash ni Bin bull bull- w o n - w o n

a-o w - raquo - bdquo bdquo _ _

_ _ n n (M mdashmdashraquo- ~mdash^mdashlaquo-mdashmdash~raquo m r t r t o V T I V laquo o w - - ^ - - _ - - - - -

- n n m o n m ltrwMM nn w w - raquo - - - bull - - - -mU)D M T H J ^ M laquo r n w ^ ^ raquo - mdash mdash mdash bull mdash

M lt T M laquo n n n t i i ajpi raquo - - - bull bull nnnnnei laquo laquo - ^raquo - r - r - r -

n n n n ftiNw ^ - bull w w w m i i i - i n n o gtWNlaquo mdash _ bdquo raquo - _ CMVWMIM

n d n o n n n wcyNWh) mdashmdashmdash_- - ^ NNMt twNN laquo OjttOjCVWN bdquo - ^ raquo filtM laquoM

- - bull bull - bull - mdash -bull MU OO laquo

W

- N nnn bull

bullmdashgt- w w

III NiMdiuW

(MCMNfcrw

Bio

F-uu cvw lt laquo(jftlfCVJ

U S O -WMWtVWhJ

raquo-raquo- w

N mdash bull- mdash mdash

si WAituww n o n W N

WMW mdashZZ

CONTOUR PLOT OF TRACpoundtPfKK+HgtltZOOU AS FUNCTION OP t2ltK131 HOR1Z EZltK))2 VERT EXAMPLE TO SHOW GROWTH OF TRACEIPIKK+Hll SURFACE WITH TIME T(ftN) T6 SHAPE APPROACHES THAT OF (F(KK)311 SURFACE ASYMPTOTICALLY FOR LAROE N

0 2

Z S 2 2

aa 2g2 933 2222

333 22g 3333 222

333 33 222 333333 Z22

33333 222 bull33333 22

33J33 pound2 33333 22 35333 222

3333 22 33J 222

444 3 444 3

Aft W 44444 33 44444 33 +4444 333 444 33

333

22ZZZ222222222222 Z22222222222222222 22222222222225^222 Z22ZZ222Z222222222 22ZJ22222222222222

22222 22222222222 ~ 222222Z222

22Z22Z2222 222222222

2222222

333 44 H S 333 4 9 6 933 4 B TO

33 4 S3 66 33 44 S3 61 333 44 9 61

mdash 44 33

999399 O 999999

999999 9939999 99999399993 9999SS9

Mil

7 0B0BB 7 88088 n eases 7 BBSBS 77 BBSBBB T 7 BBBBBB

bdquo - ^ r 77 B680CB 33 44 9 3 68 77777 098888

33 4 9 668 77777 B6BBBBB3 33 44 raquo3 BB1 777777 BBBBBBBBBSBB

- - - 6raquor 7777777 60086886 - - laquo16G6 77771

33 4 S3 66666 77777777 -~ 353 66666B 777777777777

333 66666B66 777777777 SSJ 666666666 777

I SU5S 6066686666 bullJ353333 666666B666666B C666666B

222222 33 22222 33 44 33

222 mdash -222

222 i 22 222

11111111 11111111111111

11111111111111111 111111111111111111 111111 111111111

11111 111111 bdquo - -m i m i l 22^

1111 222 1111 222

111 222 3333133 111 2222

11111 22222122 2222 11111

1111111

2222 111 22222 1111

1111 111111

111111 l l i m

i m i m i i m m 11111 111111 11111 222222222222 11111 111111 222 2222 11111

111111m J g z 2 M 3 3 3 M 2 L - L - 1

444 pound33333333333 1 4444 9S5S35555S3B 13 44lt14ltM4 033333533353

44444444444

bull bull 1 1 U I U 1 1

liliSHn

3333 333

333 444444 333 444444

3333 222 33 222 333 22 333 22 333 222

333 222

11111111111111 111111111111111

m j u i m 01 +222222 111111 222 1111 33333 222 11 333 ---

_ 333 _ 222 33333333333 -raquo2 11111 2222 2222 11111 22222222222222 11111

1111111111111111111 bull 1111111111111 1111111111 1111111111111111111111111111 111111111111111111111111111111111111111 11111111111111111111111 1111111111 1 1111111111111111111111111111111111 m u 1 1 m m 111111111111111111111111111111

111111111111111111111111

0 0 bull144 33 333

sect22 22 111111

111 (11 11111111 11111 222222222 12pound2222222222g22a222222222222 111 2222 1 222 1 2222

T(KN1 19000E-01 TOO bull bull -0000E-02 N bull mdash 0 i E 3 AFTE FIRT BEASUREHENT bull bull bull ^ bull bull bull bull bull bull bull bull bull laquo B

COHTOUR LEVELS laquo0 SYPBaLS bull i i ^ i i i m i i i i i V1Vamp LEVEL RANGE i g g f i e e a s a t i i i i i

(0 47GG7E-02 19 (raquo m 171

47143E-02 46623E-02 46102E-02 40380E-02 4S059E-02 44S37E-02

( 6 ) CB)

44015E-02 43494E-02

IB) (31

42972E-02 42431E-02

11 t4J 41929E-02 41407E-02

13) 40Be6E-02 4 0984E-OS

(2J C2)

3SB43E-02 39321E-02 38799E-02 3S27SE-0Z

CM 37756E-02 I H ^ t H I I I I I I I I I ESTIMATION ERRdR CRITERION CONS^-AINT

7S000E-02 COVARIANCE tWJ

Figure 57C Contour plot of Tr ElLinfe) a l t 1 m e t ^ m - 0-19 ten timesteps after first measurement

CONTOUR PLOT OP TRACEIP(KKraquoN)lt2(KgtJ3 A3 FUraquoeTteM Of [ZCKI31 HORIZ CZIK12 VERT EXAMPLE TO SHOW OROWTM OF TRACEIPtk KN)3 itftACE WITH TIKE TltK+N) ITS SHAPE APPROACHES THAT CF [PIKfltJ311 SURFACE ASYMPTOTICALLY FOB LARUE l

bull 444 444 444 44144

333 33

06 bull 333 2222

333 pound22 3333 222 333333 222 33333 pound22 33333 22 0 7 raquo33333 22 33333 22 33333 22 33333 222 1 3333 22 1 OC 333 222 11 222 111 2222 1111 EZltKgt)2 22222 111 1111 0 9 bullU111111 11111

3 22222222222222222 3 22222222222222222 3 222222222pound2222222 2 22 222222222222222 222222222222222222 22222 222222222 HZ 2222 2222222222 2222 222

SBBflS eoeos 63886 eeeee 777 695808

laquo99999 0 939999 999999 999S939 99999999 9999909999 9999999

333 46 3 0 7T7 333 4 fl 66 -7 333 4 a ee -7 33 44 55 66 ~~ 33 44 55 61 333 44 S 6B 777 608689 _ 33 44 S3 63 7777 6BSofl8a 2222222222 33 44 59 CF 77777 aaSOBd 2222222222 33 44 53 6(6 77777 6638668 2222222 33 44 53 pound68 777777 680308888888 222222 33 44 33 ecEB 7777777 66380888 22222 33 44 S3 Gamp666 7777777 222 33 44 35 66666 77777777 1111111 Z22 33 44 35 6665666 7777777777777 111111111111 22 33 44 3L5 66666669 777777777 11111111111111 222 33 44 ESr3 66666866 77 111111111111111 22 33 444 311555 666666666 11 11111111 7 33 444 i353S533 6666666B66666 11111 22 333 444 55553535553 6666666 11111 22 33 444 55555535333 1111 22 333 44444444 33353533335lt 1111 22 333 4444444444444444 111 222 33533333 4444444444 1111 2222 333333333333333333 1111 222222222222222 111111 222222222222222222 1111111111111111111 1111111111111111111111111111 111111111111111 1111111111111111 11111 11111 bull 11111 222222222222 11 111111 222 2222 111111111 222 3333333333 222 1111111 11111 03 raquo111 111 111 11111 bullIU111 02 - 1111 11 -111111 11111111111111 1111111111111111 1111111111 bull222222 u n t i l 2222 1111 33333 222

333 222 33 222 00 +44 333 222

222 3333 333 22 333 333 pound22 222 333 4444444 33 22 222 333 4444444 33 22 222 33 444 333 2ZZ 222 333 333 222 2222 33333333333 222 11111 2222 2222 11111

1111 1111111111111111111 11111 11111l1111l1llt1l1111 111111 11111111111111111111111 11111111111111111111111111111111111 111111111111 111111111 nil 111111111)111111111111111111111111 11111111111111111111111111111111111 11111 11111111111111111111111

22222222222Z2 1111

01 11111111 11111111 11111111 11111111 11111111 11111111 11111111

1111 111 1 111 I 111111111111111111111111111 II111111111111111 111111111 111111 2222222222222222222222222222 1111 2222 22 111 222 333933333 3333333 I I 2222 333393333333 3333333333

T(KN)raquo 20000E-D T(K) bull 9C003E-Q2 N raquo I I STEPS AFTER FIRST MEASUREMENT

SYlaquoe LEVEL RAN3E (01 4B911E-02 (9) (9)

483g4E-02 47677E-02

(61 (8 ) 4735SE-02 46B42E-02

(71 (7 )

46323E-02 4S807E-02 (6) 16)

43200E-02 4 4773E-D2 IS) (5 )

44255E-02 43738E-02

(4 ) (4gt

43221E-02 42703E-02

C3) (3)

42166E-D2 4I6SSE-02

(2 ) C2)

41I31E-02 40634E-02

( 1 ) 40117E-02 33539E-C2

(6Jgt 390B2E-02 ESTIHAT ION E ROR CRITERION CONSTRAINT bull

75000E-02 souacEINPUT COVARIANCE [U]gt t I2530E-011

Figure 67D Contour plot of T H P I M I U K M moaciirAmont

at time t measurement

K+ll 020 eleven timesteps after first

CONTOUR PLOT OF T R A C E I P 1 K K N H Z ( K J ) J A S FUNCT13K OF t Z ( K ) 1 1 H C S l Z ( Z ( K ) 3 2 VEftT EXAMPLE Tfl s w a y cRCWTH CF TftACElPCRKH) 1 S U R F E WITH TIHE T(Kraquofl ITS SHAPE APPRCACML3 THAT OF I P t K K j - SURFACE A-irKPTOTICALLY FOR UtfWE K

444 33 444 33 4244 33 44a44 333 44444 33 09 +4444 333

22222Z2222222222 2222222222222222 2222222 2X22222 22222^222222222 222222 222lt222222 222^2iVLaJi222222Z 444 03 222222 2222222222222 33 22222 222222222222 333 2222 22^2^22222 333 2222 222222222 33 222 22222 222 pound2222 222 222 222 11111 2 22 m n i n n m 2i 22 11111111111111111 22 1111111111111111111 122 1111111 1111 111 till

333 44 S 68 333 4 3 65 333 4 5 66 33 44 S3 66 33 44 55 66 333 4 53 66 mdash 44 33 61 77

6BB0C 8003 esses csoese esses

99P999 339333 993999 9939339 99393399

3333 333333 33333 33333 33333 3i333 33333 33333 3333 222 Z22 2222 111 2222 111 1111 1111111 1111

1111 111 111 11

1111 1111 Mil 111 11U 111

777 eOOSSfi 9999999399 __ 7777 688888 9999999 33 44 35 6S 7777 6088898 33 44 03 5pound 777777 eceaeceo 33 44 53 euro6S 777777 608828833038 mdash - -s r66 7777777 60888008 bull55 6EG6 7777777 3raquo5 665666 7777777 _ 33 fifl 3 5- 66C65B6 777777777777 gt22 33 44 5 5ES 66366666 77777777 22 33 44 3Si3 65B6SSB6 222 33 44 SJSSSS 6666666BB 3 444 53353333 66666G656666 33 444 3U55S35S333 666866 bull 333 elaquo4 533S353353 2 333 c444444444 5355S35333 22 3333 44444444444444 222 3 3^13333333 444444444 2222 33333333333333

22 222

222222222222222 1111 1111111111111111 11111 11111 11111 22222222222 1111 111111 2222 222 1)111 111111111 222 33333333333 222 111111 III 1111 22 333 3333 222 1111111

1111 pound 2f2222222222222 111U1 111111-1111111111111 m i i n H i m t u i m m m i i i i t i i m i i i t

11111 222 33 44444 333 222 11 22 33 44444444 33 222 222 32 4444444 33 222 1 222 333 44444 333 222 1111 222 233 333 222 111111 111111 222 333333333333 22 1111 11111111 pound222 222 1111 11111111111 22222222222222 11111 1111111111 1111 n m m i m m i i i i m i t m i i i i i 222222 1111111111111 2222 1111111111 33333 222 11111111 333 222 I1M111 33 Z22 111111 44 333 222 11111

11111111111111111111 i i m n m i t r i m m u r n 1 1 1 1 1 1 m m m m m m n l i m i t 111111111111111 IU1111 m m i m i i i m m u r n l i m u m m u i i m m i m m i n i i i i i i m i i n i i i i i i m i m i m m i m i m m m m m m m m m m m

i m m m i m m m I m m 11

m i m i n i u r n m i m m i m i m t m m i m 1111111111 222222 raquo222222222222222222Praquo222222Z22222 11111111 22222 2222 1111111 2222 3131333 3333333 111111 222 33133333333 3333333333

TCKNgtraquo 240C0E-O1 TIKI bull 9000CE-OZ N bull 13 STEPS AFTEB FIRST MEASUREMENT

SYR3 LEVEL RANGE (0) 338S9E-02 (9) 19) 3 3389E-02 32asOE-02

(6) 3237IE-02 51862E-02 17) 17) 3 13S3E-02 30B43E-02 (6) (6) 39S34E-02 49S25E-02 (5) t5) 4931CE-G2 46607E-C2 (4) 14) 48297E-02 477Q0E-O2 (3) (3)

47279E-02 46770E-02 (2) 12) 462G1E-02 45751E-02 11) (1) 4S242E-02 44733E-02 (copy) 44224E-02

ESTIHATTON11

ERROR CRITERI0M CONSTRAINT =

7SO00E-02

IS500E-011

Figure 67E Contour plot of Tr p pound 1 ( z bdquo M at time t bdquo 1 i 024 f i f teen timesteps after f i r s t measurement L K + 1 5 ^ K J K + 1 5

CONTOUR PLCT OF TftftCEIFlKKN) (ZtK) J 7 AS FUNCTION OF IZ tKI I I KeRIZ IZtK)32 Vf=T OIAMPJS O SHOW GfCiWTH CF TRACEtP(KKlaquoN)l SUKFCr WITH TIKE TltKNgt ITS CH-PE APPROACHES THAT OF |P(HK)]11 CURFACt laquoSYKPTCTfCALLY FOR LARGE N

1 0 544 33

OG

EZCJOJS

533laquo3

+1313J J3H33 33333 3333

laquo

3 3 3

2K

l l | S l l l | | 2 J 3 CC d 53 poundCgt

0OCB3 Epound-008 pound3088

poundbull)

Z2 111 1 1 1 222 111 2222 111 2222 111 1111 bull1111111

111111111 1111111111111 111111111111111 1111111111111111 1111111 1111 111

90J099 99909ltJS9 55 6CG 7777 8B00CG 9990993959 44 23 GC 7777 688086 99999D9 333 44 C5 C6 77777 pound00386 33 aa 55 t5 77777 eooeraee 333 44 S3 (1pound6 777777 8380C8e0923 33 44 53 e6Dr 7 777777 noc8309 333 -14 Sf 56tgtDS 7777777 33 44 515 GG666 777777777 333 444 fji 0065656 777777777777

111111 11117 11 11111 1111111111111111 11111 11111 11111 2222222222pound2 1111 111111 222 222 11111 111111111 2 333333333333 22 11111 111111 2 333 333 222 11 24 333 4444444 33 22 2laquoipound 33 444444444 333 222 232 353 44414441 333 222 22 33 4444444 33 22 11 222 333 333 22 1111111 11111 222 33333 3^3333 222 11 HI 11111 ill 222 333 2222 1111 llllllllli 2222222 222222 11111

222 33 44 pound55 egt6igtEEGG6 77777777 22 33 444 Ii3i5 GG36CG666 222 33 44 35SS5 6(gtGGG66GG 22 33 44 SS5amp55555 C360GGDC5G3 22 33 4V4 55555555535 6G6GS 22 33 Mfl4 555S555555 22 333 44444444444 555555555 1 322 331 444444444444 1111 222 333333333333 44144444 1111 22227 33333333333333 1111 E222222r2222poundZ2222

m i l l t u i m i i M u 111111 i i i i i i n i t i i i m u

1111111111111111 1111111111111H1I

11111T11 1111111111111

2222222222222 111111111111 1111111111111111 llllltl 111111111 11 ill 1111111 111111111111111 1 111111111 11111111111 11111111111111111111111111 1111111111

11111111 111111111111111111111 11 11111111111111111111

111 1111111111 111111111 11111 111111111 +222222 111111 2222 11 1 33333 22 1 323 222 33 222 333 222

2222 i t t u m m bull1111 i n m i i i i i i i m m i i i i i m i m m i i i i m i i n i i i i i i -n i i m i u rn 111111111 22222222222222222222222222222222222pound 1 til 11 2222 2222 111111 2222 33C3333 3333333 111111 222 3333333333 3333333333

TIHE = 90000E-O2 F1R3T MEASUREMENT ELEMENT( 1 1)

CCNTO h LEVELS AND 5YKEULS SYMB LEVEL RANGE (0) pound 2200E 02 (91 2 1697C 1 1S4E Q2 02 ltegt 2 (6) 2

0C91F 01 OLE 02 02 (7) 1 (71 1 9680E 3103E 02 02 (5) 1 16 1 eampeoF 8177S

02 02 (5) 1 iSgt 1 7G74E 71gt1E 02 02 (4) 1 (4) 1 65^ TIE 6165E 02 02 (31 1 (31 1 5663E 5160E -02 -02 (21 1 (2) 1 4fr57E 4154pound bull02 -02 (1 ) 1 lt1gt 1 365 IE 314DL -02 -02 lQ)_t 2645E-02

ESTIMATION ERROR CRITERION CONSTRAINT =gt 75000E-02

SOURCE INJUT COVAKIANGE IU1 = C 1 2500E -on MEASIttCMEHT ERROR C0VAR rvj = t 050 I -0 -01 0251

Figure 68 Contour plot of E K ^ I I I asymptotic response of

at f i r s t measurement time t R = 009 compare with T r [~W M surface at t K+15 024 in Figure 67E

166

68 shows that for all values of z R

4 - bull bull bull

As N increases so does the convergence to the result

Finally to demonstrate the result in Conclusion II a contour plot of [Ppound(Zbdquo)] is shown in Figure 68 Comparing the traae of P at time

-f -N I] Vt-15 1 n F i 9 u r e 6- 7 E w i t h t n e OU-efceman of P at time t K in Figure

r all values of zbdquo

[EWB^K)]-^)]- lt 6- 2 9) o does the convergence to the result

^ T K + N ( K ) ] = [ ~ P f e ) ] n - (630)

Another way of seeing these relationships is as follows Write the trace of both sides of (628) as follows

4u4 -([jampol 4M 2 2

+ M 3 3 + - ) bull feu bull tS322pound] 4t]) ESJ33 J bull||- 1 gt bull )

X n=l n=l (b31)

where the two lines in (631) correspond with the two terms in (628) As N becomes large since 0 lt lttbj lt 1 i = 23raquo all the terms in the top lin anish except the first which remains unchanged with N For large N the first term 1n the second line grows continuously at a rate [SJn P e r l 1 m e s teP while according to the asymptotic relationshyship (520) all the other terms approach steady-state constants over N The meanings of Conclusions I and II are clear in (631) in that at time t K + the only term of Tr[P[+N(zbdquo)] which is still a function of z K is [P^Zj)]- none of the other terms effect the optimization over values of z K

Heuristically the response of the surface of Tr[Pv+M(i|()] o v e l a H values of zK as t K + N grows can be thought of as follows

167

EUK)] = T f | ] + [ e ^ ) + Nig] (632)

which may be studied schematically as in Figure 69 For successive values of N the contour of the surface of T r rPjJ + N (i K ) I I over z R is com-

i posed of the contour of [ P pound ( Z bdquo ) ] plus a constant value of Tr[ pound2] plus ~K ~K i i s s

a value which grows with t ime NEgJ^ The shape of the contour

Tr[ppound + f J ( K )3 should be exaatlythe same as the shape of the [P j^ (z | lt ) ] 1 1

surface and the value of a point anywhere on those two contours should

d i f f e r only by a constant

Figure 69 Asymptotic growth of TrlE^J

As a simple verification compare the values on the two surfaces for the global minimum itself the point plotted with a From the calculations for time t K = 009

[Pfc)]u deg- 0 1 2 6 4 5- (6-33) For fifteen steps after the sample at t K + 1 5 = 024 from Figure 67E

168

Tr -K+15 ( z ) j = 0044224 (634)

To estimate the stsady-state constant in (632) and Figure 69 hand ca l shy

culate the series in (631) by using only the f i r s t few terms and use

values for Q (called WKP1) from Figure 62 to obtain

11 = 1 N - 1 5 fl = O00125O N nn - 001875

bull 2 = 09060 0 22 + 22 + bullbullbull) ~ 55485 fl22 = 0001568 n 22 E 22 = bull 00080

33 bull= 0673B ( 1 + 4 raquo + 3 3 + - ) l-am ( 1 3 3 = 0000330 n 33 E 33 - 000060

44 = 04114 ( l + 44 + 44 - ) - 12037 n 4 4 = 000215 4444 bull 000255

hs bull= nraquo06Z ( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] =

poundlg5 = 0000992 n 55 r 55

+

000104 bull= nraquo06Z ( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] =

poundlg5 = 0000992 n 55 r 55

+ 003163

( + 55 + 55 + bullbullbull) Umdeg

Npoundgt11 + T j s 8 s] = n=l (635)

~gt W ~ 001288

(636)

Thus from (633) and (635) approximate (632) at z as

[ P K ( Z K 3 I + N a + T r L | ] + N f i 1 1 + T r | Ci = 004428 (637)

I t is thus seen from a simple hand calculation that (634) and (637) are V

in close agreement thus values on the two surfaces nP K(z K)] and Tr[Ppound+ls(Z|)] do in fact differ only by a constant the constant in (635) For increasing values of N t K + M tbdquo N etc as in Figure 69 for N T+N K+N large any point on the Tr[Pbdquo+f(g1)J contours would then simply consist of Tr[ 8] from (636) added to Nfn] plus the value at the same point

The Tr[Pbdquo + N(zbdquo)j surface is just a trans-on the surface of [Mzj)] 11 lation in time of the [Ppound(z)] surface for N large ~K ~K bdquo

Another way of interpreting the asymptotic growth of the trace sur-face to that of the (11)-element of K as N becomes large is as follow

169

At the time of the f i r s t sample for t bdquo = 009 decompose the surface

for Tr[Ppound(z K)J into surfaces for each element of the trace that i s

[ E K ( Z K ) ] [E|^(z K) l poundPpound(zK)J as shown in contour plots of

Figue 610 The f u l l t race as in Figure 66 is shown in Figure 610A

with the individual elements shown on succeeding p lots As time t K + N

becomes large the formula for the trace in (631) may be rearranged as

fol lows

T r [ amp laquo ] [EK(K)]bdquo + B9nN

n=l

n=l

Each line in (638) represents what happens to each diagonal element of ppound + N comprising the trace as time goes on Since 0 lt lt 1 i = 23 45 as N becomes large all the terms except the first loose their funcshytional relationship with the positions of the measurement device given in zbdquo In terms of the plots for [pound + NJ through [ P pound + N ] in Figures 610B through 61 OF as time goes on these surfaces become flat with constant values equal to the steady-state values of the right-hand terms in (638) Thus for large time the surface Tr[P K + N(z K)] is made up of a number of steady-state slices a flat surface growing at the rate [pound]bdquo per time step and the surface [PD(z)]

CONTOUR PLOT OF TRACErPCKK+NMZfK) )3 AS FUNCTION OF tZtK)31 HORIZ IZ(K)32 VERT EXAMPLE TO SHOW GROWTH OF T R A C E C P ( K K N ) ] SURFACE WITH T I K E T C K N ) I TS SHAPE APPROACHES THAT OF [ P ( K K ) 3 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

+553 555 555

[ZCKJ12 0 9

44 33 222 44 33 44 3 3

444 3 3 444 3 3

444 33 444 33

4444 33 44-14 33 4444 33 44-14 33

bull 4444 33 4444 33 4444 33 4444 33

444444 33 bull44444 31

4444 33 44 333

033 i 3333333 2 333 22=

22222 2222322222

222 222 222 pound22 22 222 222 22 222 222 222

2222 2222 2222 2222 2222 2222 2222 2222 2222 222 222 222 222 222

33 4 5 e 77 33 44 9 6 77 33 44 5 G 77 33 44 5 66 777 33 44 59 56 77 33 44 5S 66 77 33 44 55 6 7

1888 99999999 B308 9SU99999 nS86 9^999999 9889 93399399 80083 99399999

66 33 4 33 4 33 44 95 tit 3 44 95 66 33 44 5 666 33 4 55 66 666 23 33 44 55 66-222 3 44 55 66 22 3S 44 50 laquo 22 33 4 55 222 33 44 55 22 3 44 955 22 33 44 5555 222 1111111111111 22 33 444 222 33 4444 22 33 44444 222 333 2222 3333333 22222 222r J222222222 22222222222 22222222222222222 22222222222222222222222 1111

22222222 2222222 111111 22222 22222 1111111 2222 333333 2222 111111 222 3333333333 222 222 333333333333 222 223 33333333333 222 222 333333333 222 2222 2222 222222 22222

9999999999 77 eeeeaeae 777 688066668 77777 6803068885

77777 088308888088860 7777777 8886Ce068e386

777777777 680688588 bulli 7777777777 56 7777777777777 gtSli 77777777777777 gt6iS6 77777777777777

51JS666666 777777 16666666666666666

666666666G666666666+ J5ii5555

55555555555555555555555955959 144

4444444444444444444444444444 JM333333333333333333 2322222222222222222222222222222

22222222222222 222332

bull333333 2223 3333 2222

44 333 222 44444 333 222

444 33 222 444 33 222

11111111111111 m i n i m u m 1 m i n i

1111

n i m 111111111111111 m m i i i i m i 111111

i n

2222222 2222 33333

222 333333 2222 3333 222 333 4444 222 3 44444

21222222222222222222222222222222+ 131

11333333333333333333333333333333

SYMB LEVEL RANSE

(6)375341E 62 (9) (9) 34616E-02 33891E-02 (8) ltegt

3316CE-02 32440E-02 (7) (7) 31715E-P2 30990E-02 (6) (6)

3Q265E-02 29340E-02 (9) (5) 26814E-02 2608SE-02 C4gt (4) 27364E-02 26639E-02 (3) (3) 25914E-02 25103E-Q2 (2) lt2gt 24463E-02 23730E-02 (1) (1 ) 23013E-02 22268E-02 fQgt 2-15C3E-02

ESTIMATION ERROR CRITERION CONSTRAINT = 75000E-02

Figure 610A Contour plot of Tr [K) at first measurement time tbdquo = 009

CONTOUR PLOT OF T R A C E [ P ( K K + N gt ( Z ( K ) gt 3 AS FUNCTION OF t Z ( K ) J l HORIZ t Z lt K 1 3 2 VERT EXA11PLE TC SHOW GROWTH OF T R A C E I P ( K K + N ) 3 SURFACE WITH T IME T ( K + N gt ITS SHAPE APPROACHES THAT OF [ p ( K K ) 3 1 T SURFACE iSYMPTOTICALLY FOR LARGE N

TJKE= 9 0 0 0 0 E - 0 2 F I R S T MEASUREMENT ELEMEhTt 1 11

+ 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 - ^ 2 2 4 4 4 3 3 2 2 2 2 2 2 2222i i 2

4 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 4 4 3 3 222222f 22L 2pound 2222

4J444 33 2pound2pound22 - 2222222raquo + 4 4 4 4 3 3 2 2 2 2 2 2 2 2 2 2 22pound2222 4 d 4 3 3 2 2 2 2 2 i 2 2 2 2 3 2 P 2 2 2 2 2

3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 - i 2 i gt 2 2 2 2 2 3 3 3 2 2 2 2 ~ 333 2222 333 222

333 44 S 66 333 44 S 66 333 4 0 6B 333 44 59 66 33 44 9 66 ___ 55 661-33 44 55 m 333 44 55 6

Ik 939999 D 999999 999909 999999 99999939

9999990999 oeeoae 9999999

222 222 222

CZ(K)32 09

33333

33333

33333

30393 +33333 22 33333 22 33333 222 3-33 22 1 3333 22 1 bull33 22 11

222 111 22222 111 2222 111

bull iiitm in

22222lt222i pound22 2 2 2 2 2 2 2 2 2 2 2 3 3 3 44

2 2 2 2 2 2 2 2 2 3 3 4 4 2 2 2 2 2 2 3 3 3 4 4

2 2 2 2 4 4

03236 7777 7777

77777 5 7 7 7 7 7 8808(1088 S6 7 7 7 7 7 7 8 3 8 0 6 8 6 0 3 3 3 6666 7777777

66666 7777777 535 S6656 777777777

2 2 2 3 3 3 4 4 4 CSS 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 1 U U U 1 U 1 2 2 2 3 3 4 4 5H3 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4 4 5 5 5 3 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 5 5 5 5 5 66G666666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22 33 4 4 5 0 5 0 5 5 5 5 5 666666SG6G6 11 1 1 1 1 1 1 1 2 2 3 3 44 5 5 5 5 5 5 5 5 S G S f 1666

1111 2 2 3 3 4 4 4 1 4 5 5 5 5 5 5 5 5 5 5 1111 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 +

111 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 1111 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

_ 1111 2 2 2 2 2 0 3 3 3 3 3 3 3 3 3 3 3 3 3 A 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 111111111111111

111111111111111111111 222 333333333333 22 11111 11111111111111111111111111

222 333 333 222 111 U 1 111 1111ll 111111111 1 1111111111

11111 1111111111111111

11111 1111 + 11 111 2222222222222

111111 2222 222 n n i i - mdash 111111 Mil 222 333 4444444 33 22

222 33 444444444 333 22 222 333 444444444 333 225 222 33 4444444 33 22 222 333 333 22

222 33333 333333 222 11111 +111 Hill 222 333 2222 1111 1111111111 2222222 222222 11111 1111111111111 2222 11111

11111111111111 1 111111111111111111111

+222222 11 111 1111111111111 2222 111111111111111

33333 222 1111111111111 333 222 111111111111 33 222 11111111111

i +44 333 222 1111111111

111111111111111111 1111111111111111 11111111111111111 lllllllllllllllllltll 111111111 1111111 1111 11111111111111111 till 1111

11111 1111111111111111111111

111 1 11111111111111111111111111111111111111111111 1 1 1 i i 1 1 1 1 111111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1111 2 2 2 2 2 2 2 2 111 2 2 2 2 3 3 C 3 3 3 3 3 3 3 3 3 3 3 111 2 2 2 3 3 3 C J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 +

SYMB

CO) LEVEL RAN3E 2 2 2 0 0 E - O 2

( 9 ) ( 9 ) ( 8 ) ( 6 )

2 2 2 2

1 6 9 7 E - 0 2 1 ^ 3 4 E - 0 2

0 6 9 1 E - 0 2 0 1 8 S E - 0 2

C7J ( 7 )

1 1

9 6 B 6 E - 0 2 9 1 8 J E - 0 2

(G) ( 6 )

1 1

6 6 8 0 E - 0 2 6 1 7 7 E - 0 2

lt 5 ) ( S )

1 1

7 6 7 4 E - 0 2 7 1 7 1 E - 0 2

C4gt t 4 1 1

6 6 6 S E - 0 2 6 1 6 5 E - 0 2

( 3 ) ( 3 )

1 1

5 6 6 3 E - 0 2

5 1 6 0 E - 0 2 t Z ) (2)

1 1

4 6 5 7 S - 0 2

4 1 5 4 E - 0 2

( 1 ) ( 1 )

1 1

3 S 5 1 E - 0 2

3 1 4 0 E - 0 2

tcopy) 12645E-02

ESTTMATTOM ERROR CRITERION CONSTRAINT =

75000E-02

I25OOE-01]

Figure 61GB Contour plot of first term of Tr Ppound (z K) raquo K(JK)

CONTOUR PLOT OF T R A C t [ P ( K K N ) ( Z t K ) )3 AS P J N C T M N OF [ Z ( K ) 1 1 H O R I Z C Z ( K ) J 2 VERT EXAMPLE TO SHOW GROWTH 3F T R A C E P ( K K raquo N ) 1 SURFAi^ WITH TIME TCf + H) I TS SHAPE APPROACHES TH-T OF t P lt K k ) 1 1 1 SURFACE AMP10T1CALLY FOR LARGE N

TIME= 9 0000E-02 FIRST MEASUREMENT ELEMENTC Z 2)

2 2 2

660 gas

i w 22-1

33 4 S 6 77 80 _ 03 H 55 G 77 OB

Qpound2 3 4 5S 6 77 31 22 3 4 o 6 77 H5 bullPAV 33 4 s P6 7 (iO

33 44 5 56 7 03 33 4 5 6 bull BO

33 4 55 iS 77 faD 33 4 5 G 7 83 3 3 41 5 (iS 7 SO

3a 5 6 7 amp 33 4 amp 6 7 88

333 44 St (J 7 OS 323 44 6 77 00

3333 4 5 5C 7 mdash m 77 777 777 +7777 777 77777

-1 3 l l l | f JJ | II II

444 ri-14 44I 4441 444

bullM44 4144 55 GG 14144 444-14 5gt fi bullbull44-444-14 lili (it

5 5 aa

444444 333333333 444pound 4444gt

44444144444 ^^TI^-^^^ 444 ^ ^44

99999099 9 9999S9999S999 )y99999999C99999G999999939999S9 - 199999990999999593993 + amp939929309 000003008306000 10^83090803006060 laquo 777777777777777 i 77777777777 igtwC6C6+

eeeeccccecc Ii oiiSSBSS 4 -14444444 4 4 4 4 4

4^ 4444444 3 3 3 3 3 3 3 3 3 44 3 3 3 3 3 3 3 3 3 bull

3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 222222 1111111111111 2-S22 11111111111 c- 1111111111 + 111111111 11111111 copybull

111111111 US 1 1 1 1 1 1 1 1 1 2J222 1 1 1 1 1 1 1 1 1 1 1 1 +

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 nl 2 2 2 2 S 2 2 2 2 amp 2

3 3 3 3 3 3 0 3 2 2 2 9 2 2 2 2 2 2 Ain 3 3 3 3 3 3 3 3 3 3

4444444-14444 333333+ EiftSti 4444-1444444

S^bSOjEbSriSbS 4144 pound 55SS0 rt55iS I16G b55riij555

SYMamp LEVEL RANGE

CO) 8 9 S 2 7 E - 0 3

( 9 1 8 7 6 2 6 E - 0 3 8 5 6 2 S E - 0 3

( 8 ) ( 8 )

B 3 6 ^ 5 E - 0 3 6 1 6 2 5 E - 0 3

( 7 ) ( 7 )

7 lt1 i24E-03 7 VigtK3E-03

( 6 ) ( 6 )

7 5 6 2 3 E - 0 3 7 3 6 2 2 E - 0 3

( 5 1 (5

7 1 6 2 E - 0 3 6 0 S 2 1 E - 0 3

( 4 ) ( 4 )

5 7 f = 2 0 E - 0 3 C 5 S 2 D E - 0 3

( 3 ) ( 3 )

6 3 6 1 0 E - 0 3 G 1 6 1 9 E - 0 3

( 2 1 ( 2 )

5 9 amp 1 6 E - 0 3 5 7 0 1 7 C - 0 3

(1 ) t l )

S 5 G 1 7 E - 0 3 5 3 t i 1 6 E - 0 3

(0) 5 1 6 I 6 E - 0 3

E S I M A I ION ERCHR Ct l TERION CONSTRAINT =

7 H 0 0 Q E - O 2

1-2500E-01J

Figure 6IOC Contour plot of second term of Tr P ( K ) K(K) -

0 6

t Z l K ) J 2

C3NT0UR PLOT O F TRACECPCK^K-Ni t Z ( K U l AS FUNCTlC- t OF I Z t M H H C R I Z t Z ( K 1 1 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E [ P ( K K N ) ] SURFACE U I T H TIME T C K N ) ]Tlt SHAPE APPROACHES THAT OF [ P lt K K i 3 1 1 SURFACE XSVMPTOTCALLY FOR LARGE r

bull raquo + 4 4 + bull9-J19 8 0 7 5 4 3 272 3 4 5 6 7 0 3 9 0 bull 0 0 9 e a fi 5 4 3 2 2 2 2 2 3 3 4 5 6 7 8 ltlaquoltraquo laquo laquolf q 6 6 r b 5 lt1 3 2 2 2 2 2 3 3 A 3 6 7 O

6 0 7 6 5 1 3 3 2 2 2 2 2 2 2 2 3 3 4 5 7 7 8 s 7 7 5 U raquo3 2 pound 2 gt P 2 2 3 4 4 5 6 7 Q - - - laquo bull laquo bull - - - - -1 L o i B i a 3 6 0 7 6 S 4 3 6 0 7 6 5 A 3 a a y 6 5 lt 3 3 M 0 5 4 33 60 7 6 5 4 33 SB 7 6 5 4 33 80 7 6 5 J 33 03 7 E 5 4 33 B8 i amp 5 1 33 CB 7 6 3 A 33 e i 7 6 3 J 13 80 7 G 5 4 33

i 8 1 6 5 4 3 3

I 22

U3 83 7

Lgt A

iSP5

3 3 4 5 G 7 B 9 3 9 3 3 A 5 C 7 8 0 9 9 3 3 4 5 6 7 8 0 9 9 3 4 5 6 7 8 9 P 9 3 4 5 6 7 8 9 P 9 3 4 5 6 7 8 9 3 9 3 A S 6 7 O 5 9 9 3 4 5 6 7 3 G pound 9 3 3 4 5 6 7 0 9 9 0 3 3 4 S 6 7 8 SD9 3 4 5 6 7 8 9 9 3 4 5 6 7 8 0 9

3 3 4 5 6 7 8 9-J j 3 3 A 5 6 7 8 8 9ltJ 3 3 3 4 5 6 7 C 8 S9raquo0 9 9 9 9 3J3C-S33 bull 5 I) 7 (J T J 9 L 9 0 9 t i 9 9 9 9 9 3 9 9 9 9 9 9 3 9 9 9 S 9 9 9 9 9 9 9 9 9 9 9 9

-I 3 - ^ 3 -14 ti 6 7 flJ i - 3 9 9 9 9 y 3 y 3 3 3 deg 9 9 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 41 3 3 4 3 6 7 7 0 8 0 B B B 8 8 8

-14 4 4 5 5 6 7 7 8 8 ( 1 0 8 8 8 6 8 6 3 ^ 3 3 8 3 3 8 8 8 8 8 8 8 8 8 6 8 0 8 8 4 4 4 4 4 5 3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 -laquo4 4-14 5 5 6 7 7 7 7 7 7 6666ltgt6C6 6 5 G G G G G 6 6 C 6 6 e G 6 G 6

4 4 4 4 pound S tC6GE(JC6-J6 ampK35 5 3 5 S 5 5 5 gt t W 3 5 5 3 4 4 4 4 5 5 3 55455 ampAAamp - - - - - - -

3 3 3 3 3 3 3 4 4 4 4 3 4 4 3 3 3 3 3 3 3 3 4 4 4 4 4 3 3 3 3

i^Sa^^S1i bull 2 2 2 22 2222J2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22222 j S2laquolaquo2laquo S333 3 3 3 3 av^ raquo J laquo J U ) raquo raquo raquo raquo raquo J S

^rf11^4 233a33333 dd^-J^ 3 3 3 33333 2 - 2 2 2 - 2 Z 2 2 2 2 2 2 2 2 2 2 2 2 2

bdquo 3 3 3 3 3 4 4 1 4 4

5 3 5 6 6 6 C 6 b

7 7 7 7 7 7 7 7 7 7 7 7 7 r0 i 0 0 3 ( i O B f gt pound n O O - 8 6 8 8 G P 0 8 6 6 6 6 0 e 8 8 3 Q O Q J 6 7 7 HO 8 8 0 0 6 77 0 0 S1099lt E U 3 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 mdash 9 0 J 9 0 J - lt i j J 9 9 1 - 9 9 9 9 i S 9 9 9 3 9 3 9 9 9 9 9 9 9 9 9

9B0igtD0 9 gt ) 3 9 e G 3 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 S S 9 9 9 amp 9

Tl| f lE= 9 O 0 0 0 E - O 2 F l f S T MEASUREMENT ELEMENT 3 3 )

JYflB LEVEt RANGE (0gt 6 042ZE 04

S1 3 5 9133E 7CB4E 04 04

5 6S15E 534GE 04 04

tfi 5 5 4077E 2G00C 04 04

s 3 5 1339E 027OE 04 04

II A A

9001E 732E

04 04

(jJ) 4 4

64F3F S 1 04 E

04 04

iSJ f 393E 2G5GE

04 04

S A 1387E 04

il 3 3

6849 75301T 04 04

ltbull 3 6311E 04 EStMATION ERlIOR CRITERION CONSTRAINT = 7e000E-02 SampiJRCE IMI-JT CQVARIANCE [WJi r 1 2300E on MEASURfiMCNT ERlJOR COVAR IV3 = [ 050 -0] 0231

Figure 610D Contour plot of th i rd term of Tr )] [4

CONTOUR PLOT OF TRACETP(KK4N)CZ(K))1 AS FUNCTION OF tZ(K)J1 HORIZ tZ(K)J2 VERT EXAMPLE TO SHOW GROWTH OF TRACEtP(KK+N)] SURFACE WITH TIME T(KlaquoN) ITS SHAPE APPROACHES THAT OF [P(KKgt111 SURFACE SMPT0YI5Ai-LY FOR LARGE N

TIME 9O0O0E-O2 FIRST MEASUREMENT ELEMENT 4 4)

IUIAL 33 A 5 67 38 93 3 4 5 7 08 99 3 4 56 7 88 99

33 44 6 7 8 99 3 3 4 5 6 7 8 99

333 4 5 6 7 r mdash 39 8 76 S 1 333333 4 5 6 7 8 99 99 8 7 9 4 333333 4 3 6 7 8 99 99 6 7 6 5 44 223333 44 5 67 88 99 99 6 7 SS 44 C53333 44 5 7 88 99 99 8 7 6 4-1 3333H3 lti4 5 7 OS 39 99 B 7 6G 44 333333 44 5 7 tiS 99 99 8 7 5 4 333333 4 5 67 86 39 99 8 7 5 4 333333 4 5 6 7 6 99 99 8 76 5 4 33 33 4 5 6 7 8 99 9 8 G 5 4 33 33 4 5 6 7 0 99 9 0 7 6 4 33 3 4 6 7 8 - 5

99 8 7 OS 4 33 22 33 4 5 7 8 gg a 7 es 4 3 222 - - - - -99 8 7 65 4 O 222

9 8 7 65 4 3 22 9 87 6 54 3 S9 8 76 S - __ 99 6 7 6 44 333333 4 5 6 7 8 __ 8 76 S 44 44 S E 7 S 999

0 7 6 5 444 444 5 6 7 88 ~~ 69 7 6 55 4444 5 6 7 laquolaquo

fiSSeoe 7 66 5 55 06 7 66 7 7 77 S 5a 55 6 77 7777 5 5 5 copy6 6 8 5 5 65 666 666

1-4444 55 106 55 4444 5U 6665 555 3333 4 S5P5503 4-14444444 555503S5 444

2222 33 44 44- i 4444 444

3 4 5 7 6 99 3 4 5 7 8 99

33 4 56 7 0 9 3 43 6 7 8 99

33 4 5 5 88 99

8 6 8

1199999 9939999999i9pound999S9999g999999999g9g99g

esoossBBe aaeeeew

i n

t i

77777 UfcSB 55 33 13-333 44444 3333333333333 _- 333333 444 33 222 22222222 2222222222222 11 22 323 3333333333 333 22 111 11111 22222222

t 2 333 333333333333333 33333 22 11111111111 H i t 11 2 333 33333333333333 3333 22 H I T 111 1)11 11

11 2 33 3333333333 33 22 1 1 1 22222222222222 22 33 444444 4444444 33 ZZZZZZ222222 2222222 3 44 444 444 444 3333 3333333 333333333333

mdash mdash 4444 44444444 4444444444444 53363 U555S5355 35555V-3rraquo550

GCOC 6fo665G6 665GCSG6 777 77 77777 7777777 03C yi300C6P8 (-88831130008

6fi6

444 555 4444-14 355 555 oeeebf-Gb 55 15 seceeSSGe 777777 6 55 55 C 77777777

77777 BflaS 7 6C 5 E i 66 77 80C98 8S00amp 88 7 6 55 44444 3 0 7 88 __ bull ampSgt39399amp 3 7 6 E 44 44 3 6 7 06 939999999^ raquo9jiC0l-3 J999Ci999999S93asaampS9

99 Oft 0 it 4 3333 4 5 6 7 8 339 99993 99 6 76 0 4 33 33 4 5 7 99 9 87 65 4 3 222 33 4 6 7 8 99 9 0 7 5 33 222222 3 4 5 7 8 99

93 8 76 54 3 222222 3 4 5 7 8 3

SYKB LEVEL RANGE (0 25437E-03 (9) (9) 25Q05E-03 2455pound-03 (81 (81 24101E-03 23649E-03 17) (7) 23197E-03 22745E-03 (61 (6) 222H3E-03 2 1841E-03 (5) (51

213S9E-03 20937E-03 (4) 14) 20-135E-03 20033E-03 (31 (3)

19561E-03 10129E-O3 (2gt (2)

10677E-03 1S225E-03 lt1 ) (1 1

17773E-03 17321E-03

lcopyl_I 66 i3E-03 ESTIMATION ERROR Cftt tERION CONSTRAINT =

75000E-02

12300E-Oil

Figure 610E Contour plot of fourth term of Tr (4 [0 44

CONTOUR PLOT OF TRACEtP(KKNl li(K)) J AS FUNCTION OF tJIIOlt HPRIZ t2(KJ3Z VERT EXAMPLE TO SHOW OROUTH OF TRACECP(KKN)J SURFACE WITH TIME T(KN) ITS SHAPE APPROACHES THfl flF [P(KK)111 SURFACE 3VlaquoPT0T|CALLV FOR LAROE N

02

S3 0 76 5 44 99 6 76 S 4 99 8 7 5 4 99 0 7 C 3 44 99 B 7 6 5 44

4 5 6 7 6 09 4 5 6 7 8 99 4 3 O 7 9 99 44 3 6 7 00 99 44 3 6 7 r OB bull 9 8 7 6 3 444 444 5 6 7 8 9 1 8 7 6 3 444444 5 6 7 8 Q9 I 87 6 55 444444 53 6 7 8 99 I 6 76 55 44444 S 6 7 C 99 J 8 76 3 4444 5 6 7 8 39 08 + 99 8 76 5 4444 5 CS 7 6 99 9 8 7G 55 4 1444 3 6 7 t S3 9 87 6 3 444444 35 6 7 O 99 9 8 7 6 5 444444 3 i5 7 8 99 a 8 7 6 0 44 44 5 6 7 8 9 99 8 7 5 4 4 5- 7 GB 99 99 8 6 3 4 33 44 5 6 7 9 99 9 87 6 3 4 33333 4 5 G 7 9 99 9 6 7 65 4 333333 44 56 7 8 9 9 6 7 5 4 333 33 4 5 8 99 06 9 8 7 3 4 23 33 4 9 7 0 9 9 fl 7 6S 4 33 313 44 6 7 fl 91 9 ) 8 6 3 4 33333 4 3 6 7 0 99 bullJ 8 7 3 44 3 4 56 7 0 09 99 87 6 S 44 44 5 6 7 0 09 03 999S9 OB 8 7 6 5 4444 5 6 7 4 99 1 999amp9US 8 7 65 S3 S3 6 77 O S999999999 88 8D 7 6 305553 F6 7 8 9 888 77 8B8O0B 7 65 3355 7 83080388 77 66 7 77 G6 55 GG 77 777 66 04 444 0 6 77 66 553S G6 777 G6 530 333 44 5 eCGGGC 5C553t55 6666606 53 444 pound22 33 4 53 C555 5v53 553 4 It 2 33 4 335 44 5533 44 33 _bdquo 112 3 44 441444444 444 33 2222 03 -ltgt 11 2 S3 444 444^1444444444 4444 31 222 11 2 33 444 444444444444 4444 33 222 112 3 44 44444444 44 33 222 11 22 3 4 SSSiVS 3535555 44 333

222 3 44 gtZgt 3555 5555 555 44

199999

555 114444 1333

999 806888 888388 7777777777777 66666006066666 3535550555553353 4444444 44444444444 33333 3333333

ZPgt2 33333333330333333 22222 3333333333 222 333333333333 222 33333333 333333333333

bull33 44 05 tgt5 66G S33555 G66 656 35 6 77777 SS 555 65 77777777 6G6 6666 77 EOC 77 66 S5fgt 66 77 O03C9 777 777 68 EB 7 6 SS3rS5 66 7 8 803081 830 taiUQ 8 7 6 5 53 6 7 O 2999301)99 99939 93 C 70 5 444441 3 6 7 0 09 9 0 7 5 4 33raquo 44 U6 7 O 99 9 0 7 5 4 3 33 4 56 7 0 39 99 0 65 4 3 22222 3 4 6 7 6 99 9 8 7 34 3 22 S 34 3 7 6 99 99 3 76 4 3 2 22 3 3 67 0 99

33333 44444 55355 663066 7777777

iGFtlOUampUOOB

444444 4444444 55555055+ b0666666 7777777 88080608 93 990999999999999999999999999

TIKE 90000E-02 FIRST MEASUREMENT ELEMENT 3 5)

(0) LEVEL RANGE 1 0362E-03~

it 10I98E-03 1 -0035E-03

3GTI2E-04 97076E-04

95441E-04 93806E-04

sect 92170E-04 9053SE 04

ii 6e899E-04 872D4E-04

S3 B5G^9pound-04 83993E-04

sect G2358E-04 00722E-04

79037E-04 77452E-04

7S816E-04 74181E-04 (0) 72545E-04

ESTIMATION ERROR CRITERION CONSTRAINT =gt

75000E-02

to00E-O1J

Figure 610F Contour plot of fifth term of Tr [bull (4 [^L

176

622 Optimality of Measurement Locations - In Figure 64 was i

shown the trajectory TrlP K + N(z K)J where the optimal choice cf measureshyment positions was used at each measurement time In contrast suppose the designer felt that an intuitively good choice for the measurement positions would be to place the two statistically independent sensors right at the position of the source that is z = zbdquo = z = 03 Figshyure 611 compares the optimal trajectory Tr[ppound+f(zp)] of Figure 64 using

i

min [Pbdquo(z)] as the criterion at each measurement with the case with z K ~ K ~ K 11 z K = [0303] that is with measurements positions at the source The optimal case is plotted with the symbol 1 that with measurements at the source with the symbol 2 Clearly Case (1) is optimal since over a larger time interval it would result in fewer measurements necesshysary to maintain the estimation error below its bound

623 Comparison of Performance Criteria - Moore L 9 5 ] suggests that the minimization of the trace T rEPpound(z K)] at a sample time t K mey not be the best thing to do to lead to the fewest number of samples necshyessary over some time interval To demonstrate that this is in fact a true conjecture consider a slight modification to the problem of Section 61 Let

I 04 W

002 (639) -^ 000001

J^ 000001_ oioio

to -

lim and

(bull K)= 0 001

(640)

(641)

6 7 S 0 0 E - 0 2

5 5 0 0 0 E - 0 2

42300E-02

30000E-02

1 7 0 0 D E - 0 2

C mdash r ~ - rmdashU raquo mdash - bull bull r J V- mdash bull mdash a a t 2 1

2 i pound i I 2 1 2 1

2 2 1 2 1 1 2 1 2 1

2 2 1 2 1 pound J 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 - 2 1

2 1 2 1 -2 1 2 1

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2

2 1 2 1 2 2 1 2 1 2

2 1 2 1 2 2 1 2 1 2

2 1 Z 1 2 1 1 bull pound

2 1 2 1 2 2 1 2 1 _2

2 1 2 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 bull 2 1 1

2 1 2 1 2 1 1 2 1 2 1

2 1 2 1 2 1

1 2 1 1 1 2 1 2 1

2 1 2 1

Figure 611 Time response of T r [P^ + H ( z )J for (1) z the result of the minimization min [ p ^ z K j j M bdquo + bdquo H i t h s y m b o 1 a n d ( 2 ) Ln = r| = z ^ f b o t h m e a s u r e m e n t s a t tKe source

plotted with symbol 2 L J2 plotted wit locat ion

178

The other problem parameters are as before To measurement strategies are contrasted The first is at each

measurement time t K finding z K such that

as before The second is finding zbdquo such that 2 N

x T 4 Tr = min Trj Ppound(z) | (643)

In ti1s problem measurements are necessary at t 0 the initial time and it is found that immediately after the first measurements strategy number 2 using zj appears superior to that using ir The two trajectories

5 U l u

are plotted with symbols 1 and 2 in Figure 612 However it is seen that at t - 0021 the two curves cross afterwhich Criterion 1 remains superior leading to a second measurement at t = 0078 vs t = 0071 for Criterion 2 At the end of the interval 0 lt t lt 01 Criterion 1 clearly possesses the lower estimation error Thus it is not optimal to minishymize the trace of the estimation error covariance matrix at the time of

the sample but 1t is optimal to minimize its value for large time N which by Collusion II is equivalent to minimizing the (ll)-element of the covariance matrix at the time of the measurement

624 Effect of Instrument Accuracy - To study the effect of the quality of the measurement instruments upon the evolution of the Tr[PK+N(zj)] contours in the above problem consider the measurement error covariance matrix

005 O

001 (644)

93000E-02

76000E-02

59000E-02

42000E-02

23000E-02 I OE+00

222 111 222 111 22 111 222 111 22 111 222 111 222 111 22 111 22 HI 222 1 I 22111 221 11 2211

122 11222 1 1222 1122 1122

22111 2111 1111 321

22 22 1 2 1 2 1 pound 2 2

22 2 22 11 22 11 22 11 2 t 22 11 2 11 laquo2 1 2 2 2 2

1 2 1

1 1 1 1 1

B000E-02 1000E-01

Figure 612 Time response of 7r| P^ + ( j (z j j for (1) z the result of the minimization min P K ( K ) plotted

with symbol 1 and (2) zpound the result of the minimization min Tr |ppound(z K )J plotted with symbol

2 note how after the f i r s t measurement at t K =00 (2) possesses lower estimation error but with t ime the curves cross such that (1) is superior at the end of the time interval shown and thereafter

180

This accounts for a 51 difference in variances in the two sampling deshyvices in contrast to the 21 difference in the problem above The evo-

i

lution of T r L P ^ + N ] is shown in Figure 613 The contour plot of Tr[Ppound i (z K)] at t K = 009 is shown in Figure 614 Contour plots of Tr[ppound+f

(Z|)] are shown for t bdquo + 1 t K + 5 t K + ( | and t K + 1 5 in Figure 615 and finally that for [P(zbdquo)J in Figure 616 In this case since the two -K -K ii measurements are of much different quality than those in the previous case the error contour is much less symmetric showing where the more accurate sensor [z]o is preferred over the more inaccurate poundz] Notice the large motion that the global minimum can make over time in a particular problem the positions of zt the global minima can change greatly as a function of t+ for the surfaces TrpoundP K + N(z K)]

63 Problems with Bound on Output Estimation Error

In the monitoring problem with bound on the maximum allowable error in the estimate of the pollutant throughout the medium it is necessary to make a measurement whenever for a time t K +bdquo

T 4JhZ) Aim ( 6 4 5 gt

a 2K + N(z Kz) S c(z) TP + N (z K) c(z) (646)

where

as in Section 541 Suppose the first time (645) is satisfied is at sample time t K gt

It is required to select the best set of measurement locations zt such that

0 K + N ( 4 Z ) = m l nK mx deg K + N ( 2 K Z ) (6-47)

EXAMPLE TO SHOW QROWTH OF T R A C E I P t K - K + N H SlRi-ACE WITH T IME T ( K N ) I T S SHAPE APPROACHES THAT OF t P l K K J 5 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

I XX I X I X bull X 1 X

X X

X

x x

X X

X X

X

IX

X X

X X

gtbull X

X

X X

X X

X X XX

X

s X X

XX X

X X

X X

X

X X

X X

X X

X X

X

I X 1 X I X I X I X I X

X X

X X

X X

X

x x

X

I X I X

I i

X

X X

X

X X

X X

X

Figure 613 Time response of Tr 096

ppound + N(z^j] showing three sample times at t R = 009 052 and

CONTOUR PLOT OF TRACECP(KK+N) (ZIK)) 1 AS FUNCTIC-J OF CZCKUI HORIZ [2CK)1Z VERT EX^tfPLE TO SHOW GROWTH OF TRACEEPCKKN)1 SURFACE WITH TIME T(KN) ITS SHAPE APPROACHES THAT OF tP(KK)J11 SURFACE ASYMPTOTICALLY FOR LARGE N

95 44 33 55 44 33 55 44 33

S55 44 33 6 5

5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 bull 5 5 4

4 4 444 444 444 444

444 444 3

4444 3 44laquo4lt44 3 44444 33

333 33333

333333 2222

22122 222222

2222222 3 222^2222

22J2222 222J2C22

222igt22lt222 2222222S2Z

222222222222 222222222222

22222 2222 222 222 222

2 2 2

33 44 55 66 77 OSS 999339999 33 44 55 66 77 868 S939933999 333 44 55 66 77 88 9 9999993999 333 44 5 66 77 68 38 999^9999099 333 4 5 6 77 8 380 99999-JS999999 333 4 5 66 777 -36488 999D9999999S999999+ 33 44 55 66 777 809863 939999999999 33 44 55 66 777 686368888 33 44 5 66 7777 6880860680300 333 4 55 66 777 8385600068866880888888

33 44 55 66 7777 8888886808088883-33 44 55 66 7777777

22222 33 4 55 666 777777777777 2222 33 44 5 666 777777777777777777777777777

pound22 33 44 55 0666 777777 777777777777777 222 33 4 55 6066 56 77^77777-

22 33 44 55 66E JEiS66 555 6Le0j66660CCCG666C66666S

555 S66G5eeUf=i6e6G-eSB6666S666666 5555

4 5555555535555555055555555555555555555-2K araquo 444 222 33 4444444434444444444444444444444444444444

22 333 222 333333333^ 53333333333333033333333333333333

222

111 11111 11111 111111 m m 111111 1111111 i m m - m i n i

2222222222222 222222222gt222

222-fc222 2222222222222 222-22222222222222222222222222

222222 22222 22222 333333333333333333 2222

22222 333333 33333 222 2222222 3333 3333 222

222232 333 444444144444 333 2222 +222222 333 4444444444444 333 2222

222222 333 444444-^44444444 33 2222 222222 333 44444-44444 333 222 222M22 333 333 222 222^2222 333333 333333 2222

22222 333333333333333333 2222 I i i 222222222 22222 1111 22pound22ii222 222222222 222222222 111 2222222 22222222222222222222222222

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 bull 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 gt2

3 3 3 3 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 4 4 4 4 4 4 4 3 3 3 2 2 1 - 2 2 2 2 2 2 2 3 3 3 3

2222 2222222222222222 2gt22222222Z222222

22^222222222 n m m m i ii

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 bull 1 1 1 1 1 1 11II - 1 1 1 1 1 1 11111 i i i n n n n n m i i m i i i i m m 11 m i n i m u m m i i n i i m i n i m u m i m i n m i m n m m i m m i m m i i i m

2222222222

11 m m i i i n u m n n n m i i i u m i t i 1 U 1 1 1 U H m m i i i i i i

444 333 555553 444 333 5S5iiti55 44 333

-i222222 22C222 22222

333 333 333 4444444444144 4 444444 144344444444 4444 4444444444444

1111111111111111 1111111111111111111 52222222222 22222222222222 33333333333333333033330

TtKN)= 90000E-02 T(K) = 90000E-02 N - 0 STEPS AFTER FIRST MEASUREMENT CONTOUR LEVELS AND SYMBOLS SYMB LEVEL~RANGE (0) 2 9993E 02 (9) (9) 2 wm 02 02 lb) (0) 2 2 5poundI 02 02 (7) (7) 2 2 sectisectSe 02 02 (51 CO) 2 2 m 02 02 (5) (5) 2 2 poundpoundi 02 02 C4) (4) 2 2 iiaE

02 02 (3) pound3 2 1 g|pound 02 02 (2) (2) 1 SJ3i 02 02 (1) (1 ) 1 1 Z2TJ 02 02 (0) 1 flf 02

ESTIMATION ERROR CRITERION CONSTRAINT = 7 Slt gtgtbullbull)pound-02

Figure 614 Contour plot of T r l g ^ A ] a t f 1 r s t measurement time for case with d i f ferent measurer-gtnt error covariance matrix V

t bdquo - 009 compare with Figure 66 K

CONTOUR PLOT OF TRACEtPCK K+Nl t2(Kgt 11 AS FUNCTIOt- Cl= CZltK)11 HORIZ [2CK)J2 VERT EXAMPLE TO SHSW GROWTH OF TXACEtr(KKNgt3 SUff AGE WITH TIME T(KNgt ITS SHAPE APPROACHES THAT OF CP(KK)311 SURFACE rSVPTOTICALLY FOR LARGE N

EZ(K)J2 09

555 44 44 44 444 3555 5355S 5555 5555 535 444 44 444 444 4444 44-44 44-14-14 444 bull144 bull444-144 3 444-J4 3 444-14 3 44444 4444

333 333 44 333 333 44 333 3333 44 333 3333 pound4 333 3333 44 333 333 At 33 3333 4 333 333 4-333 22 333 333 222222 333 333 222222222 333 33 222222J2222 333 (33 222222222222 33 13 2232 22222222252 333

6 77 bull CS 77

dec oec oota

eteo cae

999Q99S99 5359929999 SC339^-99

S999i)J99399 D999399SP9999

333 4 33 222 333 222 3333333 222 353 222 22222 22222222

JPPZZ 2222 2222 222 222 11

m i 1M11 H i l l

n n i i 11111111 11111111

777 euseoe 77 BSEBSC3

777 acaoseesee 6 777 7 see8fJ8633888888 6S 77777 6R6 7777777

rgt0G 777777777777 56G6 777777777777777777777

_J 6G6E6 777777777777777777 22222 33 4-1 555 66E6t5poundS

22222 333 44 550 EGtmejGGGSS 222 33 44 555 C5e6tweampe6u66eGfl0^6eS666666666 2222 33 444 55tgt3 666666o6666S6GG6666l3S

222 33 44 5ti055amp 222 33 44 555S5iij555S555555SS555555555 222 33 444 55355555555555

222 33 444444^44 444444444 V2Z 3333 2222 33333333233333333333333333333333^3333333

2222 2222222222222 pound22222222222222222222222222

1 1 1 1 - -

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 111 111 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 1 1 1 1 1 1 1 1 1 n u n

f i i t u r n i i 2222222222222222222222222222 11111111 222222222 222222 111111 22222222 33333333333333333333 22222 111 22222 33333 3333 2222 3333 444444444444444 3333 222322 3333 44444 4444 Clt33 22222^2 33333 4444 4444 333 2222222 3333 4444 4444 333 22222pound2 3333 --4444 44444 3333 222222 33333 444444444444444 333 2222 22 3333 3333 2222 bull222222 3J333333333333333333 2222 2222222222 22222 2222^222^2222222 2222222222 2222i2ii22222222222222222222e22222pound222 22222222pound22-i2222222 2222222222222 +33333 222H2222222222222222222222222222222pound 111111111111 333333 222222222222222 222222222222222222222222222 444444 3333 2222222 33333333333333Ct3333 44444 3333 33333 333333333333333333333333 35 444 3333 3333 444444444^4-la 5555 444 333 33333 4444444444444-1444

22222222

111111111111111111111111111 1111 111111 111111111 1 i i m i u m i i n t i n i i a

m i m u n i n i i i i i n i i i m i i i i

T(K+N)= 1OOOOE01 T(KJ = 90000E-O2 N s 1 STEPS AFTER FIRST MEASUREMENT

^ =^ i f (91 (9) l^llgl lt8) IIg3f|gl (7) (7gt lSiil tS) pound6) i83I--8 (5) t5gt i3^igi (4) (4) l8sSgi f3I (3) lf^gl C21 (2 li5SIgl ( 1 ) (1) P | (0) _l18537E 02_

ESTIMATION ERROR CRITERION CONSTRAINT = 75000t-02

12500E-O13

Figure 615A Contour plot of Tr measurement

p K ~K+1 M at time t K+l 010 one time step after first

CONTOUR PLOT OF T R A C E C P f K K + N ) lt Z ( K ) ) 3 AS FUNCTION OF t Z t K U l HORIZ pound Z ( K ) ] 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E [ P ( K K + N ) 3 SURFACE WITH TIME T I K + N ) I T S SHAPE APPROACHES THAT OF C P ( K K gt ] 1 1 SURFACE ASYMPTOTICALLY FOR LARGE N

5S3 44 333333 555 444 333333

5555 44 33333 S5SSS 44 3333

_ S555S 444 3333 +555 44 333

44 3333 444 3333

4444 333 444444 333

CZ(K)12

09

3333333 333333 3333333

333333 33333

33333 44 55 65 777 3333 44 55 66 777 0888G888BS

3333 44 55 66 777 660688886888 3333 444 55 6S 77777

3333 44 55 G66 777777777

4 4 4 55 6 77 889 pound39999999 0 5 6 77 8C8 993399999

4 4 5 66 77 860EI 9999999999 4 4 55 66 77 eSEIS 9999999999 4 4 55 66 77 009688 999999999999S999

44444 U33 222222222 333 44 55 4444 333 22222222222222 333 444 55 444 333 2222222222222222 333 44 51 44 33 222222 22222222 333 44

333 2222 22222 33 444 333 2222 2222 33 44

333 222 2222 333 222 1111111 222

3333 222 11111111111 222 333

$656 777777777777 66666 7777777777777777777

lta 6563566 777777777 555 66666GS66666

555 666666666656666666666 G66666666666666-555E5

14 55SS5o335 444 5553S5555amp5S55SS5555

_ _ _ _ _ 444 amp55555lgt535555555555555 33333 222 1111111111111 222 333 4444444

333333 222 111111111111111 222 333 444444444444444444444444444444444+ 33 2222 1 1 1 1 11 1111111 222 33333

2222 111111 11111 2222 3333333333333333333333333333333333 222222 1111 11111 pound22222222 22222222222

11111 1111111 1111111111 1111 H i l l 111 1111111111111111111 1111111111111111-11111111 111111111111111 1111111 11111111111111111111111 1111111111t 111111111111111111111111 I -bull 111 11111111 2222222222 111111111

222222 22222 11111111111111111111111111111 2222222 3333333333333333333 22222 11111111111111111111111111111111

22222 3333 4444444144 333 22222 3333 4444 4444 333 2222223222222222222222222222

33333 444 555555555 444 333 222i2222222222222222222222222222222 +3333333 444 555555b555555 44 333 22Ppound2222222poundpound222222222222222222222-3333333 444 5555Si5o555355 44 333 22^ZV32222222222222222222222222222 33333333 444 55S55L555 444 333 2222 213222222222222222222222222

3333 4444 4444 333 2222ZT22Z 22222222 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 ^ 4 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1

+ 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 P 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 Q 2 2 2 2 2 2 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 t 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2pound222222

3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 3 3 2 J 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 33C-333333333

4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 AAA 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -

T ( K + N ) laquo 1 4 0 0 0 E - 0 1 T ( K ) = 9 0 0 0 0 E - 0 2 N = 5 STEPS AFTER F I R S T MEASUREMENT

SYMB

( 0 )

LEVEL RANGE

3 6 1 1 7 E - 0 2

( 9 ) ( 9 )

3 5 5 5 5 E - 0 2 3 4 9 9 2 E - 0 2

( 8 1 ( 8 )

3 4 4 2 S E - 0 2 3 3 0 5 6 E - 0 2

( 7 ) (7)

3 3 3 0 4 E - 0 2 3 2 7 4 1 E - 0 2

( 6 ) ( 6 )

3 J 17BE-02 3 I 6 1 6 E - 0 2

( 5 ) (5gt

3 1 0 5 3 E - 0 2 3 0 4 9 0 E - 0 2

( 4 ) lt4)

2 9 9 2 7 E - 0 2 2 9 3 3 5 E - 0 2

( 3 ) ( 3 )

2 8 6 0 2 E - 0 2 2 8 2 3 9 E - 0 2

( 2 ) ( 2 )

2 7 6 7 C E - 0 2 2 7 1 1 4 E - 0 2

( 1 ) ( 1 )

2 6 - 5 1 E - 0 2 2 5 9 0 8 E - 0 2

(copygt 2 5 4 2 5 E - 0 2

ESTIMATION ERROR CRITERION CONSTRAINT =

7 3 0 0 0 E - 0 2

Figure 615B Contour plot of Tr measurement amp 5 (0] a t t in tbdquo = 014 five time steps after first LKt5

CCM-OUR PLOT OF T R A C E t P ( K K N K 2 ( K ) I AS FUNCTION OP t Z ( K ) 7 1 HORIZ EZ fKJJS VERT EXAMPLE TO SHOW GROWTH OF TRACECP(KKN)3 SURFACE WITH TIME T ( K + H ) I TS SHAPE APPROACHES THAT OF [ P ( K K ) 3 U SURFACE ASYMPTOTICALLY FOR LARGE N

4 4 4 46 AC A

r5 66 - 7 7 7

GG 7 7 7 PSb 77

6G6 5 66 55 666

0 bull 555 144 333333333333 55f 44 333333333333

555 44 03333333333333 _ 55555 444 33333353333333 55555 44 333^333033333333 bull555 444 333333333333333333

4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 XH M 4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 4 5

4 4 4 4 3 3 3 3 3 3 3 3 3 3 4 4 4 4 1 4 4 4 3 3 3 3 3 3 3 3 4 4 4

1 + 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 ^ 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 44 5 5 5

3 3 3 3 222222222222P gt 33 4 4 5 5 5 333 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 5 5 5 5

3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 4 4 5 5 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 g

3 3 3 3 2 2 2 2 2 2 333 4 4 4 4 3 3 3 3 2 2 2 1 I t 11111 2 2 2 33 4 4 4 4

3 3 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 444

3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 bull 3 3 3 2 2 2 U 1 1 M 1 1 1 U 1 U 1 1 2 2 2 3 3 3 3

2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 1111 11111 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 raquo I 1 1 1 ) 1 1 1 1 1 1 bull 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 111111 1 gt

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2

2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 2 2 2 2 2 2 3333 4444 53535 444 333 2222

3333333 444 5555555 5555555 444 333 33333 444 555 555 444 333 33333 444 5555 5555 444 333 333333 44 55555 55555 444 333 33333333 444 555555555 444 333 222

3333 444444 44444 330 221222 222 33333 T^33 22222 222222222 3333333333333 22222

2222222222222222 2222222 22222222222222222222

2222222222222 222222222222

333333 222222222222 222222222222222222 33333 2222222222222222222

4444444 333 22222222222 33333333333 4444 3333 333333

4444 3333 3333

JSiJ 3Sfl e raquo 3 8

9 9 9 9 9 9 9 9 9 9 9 9 9 S 9 S 9 9

9 9 9 9 9 9 9 9 9 9 9 9 3 9 9 9 9 9 9 9

iSBraquolaquo 9 9 9 9 9 9 9 S 9 9 9 9 S 9 9 858cea3e 999999999-

7777 7777777

7777777777 iGi i 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ei5666 7777777777777

S6666666666 6666G66666666666

S35 SGS6S066666666B )5i S55555

HJ5555555S5U555555 5555555555^555555555

14 55555 1444444444444444444444

4 4 4 4 4 4 4 4 4 4 4 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 I222222222222222222222222222222

r i u i u i u i u i i i u n u n i i i i i i

1 i n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 bull m i n i

2 2 2 2 2 2 2 2 2 2 2 gt 2 2 2 2 2 2 2 2 2 2 2 2 2 lt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 pound

2 2 2 2 2 2

u u i n 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

m i n i m i m i n i m i 1 1 1 1 1 1 1 m 11 1111 111 1111111111

1 1 1 1 1 1 1 1 1 1 m i m m 1 1 m 2J22222

222222222222222222222 i33333333 3303

33333333333333333333332 3 333333333333333333

T(KraquoN)= ISOOOE01 TIK) = 90000E-02 N = 10 STEPS ftFTE F IRST MEASUREMENT

CONTOUR LEVELS ANO SYMBOLS

SYMS LEVEL RANGE

t O ) 4 2 3 1 9 1 1 - 0 2

( 9 ) ( 9 )

4 1 7 9 7 E - 0 2 4 1 2 7 4 E - 0 2

3 ) t e gt

4 0 7 5 1 E - 0 2 4 0 2 2 0 E - 0 2

(7gt ( 7 )

3 9 7 0 5 E - 0 2 3 9 l a 2 E - 0 2

( 6 ) (Ggt

3 6 amp 3 9 C - 0 2 3 amp 1 3 C E - 0 2

( 5 ) ( 5 )

3 7 t e l 3 E - 0 2 3 7 0 9 1 E - 0 2

( 4 ) ( 4 )

3 6 5 G R E - 0 2 3 6 0 4 5 E - 0 2

C3gt ( 3 )

3 5 5 2 2 E - G 2 3 4 S amp 9 pound - 0 2

( 2 ) 3 4 4 7 6 C - 0 2 3 3 S b 3 E - C 2

(1 ) ( 1 )

3 3 4 C O H - 0 2 3 2 9 U 6 E - 0 2

(0) 3 2 3 0 5 E - Q 2

EST) MAT 1 Oi l EKROR CRITERION CONSTRAINT =

7 5 O 0 C F - 0 2

1 - 2 5 0 Q E - 0 1 1

Figure 615C Contour plot of Tr measurement

bullK+10AK (h) at time t K+10 019 ten time steps af ter f i r s t

cz(Kgtia 03

CONTOUR PLOT OF T R A C E t P t K K N ) t Z ( K gt ) 3 AS FUNCTION OF t Z ( K ) ] T HOR1Z t Z ( K H 2 VERT EXAMPLE TO SHOW GROWTH OF TRACEEPCKKraquoNgt1 SURFACE WITH TIME T ( K N ) ITS SHAPE APPROACHES THAT OF [ P lt K K ) ] 1 1 SURFACE SVYPTOTICALLY FOR LARGE N

555 44 33323333 555 4 333023333 555 444 333333(333

5b55 44 3333tngt33333 5S55S 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 55L5 444 333333333333333

444 33333333333333333 444 33333333333333333333

444 55 6 444 55 444 55 444 S 5

77 BE 6 77 OEGfl

7 7 pound9118 777 ease

4404 33333 444444 3333 44444 3333 444 3333 222

33333333 444 5 333333 444 3333 444 333 444

55 66 777 44 55 66 777 444 55 666 7777 666 77777

999999999 999S90999 9S9SS39999 99999999999 99999999999999 99999999

333 2222P222222222 333 22222222222222222 3333 222222 22222222 3333 22222 2222 3333 222 222

680e88666038B68 6S6 7777777 BC3QBQSBBB gtamp 66GC 7777777777 555 6i6fiS 77777777777777 777 bull 555 6056666 77777777777

3333 222 333333 222 11111111111 33333 222 11111111111111 33 2222 111111111111111111 2222 11111 111111 222222 1111 11111

444 5555 666666366666 I3 444 555S 66GS66666S6666666 33 444 5amp05S5 6666666666666 333 444 t5Sy555555S5 333 444 555555555555555555 55555555S55555555 222 333 4444 222 333 444444444 222 3333 44 14444444444444444444441 mdash2 333333 44444444 222 333313333333333333333333333333 222222 111111 221-22222222222222222222222222222 111111111111111111111111111111 1111111111111

llll1111111111 111111111 1111 111111)1111 22222222222 11111111 22222 22222 11111111 222222222 3333 3333 22222 2 3333 444444 444444 333S 222222221 3333 144 555555535 444 3333 ZZpoundZ 333233 444 5555 5555 444 333 3333 444 555 555 444 3333 333 444 5556 555 444 3333 3333 44 5555 5555 444 3333 333333 444 5555555555555 444 3333 Zt 33333 4444 4444 333 2222222 33333 444444 3333 22222 22222222 3333333333333333 22222 111 22rgt2pound222222222 222222 11111111 2^2 2e2Sgtpound22222222222222222 1111111111 2gt2212222Ve^^-^2^222 1111111 222222poundZi2222

3333333 22222222222222222222222222222222222222 33333 222222222222222222 4441444 0333 22222222 3333333333333 444 3333 33333

111111111111111111111111111111

444 3333 33333

111111111111111111111111111111 11111111111II 111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 = 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

T t K N ) = 2 4 0 0 0 E - 0 1 TCKl = 9 0 0 0 0 E - 0 2 N = 15 STEPS AFTER F IRST MEASUREMENT

CONTOUR LEVELS AND SYMBOL5 SYM0 LEVEL RAN3E tOgt 46551E-02 (9gt (9

4 4 9039E-7D27E--02 02

4 4 701-1E-eao2pound-02 -02

lt7 (7raquo

4 4 59fSE-5477E--02 -02 lt6J (6gt

4 4 49GEE 44S2E--02 -02

(5J 4 4 39C0E-34pound7E--02 -02

(4j (4J 4 4 291

rJE-2-103 E-

bull02 -02 I3J (3)

4 4 1 830E-I37SE- 02 -02 (2gt 12)

4 4 06C5E- 03L3E--02 -02 J (1)

3 3 93-IIE-3323E--02 -02 lt0 36310E-02

EST 1 HAT I ON ERRPR CRITERION CONSTRAINT = 7taOOOE-02

Figure 615D Contour plot of T r EK+^^K) a t time t K +_ = 024 fifteen time steps after first measurement L J

CONTOUR PLOT OF TRACpound[PCKKNgtCZ(KgtgtJ AS FUNCTION pff C Z lt K ) ] 1 HORIZ t Z ( K gt 1 2 VERT EXAMPLE TO SHOW GROWTH OF T R A C E t P ( K K + N H SURFACE WITH TIME T lt K N ) I T S SHAPE APPROACHES THAJ OF C P f K K l l U SURFACE AgtV1PT0TICALLY FOR LAROE N

TJME= 9 0 0 0 0 E - 0 2 FIRCT MEASUREMENT ELEMENT 1 1)

555 444 444 55 6G 55 444 33 444 53 66

555 44 0333 4444 55 66 555 444 3333333 444 55 66

553555 AAA 3333333333 4444 55 6pound 5555 444 3 3 33 33 i 133333 444 553 S 444 333333333333333 444 ~

6D3 8 0 3e

3 3 F 9 7 7 7 3poundJt

939909039 9999S9999

990030099 39J999999

7 7 7 1 3 8 8 0 8 6 9 9 9 9 D 9 9 S 9 9 9 9 9 9 66 777 eaiaaena 99999999-

_ 666 7 7 7 7 8 6 6 e 8 8 - 8 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 55 6 6 77777 8e38688C8O880OO(38

4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 3 6 6 6 7 7 7 7 7 7 7 7 8 8 0 6 8 8 8 8 8 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 656G 7 7 7 7 7 7 7 7 7 7 7 4 4 4 4 4 3 3 3 3 3 3 3 3 4 4 4 5 5 5 6G3E-6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - -4 4 4 3 3 3 3 3 3 3 144 sect55 5pound-SG6666 7 7 7 7 7 7 7 7 7

333 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 = 5 5 666665G5GGG6 3 3 3 2 R a R a raquo K 2 2 2 S 3 3 3 4 4 4 505 CGtJ6ampo6-6GGGCrGCGfiC6

3333 r y 2 2 2 2 r i 2 2 L 2 2 2 2 2 33 4 4 4 SS55 -gtb 66Gl5CCftgtG0tgt5 3 3 3 3 2gtZ2 2 2 2 2 Z 33 4-14 5E- 3 j ^ S S r i S W S 3 3 3 3 2r-22 2 2 2 2 333 4 4 4 4 55555503555511555555

3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 0 5 5 5 5 5 amp 5 5 5 5 5 5 5 5 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 333 4 4 4 4 4lt 4-14444

3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 I I I 11 2 2 2 2 333 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 + 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 4 4 4

2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 V3Z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 11111 1 1 1 1 1 1 2 2 2 2 2 2 2 ^

1111T1 111111 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111

11 1 11 111 1 1 1 -

11111111111111111111111111 1111111111 2222222222222 11111111

2222^ 22222 111117 1 22222222 33i^3 3333 2222

333 4-S44 44444 333 pound2222222 333333 444 55555555555 444 333 1

33333 444 5555 S555 444 3333 33 44 55 3 6G666 D55 44 393333

444 505 6665066 555 44 33333 333 444 555 555 444 3333 333333 444 55555555555555S 444 333 3333333 4444 4444 333 2222221

33333 4444444444 3333 222222 2222722 3333333333^3333333 22222 2222222222222 222222 111 1111 22P222i2-22l22P22222222222222 U11 U 1111 2ir2ai22-222i22irr2222 1111 11

22222r2-2Ki2 22 3333333 22pound2J22222Z22222222222222222Jai

3333 22222222222222222 4344444 3333 2222222 333333333 33C-

4444 3333 33333 444 33333 33333

11111111111111111111111111111 22222222222222222222222222222

33333333 3333333333333333333 333333333333033333

33353 22222

bull22222222222222222222222222222 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22222222

2 2 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3 3 3 ^ 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J

( 0 )

LEVEL RAKCE

1 6 0 S 3 E - 0 2

13) ( 9 )

1 6 3 4 S E - 0 2 1 5 0 4 0 E - O 2

1 5 3 3 4 E - C 2 1 4 C 2 E - 0 2

it ( 7 )

1 4 r 2 U - 0 2 1 3 t 1- t 02

( S ) ( 6 )

i sacaoos 1 2 8 0 2 E - 0 2

(5gt ( 5 )

1 2 2 9 5 f - 0 2 1 1 7 6 9 c - 0 2

( 4 ) ( 4 )

1 l pound P E - 0 2 1 0 7 7 C E - 0 2

( 3 J 133

1 O27OE-02 9 7 o 3 ^ pound - 0 3

(2) ( 2 )

9 2 5 t t l E - 0 3 8 7 j O ^ E - 0 3

(1 ) (1 )

BZnopound-03 7 7 3 7 5 E - 0 3

tOgt 7 2 3 1 2 E - 0 3

ESTMATUN ERtiR CRITERION C L l t T R U I H =

7 t r n o e - 0 2

SOURCE NPUr COVAKlANCE I W 1 - 1 2 5 0 f E - 0 1 1

Figure 616 Contour plot degl [amph at f i r s t measurement t ime t bdquo = 009 compare with asymptotic

response of Tr [ppound + N (z K )1 surface at t K + l g = 024 in Figure 615D

188

at the next sample at time t K + N when (645) is next satisfied From Conclusion X the minimax problem in (647) separates into finding zt

such that

[ E^4i = IK L - ^ that z which

^n-lr-1 $ 5$ pound

and independently findino that z which leads to

4 T max c(z) c(z)

(648)

(649)

for N large Various properties of the solution of th is problem are

demonstrated by example in what fol lows

631 Asymptotic Responses of Output Estimation Error - to demonshy

strate the asymptotic separation of the minimax problem in (647) into

the independent problems of vector minimization in (648) and scalar

maximization 1n (649) the problem of Section 61 was solved but as a

monitoring problem of the second kind with

~005 p 002

000001 (650) 000001

^ 000001 _

and with thi bound on maximum variance in the output estimate

Pdeg = ~0

lim 01 (651)

For this case a plot of the evolution of o^+(j(S((z) t n e gtin1max probshylem statement In (647) as a function of time t K + N 1s shown in Figure 617

The asymptotic separation of the minimax problem is demonstrated in Figures 618 and 619 The former 1s a plot of a^[z0z) as a function of the position 1n the medium z for values of time t R = 0 T 2T 9T

1OOOOE-01

6BO0OE-O2

S2000E-02

OeOOOE-02

4C000E-DZ

X X

X X

X

X

X X

XX

gt XX

X

X X

X XX

X X

X X

X X

X X

X X

X X

X X

X XX

X X

X X

X X

X

X X

X

X X

X

X X

X X

X

X

X X

X

X X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 617 Time response of aLwU((laquoz)gt t h e P e l f deg r m a n c e criterion for the optimal monitoring probshylem with bound on error in the output estimate for a = 010 samples occur at t = 011 047 and 085

EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTFUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-$ I At IT VALUE FOR LARGE TIME

80000E-02

74000E-02

96 7777 6 7 709 9 76666 e 876 6 7 9 976 555 6 78 6 55 56 9

1 0 0

865 4444 56 S 87 44 4 9 7654 4 5676

8654 33 9 754 33 33 4 567

3 SZZ100 965 3333g2H00 754

6BOOOE-02 4444pound2110 8343 5 55-JJgt3322 1002533222 777ii -514332293222 S^SS tiS314i65 0111

g- 03779S7 0 S99 (

62O00E-O2 1 2 3458

1 6 1 2 34579

36 1 2 4 79

1 35 8 2 6

i 1 34576 O I 2 6 J

C 1 23457) 6 9

12345 B 1 234 i7f)

1 gt579 0 123 13539

00 12 J4M5S9 41 OC 1 3-Ti67 9 9567

00 i345 6 6300 OOOOOO 0 00

SYMB TIME TK+N (0) 0E00 CI) 5000CE-C3 (2) 0001^-03 CD GOOCOE-03 (4) 80000C-03 t5 ) IOuOCE-02 (6) 12000E-02 ( 7 lJidOOC-02 0000 (6) 1600CC-02 000 I1 (9) 1 OOOOE-02 00 111

00111222222 0122 30333 P0112233344444 011223S4445SS-3 01 23341553 C306 012g34J50tt b67777 01254553077770360

12334Lpound67736999 12345My88393 12345677S99 12345^769 123b67699 1245S7S9 12456099 1245789 1246709 1246G99 134689 135799 13579 14R89 i99 2589 04799 2599

4000E-01 PtSl ION Z

Figure 618 Plot of performance criterion oilaquo[z) as a function of position z in the medium for K + N- -- - 2 _ _ _ J times t K+N 00 002 004 018 note how position z

changes with time of o + N(z ) = max a K + N U)

130O0E-O1

1 32O0E-O1

1 1 4 0 0 E - 0 1 ODDOnOOOCOO

raquoe00Dpound-02

oooooouooo

60D00E-02

Figure 619 Plot of asymptotic shape of performance c r i te r ion deg K + N ( z ) as a function of position z in the medium as N-raquo compare posit ion z =

totic position of maximum in Figure 618

the medium as N+degdeg compare posit ion z = 03 for Urn r j x apound + M (z) in th is curve with asymp-im n x N-~gt z

192

where T = (t K + - tbdquo) = 0002 zbdquo was taken as the initial guess at the best measurement locations z Q = [015015] The latter plot is a plot of

lti(z)T a c(z) (652) SS

2 the steady-state term in the asymptotic response of crJ + N fo r N large

Thus comparison of the asymptotic approach in time of the curves in

Figure 618 to the steady-state curve in Figure 619 shows that

N

c ( z ) T V n 1 M n 1 d(z) - c ( z ) T a c(z) (653) imdash S~S~ n=l

As a special case it shows that

max o+fzz)mdashgt max c(z) q c(z) SS

(654)

at the position of maximum variance z Note here that as expected the position of maximum variance is directly over the source position

(655)

632 The Effect of a priori Statistics mdash To demonstrate the efshyfect of the uncertainty in the initial state estimate x = m upon the optimal monitoring design problem consider variations in the a priori

statistics given in the initial state estimate error covariance matrix Pg = M- For this example fix the time interval of interest at 0 lt t lt 20 and set o | i m 5 02

(656A)

Compare the f i r s t case for which

000001 o E o s 8 o

0 0 00001

193

with the case where

E g - H o

oi 000001

o

o

000001

(656B)

The first choice results in the evolution of obdquo+bdquo(ztz) shown in Figure 620 resulting in one measurement at t = 126 The corresponding con-tour plot of [ E K ( K ) ] ] I as a function of [ z j and [jd for that meashysurement is shown in Figure 621

The plot of o^+f(zJz) for the second choice of M as in (656B) 2 is shown in Figure 622 where owing to the higher initial value of aQ

two sample times result at t = 046 and t = 160 The corresponding conshytour plots for those measurements are shown in Figure 623

Study of Figures 621 and 623 show that the locations of optimal measurement positions are not effected by the a priori statistics given in MQ provided that the time to the firsc sample is sufficiently long for the infrequent sampling approximations to apply

For the first case the time to the first sample is t = 126 for the second case the first sample occurred at t K = 046 Thus the only

effect that the choice of Mbdquo has upon the optimal monitoring design probshylem is the detirnrination of the time of the first sample

Thus the results of Conclusion V are substantiated here within the context of a monitoring problem with bound jn output estimation error

To illustrate the transient effects at play in the general monitorshying problem effects that exist before the infrequent sampling requireshyments of (518) and (520) are met consider the same problem as in the

20000E-01

16000E-01

taoooE-oi

raquo XX XX X XX X XX XX X

X Xt XX X XX X XX XX X

X X XX XX X XX X XX

I XX

X sx

XX X XX

X XX XX X XX X XX X 1 XX 1 X I X I XX I X I X I X I X I X

XX X X X X X X

X 1 X IX

X

X

1 600E+CO

2 2 0 Figure 620 Time response of ai+ufivtZ J f o r degi- = 0- 2 with initial covariance matrix P Q H H Q given in (656A) one sample occurs at t = 126

CONTOUR PLOT OF CP(KK) tZ(K)) J11 AS A FUNCTION CF CZCOU HORIZ AND EZtKgt32 VERT

bull4444 33 22222222222222222 4444 333 222222222222222222 4444 33 222222222222222 444 33 22222222222222222J 333 22222 2222222222222 333 2222

fZCKHZ

03

3333 __ 3333 22

33333 222 3333 2222 333 222 333 222 33 222 3 222

222222222E222 222222222222 2222222222222

2222222222222 222222222222

222 222

222 1 2222 11

22222 t11 1111

11111 bull1111111

22222222222 2222 31

1111 2222 31 11 111111 222 11(1111111111111 222

111111111111111111111 222 1111111111111111111111 22

1111111111 22 1 1111 I 22

11111 1111

1111

33 AA RK 7 aesss 999939 0 33 AA UK 7 7 eaaeo 99999 333 AA KH 7 a ieaa 333 A fifi 77 888908 999999

33 Ai HH 333 A 55 6t 7777 CAB 188 99999999

33 44 bullgt B 77777 888883 9953 333 AA Vgt 6(i 77777 0888883

3 3 44 Hfgt lies 777777 8880088885 3 3 3 AA 55 8SS6 777777 889Pd3S8

66666 7777777 44 555 6G6666 77777777 444 E5gt3 6666666 7777T777777

I 44 5SS5 66D6666 7777777 I 44 i5555 666G665 13 444 5555S5 666G66G66 J3 444 55055555 6665666666

1111 1111111111 22 33 AApoundA 5555555555 66666 22 333 J4I44 555555555 222 333 44AA4A4AAA 55555555553

222 3333 4444444444444 222 3323gt33 444444444444

111 222 33333333333333333 11U1 222E222 3333333333

11111 222222222222222222222 11111 1111111111 2222222-

H I 11 i i i i m i i i i i i i n i i i i n i u i u n i i i m i n 11111 m m 111111111111111111111

11111 222222222222 1 1 m m m i m - m m 1111111 222 33333333 222 11111 11111111111111111111 11111111 22 33 444 33 22 111111 11111111111111111111111111 1111 2E2 33 44 444 33 222 1 11 11 11 1 1 11 1 11 1 1111 1111 222 33 44 555 555 4 33 222 1111)11 2222 3 4 55 66666666 55 44 3 222 22222222222222 222222 33 4 5 G6 666 55 ltJ 33 222 222bull22222222222222222222 bull22222 33 44 55 66 777 66 35 44 33 22222 2222222222222222pound22222222-22222 33 44 53 66 777 6 5S 4 33 2222 2222222222222222222222222 22222 33 4 5 66 666 55 44 3 222 2222222222222222 222222 33 A 55 6666666 35 44 33 222 1 2222 33 44 655 555 44 33 22 11111111111111111 1111111111 222 33 444 44 33 22 1111111 1111111111111111111111111 222 333 333 222 11111 1111 ^

bull11 O 111111111111111111111 1111111 111111 111111111111111111111 1 22222222 22222 222222 22222222222222222222222222222 2222 222222222222 222 2222222

11111 bull2222 1 11 11

2222 1111 333 2222 11

3333 224 333 222 333 222

222222 222 111 m m

i m i m i i 111111 1111111111 111111 m i m 111 m m i i 11111 n

m m i i m n

CONTOUR LEVELS AND SYMBOLS

SYMB LEVEL RAIiGE

~76) iTs^ ie -o i 19) (9)

2 2

4972E 4402E-

02 02

( 8 ) 2 2

303i 3263E

02 02

C7) pound7)

2 2

2S94I-2124b

02 02

(61 (6)

2 2

155ipound 0985g

02 02

(5) (5)

2 1

011 5pound 98-562

02 02

t4 ) (4)

1 1

927ampE 87071J

02 02

(3) (3)

1 1

6137E 75S8E

02 02

(2) (2)

1 1

6996E S428E

02 02

(1 ) n 1

1 1

5059E 52QUE

02 02

(copy) 1 J720E 0 2

EST1 HATION ERROR CRITERION CONSTRAINT =

SOOCC^-Ol

12500E-O13

F i g u r e 6 2 1 C o n t o u r p l o t o ^ F K ^ K ^ l n w 1 t h i n i t i a l cdegvariance matrix E Q = - 0 9 i v e n i n ^ 6 5 6 A f o r

the sample at t j 126

20000E-01

95000E-02

6 OOOOE-OS

SS000E-02

Figure 622 Time response of C J | + N ( Z Z ) for ltm = 02 with i n i t i a l covariance matrix P 0 i MQ given in (656B) two samples occur at t K = 046 and 160

CONTOUR PLOT OF t P ( K K ) ( Z ( K ) ) 311 AS A FUNCTION OF CZCfOJ I HORIZ AND r Z ( K gt 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T IME P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-SiTATE VALUE FOR LARGE T I M E

CZ(Kgt]2 05

4444 33 222222222222222222 4444 333 222222222222222222 444 33 222222222222222222 444 33 222222222222222222 333 22222 2222222222222 333 2 22 333 2222 3333 2222 33333 222 3333 222 333 222 222

222 t 222 11

2222222222222 2222222222222 2222222222222

22 22 22 22 111

2222222222222 pound22222222222 2222222222 22222

23 44 55 6G 77 33 44 5 66 777 333 AC 5 66 777 333 4 55 66 777 33 44 55 C3 777 333 4 55 56 7777 33 44 5 e3 77777 333 4 55 i36 77777

999999 99999 93999 999999 99999999 99989999 9999 8888866

0

2222 222 222

111 222 222 222 2222 111 22222 111 111 1 11111 1111111

11111 11111111111 11111111111111 1111111111111111

1111111111 111 1 I I

11111 1111

111

55 666 77777 4 53 6666 777777 68688688 4 tgt55 66666 7777777 44 3E5 666666 77777777 444 5J55 6666666 77777777777

44 S55S 66665C6 777777 44 5555 6666666 Aamp1 555555 66666666

2 a 3 J14 555555555 6666666666 2 33 4144 555555555 66666 22 333 44444 555555555 222 333 4444444444 55555555555

222 3331 4444444444444 222 3133333 444444444444

1111 222 333333333333333333 11111 22 2^22 3333333333

111111 322222222222222222222 222222 11111

111111111111111 -11111 111111 111111111111111111111

11U1 222222222222 11111 1111111)11111111 1111111 222 33333333 222 11111 11111111111111111111

bull11111111 22 33 4444 33 22 111111 11111111111111111111111111 111 222 33 44 44 33 222 11111111111111111111 11111

222 33 44 555 555 4 33 222 11111111 22222 33 4 55 66666666 55 4 33 222 22222222222222

222222 33 4 5 66 66 5 4 33 2222 2L 1222222222222222222222 22222 33 44 55 66 7777 66 55 44 33 22222 2222222222222222222222222 2222 33 44 5 66 7777 66 SS 44 33 2222 2222222222222222222222222 22222 33 4 5 66 666 55 4 3 222 2222222222222222 222222 33 4 55 66666666 55 44 3 222

2222 33 44 555 555 44 33 22 111111111111111111 111 11 111 111 222 333 44 444 33 22 1111111 1111111111111111111111111

2222 333 333 222 1111 11111 2222 3333333 222 1111 11 22222222222222 22222 22222 3333 2222 333 222 333 222 333 222

111 11 0 11111111111111111111 1111111 111111 111111111111111111111 1 2222222222 22222 222222 22222222222222222222222222222 2222 22222222222 2222 222222

SYMB

t b i

LEVEL RANGE

z 5 5 1 9 pound - b 2 _

( 9 ) ( 9 )

2 2

4952E 4384E

0 2 C2

I B ) ( 8 )

2 2

3816E 3248E

0 2 0 2

( 7 ) ( 7 )

2 2

2G60E 2112E

0 2 0 2

( 6 ) ( 6 )

2 2

1544E 0977E

0 2 0 2

( 5 ) lt5gt

2 1

0409E 984 I E

0 2 0 2

( 4 ) ( 4 )

1 1

9273E 8705E

0 2 0 2

( 3 ) ( 3 1

1 1

8137E 7570E

0 2 0 2

( 2 ) t 2 )

1 1

7002E E 4 3 4 E

0 2 0 2

( 1 ) ( 1 )

1 1

5 8 6 6 E 5298E

- 0 2 - 0 2

( 0 ) 1 4 7 3 0 E - Q 2

ESTIMATION ERROR CRITERION CONSTRAINT =

2 0 0 0 Q E - O 1

1Z300E-011

Figure 623A Contour plot of Ppound( K )1 with in i t ia l covariance matrix f 0 = MQ given in (656B) and ulim = 02 for the first sample at tbdquo = 046

CONTOUR PLOT OF t P I K K lt ^ C K J gt 1 1 AS A FUNCTION O t 2 ( K ) J 1 HOBI2 AND t Z ( K gt ) 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPU ESTIMATE WITH T I M E POSIT ION OF KAXtrUlK VARIANCE APPROACHES STEADY-31A7E VALUE FOR LARGE T I M E

09

333 44 14 33 44J 33 333 333 2222 3333 2222 3333 222 33333 222 3333 2222 06 +333 222 333 222 222 I 222 11

07

CZCK132 O S

222 222 222 2222 22222 1i till lllli bull1111111

22222222222232222 22222222222222222 222222222222222222 222222222pound2222Z222 22222 2222^2^222222 2L2 222 222222 222222222222 2222222222222 2322222222222 222222222222 22222222222 22222 1 2222 1111 1 111111 Mil 111111111111111 11111111111)111 11111111 111

3 3 4 4 7 7 7 3 3 3 4 4 S 3 3 4 59 66 7 7

3 53 6 7 aar 4 4 ss i6 3 4-1 tgt

333 44 S3 tgttgt6

777

333

222 222

44 SS 66 77 USB66 993939 0- 3 G 6 99999 8388 59939 eeeoas gposgfl 00866 99999599 ltft aeoeoo 9999399s-77777 888068 3999 77777 8638880 665 777777 6608800888 4 OS 6SE6 777777 86000680 4 55= 66666 7777777 44 ESi 66SCC6 77777777 444 5i3 60EG666 77777777777 44 iSC5 6GGGGG6 7777777 44 35355 G61606G 1 44t 555553 GoGG66G66 22 33 114 355553C3 G6GG66G6G6 I 22 33 44 4 5355330553 CS666 II 22 333 4444 535555553 III 222 333 1444444444 33353515533 111 222 3333 4444444444444 till 222 3313J33 444444444444 1111 222 33333333333333333 11111 222122 3333333333 11)11 222222222222222222222 11111 Hill It II 222222 111 M1111111111111 11 II111111 I 1111 III11111I1 11111 111111 111111111111 11M111 11111 222222222222 11111 1 It 1M111111111 111111 222 33333333 222 11111 bull 1 111 11 1111 11111M 11111111 22 33 44 33 22 111111 11 111 11 I 111 11111 1111 I till 22 33 44 444 33 22 11111 11 bull 111111111 11 II 222 33 44 553 335 4 33 222 1 1111 III 2222 3 4 55 C666666G 53 44 3 222 222222raquo22222 222222 33 4 5 G6 666 53 4 33 222 22222222222^222272222222 22222 33 44 55 C 777 5 05 44 33 2222 2S222Wr2S2222222222 22222 33 44 5E 66 777 6 53 4 33 2222 22L-22rT22E22222 222222 22222 33 4 5 66 6SG 55 44 3 222 2227222222222222 2222222 33 4 55 G66GC66 53 44 33 222 11 2222 33 44 555 533 44 33 22 111 111 1 11 I I 111 111 11 I11 1 11 111

1111 111 HI

222 33 444 222 333 -111111 222 333333 222 11P1H 22222222222222

33 22 22

11111

2222 111 t i n 11 t i n 1 3traquo3 222 1111111111111

3333 222 11111111111 333 222 1111111111

2 111 m m

m n i u l i i i i i n m i n i i m i 11111

m m 11111 mi 11 1 11111 m 1 m 111111 1 22222gt222

222222 2222 222

m m 111 m 1111111111111

111111 m i n i m i m m i i m t 22222 222222222Z3222222222232222222 2222222222222 2222222

SYI-3 LEVEL RANGE (0) 25540E-02

l 2 2

4970E-02 440IE-02

2 3B31E-02 32G1E-02

i l l 2 2

2GXE-02 21225-02

1 2 1352E-02 0963E-02

11 2 1

O4I3E-02 9843E-Q2

i I I

9274E-02 8704E-02

II 1 8I3-JE-02 -756-S-02

si 1 1 6S93E-02

GJ25 -i-02

1 I

3333pound-02 GZilLC-02

lt0gt

g trade -12uorE-oil

Figure 623B Contour plot of [ P pound ( Z K j L with i n i t i a l covariance matrix PQ = HQ given in (656B) and

degl lim = 02 for the second sample at t R = 160

199

2 last case above with HQ defined in (656B) but with a = 016 instead

This results in the curve for o K + N(zJJz) shown in Figure 624 for the

shorter time interval 0 lt t lt 10 Two sample times result at t bdquo = 011

and t K + r ) = 086 Corresponding plots for [pound(lt)] and [ P pound + [ | ( Z K + H ) ]

are given in Figure 625 Notice how in this case that the optimal meashy

surement positions it and z bdquo + N at the two samples are different The o

reason for this is that here the estimation error l i m i t o is so low

that the infrequent sampling approximations do not apply at the f i r s t

sample t ime This is inferred by the response of degV+N^K Z^ i 9 U r e

624 where i t is seen that zhe steady-state slope [ f tJ i i = 000125 for

this problem has not been reached yet at the f i r s t sample whereas i t has

at the second thus the steady-state simpl i f icat ions 1o not apply at the

f i r s t sample For th is reason in practical applications step (3) of the

algorithmic procedure given in (572) is important where at each sample

i t is necessary to check whether or not steady-state conditions have

been adequately approached for the infrequent sampling approximations to

apply

833 Problems with a Fixed Number of Samplers aid Constant Error

Bound - Consider a problem withm = 2 samplers to be used in every 2

measurement with a time-invariant error bound o = 0075

The i n i t i a l covariance matrix

000001 O 1

eS = y 0 (657)

O 000001 Conclusion V and XI are substantiated in the context of this problem with bound on output error

laquo vV

X X K

- w XX XX XX XX XX XX XX XX

X

XX XX XX XX XX XX XX XX XX

xx m

X XX XX

gt X X X X

X X XX X X X X X

S5QQ0E-Opound

X X

X

X

X X X x

X

Figure 624 Time response of a K + fzpoundz) for a = 015 with initial covariance matrix P Q = M Q

given in (656B) Two samples occur at t = 011 and 086 compare with Figure 622 for case with a = 02

CONTOUR PLOT CF CP(KKMZltKgt1311 AS A FUNCT0^ t r [ZC EXAMPLE TO SHOW EVOLUTION OF VARIANCE ID C - J _ P C rSrl POSITION CF MAXIMUM VARIANCE APPROACHES S T C ^ V bullpound ATE i

Ji HOTIZ AND tZ(Kgt]2 VERT E WITH TI ME LUE FOR LAHGE TIME

tZ(K)12 05

aa 33 44 4 -_ -

4444 33 222 4 4 4 33 2222 4 4 333 222

33 222i 33 222

3333 222 33333 222 33333 222 33333 222

2222222222222222222 2222222222222r222 22222 2 t2222^^22

22222 2 2222 2f P 22 2222^22P2 22j2^^2r^22

22 ^lt7ih

3333 3333 3333 3333 3333 33 33 3333 333

22 22

2 2

i n n i m n n i n 11111111111111

2222 222 222

77 7 A C e R B 9C99 0 77 c-rrc-rs 90909 77 SCT638 S3^99 7 77 0^036 099999 777 CC3C36 92999999 7777 G363G3 99999999-

7777 eee 9999 i j 7777 e^cr pound33 (--bull 77777 iJZWrampec V G 7777 7 6^000833

j GMJ-5 7777777 o U -CG 777777 gtbullgt Ev -ro 777777777777 bulljT -5 CCSG^GS 7 7 7 7 7 7 7 7

11111111111 11111 j

1111 m i

22 33 AA

2 2 2 2 2 2 2 2 111

1111 bull i m m 1111

1511 2 2 33

i l l

111111111111 11111 11111

1111 222222222222 1111 111111 222 3333333 222 1111

11111111 22 33 4444 33 222 11111 i m 222 33 44 44 33 22 11111

222 33 44 55 555 4 33 22 11 22222 33 4 5 666666666 55 A 3 222

22222 33 44 55 G6 66 5 4 3 2Z2 2222 33 4 5 6 7777777 CO 55 4-1 33 2222 2222 33 4 5 66 7777777 56 55 44 33 2222 22222 33 4 4 5 5 6 6 7 66 5 4 3 222 222222 33 44 55 G66S C666 55 4 3 222

22222 33 4 555 55J 4 33 22 11 2222 33 444 44 33 pound2 11111

222 33 44444 T3 222 111 11

4l4 4fCltits44-44 53355-ltt44-144444

J333333333 r333533 33333333333

2222^^^^22^22222222 11111 1 I I 2222

m m m m i 11111 m 11 m m m i i m u m

m m m t m u u u u-u m i m 1111 m m i m m m m 11 n m M TVZ

222ytgt gtr 222222 2 2 2 - f v SW2V2vbullgt222222

22 - ^ ^ 2 ^ 2 2 2 2 2 2 2 2 2 ^ V 2 2 2 2 2

11111 bull m i m i m u m m m M U U 1 1 1 1 1

i raquo i 11 I I 111 m i 2 2 2

2 2 2 2 2 2 2 2 2 2

333333 222 333 222

4444 33 222 44444 33 222

2 2 2 2 2 2 111 m m

11 M l 111 1

111 M i l l 1 1 1 11 t m i l i u m m u i 11 U U 1 1 U 1

1111 u

22222 2222

2222 33 222 333

1111111111111111 1111111111111111-1111111

2222222222222 22222222222222 222222222

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3133333333 3333333333

CONTOUR LEVELS AND SYMBOLS

SYMB LEVEL RANGE

( 0 ) 2 C ^2E-02

( 9 1 113^151 ca t I-I13II--S1 pound71 pound71 iiS51ESf ( 6 ) (6) flIIlsecti ( 5 ) ( 5 1 UI|g| ( 4 ) pound41 i laquoSIS ( 3 ) ( 3 ) ^IIsectI ( 2 ) ( 2 ) sectvSgSI pound1 ) pound1 1 ssiis (0) 1 4302-02

ESTIMATION ERROR Jraquo TERION C0NampTR i - r =

C W 1 =

pound - 0 1 )

Figure 625A Contour plot of te)]u wi th initial covariance matrix P = H given in (656B) and cC HO15 for the first sample at t K = 011 case with a s 02

Lim

Compare with Figure 623A for

CONTOLR PLOT OF tPCKK) CZIK)) 311 AS A FUNCTION 3F [ Z ( m W3R1Z AND tZ tK) )2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE UTH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE fOR LARGE TIME

tZ(K)12 os

44444 333 22222222 44444 333 2222222 44444 333 22222-222 4444 33 2222222 4-14 333 2222222 A 33 22PZZZ

333 22ZS-K^^2222 333 22222^ 22222 333 2222222-222 22222

333333 222222222222222222222 33333 22222 33333 2222 3333 2222 3333 222 333 222 bull333 222 333 22 333 222

222

9333 At 3333 A 3333 A 333 gt 3333 333 bull 3333 333 333 33

22 222

2222 11 pound2222 1111

22222222222222 2222222222222 3

22222222222 22222 2222

111 11 222 11111111111 222

111111111 222 1111111111111111 1 11111111111

1111111 1111111

11111

99299 0 909999

S3 GG TIT B06BB 939999 55 66 77 85BG03 993299

A 5 65 77 03BBB 99999999 4 55 66 7777 66G86 99D999999 AA 5 6 3 7777 BBB30G 999999 AA 55 6 56 77777 QBOB600

44 55 56U 77777 eeBSBBBO AA 555 6GS6 777777 8008806008

44 S5S 0666 777777 66800 44 55 i 666C6 7777777

i3 44 5-iS 666666 777777777 33 44 550 6GG6666 7777777777 33 444 raquo5Si5 6G666SS6 77777 333 44 S)iS35 GGGGGGG6 33 444 3555535 6GG6660GG0 333 444 5555555555 66G666666

222 33 44 14 5555555S5S5 22 33 14144 5555555555 22 333 4444444444444 5535555 222 333 1 4444lt1444444 2222 I3lt13333333333 4144444

33333333333333

111111111111 1111111111111111111

1111 111111 1111 2222222222222 11111

11111 222 33333 2222 11 11111 222 333 333 222

1111111 222 33 44444444 333 111111 22 33 444 444 33 ez 1111 222 33 44 5555 44 33 Zi 11 22 33 44 55555555 44 33 2 11 22 33 44 55SS5 444 33 f 1111 222 33 444 444 33 22i 111111 222 33 3444 4444 233 222 11111111 22 333 44 333 222

111111 222 3333333333 222 11 11111 2222 22L1

11111 22222 1111111 111111

11111 11111111111 111111111

11111 222222 11111

2222 1111 222 11111

33 222 11111

11111 2222 11111 222222222222222 1111111 222222222222222222

i i11111 i 11111 n i i i I 11 i m i n i i i i i i

n i n m i i i i i i i i i n i n i i i i i i 111U1111111U1111111111111

m i l i i n u n i i i n i i 1111 i i m i m i i-1111111 I 111 i i n i n i 11111 11 1 111

1 1 2222222222

1111

1111 11111 11111 111111

222222 222W222222222 1 2222P222 HiP2222222222 2 2222222i^22222222222

1 111 222 1111 1 I I 1 1 1 1 1

1 1 1 1 1 1 1 lt i m i l m 1111 in 1111 m i ii 1111 ii i i lt i i i i i i i i i i i i i i i i i

m i i i i i i i

n m i n i m i i 222

222 - 2222222222222222222222222222Z22 222222 222222222222222222

22222 2222222222222

SYK3 LEVEL KAKEJE

(01 25171E-02

l 2 2

d570E-02 397CE-02

2 2

33G3E-02 27tiOE-02

2 2

21amp8E-02 15G7E-02

i 2 2

OQti7E-02 OatiiSE-QZ

i 1 0765E-02 9163E-0Z

1 05G4E-C2 79G4E-02

1 1

73G H-02 O7r3E-02

sect 1 1

eir2pound-02 55G1E-02

1 1

49G1E02 43G0E-0Z

tQl 137G0E-02

ESTIMATION EMWJ3 CPlTpoundRtCN CCNS^MNT laquo

I SOJSt-Ot

HIAfCL IWJ

Figure 625B Contour plot of | EK(^K) w i t h i n i t i a l covariance matrix p[j = HQ given in (656B) and a =015 for the second sample at t K = 086 Compare with Figure 623B for

case with a 7 - ~ 02

203

Supoose the problem starts at time tbdquo As discussed in Section 63 and according to Conclusion XI the position z of maximum variance in the estimate of the pollutant concentration at all measurement times is independent of time and is thus calculated at the beginning of the problem With this value z relationships among the various optimal measurement position vectors z at Ihe measurement times are to be conshysidered

Assume that the time the first measurement is required is at timj t iy is found to maximize Ktt) the time the next measurement is reshyquired Then at t K + N gt it+bdquo is found to maximize the next time interval to a measurement etc A typical plot of a (zz) over values of tbdquo is shown in Figure 626 For each measurement time t bdquo + N gt zJ +bdquo is to be

found to minimize [ P S ( Z K + N ) ] so that to corroborate the optimizations K+N over K + N contour plots are made at every measurement time for [ P K + N

(z K + N)] as a function of [ji+N] horizontally and [Zj+NJ vertically Plots for the four resulting measurement times in this problem at t = 027 048 069 and 090 are shown in Figure 6-7 Notice that the contours at all samples are the same leading to the eame optimal design for z] + N at all measurement times t K +^ thus Conclusion VI is demonshystrated

Comparing the first two measurement time intervals in Figure 626 that is (t K - t Q) = 027 compared with ( t K + N - t K) = 021 shows that for N large the only effect that the choice of U Q has upon the optimal measurement design at the first sample at time t is in determining the time of the required measurement t K it has no effect upon the optimal locations zt which demonstrates again Conclusion V

RUN N3 1 EAMfgtLE 7 0 - T I C W IPOLUTION OF VARIANCE I N O U T f U I ESTIMATE WITH T I M r S I G ( t ) POSIT ION OF r A X I M W I VARIANCE Prf iOACHES STFAIV -STATE VALUE FOR LArtCE T I M

60000E-02

4B0DEE-02

1-6000E-02

x x raquo X

X X

X X

X

X X

X X

X X

I X

I X I X I X I X I X I X

X

X X

X X

X

x

x x x X X X x x x

x x

I X I X

I X

X X

X

X

X X

X

X

X X

X

X

X X

X

X

1 X

i x

IX

X X X laquo(

X

l - f y r s ^ - ^

Figure 626 Time response of o K + t Yz z ) fcr obdquo - 0075 fojr samples occur at t f deg-7 048 069 and 090

205

deg gK Slt1

1 ss rjti on OO OO s

Vr gK Slt1

1 is 5 1 T 3

ore 2-5--

co iZ ^ pound3 Sm mdash SS raquo N

T 3

ore 2-5--

o tfgt W laquo WWttWW r-r- bullft w laquo NWWWW r-- ID n v ^ n WWVWftl r-f^ o m raquoltT f t WWWWCd S lO V o WWWWW

o rt V WWfV-W N T iT o ftiwwcvw N r u w N M V N N

bulla L i V laquo ltj laquobull IV o V o n wywcvcv

t o o i n lt o n WflWftWfti bull bull M O O m T WltoeJW

O t f rt V WWftftftiftJ O O w T o r a OlttKiV-jAiAW p laquo T WWMMftAlMW - N L I V WftiXFMAiiVOi

- N 1 bulli l V OCT L i ft

pound o irw 7 o ft ltt -v

t ID o ttvfitirv i m laquo w bullcjftCnWW

^ tvft fNPJVWPi o Ift W o W f - gt bull laquo ( raquo gt laquo OHO ifl bull o laquo c (M^Cft(M lOul n ^r Vi Nfftl O O - iv iww

(D^-gt bull c- laquo wwv luWNUi 10OO - 1 n n wwcv vwni

ww o o bull

mdash mdash mdash CJW

mdash mdash - mdash mdash Wftl

- ^ N N N N r v

www bull inmdash

bull (Oioininraquo-))0in

H 5 S 5 2

ftjft www Mftt

WiMCU

mdash ^ - w

c^v fJSJCl mdash - mdash -

iiiisis mdashmdash WW bull O mdashmdash (M J bull bull bull bull o

CONTOUR PLtff OF EP(KK)(Z(K))311 AS A FUNCTION F rZ(K)J1 H0R1Z AND CZ(Kgt32 VERT EXAMPLE TO SH3W EVOLUTION OF VARIANCE IN OUTPU1 ESTIMATE WITH TIME POiilTION Of MAXIMUM VARIANCE APPHOACHES STEADY- J T M T E VALUE FOR LARQE TIME

1

CZ0012 05

444 444

4444 4344 4VV

4144 444

4444 bull4444

44444 44-14-14

444-144 444444 44 14 4 4414

444444 5 444444 5 444444 5 4lt14lti44 SI 444M 44444 4444 44-144 4444 4 114

777 777 777

66

114 333 3333 3333 3333 3333 3333333 3333 22JU22 2222 2222222 22221-2

3333 333C333 333S$33333 I33333J373333 $33313raquo33S33333 4-144 555 666 3$3333amp3i33333333 444 55 666 33$^33J33J33333333333 444 55fgt 66J 3333 33333 333333 44 55 6E-6 333$3 3J33C333 444 55 GS 05S33 444 505 33333 44 b-S 222222 3333 444 555

0080 ueeo H388 SC30

OC038P occecoo

9990339 99093999 9S9S999 99303399 1S999 _ 9999S99raquo 999959999b 88663098 S99999 77 388833083 7777 8063000068 777777 808EJ8C88380860 7777777 0S03C3SQyC8B 777777777 6838008 777777777 Jifi 77777777777 ltJ 0C6 7777777777777777 fgtiit36SC 77777777777 66b5Eil3S^GC6 222222222222 333 44ltJ 555 22222-gt^I22amp2pound22 3333 bull 222pound222222222222 33 222222222 333 2222222 3333 -4^4ltM1414444

222222 33333 4441444444444444444444 222222 333333333

50305555355555 555555505555555555

222222 pound22222-2 2222

2222 2222222 ^ 2 2 2 2

1111111 1111 111 1111 111 II i n i n m i n i m m m i i n m m i m m i m i m i m i 1111

i n i m n

m m n n m i i

11111 m i l

2222

22

111

n

m i n i I n 11iin11 I I ii i m i n i m i IinI1111 n i n m 111111111 in-1

111 Ull 22222222-111111 22222222poundK22222 t 22222222222

11111 2222 2222 2222222222222 11111 2222222

11111 22222 33333333333 J3333 oo ^22222 ii i n ^ ^ i m i i H2222 333333c

SYMamp LEVEL RANGE

tO 21520E-6pound

(6t C6gt lISISi (5[ (5f l3ililgl (4) 14) 15SfI8i

(2J 1026oE-02

ita

I250UE-01J

F i g u r e 6 2 7 B C o n t o u r p l o t o f fe)jn for the second sample at tv = 048 K

CONTCLrt PLOT OF I P f K K ) ( Z ( K ) ) J 1 1 A3 A FUNCTION O f [ Z t K l l l HOR12 AND t Z ( K gt 3 2 VERT EXAMPLE Tr- SiTOW EVO^UTIDN OF VARIANCE I N OUTPUT r S l M A T E WITH T IME POSIT ION Oi MAXIMUM VARIANCE APPROACHES STEADY-G ATI VALUE FOR LARG T IME

444444 55 66 777

41 V pound4 tgt5 SS6 77 SS 66 777

44 444 oL-5 06 77

4 4 4 4 4 4

4 4 4 4

4 4 4 44-11 33333

444 1 3 3 3 3 3 3 3 A4-aA 3 3 3 3 3 3 J 3 3 3 [4ltii 3333Cgt J3073033 44 4 3 3 3 5 J i 3 J 3 3 3 3 3 3 3 IJ44 33 3V333o3-raquo3333333 M4 3 3 1 3 3 i 3 3 ^ J j J 3 a 3 3 3 3 a 3 144 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 44 5 S 3 6(gt 14 3 2 3 3 3 3 3 3 3 3 3 444 5S 5C I 3 3 3 3 3 3 2 3 3 3 AAA C 5

3 3 S 3 3 3 3 3 3 4 4 035 3 3 3 3 E222222 3333 -144 j-5

3 3 3 3 ZZZsrlte22 C3C3 4 4 4 5555 bull 3 3 3 3 322 2 22SV2222 3 3 3 3 4 4 4 5 3 3 3 3 3 3 3 23222gt2222-2raquoPgtpound22 3i3 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 2 3133 4-1444-i

2 2 2 R 2 r t 2 2 2 3 3 3 3 4- 1

2222-222 2 2 2 2 ^ 2 3 3 3 3 3 bull 2 2 2 2 2 2 222 3 3 3

1 1 1 1 1 1 1 1 1 1 2J222

-1-114 J 44-1

4 4 4

m i n i i i i i i i n i m i i i i i i i i t i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 bull i i i n m m 11 I n i i

m i i n n i m i m l i m n

u i m 11 i i t 1 1 I 11 II 1111 1111111

bull111111 111111111

11111 m i l

2222 1111 +pound2222 1111

111

22222 22222222 2222222

m u m 111111111111111 11 111 1111111111111111111111

11111111111111111111111111111 m m i u n i i i i i

m m i i m n u m n m

l i m n m m

11 11 1 22-gt22 11111 2222222 11111 22222 11111 22222

1 C8 9 3 9 9 9 9 9 0+ B t3 9 9 5 9 3 9 9 9 U CBS 93S--99

EU3S 3SJSJ3U39 E-r-so 9 r j099S99

CC30a 33S-SSE9 CfiSBOO 9999 pound999999

383S3S8 9 9 9 9 2 9 9 3 9 9 77 8S33C308 9 9 9 9 9 9 bull717 GC^raaraquoSB 7T777 amp088 iS9QeS

777 777 e8oSSr 30808388 777777 6 3 a 0 8 3 8 3 3 8 0 a

7 7 7 7 7 7 7 7 7 8 8 8 8 6 0 8 7 7 7 7 7 7 7 7 7

Ht 7777777777

CCfiSS 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 i l Egt6 -amp3S 7 7 7 7 7 7 7 7 7 7

S-j^tiGfcG666SG

0 j55 6C6eSCi66e666 _x^CJ50tgtSS555553

S5Cgt5055C55DS5oS5S5 -4M44444444A

4444444444--1444444444 3333333

33333333033333333333133333 3333oJ33333 2r^222 2- i^^22222222

22 pound 3ft laquoraquoamp 2 22222P2S2 222 22i^lamp r PP-2-2222^22222e2

2222 vr^- amp2222222 2 r ^ g 2 L - - ^ 2 2 pound 2 2 2 2 2 2 2 2 2

2^2 r 22 gt22222HS222222S22 P22^252i-pound-HSpoundHS-222i 12K 22c

2222^222gt2222222P22 22222222 2 222 222^22

pound22222222222 m i 1 bull m i n 11111111111111

i i i 1 1 1 1 1 1 i i i 1111111 11H11111 i l l 111

22222222-2^222222222222222^22222222222 bullbulliiiiL22ZZgt2Z-ZZZt

SYMB (01 mm (91 i OC03E-02 0152E-Q2 (8) (B)

9450E-02 B748E-02

(7) (7)

C04SZ-02 7344E-02

(6) (6)

GC43E-02 5341C-02

15) (5)

5235E-02 4 33E-ca

14) (4)

3S36E-02 3134E 02

(3) 13)

2432E-02 1730E-02

(2) C21

103pound-C2 Oj27t--02

(1) (1 J i 6252E-03 9234pound-03 (copyJ 8 - 2 2 1 7 E - 0 3

ESTIMATION ERROR C-RIrEKl f lN CONSTRAINT =

7 0 0 0 P S - 0 3

KlANCE [WJe

1 2 S 0 0 E - 0 1 1

Figure 627C Contour plot of [bullft M i l for the th i rd sample at t K = 069

CONTOUR degLOT OF tPCKK)(2(K))I1 AS A FUNCTIOM CF [ Z C K U I HORI2 AND (Z(K)13 VERT EXANPLF TO SiampU EVOLUTION OF VARIANCE N OUTPUT ESllMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIKE

3b55 5Sgt3 S5S6 555

444 4444 444 AAH 444

aaaa aaa

4444 44 3-4

lt4444 44- 114 444-44 44441

444444 444444 444 4 11 444414 4444-1 44444 1444-1 -14414 4444

53 G6 777 55 66 777 55 66 777 55 (JPS 77 GSS SS 77 55 GG 7 55 S6 7

I o

4 t44 Sco SG$

535

IZ(K)J2

05

33333 3333333

333333J333 333333330

33-raquor-ltgt3^ii333 V J 33ogt-i333ampJ^33333 444

3 3 3 3 S 3 3 S S 3 3 3 3 3 3 3 3 3 3 J 3 4 4 4 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 4 4 4

I 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 3 3 3 3 3 3 3 3 4 4 4

3 3 3 3 3 3 3 3 3 44 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 3 4lt

3 3 3 3 222222gt22 3 2 y a 4 4 4 3333 27-1- 2222Z 3333

3333333 S2Sk4gtgtZSfgtamp2lrfS32 033

3 5 0

4 4 4

3 3 3 3 22222 2 2 2 2

2222222 + 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 U U 1 1 1 1 1 + 1 1 1 1 1 1 1 1 1

l l t t l l l 11 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 U I U M 1 i i i m n 1111111 n u n 11111 bull i i i n 11111 m m

m m i m m

Z-2222P2 3333 414 2222222 3333

222222 33333 222222 3

pound222322 22222r

222

222222 2222J222 2222222

1 1 1 1 1 1 1 1 M M M M M M I

1 1 1 1 1 1 1 1 1 1 111111 111 111111 1 1 M l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M I M t n i 11 M l

m m m 11111 m 0 1 1 m

m m 1 1 1 1 1 1 1 1 1

u r n 11111

2 2 2 2 11111 +22222 Mill

1111M1M 1111111 1 M 1 M Mill ZZM 11111 222raquo222 11111 22222 Hill 22222

9S39399 0393339 UvV9 9S0S999 8bamp3 30S0S3999 B08CSS S99SS3S999 Oer668 9999999999999 6800836 939S3S9939 77 8SC8PC03 999999

777 08SS bull-iOPOS 7777 uoaac^osae 777777 5031^GOBpound3338

7 7 7 7 777 8S08S3 l 38J 08 7 7 7 7 7 7 7 6080668

bullrraquo 7 7 7 7 7 7 7 7 7 7 G6 7 7 7 7 7 7 7 7 7 7 t-se66 77777777777777

coorgts6eeu 7777777777

iJ amplaquo053 660CC666C666 i J5S5055oj5C55

14 5535555S^0li055555 --444444444444

4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 r )33333339

33333333333333333332233333 33pound-3333333 gt22222222 22P22 gt2222222

222222gtpound2222222222 2P^222 igt222222222222 22-222poundgt ^22^22^2^22222 2gt=-r^^c-^i7iVgt^y2^2

2poundf 2222 pound laquo 2t222-poundT2222 222222pound^2 222222

222L22222222P2^22222 1 22222-222222 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 111 M l 11 1111111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 M l 111 111 111 1 I M M

22222222-gt22r222gt2222222 12222222222222

^2^22222^2222222

CONTOUR LEVELS AND SYMBOLS

SYC1 LEVEL BADGE

( 0 ) 2 1 5 6 2 E - 0 2

( 9 ) ( S I Isectlil81 ( 8 ) ( 8 ) i l^Ig| 17gt ( 7 ) SMIgI ltS) (6gt lWSUi ( 5 ) ( 5 ) iI5SIsectI ( 4 ) 1 4 ) V^f-Si ( 3 ) (3gt f^gl C2gt 12 ) JSISi ( M ( 1 ) lIii8i lt0gt 8 2 3 3 E - 0 3

E-STIMAIICI-I E R O J CUTEFUQN CONSTPAlMT =

7 i i C 3 C E - 0 2

12oOCE-013

Figure 627D Contour plot of [laquo)] for the fourth sample at tbdquo = 090

20

634 The effect of Level of Estimation Error Bound upon the Opti-niaJ_jhpoundrtoring Problem - In the examples of the previous two sections a comparison is now made of the effect of the level of the estimation error limit upon Jie outcomes of the optimal monitoring problems of design and management In both cases start with H given in (656A) or (657) In the first example in Section 632 o r 02 whereas in that of Section 633 j v 007b

In the first case o+(zjtz] is shown in Figure 620 in the secshyond in Figure 626 Notice immediately that there is a diieat effect upon the bullbullbullbull bullt- problem a lower estimation error limit leads to higher sampling frequency as would be expected

However a more interesting point comes in the effect of the value of o v upon the optincl design problem the optimal placement of moni-

tors Comparison of the contour plots of [P^(zbdquo)l for sample times 2 2

tbdquo in Figure 621 for a r 02 with those in Figure 627 for a = 0075 shows that the optimal design problems are vastly different leadshying to entirely different positions zt for the global minima in the two problems

Notice also that the shape of the contour in Figure 621 is differshyent from those in 627 the predominant difference being the cmaller height of the rise around the source location z = 03 This can be exshyplained as fallows la the case of the flrst samples far the problem with a = 0075tbdquo = 027 whereas for o = 020 tbdquo = 126 Thus

urn J K ivn K

the stochastic source has longer to act upon the system with te higher error bound The effect of this can be seen by considering ihe form of the predicted covariance matrix P^ in (624) and (628) For the asympshytotic case of infrequent sampling from Section 532

210

Pdeg Mbdquo Ktg]

(628)

o o n s~s

(Jo] + K C ^n)

L ss

(658)

Thus as K grows the first element of fdeg get larger relative to the other steady-state terms in Pdeg as seen on the right-hand side of (658) This results in different values for the inverse [ pound ( 2 K ) P S C ( J K ) T + V] in the equation for the corrected covanance matrix in (626) Thus with T = (t K + 1 - t R) = 001 oZ

tim = 02 leads to K = 126 for the probshylem in Section 633 whereas that in 632 with cr = 0075 leads to K = 27 this results in the different contours in Figures 621 and 627 Thus the optimal design of the measurement locations is seen to be a function of the level of the error bound which substantiates Conclusion IV

635 Examples of Various Levels of Bound upon Output Error -The same problem as in the last examples was solved but with a range of error bound levels as follows o ^ H 005 0075 01 0125 015 02 and 05 Resultant contours of [Ppound(Z)]bdquo at the first sample time tbdquo for each case are shown in Figure 628

As the time interval grows before a sample is made the uncertainty in the estimate of the state in the area near the source z w s 03 beshycomes large relative to that elsewhere in the medium These plots further

CONTOUR PLOT OF t P ( K K ) ( Z ( K gt ) 3 I 1 AS A FUNCTION C CZ(K )31 HORIZAND t Z ( K ) J 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT E-STlMATE WITH T l W E POSIT ION OF KAXir iUM VARIANCE APPUOACHES STfeADY-STATE VALUE FOR LARGE T I M E

CZ(K)32 05

555 555 553 555 555 S55 555

444444 444444 44444 44444 44444 4444 41444 4444 4444 4444 4444 4444 444

4444444 4444444 4444144 4444144 AAA 144 44 1-144 444144

55 G6 77 083

4444 444 444 444 444 444 44

44444 444444 44444 raquo5 et 4444 555 I 44444 55 I 4444 55 I 4444 55 lt 33 444 55 3333333 4444 55 33333333333 444 555 33333333333333 444 33J333333333333 44 33333 3333333 444

999999999 992919339 53 66 i i JBB 53993399 55 66 77 CSS 099S9S939 55 66 77 608 999329999 55 66 77 copySi 9029099993 555 66 77 CU-iS 09 Oji 309999 555 f-6 77 BCe 9S23DS99S9999 55 66 77 Or60 999990999999999 55 56 777 FEd9 99993999999999993999 535 GB 77 C0U98 9S9P9999992999993-777 8U930O 99999999999999 77 03311388 939999939 6 777 S0ii008338

6 7 7 7 7 s a o a a a a e e a s 6 7 7 7 7 Q880aBCelt23688e tiG 7 7 7 888dC0e0LC388Ca8C338888

_ 6 6 6 7 7 7 7 7 8 8 8 8 3 8 0 3 8 0 8 8 3 8 8 8 9 5 5 66S 7 7 V 7 7 7 7 7

665 777777777777 4444 3333 33333 144 555 6666 777777777777777777777777

4444 3333 3333 444 553 6C6C866 7777777 444444 333 2222 3333 44 5555 6666666565606066666

3333 222222222222 3333 444 S55t3S 566S66666 33333 22222222222222222 3333 4444 55D55555555S555555j55555555

3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

pound 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 i m i m t m u

bull 1 1 1 1 1 1 1 I M 1 1 1 1 K 1 1 1 1 1 1 1 1 1 U 1 1 11111

i i i

n u n 1 1 U 1 1 I 1 1 1

m i l l 2 2 2 2 2 11111 2 2 2 2 2 2 2 2 1 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1 1 1 1

22222222 333 4444 222222 33333 4444444444444444444444444444

22222 333353333 333333333333333333333333333333

222 333333 22222222222

2S 25 722222222222222222222 2^2222222^22222222222222222222

22222lt222222222227222222 Z22222222222232222222

22222222222222222-11 1111 111111 1111111 11111111 111111

1111111 22222222222222222222 111111 22222222222222222222222222222222222 11111 2 2 222-2 pound2 111111 22222 333333333333333333333333d 1111111 2222 33333333333333333333333333 11111111 222 3333333

1111111 2 2 2 2 2 2 u i m u n 1 2 2 2 2 2 2 1 1 1 1 U 1 1 1 1 1111 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111111 n n u m i i i 1111111111

1111111111111111 i m i n t t i i i i i i

l i m n l i m i t 11111111

SYM3 LEVEL RANGE (6) 13141E-02 ( 9 ) ( S

1 2 6 8 7 E - 0 2 1 2 2 3 4 E - Q Z

( 0 ) ( 6 )

1 1 7 6 1 E - 0 2 1 1 3 2 8 E - 0 2

(7gt (7gt

1 0 8 7 4 E - 0 2 1 0 4 2 1 E - 0 2

( 6 ) ( 6 )

9 9 3 7 0 E - 0 3 9 5 1 4 5 E - 0 3

( 5 ) ( 5 )

9 O 6 1 2 E - 0 3 8 6 0 7 9 E - 0 3

( 4 ) ( 4 )

8 1 5 4 6 E - 0 3 7 7 0 1 3 E - D 3

(33 lt3gt

7 2 4 3 0 E - 0 3 6 7 3 4 7 E - 0 3

( 2 1 ( 2 )

6 3 4 1 5 E - 0 3 5 6 0 9 2 E - 0 3

( 1 ) ( 1 1

5 4 3 4 9 E - 0 3 4 9 8 1 6 E - 0 3

(Q) 4 5 2 3 3 E - 0 3

ESTIMATION ERROR CRITERION CONSTRAINT =

5 0 0 0 0 E - 0 2

12500E-01J

Figure 628A Contour plot of B ^ ( z K ) l 1 1 at f i r s t sample tirr t K = on for o ^ = 005

CONTOUR PLO T OF [P(KKIZ(K))JM AS A FUNCTION O r Z(K)11 H3RIZ AND tZ(K)J2 VERT EXAILE TQ SIOW EVOLUTION or VARIANCE I N OUTPUT E I M A T E WITH T I M E POSITION OF MAX MUH VARIANCE APTtOACKES SrCADY-SrAE VALUE FOR LAHQE TIME

C Z lt K gt J 2

0 5

4 4 4 1 4 4 4 5 5 5 6G 4 4 4 4 1 - 1 4 gtSgt 6 6 4 4 4 4 1 4 1 SOS G5 7 7 7 4 4 I - 4 - 4 0 5 eC 7 7

4 1 4 4 4 4 5 5 GC 7 7 7 444 - = i14 5 5 5 5G 7 7 7

4 4 4 4 - 1 4 5 5 5 GS 7 7 7 4 4 4 4 4 5 5 6 S 7 7

3 3 3 3 4 3 144 5 5 5 0 5 6 77 3 3 3 3 3 3 3 4 - 1 4 4 4 5 5 6 C 7

3 3 3 2 3 3 3 3 3 3 1444 5 5 5 tgteuro6 3 3 raquo 3 3 - j ^ - 3 i 3 3 4 4 4 4 S 5 6 3 6

333333-gt gtraquo3 -gt3333 4 4 4 4 5 5 5 C S G I - ^ v 3 3 3 o 3 3 5 - j 3 3 3 3 3 3 3 3 4 4 4 5 S 5 6GGS 4 4 3 1 r--ijgt333 3 5 3 3 3 0 3 3 1 3 4 1 4 5 J 3 6 -4 4 4 3 3 3 S 3 3 3 i 3 3 r ^ 3 3 4 1 4 -i CC 4 4 4 4 33T-2 3 3 i J 3 3 454 j ^ 5 f 4 4 3 ^ 3 3 3 ^ J 3 4 4 4 5 3 5

3 3 3 3 3 3 3 4 4 4 5 5 1 5 3 3 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 555E-

3 3 3 3 2 2 2 r - i ^ 2 2 2 3 3 3 3 4 4 4 5 S 3 3 3 3 3 3 22 laquo - - yraquo jraquo2 3 3 3 4 4 4 4

_ _ - - - r ^ amp ^ 2 ^ i 2 2 3 3 1 3 4 4 4 4 2 2 2 2 2 C 2 r 3 3 3 3 4 4

2222ltgt2 3 3 3 3 3 2 2 laquo 2 2 2 2 3 3 3

P 2 2 2 gt

5555 444 5555 444 555 4-i4 5-5 444 i 55 444

44-14 4444 4444 4444 44414 44444

4444- 14 444444

33333 222222

22222 222 -2

1111111 1111111 1UI1 11

2 - 2 pound bull

11111 11111111111 11 n m i n i i i n n i n m m n i

1111 n m 111111 m m m 1111 111111m 111111

m i

1111 11111111

111111 11111 ftfraquofgti- bull

1 1 1 1 1 WWZZZ

JErJSe pound 1 9 3 9 9 9 9 0lt

S L B 3 9 9 0 i T 9 - 9 f - a 3 D O - bull s - s s

bull i 3 3 3 O 3-3999 eccose ss-v9S3999

8 t S S C 8 9 9 0 9 9 0 9 9 9 9 9 9 9 9 8tt81B8 99S999999S9

V e t J f i380 t i 9 9 9 9 9 9 9 7 7 c s s o e r G O y77 e o s u c c - i i s n o

7 7 7 7 7 fcampceooaaeoeoe 7 7 7 7 7 7 7 a p 3 3 C 8 e e e e e 3 9

7 7 7 7 7 7 7 7 o c e o B e o s i 777f77777 Jo 77771(1777 3 3 77tn7777 pound 0 6 5 3 6 7 7 7 7 7 7 7 7 7 7

iGeampampG6CgtGS6 3poundGC66SC(GpoundGQ

i 5 i 3 6 G amp a amp 6 6 G 6 6 6 6 C G 5 5 J 3 5 5 5 5 5 W S 5 5

3 5 5 5 5 5 1 J S C - 5 5 5 5 5 G 5 5 5 5 5 1 1 - 1 1 4 4 4 4 4

44444 44 44444444-T444444444 J333 4444

3-3Cn3S333J3L--J33333 3 3 3 J J 3 3 3 3 3 J 3 3 3 3 0 3

pound 2 - 2 2 2 r i - 1 H i i 2 2 2 2

2-raquo i- raquogtr---2igt2 j j - r gt V ^ - l 2322

222 - bullgtbullbull2 raquo2222222raquoa 2 2 gt V 2 ^ gt i gt - S P 2 2 2 2 2 2 2 2

- 2 r ^ - gt 2 K 2 2 2 2 2 2 2 2 2 2 ^ 2 - ^ - - V 2 ^ 2 2 2 2 2 2

2fc i 2^22^ -2lt i 222

m m bull m m 1111 m 1 1 m 11111 i i i i m - i i

222222222 bull bull bull 2 i r - ^ 2 2 r ^ 2 R 2 2 2 2 2 2 2 2 2 2 2 - 2 ^ r ^ - ^ ^ 2 2 2 2 2 2 2

SYM3

( 0 ) mm ( 9 ) ( 9 - iJiiI8i ( 8 ) ( 6 ) Wiiiii lt 7 t ( 7 ) J5JiSi ( C ) ( 6 ) I8Sf8 ( 5 ) ( 5 ) 3i5i|g| ( 4 ) 4 gt lHIgI ( 3 ) ( 3 ) lfJ|8i ( 2 ) ( 2 ) HSSiSi ( I ) ( 1 gt I2iJIsect lt0gt 7 0 S W E - O J

ESTt l - ATITN tlrila C1C TCR10N C C K - r r A f T =

7 S 0 J C E - 0 S

SOURCE 1VPUT CUVAFUANCE [ W l raquo t 1 2 6 0 0 E - 0 1 J

Figure 628B Contour plot of fell at f i r s t sample time t 027 for o- i 0075

CONTOUR PLOT OF [ P f K K X Z C K ) ) 111 AS A FUNCTION CF I Z O O J 1 H 0 R I 2 AND t Z ( K 1 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E P O S I T I O N OF MAKIKUH VARIANCE APPROACHES S T E A D Y - E T A T E VALUE FOR LARGE T I M E

t Z lt K gt 3 2

0 0

44 444 AAA

4114 44444 A 4 4 L I 41 44 44 4 4 4 4 444

33333333333 33333333333 35 S 3 3 3 3 laquo33

SiJ^JyS gtlt33 32 i i - - 3^ - gt33 33-gt3- bull -

05 66 77

33 444 444

444 333 313 r i 33 laquo - i n333 3 2 ^ 3 3 J i3i bullbullraquo33333

3 3 3 3 3 3 3 3 gt t j r 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 444 3 3 3 3 3 3 3 3 3 3 3 3 3 3 AAA

3 3 3 3 3 3 3 3 3 3 3 3 Ad 3 1 3 3 3 3 3 3 4 4 4

3 3 3 3 2 2 2 2 2 3 3 3 3 44 2 V 2 2 P 2 3 3 3 3

63 66

i 66G

8000 0 3336

7 60G0B 7 Q6CS0 77 seaoe 777 flSJSi

777

9999939 9999999

9 9 9 9 9 3 9 93939999

S9Q09999 osaa 9993099999S9 80COB0B 999999999ltgt

533 3333

3i33 333333 33333 ZtZZ 333 gtZZ

2^22 222P2222 22222 1

1 M I 11111 11111

111111111111 11H1M 111

111 - 1111

11111 111111

ifpFte gt222 -gt22222 a 2pound-2P2

22222222 2S2ii2^

2 22

7777 O00C36 66 7777 0050008

gt 06 77777 6G03Ceea iS 656 777777 0030830888088-i5 6tGti 7777777 060088308 53 CM a 77777777 BB 555 6006 777777777

^1 533 ( J6GS6 77777777777 144 Su fJ3 60695096 777777777777

44 5355 6660CC-66S6 777777 3 44 G3C3 6CS56GG=S06 3 ^ 4 4 4 ^ s s - s s e e i i c c s e e s G c s 3laquo3 444 o35S355SS 66Gpounde66666

333 441 Sb5335rgtS55j5 333 444441 igtS5Sgt5SS55S55535

1 1

2 2 2 2 3 3 3 lti 1 4 4 4 4 4 4 4 4 4 4 4 4 4 111 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 111111 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 M 1 I 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 2 2 2 2 2 - 2 2 2 2 2 2 2 11 2 pound 2 2 2 2 2 2 2 2 2 2 2 gt2222

2222r-V j2222222222

22222222222 222i-rt 2 222r-222222 2222222222222222 2222--i2 22poundPamp22

1 1 111111

111 euro 3333

222222 222222 22222 22222 22222

22222 222222

1 1 1 1 1 1 1 1 11111

1111 2 2 2 2 2 bull 2 2 2 2 2 1111

222222- V222JV222J-P22222 22^22 -- ^^22222laquo22

22--V-J W J2gt2gtJ 22

222f Pr - gt 225r^laquo2J 2222 2222raquo fi 2r-2^igt22222

11111111111 22222 1111 222222222222 11111111111111111111 Kill 11 II 11111 111 11111 1 i 111111111 111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 m i l 111 m i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

g) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111111 2 2 2 2 2 2 2

11111 2Pgt 2222 2222 =V 22222222222 222 11111 22l- bull 22Vv22222

11111 222222 11111 222222 333

SYtu

( 0 )

LEVEL RANGE

2 4 0 S J E - b 2

9 ) 9 )

2 2

33Z 1E-02 J 6 2 C E - 0 2

( 6 ) ( 3 )

2 1 9 2 7 E - 0 2 1 2 2 r i E - 0 2

( 7 ) ( 7 1

2 05271E-02 0 C 2 3 pound - r ) 2

t o ( 6 i

1 1

9 i r 2 r - o e - S ^ l E - 0 2

( 5 ) ( 5 )

1 1

7 7 2 G E - 0 2 7 0 1 3 E - 0 2

( 4 ) ( 4 ) 6 3 1 7 E - 0 2

S61 (3pound -02

f 3 ) ( 3 ) 1

4 9 1 5 E - 0 2 4 2 1 4 E - 0 2

(2gt lt2J 1 331 3- -02

2 8 1 I E - 0 2

( 1 ) ( 1 )

1 1

21 I O E - 0 2 1 4 0 9 E - 0 2

(0) 1 0 7 0 8 E - 0 2

s^fc 1 2 Q 0 0 E - 0 1 ]

Figure 628C Contour plot of fe)]n at f i r s t sample time t bdquo = 046 for a = 010

CONTOUR PLOT OF tPltXK)(Z(K))J1 1 AS A FUNCTION 01 tZ(K)I HORIZ AND [Z(K)J2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT KSUMATE WITH TIME POSITION OF MAXIMUH VARIANCE APPROACHES S1EA0Y-SAVE VALUE FOR LARGE TIME

333 444 4444 4444 333 44444 333 44444 333 +4444 333 444 333 333 222 333 2222222 3333 222222222 3333

33C3

CZ(K)]2 OS

333TJj3 333333 33333 33333 33333 3333 3333 333

33333333 44 6 68 77 33333333 44 S3 66 77 3333333 44 55 65 7 3333333 44 55 66 7 33333333 444 S ^6 3333333 44 55 J6 3333333 44 55 666 33333 44 55 666 33333 444 55 G6i 3333 4-1 55 6-222K2222222 333 44 55 i 222222222222222 333 44 2^2222222222222222222 22222 2222222222222 333 44 222 22222222222 2222 222 222 111 222 111 1111111

222 m n i i i i i i 222 1 HI 11 11 111 1 22 11ll 1111ll 111

33 33 333

44 444 55

11111 1111

11

2222222 2222 2222 33 444 222 333 4444 222 333 444 222 33C 4 222 333 2222 3333 2222

mil limiii ii i i 1111 2222222 1111 22222 22222 Mill 222 3 2222 22

22

222222 2 1111 11111111 11111111 11111111 11111111 11111111 1111111

68BG8 999999 eSCfiS 093999 86838 999999 bull7 8SC83 9399999 77 eoooee 99999999 777 7777 77777 i 77777 S 777777 S58ECSBQBC30 bull SM5 7777777 60830860+ 6ilaquoC6 7777777 66666 77777777 66666GE 77 77777777777 i 6SG6C666 777777777 iSf 6pound 6666566 7-i5amp05 666666666 50555595 6666666666666

555Q5555C35 6666666 I 5 5 U 5 ^ 5 5 5 5 5 14lt144 5555553555555-

444444444444444 13 4laquoi444444444444 333333333333333333 3333333333333 22222222222222222

22222222222222222 1111 11111111111 11 imiimt

222 33333333333 222 333 333 2222 iiii 33 4 333 2222 333 44444 333 222 33 4444 333 2222 333 3333 222 11111 J 33333 333333 222 11111111 222 3333 2222 1111111111

+11111 1111m mi 22222 111 222222 111 2222 111

11111

copy

22222 222222 1111 m m m m m i m

urn

m m m i 2222 m i 222222 1111 2222222

I 2222222222222222222 222222222222222222222 222222222222222222222 22222222222222222222 II 1 11111111 111111111111111111111111111)1 1 m u m m i n i m u m

i i n m m m i m m m m m i l i m u m i m m m 2222222

2i22222222222222222222222222222 22222222222222222e22

22222222222222

TIME laquo 66D00E-O1 FIRST MEASUREMENT

CONTOUR LEVELS AND SYMBOLS

SYM3 LEVEL RANGE (01 2 4793E 02 (9gt 2 pound9gt 2 4158E 3523E 02 02 (0gt 2 (8) 2 2363E 2252E 02 02 (7) 2 (7) 2 1617E 0982E 02 02 (6) 2 (6) 1 0347E 9712E 02 02 (51 1 (5) 1 9077E 9441E 02 02 (4) (4) 1 7806E 7171E 02 02 (3) 1 (3) I

6536E 5901E 02 02 (2) 1 (2) 1 52S5E 463DE 02 02 (1) 1 (1) 1 39S5E 3350E -02 02 (0) 1 2725E 02

ESTIMATION EPROR CRITERION CONSTRAINT = 1-2500E-01 SOURCE COVARi INPUT AHCE Wl-

12500E-01J

Figure 628D Contour plot of feMi at f i r s t sample time t K = 066 for o ^_ = 0125 2

CONTOUR PLOT OF E P ( K K H Z lt K gt ) 3 1 1 AS A FUNCTION 0 Z ( K ) 1 1 KORIZ AND C Z ( K ) 3 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT i S T I M A T E WITH T I M E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-S A f t VALUE FOR LARGE T I M E

bull 4 4 4 4 4 3 3 3 2 2 2 2 2 2 2 2 46640 3 3 3 2 2 2 2 2 2 2 44444 3 3 3 V2Z2Z9ZZ 4444 33 22222c J 22 4 4 4 3 3 3 2 2 2 2 2 2 2 2 bullA 3 3 2 gt 2 2 2 V 2 2 2

3 3 3 2 2 2 2 ^ ^ 2 2 2 2 3 3 3 2 2 ^ ^ f - 2 2 2

3 3 3 22^V22^ 2 2 2 2 2 3 3 3 3 ^ 3 2 2 2 2 2 i 2 ^ f r 2 2 2 2 2 2 2

[ 2 1 K gt 3 2

05

3333 4 3333 4 3333 4

333 3333

333 3333

3^3

11 65308

2 2 2 33333 2222i 33333 3353 3333 333 333 E33 33 222

222

3 3 3 3 3 3 3 3

44

2 2 2

2 2 I t 2 2 2 111

2 2 2 2 1 11 2 2 2 2 2 1111

1111 l i n t

2 2 2 2 2 2 2 2 2 2 2 2 2 pound 2 2 2 2 2 2 2 2 2 2 2 2 2 3 a

2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3

2222 I 11111 2 2 2 2 11111111111 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

1 1 1 1 1 1 1 1 1 1 1 2 2 11111111

3 9 9 9 9 9 9 3 9 9 9

9 S 9 9 9 9 9 9 9 9 9 9

t i s s u e 9 9 9 9 9 9 9 9 7 7 7 7 09888 993S99399-

6 7777 esesao 999999 5 77777 8300886

flfl -Jigt 66 77777 88030688 44 5 5 5 ltSlt~C 777777 8008808888

44 SS5 liCSS 777777 86665+ 44 S55 66S66 7777777 44 5SE 6G66G6 77777777

44 556 666S666 7777777777 13 444 5t 5raquo 66666666 77777 3 44 SJ55 66666666 33 444 pound5555555 6666066666 333 444 55505S5555 666666666

33 444fl 53555555555 33 44-AV 555555S555

333 4144444444444 5555335

1111111 m i l l m i 111 n I mi mm in

It T1111 222 3333 44444444444 111111 2222 3(333333333333 4444444

111111 2222 333333333333333 111111 222J 2222222222222

1111111 2222222222222222222-111111111111 1111111111-11111

1111111111111111111 11111i111111111111111111 1111 111111 1111111111111111111111111111

1111 2222222222222 111111 111111111111111111111111111 11111 222 33333 222 11111111 1T11111111111111111111111111111

11111 222 333 333 222 11111111111111111111 222 33 22 33 bull 222 3 44 22 39 44 22 33 44

33 44444444 333

444 444 ~ S555 44

553SS3 444 555055 444

444 11 22

33 4444 33

222 4444 333

333 2 3333333333 222

222 u m m uui 222 11111 222 222 222 222 1111

33 2222222222 2222222Zamp22amp222222222 -2222222222222222222222 222222222222222222Z22

222 11111111111111 111111

1111 2222 2222 11111 11111 22222 11111 copy

11111111 1111111 11111 11111111111 11H11111 niituut nnniniv mu mmiimi i m mimiim urn m 222222 11111 111111 222

2222 1111 11ll 1 2222222222222222222222222222222222222 222 1111 11111 222222 222222222222222222

33 222 IHtl 11111 22222 2222222222222

TIME 6 6 0 0 O E - O f 1RST MEASUREMENT

CONTOU LEVELS AND SYMBOLS

SYHB LEVEL RANGE

lt0) 2 5 1 6 G E 0 2

( 9 ) ( 9 1

2 4 5 6 5 E 2 3 9 6 4 E

0 2 0 2

( 8 ) ( 6 )

2 3 3 6 2 E 2 2 7 6 1 E

0 2 0 2

( 7 1 lt71

2 2 1 6 0 E 2 1 5 5 S E

0 2 0 2

( 6 ) (6gt

2 0 0 5 7 E 2 0 3 5 6 E

0 2 0 2

lt5) ( 5 )

I 9 7 5 5 E 1 9 I 5 4 E

0 2 0 2

( 4 ) 14 )

1 0 5 5 3 E 1 7 9 5 1 E

0 2 0 2

( 3 ) ( 3 )

1 7 3 5 0 E 1 6 7 4 9 E

0 2 0 2

12) ( 2 )

t 6 1 4 G E 1 5 0 4 7 E

0 2 0 2

1 ) ( 1 )

1 4 9 4 5 E 1 4 3 4 4 E

0 2 0 2

l O ) 1 3 7 4 3 E - 0 2 ESTIMATION ERROR CRITERION CONSTRAINT =

1 5 0 D 0 E - 0 1

SUUSCE INPUT COVTMANCe pound 1 2300E

MEASUREMENT ERR03 COVAR

I 0 5 0 I - 0

W]=

on tv)laquo - 0 1 D233

Figure 628E Contour plot of [ P ^ K J I a t f i r s t Spoundp1e time t K = 086 for a l i m = 015

CONTOUR PLOT OF I P ( K K ) ( Z ( K ) ) 1 1 1 AS A FUNCTION ( F t Z I K I I I HCRIZ AND t Z ( K ) 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY- ITAVE VALUE FOR LARGE T I M E

CZltK)J2 0 3

^IPllI 33 44 55 6G 7 J

3330 2222 3333 222 33353 222 3333 2222 333 pound22 222 pound22 pound22 333

pound2 22 22 pound2

22-gt222 2222Z_222Z 22222 T-K222 2222- 0272ZZ 33

2d2i7gt2922 33 22lt2gt-222 3 22222 1 2222 1111 222 11111111111 222 111111111111111 222 1111111111111111 22 1111111111 22 111111

333 44 5 lt 333 4 55 I 33 44 55 333 44 55

0CCSO 0S8GO 83808

333 44 55

7 i 777 bull 777 til bulllt 7777 pound C 77777 t Gi 77777 rgt66 777777

999999 03099 9D399 999399 99939999 99999999 686830 9999 8608069 8088366368

111 222 222 222 II 2222 111 22222 111 1111 11111 1111111 11111

111 111111111111111 11111 11 11111 222222222222 1111111 222 33333333 222 11111111 22 33 444 33 1111 222 33 44 444 3 222 33 44 555 555 4 2222 3 4 5 66666C66

6665 777777 44 55 66G66 7777777 3 44 55 GSG666 77777777 3 444 5-5 66GCCCC 77777777777 33 -14 5555 6605666 777777 33 44 gt5535 666G66G 33 444 555555 606660666 33 AAe 5tgt5lgt5555 666G666G66 z 33 44I4 5553355S55 6GG66 22 333 4-144 555555555

bull 33 506 55 4 33 222 777 66 55 A- 33 22222 777 6 55 4 33 2222 i 66 665 55 44 3 222 55 6666G6G 55 44 33 222 2222 33 44 555 555 44 33 22 1111 222 33 444 44 33 22 1111111 222 333 333 222 11111 11111 222 333333 222 1111

11111 222 333 -1-544444444 55555555555 Ill 222 3333 4444444444444 1111 222 33C3323 444444444444 1111 222 33333333333333333 11111 2222 pound2 3333333333 11111 222222222pound22222222222 11U11IMI 2222222 1111-111111111111111111111 11 1111111 111 1111 111111 11111 11111

111111 111 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 2 2 2 1 1 1 1 1 1 1 1 3 2 2 2

111 H I 1 111 1111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111

33 44 53 66 33 44 55 66 33 4 ~

223J222222222 22222 ^2poundf22^2 2222222

22XgtM2V-gtpoundlt2V2Z_WW2PZZZ 22222 e222222gt22222

22222L-2222222222

1 1 1 1 1 1 11111

2 2 2 2 11 2 2 2 pound

333 2 2 2 2 3 3 3 3 222

3 3 3 2 2 2 3 3 3 2 2 2

22H22222222222 11 1 uiiinninniniii mini iniii iiiinmniiinimi 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

SYK3 LEVEL RANGE

oi 2 5 5 4 1 E 0 2

sect I 4 3 7 2 E 4402E

0 2 0 2

sect I 383 3S 32C5F

0 2 0 2

n I 2 0 9 E 21 EZ

0 2 0 2

ni I 1554E 0ampC6E

0 2 0 2

fl 0 7 1 5 E 9S45E

0 2 0 2

n 927SE 67D7E

0 2 - 0 2

sect 8 I 3 7 E 7560E

0 2 - 0 2

I 6 9 M E 6 4 2 J E

- 0 2 - 0 2

i 55C5E 5a5C

- 0 2 - 0 2

a -L 4 7 2 0 E 0 2

ESTIMATION ERHCrt CR f E i d O N CONSTRAINT =

2 C 0 0 0 E - 0 1

1 2500E-01]

Figure 628F Contour plot of P ^ i O m a t f i r S t s a m p l e t i m e tK = 1 2 G f o r deglw = deg 2 0

217

C O i O O bull O O i O O ss OO i

i mdash tfgt i W mdash 1 mm gt turn CUM I bull n n 55 flH

^ w J I

H U J U O

Si mdashbull- ltgtjltvwlaquotvw

O l o r -

E D gt o o O C O O f -

KM (-^-gt -gt - 3 V J mdash w n n laquo j - mdash mdash o o bull O D H W o o o n W - - o bull Z 10 - ltl O O O O WftJ wv 3 K - - lti o o ft l L - ^ 0 - W O laquo ^ 1 1 laquo W M fu

HI - W gt T 1 gt O N bull t U T n -v i i i o bull=bull w w

o o - w T I m i l i i c raquo ltgt l i v - w n igt t i v W C J bullVft -lt lt o - o v i n I O O O O ifgt n w i i y bull

laquo mdash W m t o I D T O laquo w - e n mdash W O f ( N - M v i 3 laquo J t ^ - laquo o - w n v m o huraquo n laquo ^ (

bull-gtlt - N 0 ( 0 0 (OTTO ft-lt bull - laquo (0 h - U J i f l W gt

w _ O O N raquo t u r n o r n ftikM w bull o o ftlt - 2 laquo o ^ E a N lt 0 sect W lt n sect rt N T ^ lt WCgtVtfgt 0) O N V O - o - ftt-gtv P - M i laquo i i laquo r ^ mdash o N laquo I O O O ^ V L I T C K I gt I - ( w o v O X - N O ^ V c

o gt p P - n ogt O N I - gt T c x -i

- - - - - - O R - n v o laquo o o r - T o n

- D E - - - - - - O w f t v a o s o c o t a T I laquo - D E - - - - - - O laquo W O N ) lt O O O - laquo r o N O i 1 o

o U 1 X

- laquo r o N O i 1 o

o OO

l u - w B i o N N ifgt o o o o -- - W O ^ r i O o m i T O

O u W O 10 Q U O igt T O O J O O [ j bdquo _ _ mdash _ _ _ _ _ - - M V i f t O 3 ( i o o D-t- - w w w w w _ _ _ _ _ _ bdquo _ - - - W 0 gt T - W u l l O L I T O

z ( C W O n i z ( C W O +_laquolaquoOKV f t JgJlaquo l ~ _ W w o Slt n T5 SS lt- n i 3 _ 1 ~ ftftjftjlt) _ ft O - 3 1 T V [J laquo 0 C H mdash _ j o W T S J - C o o o 1 laquoSp ^ojci^S^^Jv^^^NN^ bullbull w ^ v i - j ^ 2 5 ^ laquo laquo - gt laquo laquo W W ft I j - W N W l ^ C f l J W O T o o o o L1U1 bull o x o 0 - ~ 0 W M M ( laquo gt N A i M mdash - M W O O O O O t O f i -O a J t t laquo f ^ O U N T W W W - - - w w o o o o o in1) bull

0 0 ( 0 W W W W W bdquo _ _ (u Pgt n n o n laquo laquo raquo bull

218

substantiate the existence of a functional relationship between the optishymal measurements zt and the level of the output error bound o

636 The Effect of Time-Varying Error Bound upon the Optimal Meashysurement Design - Consider here an example where the output estimation error limit cC is allowed to vary in time For this problem let

lim 01 (659)

at the first sample time and then

Aim - degL + deg- 0 2 5 (660) for each sample thereafter

The resultant plot of o^ + N(jtz) over time for the interval 0 lt t S 2 is shown in Figure 629 where the initial covariance P^ E M n is as before in (657)

Notice how the curve asymptotically approaches the slope [Q]- =

00025 just before each sample in accordance with the infrequent samshypling approximations

v

At each samplecontour plots of lEDU^)] a r e 9 e n e r iraquoted and preshysented in Figure 630 for sample ti mes t| - 046 104 180 As can be seen from these plots the contours change with the error level as shown in the previous sections in fact they directly compare with those of the previous section Thus the converse of Conclusion VI may be stated as

Conclusion VIB The optimal measurements found at one measurement time may not in general be optimal for other measurement times if the bound on estimation error varies with time (CVIB)

Further verifications of the effects of the a priori statistics and level of estimation error bound upon the optimal design problem can be

1 2 0 0 0 E - 0 1

6 0 0 Q O E - 0 2

1 X

X

x x X

XX x

X X X

X X

x x X

XX x

X X

X X

X X

X

x X

X X X

X X

X X

X

x X

X

X

XX X

X X

X X

X X

X X

X X

X

X X

X X

X X

X X

X

X

X

X X

X

X

X

X

X

X

x x

X

X

X

c

X X X

Figure 629 Time response of ^+n(K z) f o r t lt n e v a r y i n S estimation error l imit o z ^( t) = 010 0125 and 0150 at sample times t K = 046 104 and 180 respectively

CONTOUR PLOT OF t F ( K K ) ( 2 ( K gt ) i 11 AS A FUNCTION = I Z I K H I HOfIZ AND I Z i K ) ] 2 VERT EXAMPLE TO S1ICW EVOLUTION OF VARIANCE I N OUTPUT r l 11 MATE WITH T IME POSITION CF MAXIMUM VARIANCE APPROACHES S I EADY- -T TE VALUE FOR LAKOE T I M E

C6

tZltKgt12

444 444 4444 444

44 33333333 444 444 3333333lt33 444 3333333J333 444 33C-^rS3J3333 444 33333S3333333 4444 3333333i333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333 4444 33333 3333333333333 444 33333 333333333333 3333 3333333333

55 6G 77 bulljV 66 77 eoaee 9900J 0 3

93 li9

3333 3333 3333 333333 33333 333 2222 2222 22222222 22222 1 1111 1111111111 m m i m i l 1U1111 m

i n m i

i n n m m

111111 m m 111111

i i i m i n n

i n n i m

i n

2222 333 lt 4444444444-1414

33333333 i 33333 I 22222 3333 2^^-^^2-222 3333 2222222222222222 333 2222J2222222222222 333 22222222 2222222222222 333 2222 2222

22222222222 22222222^22222222 2222 222222 222 222322 222 33 22222 222 3333 22222 2222 22222 2222 22222 222222 222222 1111111111 222222222222 111111111111111111

^222iV-2v_iV bullbull VJlaquo

222 2 L 22 2 2 r-^ gt L2 22I-22 22222

11111 11111111111U11111111

1111111111111

11111 11111111

u r n 22 11 11 22222 1111 22222 1111

11111111111 111111111111111

11111

n u n i m i n i i i i i i i i i i n m i i n bull m 11111 n i i i m i m i - i i i i i n m i i i m 1111151111111111111 ill 1 1 2222222 222222222222222222222222222 22222J-=2 2222222222222222r 222222 222222 333

t o t z i-o-

( 9 ) ( 9 )

2 KiSi ( 0 )

2 bulltJi-ll ( 7 1 (7)

2 1 degri-pound

ltegt 1 -vmii lt5gt ( 5 )

1 1 STSIgl

( 4 gt ( 4 )

1 -mii-n ( 3 ) ( 3 ) bullm-E ( 2 ) ( 2 )

i i if8f

C 1 ) ( 1 )

i i bullVW-ll

) O70 pound e ii ON

- 0

lwAa v i i E U T [W] =

C 5 C 0 C 3 E bull 3 1 1

ESamp sr EV3-

I -5g =pound

Figure 630A Contour plot of Figure 628C [4i a t f i r s t s a m p l e t i m e t bull deg 4 6 f 0 r deglin 0 1 0 compare w i t h

CONTOUR PLOT OF I P ( K K M Z ( K ) ) ] U AS A FUKCUOH poundlPLE TO SHDW evOLUT ON OF VUiJAhCE IN OHIrJ COS TIOM OF MAXIMUM VARIANCE APliCACULi STL-HY

pound2(KH2 03

d4At 33 4444 333 44444 333

444 44 333 44-1dfl 333 4J44 333 3^3

3333lt33 4 3333333 4-0333333 4 3333333 J 3333333 333333 333333 333J3

3333

bull ^ 3 9lti9nlaquo

33333 33333 33333 33333 3333 3333

32 2p||p-gtill p 044 55

2222 222 222

2222222222 333 222222 33 444 22222 333 44 33 444 1 J-2 333 44 2^2 333 laquo 222 333 2232 333 2222

11111 222 222 111111111111 22 33 22 1111111111111111 2 222 1111111 111 11 1 1 ] 1 111 222 i n u n u u u i u n n

222222 111 11 111111111 222 11111 1111111 111111 1 1 1111 11111111 1 I U U 1 U 1111 111111111111 11111111111111111111111111111111 inn i m n 11 n

1111 2222222 111 111 Tll 22222 22222 1 1 1 1111 222 3 1 2222 111 11 222 333333333333 222 111111 22 333 333 2J-22 m m m u 22 33 44pound 333 2222 bull11111111 22 333 444-144 333 222 11111111 22 333 44444 333 2EKpound 1 lllllll 222 333 333 222 lilt 1 1111 22 33333 33333 222 UUUi 1111 222 33333 222 111111111 111 22222 222222 11111 1111 22 11111 111111111111111111 11111111 1 1 1

bull4444444I4444444 C _ r 4^44444444444

m 1 r i i m 111 m

illllll

111 111 22222 111

I 1 M 111 ill 11 1 1 1 111 111 1111 1111 1 111 111111111111 m m m

2222222 bullit bull-222222^SfTl - 2222222222222 bullZ 222222222222 2 ^222 22222222222222

Figure 630B Contour plot of [ l $ (z K ) with Figure 628D

at second sample time t ^ = 104 for ^lln

CONTOUR PLOT OF tP(KK)(Z(Kgt)311 AS A FUNCTION V IZ(K)JI IflRIZ AND tZltKgt12 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT EI-M HATE WITH TIHE POSITION OF MAXIMUM VARIANCE APPROACHES STEAD-li TATE VALUE FOR LARGE TIHE

i 444d4 333 22222222 44444 333 22222222 44444 333 22222222 4444 33 22222222 444 333 2222222222 I a 33 22222222222 333 222222222222 333 22222222222222 333 2222222222222222 333333 222222222222222222222 bull33333 22222 33333 2222 3333 2222 3333 222 333 222 bull333 222 333 22 333 222 1 222 1

39399 999939 999939 999399

CZ(K))2 06

3333 44 5 66 77T 6BI 3333 44 0 66 777 861 3333 44 55 66 777 81 333 4 55 66 777 I 3333 44 9 66 7 77 333 44 55 66 7777 3333 44 5 60 7777 333 44 55 665 77777 333 44 53 CiSe 77777 33 44 35^ St 66 777777 333 44 555 6666 777777 2222222222222 33 44 555 66666 7777777 22222222222 33 44 555 666666 777777777 222222 333 44 535- 6666666 7777777777 2222 33 444 55S-5 66666666 77777 111111 2222 33 44 515555 66666666 111111111111 222 33 444 5555555 111111111111111 222 333 444 5555555555 1111111111111111 222 33 4444 555555555SS 1 11111111111 22 33 444lt44 5555555555 11111111 22 333 444444444444 5555555 1111111 222 3333 44444444444 11111 2222 33G33333333333 4444444 111111 2222 333333333333333 11111 22221222222222222 1 11111 2222222222222222222+ 111111111111 1111111111111111 1111111111111111111 111111111111111111111111 1111 bdquobdquobdquobdquobdquo A 111111 1111111111111111111111111111 1111 2222222222222 111111 111111111111111111111111111 11111 222 33333 222 11111111 111111111111111111111111111111+ 11111 222 333 333 222 11111111111111111111 1111 222 33 44444444 333 222 1111111111111 111 22 33 444 444 33 222 11111 2222222222 1 222 3 44 5555 44 33 222 222322222222222222222 22 33 44 55555555 444 33 222 2222222222222222222222+ 22 33 44 055555 444 33 222 222222222222222222222 222 33 44 444 33 222 11111 222

M 33 4444 4444 333 222 U l l l l i m u U 33 44 333 222 1111111111111111111111111111111111111111 222 3333333333 222 11111 111111111111111111111 2222 2222 1111

222 111 2222 111 22222 1111 1111 11111 +111111

111111 11111111 2 bull 111111 1111 11111 22222 11111 1111111 1111111 11111 11111111111 +111111111 1111111111 11111111111+ 11111 111111111111111111111111111111111111 11111 111111 222 2 2 1 1 1 1 11111 2222222 2222222222222222r 222222222222 n n n 1111 11111 222222 222222222222222222

CONTOUR LEVELS AND SYMBOLS SYMBLEVEL RANGE (0) 25168E-02 (9) (9) 24567E-02 239G6E-02 (6) (6) 23365E-02 22764E-02 17) (7) 22164E-02 21563E-02 (6) (6) 20962E-02 20361E-02 (5) (5)

19760E-02 19159E-02 C4gt (4) 18558E-02 1795SE-02 (3) (3) 17357E-02 16756E-02 (2) (2) 16155E-02 15554E-02 (1) 14953E-02 14353E-02 (reg) 1375EE-02

ESTIMATION ERROR CRITERION CONSTRAINT =

15000E-01

5Q000E-0J1

^ 2 2 11111 111111 22222 2222222222222

Figure 630C Contour plot of [ p ^ z ^ at third sample time t K - 180 for o ^ = 0150 compare with Figure 628E

223

obtained by comparison of the contours in Figure 630 with those for the cases with a^ = 01 0125 and 05 in Figure 628 in the previshyous section

637 The Effect of Time-Varying Disturbance and Measurement Statistics upon the Optimal Monitoring Design and Management Problems Consider a problem with

_2 Ums0-

0125

005

(661A)

(661B)

0025 (661C)

and with PQ = M given in (657) Consider two cases F i r s t f i x the

measurement s ta t i s t i cs V to the values given above in (661C) but l e t

the disturbance s ta t i s t i cs vary For this case for the time interval

0 lt t lt 2 sample times occur at t K = 046 and 122 The time-varying

disturbance s ta t is t i cs between samples start ing with W in (661B) is

then given by

j W 0 lt t lt 046 W(t) = lt 05 W 046 lt t lt 122

025W 122 S t lt 20 (662)

The resultant plot of cC + N(zpoundz) as a function of time t K + N is shown in Figure 631 wrere the effects of variable W(t) in (662) are readily seen As W(t) decreases so does the rate at which the uncertainty in the estishymate of the maximum variance in the output grow Thus times between samples change greatly changing the nature of the management problem

i

Though the plots of [PudSt)] are omitted for brev i ty for reasons slnri-K K 11

la r to those in the example of Section 534 the contours change from

sample to sample affect ing nonconstant solutions to the design problem

10COOE-O1 L t 1 bull bull XX i gt t X I X [ X I X I X

X XX X XX XX X XX

laquo t X I X 1 X I X I X I X

X x x x

XX X X XX X X

XX xxx xxx xxx xxx xxx xxx xxx xxx I X I X I X i x I X

X X X X

X X

XX X

X X X

1 X

1 X

IX

X

X

x

X

X 1600E00

Figure 631 Time response of ^ + M ( Z | ( raquo Z ) for time-varying disturbance statistics W(t) given in (662)

225

Thus Conclusion VIC The solutions for the optimal

monitoring design and management problems may not in general be the same for all measurement times if the disturbance noise statistics are allowed to vary with time (CVIC)

Second fix the disturbance noise statistics W to the value given in (661B) but now let the measurement error statistics vary from sample to sample In this case the sample times occur at t = 046 080 112

138 162 180 and 194 over the interval 0 lt t lt 2 Starting with V given in (661C) for the first sample let the measurement statistics be given by

V(t) = lt

[ - t = 046

15 y t = 080

(1-5) 2 V t = 112

( i 5 ) 3 y t = 138

( i 5 ) 4 y t = 162

( i 5 ) 5 y t = 180

( i - 5 ) 6 y t = 194

(663)

The plot of c^+N(zjjIz) for V(t) is shown in Figure 632 Note that V(t) specified in (663) may be interpreted as taking consecutively worse and worse measurements from sample to sample Thus as the quality of the measurements decreases the uncertainties in the estimate of the maxishymum variance in the output increase leading to higher initial conditions for the branches of at after each measurement and resulting in shorter and shorter times between measurements This completes the countershyexamples for Conclusion VI which are summarized in

Conclusion VIP The solutions for the optimal deshysign and management problems may not in general be the same for all measurement times if the measurement error statistics at each sample are allowed to vary (CVID)

X X

X

X [ X

( X

X X

X

x x

X X

X

x x

X X

~k X X X

X X X X

x

x x x x

x x x X

X X x x

X 1 X

X X

X X

X X

X

X

X

X

X ) X

X

lt X

x x X

X

X

x X x i X

x

-

X

x

X

X

X

X

X

X

X

X

figure 632 Time response of crj^^zjjz) for time-varying measurement statistics V(t) given in (663)

i

1

227

638 Variable Number of Samplers - As shown in Section 534 and Conclusion VII the optimum number of sampling devices to use at each measurement time t K the dimension m of the optimal measurement position vector J is the same for every measurement 1n the Infrequent sampling problem In order to find that optimum number the monitoring design problem Is solved Heratively n times at the first measurement time tbdquo with m = 12 n samplers used in each iteration This esshytablishes a sequence of optimal measurement vectors zf of Increasing dishymension from which corresponding values of [P pound ( Z J ) 1 may be found To find the zt of optimal dimension the various values of [E^zt)] are used to find the choice which leads to the fewest total number of samples necessary over the entire time interval of interest

o To demonstrate this concept consider an example with at s 01

W = 0125 EQ = Hg 9 v e n 1 n (6-57) and the measurement error in each measurement given by [ V ] ^ = 005 i = l2raquora Since the number of modal states retained n = 5 five cases are compared with from one to five samplers used for each measurement in each case

To find the optimum number of sensors m for the case of bound on output error 1n the Infrequent sampling problem from Conclusion X a measurement is necessary at time t R + N when

[eampOjn + laquoflu + poundlt z ) T

s 5 s slt z gt gt- Art lt 6- 6 4gt

where the ^-vector zj 1s the vector of optimal position locations and z from (572) is the position of maximum variance in the output cC + N(zJz) over all positions z in the medium

In order to compare the optimal zpound for various dimensions m first find

228

c (z ) T a c(z) s max c ( z ) T pound2 c(z) (665)

SV 2 sV This value is found by computation according to (572) where the matrix

B is defined in (520) For th is problem with the stochastic point ss source at z = 03 and including B E 5 modes in the model the position of maximum variance

z = 02711 (666) Then by computation

c(z) T a c(z) = 00417 (667) S~S~

For the first measurement at time t an expression for the time interval until the next sample is necessary can be obtained from (664) as follows For this problem the integration time step for i = 5 for the time interval 0 lt t lt 1 is chosen as

T = ( t K + 1 - t K ) = 001 (668) The time to the next sample necessary is thus

K+N O ( N ) ( T ) (6-69)

where from (664) the number of time steps

N = l iny (degH bull [amp)]bdquo - s ( z ) T | s ( z ) lt 6- 7 0 1

The results starting at t Q = 0 with initial covariance matrix p|j i M 0 as in (657) led to the times of the first measurement t = 046 The numerical determination of the optimal measurement position vectors zj at t K for m = 1234 and 5 along with the corresponding values for [EK-IP-I a n t tle l deg n 9 e s t times to the next required measurements Atbdquo + f are summarized in the following table

A tK+N

229

[laquo)]bdquo

[p 15196] [013866 |_013865_

013395 013160- 013016 013398 013160 013016 013398 013160 013016

013160 013016 p 13016

0022194

029

0014246

035

0010707

03S

0008705

039

0007417

deg-4deg (671)

Thus as the number of measurement devices m deployed at the f i r s t

measurement time increases so dos the time interval A t K + N before the

next measurement is required However over the ent ire time interval of

in terest the optimal choice can clearly be seen to use only one measureshy

ment device at each sample To see t h i s consider Figure 633 where

plots are presented together for a +(zz) as a function of time and

for a l l f ive optimal choices of z j for dimensions m = 1 through 5 (plotted

with 1 2 5 ) At the end of the time interval 0 lt t lt 1 the

tota l number of measurements necessary for each case are

xi 1 2 3 4 5

Total Samples 8 10

Clearly taking only one sample at each measurement time is best To see this another way compare the two extreme cases for m = 1

and m = 5 to determine the optimal dimension m for the measurement vecshytor zj From the table in (671) for m = 1 A t K + J - = 029 If this is compared with the case for m = 5 where Atbdquo + N| = 040 if only one measurement device (m = 1) is used over five measurement times 5 it K +M| = 145 time units would be covered whereas five measurement

~10(KKNI

40000E-02

-laquor TT^HMW 1-2 3349 11 22 3455 1 2 3349 11 22 345S 1 2 3345 1 22 3455 11 2 3345 22 34B5 2 345 2 3349 2 3455 1 22 345 1 2 3349 1 23 95 1 2 349 1 2 345 1 2 349 1 2 345 1 1 2 345 2 349 1 2 349 1 2 349 2 349 2 345 349 2 9 39

2 3 4 2 3 4 2 3 4 9 2 3 4 5 2 3 4 9 2 3 4 5 2 3 4 5 2 3 4 5 3 4 9 3 4 S

2 3 5 4 3 O

Figure 633 Time response of CTK+W(|(raquoZ) for optimal measurement position vectors z of dimension w = 1 2 3 4 and 5 plotted with corresponding symbols note decrease in sampling frequency with number of measurements taken at each sample time

231

devices used at only one measurement time results in A t bdquo + N | = 040

Both cases use a total of f ive samples but the case where only one samshy

ple is taken at each sample time leads to a much longer time Interval

overwhich the accuracy constraint is met

Examination of the optimal measurement vectors zjpound In the table in

(671) yields n observation regarding the placement of monitors of equal

measurement qual i ty which may be stated as

Conjecture C For the monitoring design problem using m s t a t i s t i ca l l y independent sampling devices of equal measurement qual i ty at each measurement t ime the optimal position of each sampling device is the same point in the medium (CC)

This is an interesting a lbei t obvious result which has arisen elsewhere

for the steady-state solution of the Riccati equation associated with

the continuous-time Kalman-Bucy F i l t e r (see Hersch pound56]) I ts interpretashy

t ion l ies in the real izat ion that since the measurement devices y ie ld

uneorrelated noise-corrupted measurements (that i s V is assumed to be

diagonal) the best position for one measurement device Is also the best

for a l l others The optimal design then is to make m statistically

independent samples a l l at the same point in the medium at each measureshy

ment time This requirement of s ta t i s t i ca l independence has Implications

about actual hardware needed for each measurement i t would tend to rule

out making more than one measurement with any given sensor at any one

measurement time since the resultant additive noise would probably be

correlated to some extent This does however deserve closer study

and is not the point of th is example

639 Sensit iv i ty of Results for the Infrequent Sampling Problem

to Model Dimensionality - The effects of the size and complexity of the

model of a physical process used in the analysis of any system upon the

232

results of that analysis is always a point of concern Much work has been done elsewhere on related problems including a recent study of the quantitative simplification of normal mode models presented in Young [131] Chapter 2

As mentioned earlier it is not the intention of this study to exshyplore this area in depth However a cursory look into model dimensionshyality as it relates to the infrequent sampling problem is in order here Consider then the effects of increasing the dimension n of the normal mode model used in the Kalman Filter upon the results of optimal design and management problems for the case of infrequent sampling As seen in previous examples the variable of critical importance is the quan-

i tity [P^(zbdquo)] its minimization directly effects the optimal design

and management problems and as will be seen in what follows that minishymization depends greatly upon the dimension of the model used in its calculation

Consider a problem with bound on error in the output estimate with o o

0 a 01 Let the time interval of interest be 0 lt t lt 1 with Pbdquo W and V given in (657) (620) and (621) respectively Consider the sequence of problems with n = 56789 and 10 the family of curves for oi+f[zZz) is shown in Figure 634 plotted with symbols 5 6 7 8 9 and 0 for the same order laquos can be seen immediately the dimension of the Kalman Filter model can greatly effect the results in the optimal management problem

To gain insight into the effect of the value of n upon the design problem contour plots of [PuCju)] at the first sample for each case are shown in order in Figure 635 The addition of higher modes to the

y

model is seen to complicate the nature of the [Ppound(z)J -surface This makes the optimization task for higher dimensional models more difficult

1COOOE-Ol

800D0E-02

60C00E-02

096 oea 7 06 77 -08 7 66 9 7 6 58 7 6 93 7 6 96 766 OB 76

960 7 66 038 7 G QBS 77CS -98 7 6 088 7766 06 7 6 77 6

qnn 7J5 098 7 3S 968 77 6 OSS 7 E6 96 7766 003 7 6 98 7766 - 77 6

66

C0S86 0 98 0 98 0S96 09 6 77 C989 7 0S6 7 020 7 6 C98 7 6 01 7 6 09 0 7 6

nflMfl 099P 00988 0 SB 7 00Oft 77 0 90C 7 I 0996 77 66 00P38 7 6 O 98 77 66 0993 77 65

X7-fift__ bull _ _ raquon 7 6 0E9 f 63 009 8 092 8 009 68 0 5 6 C099 5 0 9 80 0 9 8 03S S 0C9 38 0 9 8 77 099 8 7 09 8 7 03 8 77 OS SB 7 S 0006 7 5 9 6 7 5 09 8 7 5 09 8 09

40000E-O2 00 76 8 7 976

9 8 0 9 e

20000E-02

Figure 634 Time response of o W M ( K gt 2 ) fdeg r filter models of dimension n = 5 6 7 8 9 and 10 plotted with corresponding symbols note increase in sampling frequency with order of filter model

CONTOUR PLOT OF IPIKK)CZ(K))311 AS A FUNCTION CF tZ(K)I1 HEJRIZ AND tZ(K)32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-ETATE VALUE FOR LAROE TIME

tZltKgt32 09

bull33333 333 222Z 2222

444 444 4444 444 444 444 444

44 33333333333 444 33333333333 444 333333333333 444 3333333333333 444 3333333333333 4444 333333333333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333 4444 33333 33 3333333333 bull444 33333 333333333333 3333 3333333333 44lt 3333 33333333 4 333 33333 A 3333 22222 3333 333 22222222222 3333 3333 2222222222222222 333 3333 222222222222C222222 333 3333 22222222 2222222222222 333 S33333 2222 22222222 333

66 77 88888 0999999 0-66 77 8888 9999999 66 777 88388 9999999 66 77 88808 99999999 66 777 68886 99999399 -5 66 777 883888 9999999999999 15 66 777 SBBBBBB 99999999S9 55 666 7777 8888886 999999 55 66 7777 8808888 05 66 77777 80088888 666 777777 i as 6660 7777777 I 55 pound666 77777777 14 555 6BS66 777777777 14 555 6S6666 77777777777 144 5555 66666666 777777777777 44 5535 6666666666 777777 44 5555 65666666666 444 5S5H55 666666666666 444 055555355 6666666666

A44

444 S55

222222 333 444 5555555555553 22222 333 44414 555555555555555 2222 333 444444444444444 2222 333333 44444444444444444 22222 3333333333333333 222222 03333333333333333333 2222222222222 22222222222222222222 2222222222222222222222222

1111)111 22222 11111111111111

11111111111111111111 111111111111111111111111

111111111111111111111 1111111 1111111111

1111111 gt 1111111 22222222222

111111 22222222222222222 111111 2222 222222

111111 222 222222 111111 222 S3 22222 111111 222 3333 22222 111111 2222 22222

11111 2222 22222 11111 222222 222222 11111111111

1111 222222222222 1111111111111111 11111 1111111111111111111111111111

1111111111111111 1111111 1111111111 I _ 1111111111111 11111111 copy 1111

1111111111 11111 11111111111111 11M111 1111111

11111 11111 2222222222222222222222222222222222 22 1111 11111 22222^2^22222222222222222 22222 1111 11111 222222

bull22222 1111 111V 222222 333

222222222222222222222 2222222222222222222222

222222222222222222222222 2222222222222222222P22222

22222222222222222222222222 2222222222222222222222222

222222222222222222222222 222222222P22222222222

22222

111111111 11111111 11111111111111111 111111111111111II 11 1)1111111111111

2222222

SYMB LEVEL RANGE (0T~274031E-02 (9) (9)

2 2

3329E-02 2620E-O2

(0) 8)

2 2

1927E-02 1226E-02

(71 (7)

2 1

052CE-02 9823E-02

(6) (G)

1 1

9122E-02 0421E-02

(5) (5)

1 1

7720E-02 7019E-02

(4) t4gt

1 1

6317E-02 56^6E-02

(3) (3)

1 1

4915E-02 4Z14E-02

(2) 2)

1 1

3513E-02 2811E-02

(1 ) (1)

1 1

2110E-02

1409E-02 ltgt 10706E-02

ESTIMATION ERROR CRITERION CONSTRAINT -

1OOQOE-01

I2500E-01]

Figure 635A Contour plot mension laquo = 5

deg f [lt)]bdquo at f i r s t sample time t bdquo = 046 for f i l t e r model of d i -

CONTOUR PLOT OF [P(KKM2ltKgt H11 AS A FUNCTION Or IZ(K)31 HORIZ AND tZtK)JP EXAMPLE TO SHOW EVeLUTICN OF VARIANCE IN OUTPUT W I K A T E WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-SATE VALUE FOR LARSE TIME

CZ(K)32 00

44 33333333333 444 33333333333 444 333333333333 444 3333333333333 444 3333333333333 4444 333333333333333 444444 3333333333333333 444444 333333333333333333 44444 33333333333333333333

55 66 77

33333 33333 3333 3333 333

3333333333333 333333333333 33333333cr 33333333 33333

444 444 444 4444 444 444 444 --444 53 666 444 55 66

(bull3B88 QBBB eenee

o

53 68 777

9999999 S999S99 9909399 99999999 99999999 9999999999999 9999999999 999999

aBB8BQt-J8

7777 4444 33333 3333333333333 44 55 66 77777 14 555 666 777777 144 55 6Si6 7777777 44 55 6lti6S 77777777 444 555 lti6I-06 777777777 3333 22222 3333 44 535 6=6666 77777777777 333 22222222222 3333 444 5555 66666666 777777777777 3333 2222222222222222 333 44 5SS5 666666666B 777777 3333 2222222222222222222 333 44 555 i 66666666666 3333 22222222 2222222222222 333 444 55gt55 66666666666 333333 2222 bull33333 2222 333 2222 2222 22222222 bdquo 1111111111 111111111111 1111111 111 111 1111 11111 111111 nun m m 111111 111111 11111 11111

22222222 333 444 51lt555555S 6666666666 222222 333 444 5555555355555 22222 333 444-14laquo 5^oS55553553553 2222 333 414444444444444 2222 333333 44444444444444444 22222 33gt333333333333 222222 33333333333333333333 222222 2 i2222 i2222222222222222222 2222222222222222222222222 2225gt22222pound22222222222 22222222222 222222222222222222222+ 22222222222222222 22222222222P2222222222 2222 222222 222222222222222222222222 222 232222 2222222222222222222222222 222 33 22222 22222pound-2222222222222222222 222 2333 22222 2222222222222222222222222 2222 22222 222222222222222222222222 22222 222222222222222222222

| | raquo

222222 222222 22222 11111111111 11111111111111111111 11111 111111111111111111111111111111 n n i i m t i - t i u i i u i i i i n m i i i i i i i ^ i i i i n i i i i i i i 1111111U1 0 m t i i i i i i i i 1I111111111U111111 11111 i i i i i i i i i t i i i i i i i i i n i l i u m i i m n 11111 11111 22222222222222222222222222222222 22 1111 11111 222222i 2pound2222222222222222 22222 1111 11111 222222 bull22222 1111 11111 222222 333

1 11111 1111 111111 11111111111111111 11111111111111111 11111111111111111 2222222

f i T i l f

m 2 2 3329E-02 2626E-02

iii 2 2 1927E-02 122SE-02

IV 2 1 C525E-02 9823E-02

iii 1 912PE-02 6421E-02

Si 1 1 7720E-02 7019E-02

] 1 1 6317E-02 56I6E-02

iii 1 1 4915E-Q2 4214E-02

i 1 1 3313E-02 2611E-02

1 1 2110E-02 I409E-02 (Qgt 10708E-02

ESTIMATION ERROR CRITERION CONSTRAINT a 1OOOOE-01

12309E-01)

Figure 635B Contour plot of [ P pound ( Z K ) ] ] 1 a t f i r s t s a m p l e t i m e K = deg 4 6 f o r f 1 U e r m w t e 1 o f d i m e n sion = 6 note similarity with case for n = 5 in Figure 635A

CONTOUR PLOT OF IP(KK)(2(K11]II A A FUNCTION CF IZtKHI HORI2 AND tZ(K)32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTFJ ESTIMATE WITK TIME POSITION OF MAXIMUM VARIANCE APPROACHES SCEADV-CTATE VALUE FOR LARPE TIME

1 0 +444444444 444444444 AAAAAAAAA

AAAAAAA AAAAAA

AAAAA 44444 44444 444144 4444 44 434 4444444 331 AAAAA 33233

33333 333333 3333333 333333333

06

03

4 4 4 4 4 4 4 4 ^ 4 4 35 6 6 7 7 7 0CG 4 4 4 4 4 4 4 4 4 4 4 55 7 7 7

5 5 7777 P338 4 4 4 4 4 4 4 4 3 5 7 7 7

4 24-144 5 -14444 R 7 7 7 7 ercao

4 4 4 4 fgt CSQ3 3 444 6G 7 7 7 7 coca

33 333 333 33S33 rraquo33333 3333333 3333333 33i323333 333113333333 333laquoS 3333333 __ 3_laquo5j^y353U333333 44 55 06 33333333333 4 OS 6C-6 3333-33Ji 44 u5 6GGC 333333333333 44 S3 GC66 33333333333 44 555 fi- 3333333^33 444 551-S

55 63

3333333 2222222 3333 444 33333 2222222222 3333 444 raquoV 3333 22222222J2222222 333 441 33 222222 2222222222222 333 4444 2222222222 33 4144 22222 33 4444444 2ZVZ 333 444-4-44 2222 lt33 44V 4 2222 3333

222 33333333 22222 222222212

22222 22222 22222 222222 22222222222 05 +2222222 n i l

1111111111T1111

111111111111111 i t m i

m u m 11111111 i l l 11 i i i i i i t m i 111 t u 1111 u i i n i i i + i m m i i 11111111111

1 1 m m

i t m t i i i i m m i i i m i n 1111 1 2222222 22222 222222 222 33 2222 22 3333333333 2222 222 333 333 2222 222 33 333 22222 22 333 333 2222 222 3333 3333 222 222 333333 222

11 mit mi m 1111111 11111111 11111111

1111 2222 2222 U l U U l U t 1111 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 m m i i m i m m 1 111 m m 1111 1 1 1 m m m i n i m u m

1 1 1 1 m 111 m m 11 m m m m 11 m m m m

laquoS99 Sacs 99S9 3399 9999 0 99 3 S339 eaea 33S9 eeflS S3999399999999999 777 8J68 99339999999999 7 7 7 7 c o a a

7777 CG0e3B3C^003B33B3 77777 G6C383

GIG 777777 6S1666 777 7777777777777

(36566 -bull 6GIM36G8 r i50 6Cfcamp56SSGGS6i66366 amp055D55 6GGG06S666GG6G

5D0355

1444 J555GC5Gi55555550555 14^-144444 55i355JtJ5

4 4 4 4 4 4 4 4 4 4 S333333 4 14444444

3 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 gt222222 2 2 2 2 2 2 2 2 2 2 2

222222222222222222222 222D222P22rfpound2222222222

gt222i 222 222222 22222 2322 2 333333

3330333 bullbull 33333- v^^S22H222222222K2

222222222222i-2ii222222222 22222222

m m m m m m 1111111111111111111111 m m m u m m u u i 11111111 m u m 11

22222222222222 222222222222222222222

2222222 ^2ri 2122222222222 2 2 2 2 2 2 2 2 2 2 ^ 2 2 2 2 2 2 r gt 2 2 1 2 2

2 2 2 2 2 2 2 2 2 22222 2 2 2 2 2 2 2 2 2 2 2

SVM3 LEVEL HAN3E

( 0 ) 2 3 1 7 5 ^ - 0 2

2 2 5 0 7 F - 0 2 2 1640E-02

W 2 1 1 7 3 K - 0 2

I I 1 E 5 3 Q ^ - 0 2 1 9 1 7 1 E - 0 2

1 0 S 0 3 E - 0 2 1 7 G 0 6 E - 0 2

1 1 7 1 0 9 E - 0 2 1 C 5 C 2 E - 0 2

15 1 amp C 3 4 E - 0 2 1 51 17E-02

ill 1 4 5 0 0 E - 0 2 1 3 5 3 2 pound - 0 2

i l i 1 3 1 G 5 C - 0 2 1 - 2 4 0 0 E - 0 2

1 1 0 3 0 E - 0 2 1 1 1G3E-02

iQ) 1 04lt-SR-02

i MAT I ON ft CRITERION TRAI IT =

1 O00OE-01

isa CE ir U7 VlANCE I W J

r t 2 5 0 0 t -on

amppound URLK NT lt CCVAK I V 1 =

bull _ - 0 ] 0253

Figure 635C Contour plot of P | X J K ) at f i r s t sample time t bdquo = 041 for f i l t e r model of di sion n = 7

237

8 n i o l bdquon M M

ttf- gt WW O N lt I O mdasho ttf-

y W W W W W -bull- -- mdash laquo-- mdash ttf-

CJlaquot

6 U ffim Qltff -- ougt ss 5 n o mdashmdash ZZ

wm N N W M N N

T^ laquo WWW

5 5 f v a I T nn ^tn]

tN (DIP mm Tr-wv nn Mraquo- copy I D in in w n

laquogt-laquo t laquo o o n r NtCKK o o n KH ww w _ mdash - -

laquogt bull C I S J O M ^ N J V traquogt -gt W W W W W mdash mdash mdash mdash w pound bull laquo i a i Nrsfsfs o laquo ew w mdashmdashmdashmdash 1 4 - - i r^V w ^deg F1 -s laquo w w w - - mdash

5 M ^ k 1 $S fcl v i o c i cw bull r bull bull - bull bull - r - mdash

D W ^ 1 O C J C J WCv N h N I ^ S 1 0 o S S deg IDto1 V laquo raquo ( - raquo ( t f u

zngt- bull M raquo OlDOtOO raquotfgt i r V i CVAJOKJfW - bull mdash bull- mdash ( j c a lt T T P I K i M

Po5 n t n w r t W W Po5 v o o o W W O D t - W W CUWWN mdash mdash mdash laquo - - _ mdash laquo to w 3 Z w L - mdash laquo n n n w

n n n lt u i r O C T O M N

u u n o w 1W

lt lt o (VCVWCVCKU W W W W mdash - mdash bull - mdash bull - bulla Wf tJCWCJ

- C O W gt W N laquocu w - + - lt f t N t J W t l i w mnn w bull- gt J w w w w n n n n w mdash

w w w (o o n o w mdash - U U N N P I C ) n raquo-mdash o o w w w N n o w^mdash w K w w w w n ltraquo o wmdashmdash N Z lt cuww w n w o cu mdash - p - W t u t g N o w o N raquo- bull mdash c W W W w o v o wmdashmdash

gt-lt ( M W W t t bullmdash- w o o wmdashmdash o gt MIUAI - bull mdash mdash w o n mdash

o b N W laquo - w o n o n cw mdash O

ww o n w - o b V V w o n o n cw mdash O ww o n w -

01 W mdash W W laquo whi ww ^ bull

I E

laquo C M bull W I M N N mdashmdash

I E bull n W W n C T S laquo r t S r ) w w w W W W W

cvtvwww bullmdash-- ^ W W ~ -I E bull n W W n C T S laquo r t S r )

w w w W W W W

cvtvwww O tL C ( V W ^ W W J D Q

bull |E5i degssecto laquo i W M W W mdashmdash J D Q

bull |E5i degssecto laquo i W M W W

KUIO N M U O l N 3 J ~ O O - H w w w w

^B35^I ssl (UWW-N -^B35^I ssl (UWW-N UbJCL- fllNNN

bull y w raquo laquo r v w w c ^ _ o n deg - raquo - -

CONTOUR PLOT OF t P ( K K ) f Z C K gt ) ] 1 1 A3 A FUNCTION OF C 2 ( K ) J 1 HORIZ AND t Z C K ) J 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E POSIT ION OF MAXIMUM VARIANCE APPROACHES STEADY-STV i VALUE FOR LAR3E T I M E

0 + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 4 4 4 4 4 4 4 ^ 4 4 4 4 +444444444444 444444444444 44444444444 4444444444 4444444

oe

os

04

03

OI

4444444444 4444444444 4444444444 4444444444 44444444444 4444 44444 444 444 444

380 pound88 068

east) 3333333 3333333 3333333333 3333333333333333 3333 33333333333

553 666 777 53 6B6 777 53 666 777 55 666 777 53 6G6 777 33 666 777 53 6666 77V 55 666 77V7 355 666 7777 44 C5 6666 7777 444 353 666 7777 44 53 666 7777 444 535 6666 77777

B99SS9 999999 9999999 99999999 999999999 999999999999 99999999999909 99999999999 99999

eeocsssB 0898868888888889 333 33333333333 44 535 666ltgt 777777 333 3333333333 44 5555 6066 77777777 07 +333333 33333 33333 444 S555 6666 77777777777777 3333333333333 22 333 444 53553 666666 77777777777 73333333333 222222 333 444 555 1 666666666 333 22222222 333 44444 gt5555 666666666666666666 222222222222222222 333 44444 5553553 66656 22222 22222222222222 3339 44444 5555555555535 12222222 33333 444444 55555555555533555 222222 333333 44444444 2222 33333333 4444444444444444 2222 333333331 4444444444444444444 1111 22222 333)33333 1111111 222222 3333333333333333 1111111 2222222222222 3333333333333333333 111II 222222222J2 22222 1 2222222222222222222222 222222 2222222222222222222222222+ 2222 22222 222222222222222222222222222 2 33333 2222 22222222222222222 333 333 2222222222222222222222 33333

22222 22222 22222222222222 2222222222222 22222222222

1111 1 111111111111111 111111111111111 11111111 11 1111111 11111111111111 11111111111 1111111 2pound 33 111111 22 33 111111111 111111111111 111 111 22 33 44444 333

333

333333333333333333 3333333333333333333 3333333333333333 2222222222222222222222

11111111 11111111111111 bull11111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 111111111111

00 +11111111

2222222222222 isit 222222222222 333 222222222222222 3333 2222 222222322222 2222 11t1 2222222 111111111 111111111111

11111 111111111-111 1111111 111111111111111111111111 1111111 111111111111111111111111111111111111 111111111111111111 1111 11111111111 2222222 11111 2222222222222222222222222 11111 222222222222222222222222222 11111 2222222222222222222222222 111111111 111111111 1U11 till

22222222222222222 222222222222P-22 222222222222222-

TIME gt 3 9 0 0 0 E - 0 1 F IRST MEASUREMENT

CONTCtr LEVELS AND S HBOLS

SVMB LEVEL 3 RANGE ( 0 ) 2 3 1 6 6 E - 0 2

( 9 1 2 ( 9 ) 2

24PE-

1 7 8 E --02 bull02

( f t ) bullgt U ) 2

1 0 7 5 E -

0 3 7 1 E -bull02 bull02

1) 1 ( 7 1 1

9 6 6 7 E - 6 9 6 4 E

- 0 2 - 0 2

( 6 ) 1 ( 6 ) 1

8 2 6 0 E - 7 5 5 6 E

- 0 2 - 0 2

( 5 ) 1 ( 5 ) 1

6 B 3 2 E

6 1 4 9 E -- 0 2 - 0 2

C4) 1 ( 4 ) 1

bull 5 4 4 5 E - 4 7 4 1 E

- 02 - 0 2

( 3 ) 1 ( 3 ) 1

4 Q 3 8 E

3 3 3 4 E - 0 2 - 0 2

(ggt 1 ( 2 ) 1

2 6 3 0 E

1 9 2 6 E - 0 2 - 0 2

( 1 ) 1 ( 1 ) 1

1 2 2 3 E

0 5 1 3 E - 0 2 - 0 2

ESTIMATION ERROR CRITERION CONSTRAINT =

1 0 0 0 0 E - 0 1

SOURCE INPUT COVARIANCE IW3laquo [ 1 2 S 0 0 E - 0 1 ]

MEASUREMENT ERROR COVAR [ V l gt

[ 0 5 0 - 0 1 C - 0 0 2 3 1

Figure 635E Contour plot of [pj^(zK) sion laquo = 9 bull J

at first sample time tK = 039 for filter model dimen-

CONTOUft PLOT OF [P(KK3(Z(K) )311 AS A FUNCTION OF tZCfOJI HORIZ AND CZCK1J2 VEPT EXAMPLE TO SHOW EVOLUTION OP VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIME

10 +444444444444 444444444444 4444444444444 4444444444444 4444444444444 +4444444444444 4444444444444 444444444444 4444444444 44444444 +444

09

oe

ot

444444444444 5S 444444444444 SS 44444444444 53 44444444444 55 4444444444 53 444444444 55 33 44444444 55 3333 444 S 33333 3333333 33333333 3333333333 33333 33333 33333 333333333333 444 3333 3333333333 44 3333 333333333 44 3333 333333333 333 44 3333333333333 2222 33 3333333333 __22222222_ 33

777 0866 9999333 777 0868 9999999 777 068 S999999 777 068 9999999 0 777 068 9999999 777 668 9999339 77 66B 939999 777 8088 9999999 444 555 666 777 666868 99999999999999 444 555 6SS T77 44 555 666 7777 44 5555 66S 777 6555 666 77777 8888888888688688

6S6 666 666 6666 6666 6666 6G68 666

5555 666 777777 888888a88B68 55555 6E6 77777777 55555 6666 777777777 lt M 5 S 6666 77777777777777777 444 5555 66666666 7777777777 44444 3f-6U 22222222222 333 44444 055355 6666666666666 222222222222222222222 3333 444444 5S5555S3S555 22222222222 2222222222222 33333 44444 55555550355555555 2222222222222 2222222222222 333333 444444444 222222222222 22 2222 3333333 444444444444444 22222222222 2222 3333333 44444444444444444 2222 11 222 333333 44444444444 11111 2222 33333333330333 11111 22222222222 3333333333333333333 333333 1111111 1111111 2222222222222222 333333333333 11111111111111111111 222222222222222222 111111111111 222222 222222222222222222222222222 U11111111 222 2222 2222222222222222222222 11111111111111 22 33333333 222 2222222222222222 11111111111 22 33 33 2222222222222 3333333333333333333 22 33 444444 33 22222222 333333333333333333 22 33 444444 33 22222222 333333333333333333 11111111111 22 33 44 33 222222222222 33333333333333333333 111111111111

II +11111 11111 11111 11111 11111

00 +111U

U 1 U 1 1 1111111 1111111 111111 111111 11111 11111

33333333 222 2 2 2 2 2 2 1

1111 222 11111 11111111111111 illll

111111 111 111

1111 1111 111

laquo I 1 0 ill m 11 11

11 m i m i m i m i m i nil i

22222222222222222 22222222222222222222 u u M U i n u 11 111 n i n 111111111 111I111111111H11111 l i m n i i 2222222222222 22222222222222222+ 22222222222222222222 222222222222222222222222 222222222222222222222222 22222222222222222222222 22222222222222222222222+

T I K E raquo 3 6 0 0 O E - O 1 F I S S T MEASUREMENT

CONTOURLEVELS AND SYMBOLS

SYKB LEVEL RAN3E

( 0 1 2 2 8 7 1 E - 0 2

( 9 ) ( 9 1

2 2 1 7 6 E 2 1 4 9 2 E

0 2 0 2

1 ( 0 )

2 0 7 6 7 E 2 0 0 9 3 E

0 2 0 2

( 7 ) ( 7 )

1 9 3 9 8 E 1 8 7 0 4 E

0 2 0 2

( 6 ) ( 6 )

1 S009E 1 7 3 1 5 E

0 2 0 2

( 5 ) ( 5 )

1 6 6 2 0 E 1 S925E

0 2 0 2

( 4 ) lt4gt

1 5 2 3 1 E 1 4 5 3 6 E

0 2 - 0 2

( 3 1 ( 3 )

1 3 8 4 2 E 1 3 1 4 7 E

OZ - 0 2

( 2 ) ( 2 )

1 2 4 5 3 E 1 1 7 5 8 E

- 0 2 0 2

( 1 ) ( 1 )

1 1 0 6 4 E I 0 3 6 9 E

- 0 2 - 0 2

t copy ) a 6 7 4 8 E - 0 3

ESTIMATION ERROR CRITERION CONSTRAINT =

I OOOOE-01

i zsooE-on

09

Figure 635F Contour plot of sion laquo = 10 [M at f i rs t sample time t bdquo 038 for f i l t e r model of dimen-

240

owing to the addition of numerous local extrema The classical approach to solving minimization problems which possess complicated objective functions is to increase the number of initial search points until suffishycient confidence is obtained to suspect that the global minimum has been found no other methods are known Quoting from Beveridge and Schechter [20] p 499 regarding finding the global optimum in a problem with multiple extrema

Thus once a particular local minimum has been located by an appropriate search technique it is imshyportant to check that other better optima do not exist There is no rigorous method for this search except in certain restricted classes of problem One can only begin the search procedure at a number of different initial base points

Thus the dimensionality of the filter model is seen to bear directly upon the complexity of the associated optimizations in the optimal deshysign problem

1 Another method of comparing the [Pbdquo(zbdquo)L surfaces for various model dimensions is by fixing one of the measurement positions and plotshyting sections through the surfaces over the range of dimensions for n

as functions of the other measurement position Such plots are included for values of [z K] = 01 03 and 08 Schematically they represent cuts through the three-dimensional contour surfaces as in Figure 636 The three sets of curves for n = 5 6789 and 10 are shown in Figshyure 637 For the first two cuts with U J = 01 and 03 large difshyferences result particularly in the region of the source near z = 03 For the third cut for Ui]_ - 08 agreement is fairly good note howshyever that in contrast to the first cases this cut is farther from the position of the source where it is seen that the effects of the source tend to be filtered out

241

Figure 636 Schematic representation of the intersections of [ P | lt ( | K | I I surface with the planes [ z K ] 2 i 0 1 03 and 08

Comparison of the contours in Figure 635 and par t icu lar ly the cut

for [ z K ] 2 = 01 near the global minimima in l l f e ^ bdquo n h t h e t i m e bdquo

sponses for o^ + f (zJz) in Figure 637A gives r ise to an apparent anomshy

aly in the expected resul ts even though higher dimensional models in

general are seen to result in lower optimal values for lPuUv)l at

the sample times the sampling frequency for higher dimensional models

is greater This can be explained as follows Consider the s i tuat ion

77777 996777 7763 77777877 770 99a

77777777 53336999 77 699977809 77 969999 988 777777 88979666860686886 55696666666 5333335 B9 77 mdash mdash O0000000OD 000 0000 00

7 S 99988 8B9geeeee

73999 899

9988 OOOOQOOOOOO 000

i e 77777 6 77B 77 9879 958 667 689 67 88BBC9 8 t 99 B S3 I

79 0 7 7 9 0 a c

1C400E-O2

SB 689 6 6888 9 I 19 68808868 99 0 O S 9999 O 0 9999999 O 0 OODOOO COOOOOO

S0Q00E-03 1 0E00

Figure 637A Intersections of the [PJ^SK)]^ surfaces with the plane [z R ] 2 = 01 plotted as funcshytions of [zA for filter models of dimension n = 5610 plotted with correspondshying symbols

1laquo000E-02

B80B 69B9D8 9 77907 907 907_ 67 raquo7 057

14I0COE-D2

687 9990 88 - 75 80799990059 99 79 00909 00060 78 00997 000 66 09 98 C 3 S 7 60 10 77 66 089977 66 O 98 7 097668666 t- $8 78777 0 S99999 coooo

CO 666688 07777 68 80758999

86 999999079939888 000609900000077 0 899 77 _ 777770 999 755 777 O 68775777775 S566SS6G6666 7 088 555 708886998 55

11000E-02 I

87 O 77 69 775 6 0 998733 8 O S555986 86 0 000 9 6688 0 1 00000 99 099

Figure 637B Intersections of the [pj((2 K)| n surfaces with the plane [ z K ] = 03 plotted as funcshytions of fgK| for filter models of dimension n = 5610 plotted with correspondshying symbols

lPtKi-raquo11

S2500E-0Z

2O5D0E-02

1B7ODE-02

16B00E-02

6C99C0 C63900 76 23C 7SGBS0 776 300

777777777777777 777 66C53C9 77 G63CiC-93399 7 5GC099939 7 1C9laquoOOOOOOC030DO 7 CCCITOCCC^ 7 0639J CO 778635 000 76999 00 76G9 000

77C1

OSSO 7eS90 76 90

7 6 77 6 _ 7 6 690 7 6 020 7 6 990 7 9 0 89 0 6900 620

00

9 0

14900E-02

666 77777

677 pound677

C 7 bull3605008992987 0000099 6G96

000000 6997 0C0E37

70 579 S57790 5553777 CO 55507077 690 5535 99999999000 C69S67SlaquoS 7793 009S 777779C 0990 600 OODOOO

13000E-02

Figure 637C Intersections of the [P^K)] surfaces with the plane [lKz 08 plotted as funcshy

tions of ing symbols

zv for filter models of dimension n = 5610 plotted with correspond-

245

at the first set of sample times The results from the figures are summarized in the following table Even though as n Increases and

n S 6 7 8 9 10

2 [01340] |013401 [02568] [024121 [02393] [024181 ~K Lo l340j Lol34oJ LOO622J LOO6I8J L00648J I00633J

m)u 0010707 0010707 0010495 0009953 0009814 0009674

degfcgt 002280 002280 002384 002697 002717 002828

h 0460 0460 0440 0400 0390 0380

hH K) 0380 0380 0360 0320 0310 0310

(673)

[ppound(z)] deoveaaes the time to the next sample (t K + f - tbdquo) also deshy

creases Note however that as n increases so do the initial condishytions on the trajectories for cCtztz) This effect stems from the fact that even though [Ppoundzbdquo)] 9eis smaller as n grows more terms

~ K~ K 11 are being added into the quadratic forms for ajUzJz) as the matrices increase in dimension

The effect of this can be explained concisely in the asymptotic case for infrequent sampling by writing the expression for degK+N(zJjz) at the second set of sample times t+

4 N ( K lt ) pound pound amp ) ] n + N [ 8 ] n + sU)T g amp ( 2 (674)

As n increases even though the term [p^U^)]]] decreases the last term c(z) Q e(z) increases at a faster rate Thus for the same time period (t + N - t) larger values of variance in the output result for models of larger dimension thus higher frequency sampling programs

One final comparison is made for the monitoring problem with bound on error in the output estimate The number of modal states retained in

246

the Kaiman Filter model is seen to effect the outcome of the determlnl-zatlon of position of maximum variance in the output estimate That is the model dimension effects where in the medium the error in the pollutshyant estimate will first reach its limit The maximization problem re-

For time t(c+N given optimal measurement positions zpound at time t|lt find z such that

4damp)degV $(bull) (675)

For the infrequent sampling problem in the case of no-flow boundary conshyditions from Conclusion X (675) was found to be equivalent to finding

max c(z) pound2c(z) (676)

o

For the example treated here plots of oS(z) at trie f i r s t sample

times for the range of model dimensions n = 5 through 10 are shown in

Figure 638 Results for the maximization problem are tabulated below

n 5 6 7 8 9 10 Z 02711 02711 02940 02922 02883 02957

c ( z ) T 0 t ( z ) 00417 00417 00447 00501 00509 00519 SS

mdash ( 0raquo

Recalling that the single point source is located at z 5 03 i t 1s

seen that as more modes are Included in the model the posit ion of the

maximum variance in the estimate ef the output approaches the position

of the source as expected th is 1s the point in the medum of greatest

uncertainty in the estimate

Notice that the steady-state term aiy a c(z) does In fact ln -S5~

crease with he dimension of the nodel n corroborating the reason

bull1ODOOE-01 1

8SD0OE-O2 666658665360 77777777777

8886999000 9938665999990000 O0DD0O0QQ00O

666696 6S79D 697 66 730 537

7 890 890 890 890

987 057 9 0 6 7 9 9 - 8 7

B 7 O S 8 73 S 0675 08 7

i9 7 S 06 7 5 C8 7 6 93 7786 ose 7 e 098 7 9 098 7799 038 7 99 0098 77 99 098 7 99 098 77 99 0998 77 99 00968 777 555 00988 777 6599 00988 777 9559 09988 777 55995 0099886 7777 00099888 00099886 000999668 000099988888 000099999688860886 000000099999999399939 00000000000000

5555S8S69 7777777 595553555 777777777777777

Figure 638 Plots of CT(ZJZ) at first sample times t K as functions of position z in the medium for filter models of dimension n = 5610 plotted with corresponding symbols

248

behind the increased sampling frequencies for higher dimensional models Notice further in all of the data here that there are no differences

for models of dimension n - 5 or 6 The reason for this can be seen by comparison of the input distribution matrices for the two models the matrix D in equation (613) For these cases computation yields

n 5 6

1000 1000 1176 1176

-0618 -0618 - -190 -1902

-1618 -1618 1923 X 1 0 1 0 (671s)

Thus the contribution of the noise source to the sixth mode is seen co be negligible in comparison to the others The reason for this is that the sixth mode characterized by its eigenfunction

e g(z) = cos (5irz)

possesses a zero at z = 03 which happens to be the location of the source Thus the addition of the sixth mode does not change the response of the model after its transient term has disappeared since that mode is unshyforced

The results of this section are brought together in Conclusion XIX The dimension of the model used in

the optimal monitoring problem is seen to directly efshyfect the results in the optimal design and management problems (CXIX)

A word of caution is in order then in practical applications tradeoffs are necessary as in all analyses involving finite dimensional models of infinite dimensional processes Short of embarking upon a quantitative solution to the model simplification problem the analyst

249

should assure himself that a model of a given dimension is sufficient to adequately represent his process In the framework of the infreshyquent sampling problem the mathemat cs associated with the sensitivity anolvsis of the results for the optimal monitor are seen to be particushylarly simple providing a basis for rapid determination of adequate model complexity by straightforward comparison of numerical simulations

6310 Problems Including Pollutant Scavenging - All the exshyamples thus far have been fc the case of one-dimensional diffusion with no-flow boundary conditions and with no pollutant scavenging Consider here cases where the scavenging term -aC in the initial-boundary value problem (66) is nonzero For the monitoring problem with bound on error in the output estimate from Section 551 the maximum variance in the output estimate in the asymptotic case for infrequent sampling is given by

n=l (679)

From the state transition matrix J for the matrix A in (613) it is seen that in (679)

JO a = 0 n = bull (680)

le-aT c^O Thus the asymptotic growth of the first mode is a ramp of slope [fi]-- for a = 0 whoreas it is a forced first-order response with a negative real eigenvalue for cases where a gt 0 in problems with scavenging These differences are studied in the following examples

250

Consider first the example of the previous section with raquo = 5 modal states Choose for comparison the values a raquo 0 01 and 02 A plot of opound + N(zz) for the three cases using symbols 1 2 and 3 respectively is shown in Figure 639 For completeness contour plots of [Py(zbdquo)] at the first sample times for the three values of -K -K n

a are shown 1n Figure 640 As suspected from the separation of varishyables in the eigenproblem of (583) and (584) in Section 55 the addishytion of scavenging has no effeat upon the results for the optimal measureshyment design problem but does have a direct effeat upon the management problem the sampling frequency changes with a but the optimal mea-surenent locations do not

Consider a second example the cases o = 0 1 and 2 plots for these are included in Figure 641 It is seen that for both values of nonzero scavenging nc samples occurred within the interval C lt t lt 1 From (520) it is found that the steady-state values of apoundN(zpoundz) for the cases a = 1 and 2 are as follows for the condition 0 lt $j lt 1

From (518) the limit for the first term in (579) is

^[EK(4 = 0 1 lt681A)

From (520) the limit for the second term in (57S) is given by

5 Wi i gt bullit - T ^ ( 6 - 8 1 B )

Thus by computation obtain

251

pound[4i 0 0

ltrade pound0311 ) lt n=l

2(n hi

bull1 ) 006221 003124

s(z)Tne(z) 003782 003493

lim K + M ( z t z 1 1 01000 006617 (6B1C)

for the case of a =1 the limiting value of deg K + N ^ K Z S s e e n t 0 c lt u a 1

2 the estimation error limit o J i m laquo 01 Thus this is seen to be the limiting case for the size of the scavenging term a for which the reshysults of the infrequent sampling cease to apply for values of a gt 1 no samples occur For the case a bull 2 the limiting value for 2

aKtN s c l e a r 1 y below the estimation error limit It is seen then that for monitoring problems Including scavengshy

ing situations may arise in practice where a steady-state level of unshycertainty In the pollutant estimate may exist which Is below the specishyfied estimation error limit In these cases it 1s never necessary to sample in order to assure that the estimation error remains below Its limit for such cases the monitoring problem solution proposed here has no meaning

lOOOOC-01 1

2000DE-02

U 2 33 1 22 33

22 3 2 33

33 3

1 1

2 2 2 2

1 2 3 1 2 3

1 2 3

i HE

1 2-112233

12233 -(1233

ti33 122il

1233 1233

123 233

233 3

3

i t ia 34 1 S 33

12233 233 3

y i

2 7 2 3

r 2 3 1 8 3

I 2 3 i 2 3

2 3

1 1

I t 1 2J

11 2 1 22

11 2 3 22 33

1 2 3 11 22 33

V 22 3 11 2 3

1 2 33 22 3

2 3 2 33

U 2 33 1 22 33

22 3 2 33

33 3

1 1

2 2 2 2

1 2 3 1 2 3

1 2 3

3deg 3

3

3

2 o 3

1 2

1 3 2

1 2 3 1 2

3

t 2 a

1

Figure 639 Plots of ^ + N ( K Z ) versus time t K + f ) for systems with scavenging parameter a = 00 01 and 02 plotted with symbols 1 2 and 3 respectively

CONTOUR PLOT OF IPCKKKZCK1 111 A3 A FUNCTION CT (ZOOM HOtflZ AN3 CZ(Kgt32 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE UlTtf TIME PCSITlCN CF KAXinUH VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIME

tZK)32 0 3

444 444 444

444 4444

444444 444444 44444 4444 03333 444 33333

3333 3333 333

33333333333 3333333333 033333333333

9333333333333 3333333333333

333333333333333 33333333333333

3 333=333-3 33333333 3373333333337^333333

444 9 444 5 444 5 4444 5

444 3 444

444 444

444

eaesa ease ecssa

777

3333333333333 333333333335

3333333333 33333333

33333

44 44 444 3333 32222 3333 333 22722222222 3333 lt 3333 2222222222222222 333 3333 2222222212222222222 333 3333 22222222 2222222222222 933 333333 2222 222222^2 333 33333 2222 333 2222 2222 22222222 Mil Mil

22222 t n n n t m n i

9393999 9999999 9S9D999 99999998 06088 9999D999 CD if 6080PC 9999999999999-ee 77 BBOufleB 9399999999 ess 77 essaooB 599999 6S 7777 0BC3683 i 6B 77777 OBBBBeGO i5 GGC 777777 6060300888808 iS 66G 7777777 55 laquoGlaquogt6 77777777 335 CUC66 777777777

035 GCG666 77777777777 4 5533 GG6G866G 777777777777-4 5535- GGGG6G6GCB 777777 44 Q3S 65665066666 444 K-5555 6GGG666GGG66

444 U55S5SS3S 6GGG6G6666

0

M M 1 M M 1 M 1 1 1 1 1 M 1 1 M M M M M M M 1 M M I 1 M 1 M M 1 M 1 M 1 M 1 1 M M 1 1111111 1111111111 1111111 1111111 22222222222 11M11 2222Z2222222Z2222 111111 2222 222222 111111 222 222222 111111 222 33 22222 111111 222 3333 22222 1M111 2222 pound2222 II111 2222 22222 11111 222222 pound22222 222222S22222

2-2222 U33 444 5525559353553 22222 333 44444 535555353533553 2222 333 444444444444444 2222 333333 44444444444444444 22222 3333333333939333 222222 32393333333333333333-2222222222222 22222222222222222222 2222222222222222222222222 222222222222222222222 222222222222222222222-2222222222222222222222 222222222822222222222222 2222222222222222222222222 22222222222222222222222222 2222222222222222222222222 222222222222222222222222 222222222222222222222 Mill Ml Ml 22222 11111111111111111111 11111 11111111111111111111111111111111 111 11111111 Ml 111111111 1111111111111111111111111111111 _ 111111111111 11111111M1111111111111 1111 0 1T1U 11111111111111111 111111111 11111 1111111 M M Mill 1111 Ml 111 111111 11111 111111111111111111111 bull M M 1111 111M11 2222222 Mill 11111 222222222222222222222222222222222 22 1111 Mill 222222222222222222222222 22222 1111 Mill 222222 22222 11M Mill 222222 333

(0)24031E-02 (9) 19) 2 2

3323E-02

2620E-02 (8) (B) 2 1927E-02 1225E-02 (7) (7) 2 1 0525E-O2 9S23E-02 C6) tB) 1 1

9122E-02 S421E-02 (3) (5) 1 1 7720E-02 7019E-Q2 14) (4) 1 1 6317E-02 5G1GE-02 (3) (3) 1 1 4915E-02 4214E-02 12) C2raquo 1 1 3513E-02 20ME-02

lt1) 1 1 2110E-02 1409E-02 (Q) 10708E-02

ESTIMATION ERROR CRITERION CONSTRAINT =

10000E-01

12303E-011

00 0 1

Figure 640A Contour plot of |PK( Z K)J I I f deg r t h e f i r s t s a n i P l e a t bull lt = deg - 4 6 for the case with scavenging parameter a = 00

fONTOUR PLOT Of tP(KK)lt2tKl) I11 AS A FUNCTION 3F IZ(K111 HOR1Z AND CZltKgt12 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-JTrtTC VALUE FOR LAROE TIME

10 bull 444 333333333333 444 333333333333 444 33333333333333 444 33333333333333

444 33333333333333 09 4444 3333333333333333

444444 33333333333333333

444444 33333333333333333333

44444 333333 3333333333333 14 3313 333333333333

06 raquo444 3333 33333S3333

07

09

04

444 S3 6C 77 4444 S3 66 77 4444 S3 6B 77 7 444 33 SB 7 444 S3 66 77

688 6068 86888

88808 888688

9959999 999939 S999999

9939999 99999999

4444 33 SB 777 8868- 8 9939999999999-444 Q3 68 777 8685888 3999999999

444 SS 666 7777 8888888 99989 444 Q3S 668 77777 888B588B

444 S3 66 777777 686088888 SS 66iJ8 777777 8886888888663-__ 880866686 333 3333333333 444 535 6gt6G 7777777

3333 3333333 44 53 5606 77777777 333 33333 444 335 66368 777777777

3333 222222 3333 44 333 666666 777777777777 333 2222222222222 3333 44 335 66666666 77777777777

3333 22222222222222222 3333 444 555 J 666666666 777777 333

333 333333 22222

0 6 33333 222 3 3 3 bdquo 2 2 2 2

K112 2222222 2222 111 bull 111111 1111111111111 1111111111111 11111 111

nil n u n

22222222222222222222 333 44 55 59 66666K66666 222222 2222222222 333 44 35035 66666666666S

22222222 333 4444 5553535553 666666666 222222 333 4444 55335333355553

22222 333 441444 55555335555555 11 22222 3333 1444444444444444

1111111111 22222 33331 4444444444444444 11111111111111 22222 1333333333333333 11111111111111111 2222222 3333333333333333333+ 11111111111111111111 22221222222222 111 J1111 11111 J 22222222L 11111 111111 22222222222222222222222 11 11111 22222222222222222222

22222222222 22222222222222222222bull 22222222222222222 222222222222222222222 i i t i i i

H i m l i n n m m

m i l m t i

m i m i

u r n i i i i m

1111111111111

22222 2222 222 222 3333333 222 33333 222 22222

222222 222222 22222 22222 22222 22222 22222

tradeHIbdquo

1111111 111 t m m i m 11111111

m 111 111 i i n bull i n 11111111 i m m m i i m i i i t

i n n i m m i

i i i i m i i i i i i i i m m i i lt i m m m i 1111111 11111 mn 11111 m i

22222222222222222222222 222222P222222222222222222 222222222P222222222222222 2222222222222222222222222 22222222222222222222222-222222222222222222222

111 11111111111111111 11111111111111111 11111111111111111 11111111111111111

2222222 2^22222222222222222222222222222222

222222222222222222222222 222222

3333

3VMB LEVEL RANGE c i i i t e i s t t i i t i i

(O) 2 3926E-02 (9) (9) 2 2 323BE-02 2550E-02 C6gt 161 2 2 1663E-02 1173E-02 17gt (7gt 2 1

0467E-02 9799E-02 (6) [61 1 9111E-02 6424E-02 (6) (5) 1 1 7736E-02 7040E-02 (4) (4) 1 1 6360E-02 5672E-02 (3) (3) 1 1 4983E-02 4297E-02 (2) (2) 1 1 3609E-02 2921E-02 (1) (1) 1 1 2233E-02 1546E-02 (0) 108S8E-02

ESTIMATION ERROR CRITERION CONSTRAINT gt

10000E-01

12300E-011

2

F i g u r e 6 4 J Cu i tour p l o t o f M O j ^ l K t h e

s c a v e n g i n g p a r a m e t e r as 0 1

sample a t t bdquo laquo 0 4 9 f o r t h e case w i t h

CONTOUR PLOT OF tPCKKKZCK) )311 AS A FUNCTION OF CZ(K)11 HORIZ AND LZ(K)]2 VERT EXAMPLE TO 8HOW EVOLUTION OF VARIANCE IN OUTPUT ESTIMATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEAOY-SATE VALUE FOR LARGE TIKE

10 444 3333333333303 444 33333333333333 444 33333333333333 444 333333333333333 444 333333333333333 09 bull 4444 33333333333333333 444444 3333333333333333333 4dlt 44444 333333 3333333333333 4lt 4444d 33333 3333333333333 4-4444 3333 333333333333 08 +44 3333 33333333333 3333 333J33333 3333 3333333 3333 33333 3333 22222222 333 07 bull 333 22222322222222 333 3333 222222222222222222 333 22222222222222222222 3333 22222 333333 2222 33333 2222 333 2222

4444 S3 66 77 4444 S3 66 77 444 S3 66 777 444 53 6 77 444 53 copy6 777

BB8B BBSS 66388 66888 663889

9999999 939399 9999999 995J999 99999999 _ _ _ 77 688B8B 999999999999 555 66 777 B8BBBBB 9999999999 I 55 666 7777 6886089 99999 I 55 666 77777 68686868 14 55 663 777777 888868888 14 55 656 777777 6238080808888 144 355 65t6 77777777 886886886 44 55 56-36 77777777 44 353 CG66B 777777777 444 535 666666 77777777777 335 66666666 77777777777 333 44 77777

2222 2222222 2222 11 inn 11111111111 11111111111

555 i 6666666666 __ 55533 6666^666666

2222222222 333 44 SSU5S5 666666666666 2222222 333 444 0353555553

22222 333 4444 3355535555355 2 2 2 2 3 3 3 3 4lt 14-1d 5 5 5 5 5 3 5 3 3 3 3 5 3 3

111 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 ) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 gt 2 2 2 2 2 2 2 2 2 2 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i l l 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 11111

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 2

2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2ZZ 3 3 3 3 9 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i 1 1 1 t 111111111 1111

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 Zi22222222222222222222222222222222

zxx m i 11111 2 2 2 2 2 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1111 11111 2 2 2 2 2 2 2 2 2 2 2 1111 1111 2 2 2 2 2 3 3 3 3

1 1 1 1 1 n u n 1 1 1 1 1 1 m m l i n n i n n i n n m i

bullHI

2222222222222222222222 2222222222222222222222 222222222222222222 2222222222222222222 2222222222222222222 22222222222222222222222 222222222222222222222222 2222222222222222222222222 Z222222222222222222222222 22222222222222222222222 22222222222222222222

111111 111111 111111111111111 111111111111111 111111111111111 111111111111111

T I W a B 2 0 0 0 E - 0 1 F I R S T MEASUREMENT

bull bull bull bull bull bull l i B i i n i i l CONTOUR LEVELS

AND SYMBOLS

SVMB LEVEL RANGE

1 0 ) 2 ~ 3 7 S 9 E - 0 2

( 9 1 2 ( 9 ) 2

3123E 2447E

0 2 0 2

( 8 1 2 ( 8 1 2

1772E 1096E

0 2 0 2

( 7 ) 2 ( 7 ) 1

0 4 2 0 E 9 7 4

0 2 0 2

( S I 1 ( 6 1 1

9 0 6 8 E 6392E

0 2 0 2

( 3 ) 1 ( 5 ) 1

7716E 7041E

0 2 0 2

( 4 ) 1 ( 4 ) 1

63G3E -56B9E

0 2 0 2

( 3 ) 1 ( 3 ) 1

5 0 1 3 E 4 3 3 7 E

0 2 0 2

( 2 ) 1 ( 2 ) 1

3 6 6 1 E

2 9 8 5 E 0 2 0 2

( 1 ) 1 ( 1 ) 1

bull 2 9 0 9 E 1 6 3 4 E

0 2 0 2

( reg ) 1 0 9 5 8 E - 0 2

E S T I M A T I O N ERROR CRITERION CONSTRAINT =

l OOOOE-01

S O U R C E I M P U T COVARIANCE tWi I 1 2 5 0 0 E - 0 1 1

MEASUREMENT ERROR COVAR I V

E 0 3 0 - 0 1 [ - 0 0 2 3 3

Figure 640C Contour plot of [PJlt(K)]II f o r t h e f 1 r s t s a m p 1 e a t K = 0 S Z f 0 r t h e C a S e w 1 t h

scavenging parameter o = 02

10300E-01

80D00E-t2

0OOOOE-O2

4000CE-02

20000E-02

n i n - n bulllaquolaquolaquotradelaquolaquolaquo2222222222 1 1 222222222 11 22222222 1 222221 11 222222 11 1 22222 1

11 1

11 ^222 1 1 2222 1 1 222 11 11 222 1 i 1 222 1 1 222 M a a a a a a a a a a a a M 3 3 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 -

22 3331333333 1 i 1 2 11 22 1 22 1 2 33 122 333 1 233

3333 1 i 333 1 i 1 1 1 1 1 1 i

1 1 1 1 1

13

3 3

i

i i

(

Figure 641 Plots of deg+N(ziz versus time t K + N for systems with scavenging parameter a 3 00 10 and 20 plotted with symbols 1 2 and 3 respectively Notice how iwgt samples occur for the cases with large scavenging terms compare with Figure 639

257

6311 Problems with Multiple Sources mdash Though the results for the problem with a single point source are general two cases are inshycluded here with multiple sources to demonstrate the applicability of the infrequent sampling concepts when more than one source is injecting pollutant into the medium Compare three cases Including one two and three point sources with their respective source location vectors given by

w s [deg4 gtbullbull[]bull 01 03 08

(f82)

For consistency each of the three independent sources is specified by the same variance [W]JJ = 0125 1 = 123 as In previous examples Since the total disturbance to the system 1s more In the multiple source cases than for just one source as in past examples the response of the output variance ojjtzlz) grows faster with time In order to allow a sufficient number of time steps for the steady-state assumptions in (518) and (520) to hold a larger error limit is used 1n these examples of = 05

A plot of the maximum variance in the output estimate aj+N(ztz) 1s included for the three cases in Figure 642 trajectories for one two and three sources are plotted with symbols 1 2 and 3 reshyspectively over the time Interval 0 lt t lt 4 It is seen that the greater the noise input to the total system the faster the maximum uncertainty 1n ths pollutant estimate Increases

Contour plots of [Ppound(zbdquo)] at the first sample times are shown for the cases with one twgtgt and three point sources in Figure 643 The general shapes of the surfaces change from those with just one source For the two with multiple sources the original source from all the

sooooe-ci i

3

3 4 2 3 2 4 4 9

2 9 2 9 3 2 3 2 1 3 9 3 11 J 2 9 It 2 11 9 2 3 tt

11 9 11 2 11 9 2 U 9 2 2 3 2

raquo _32 9

9 2 3 9

2 11 I 2 311 2 31 pound 11 Z 11 3 2 11 3

2 l 3 laquo

bull3

t3

2 3 2 3

V 32 32 32

3raquo 3 1 3 11

2

211 3 2 3 11 3 3 112 2 11 2 3 2 3 2 2 2 3 2 3 2 3 2 3 1

C 3 2 2 1

2

11 3 2 3 2

3 2

3 2 3 3 2 3

3 2 3

3 2 3

3^ 3

3 1 2 tl

1 1 t

2

I

Figure 642 Plots of lt^+ M(sJ[z) versus tine t K + N for systems with one two and three sources plotted with corresponding symbols for sources with positions given in (682)

COHTOOT FLBT OP t M K i O I 2 I 1 0 raquo 1 1 1 AS FWCTIOH O r Z(K131 HCRI2 AW t Z ( K ) ) 2 VERT EKATtPLE TO SMOW EVOLUTION OF VARIANCE IH CUTTUT I3yen |laquoATE WITH TIME POSITION OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LAR9E TIBC

C Z ( K gt 3 2

0 3

333 22 333 222

3333 22 33333 22 3333 222 333 22 33 222

222 222

2222 2222

22222 222222 22poundP22 222223 2222

222 222 222 222

bull 2222 22222 2222

111 222 33 44 9 9 1111 2 2 2 3 3 4 4 9 3 1111 2 2 2 2 3 3 4 9 3

111 11 2 2 2 2 5 3 4 4 6 3 111111 2 2 2 3 4 4 9 111111 2 2 2 2 33 4 4

1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4 4 1111111111111 222 33 44 111111111111111111111 2Z 33 111111111111111111131111 222 333 11111 111111111111111111 222 33 1111111111111111 22 333 11111111 22 33 11111 222 - -

ISO 180 6G3 CG66

USS8

77777 laquoC5EpoundB 777777 eCBBBSS

77777 P6BBS68 77777 8868888888

777777 BeSBSBBB

1111 111 111 111 111 111 111

9668 777777 BBSS a gt 66668 777777

355 66666B 77777777 i 5533 6S6668 777777777 14 G33S9 GB66BB 777 gtlaquolaquo 55555 CC6666S 444 555533 66C6666BCL

4-14 5535533 6B666EG66 4444 55555335 688

4ltJ444 33555553 4444444 555333555

bull 1 1 2 2 3 3 3 1111 2 2 2 3 3 3 3

1 ( 1 2 2 3 3 3 3 1111 2 2 2 33 13333

111 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 111 111 2 2 2 2 111 1111 Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

1111 H i l l 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11111 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 11111 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 1111

2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 3 3 2 2 1111 2 2 2 2 2 2 2 3 3 4 4 9 5 5 5 9 9 9 S 4 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +

2 2 2 3 3 3 4 9 6 6 laquo 9 4 3 2 2 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 lt 333 44 33 6 77 77 ( 5 9 4 3 222

3333 44 5 6 77 tSB i 7 6 S 4 1 3 3 2222 222222222222222 444 95 B 7 U 999 MB bull 7 S 9 44 3 3 Z22raquo22222222222222222222222222

444 S C 7 0 99 99 e 7 C 55 4 33 221222222222222 22222222k -I S 5 6 7 8 B M 0 laquo bull 8 7 H 9 4 3 3 2222222^2222222 22222222 22i 444 9 6B 7 B 99 99 B 7 e 9 44 3 3 222gt22222222222222222222222222222

444 95 B 7 48 999 B 7 6 5 4 3 2222 22222222222 333 44 9 9 77 BBSBBB 77 6B 9 44 33 222 1111111 333333 44 9 66 777777 6 9 4 3 222 1 f 1111 M1111111111111 Ml 11111111

333333 44 553 66BB 5 5 44 3 222 1 1 1 1 1 1 1 1 1 33333 444 0553 44 33

3333 4444444 3 3 222 3333 3333333 333333 222

bull33333333 333333 2222 3333 2222222

4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 444 333 222222222222

11353 44 333 2222222222 5555 44 3333 222222222

H i m 1111111 m i n i m i

1111111H11 m m _ 111111111111111111111 222222222

2222222222222222222222222 333333(313 222222222222

3333333lilaquo33 222222

SVKB LEVEL RANGE

CO) 2 7 6 0 7 6 - 0 2

C9gt ( 9 )

2 6 9 9 9 E - 0 2 2 6 3 9 1 E - 0 2

8 J I B )

2 9 7 8 - J E - 0 2 2 9 I 7 6 E - 0 2

C7gt lt7gt

2 4 S C 9 E - 0 2 2 3 9 G I E - 0 2

CSgt 16gt

2 3 3 S 3 E - 0 2 2 2 7 4 6 E - 0 2

lt5gt lt5gt

2 2 1 3 8 E - 0 2 2 1 5 3 0 E - 0 2

141 C4)

2 0 9 2 3 E - 0 2 2 0 3 T 5 E - 0 2

1 3 ) lt3gt

1 9 7 O 7 E - 0 2 1 9 1 0 0 E - 0 2

C2gt 121

1 B 4 S 2 E - 0 2 1 7 6 6 4 E - 0 2

1 1 1 ( 1 1

1 7 2 7 7 E - 0 2 1 6 6 6 9 E - 0 2

lt9gt 1 6 0 6 1 E - 0 2 ESTIMATION ERROR CRITERION CONSTRAINT gt

9 0 0 0 0 E - 0 1

SOURCE INPUT CQVARIANCE I W 1 I I 2 5 0 0 E - 0 1 ]

OSO - 0 1 - 0 0 2 9 1 bull M l t i l l t l l l l

Figure 643A Contour plot of | E $ ( J K ) fdegr t h e f i r s t sample at t R = 365 for the case with one source at z w s 03

CONTOUR f L O T OF I P t K bdquo K gt C 2 t K 1 ) J11 AS A FUNCTION CF I Z lt K raquo HSRIZ AND t Z ( K gt 1 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ES1IKATL W I T H T I K E P O S I T I O N OF MAXIMUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LAROE T I K E

tZ(K)3pound 09

11 1111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111

m m m m l i n n 111111 m m m i i m m m m

11111 m m m i l l m i l l

11111 111111

m m 1111111 1111111

l u i i i i 11111111

i m i i i 1111111 11111111 1111111U 11111111111

2222 2222 2222 2222 22222 22222 poundpoundpound22 22222 222222 22222 22^222 22222 22222 22

333 333 333 333 333 333 333 333

444 4444 444 444 4444

35333 335=3 35353 553553 33553 35555 5555533 553333

666666666 ee ~gtSSE66E0 6 6666C66B 56EGGCGG66 6amp6G6G6G6C666SS8

66S56GC6G6ee6 666666666 333 44-4 3333553 333 444 S53353SS5 3333 4444 35553553355 3333 44444 3335535535533353 333 444444 535355355355533 3333 34444444 0555355335 222 3333 444444444 pound2222 3333 44444444444 22222 33333 444444444444444444

2222 333333 4444444444444444 2222 333333333 4444444 2222 3333333333333 22222 3333333333333333333333 2222222 33333333333333333 22222222222 22222222222poundlti22222222 1111111111 gggzegeeeeezggezzezzgggggzz 1111111111111111111

t i t 11111111111mm u i i n m m m i n u m 11111m i n m m i n m m

111111111 n i i n u n i n m u m i n i m m u i i i i i i i i i m i m i i m i m m i

222222

i i i u m i n 2222 3333333333 pound222 3333333333333333 222 3333033333333 33333 2222 333333333^3333 3333 222

333 222 3333 222 44444444444444444 3333 222 4444444^4 3333 222 53555553 44laquo444 3333 222 5S555 44444 3333 222 666C66665 533 444 333 2222 777777 66 55 444 333 2222 77 66 555 444 333 see 77 e 555 444 333

111111111111111111 11111 11111111111111111 11111 111111111111111111 11111 111111111111111111 11111 111111111111111111 11111

itmtmmmui 11111 111111111111111m

in 44 333 tgt5 44 333 999 OS 77 60 55 444 3333 0 09 6 7 BE 55 444 3333

2222222222222 111111111111111111 111111111111111 1111111111111111

i i m i m m i n 111111111111111 111111111M11 11 i i m u i i t m t i

m i m i i u n t i l i i u m

11111111 i m m m 11111111111111111111111111111111111111111

i i m n t m m i i m i i m i i m i i i i m i 11111111111111111 2222222 222222222222222222222222

222222222222 2222222222222222222222222222222222222222222222 222222

SfHS LEVEL RANGE (0) 32227E-02 19) lt9gt 30316E-02 46404E-02 10) lt8gt 46492E-C2 44530E-02 (7) lt7gt 42E68E-02 4Q7SCE-0Z lt6gt 6raquo 3B344E-02 36933E-CZ (31 (3) 35021pound-02 33I0SE-02 14 31197E-02

29283E-02 3) fraquol

27373E-02 234C1E-02

(2) (2gt

23550E-02 21638E-02

Jl) 19726E-02 17ei4E-02 (copy) 15S02E-02

ESTIMATION EtfROR CRITERION CONSTRAINT -5Q0aQE-01 SflURCE INPUT C^VARIANCE [W]gt [ 1 2 5 0 0 E - O 1 1

H S A S U R C A E N T EJTROR C O V A R t v j laquo

Figure 643B Contour plot of [ E ^ I ^ L for the first sample at t K = 140 for the case with two sources at z = 1010311

amp R 3 amp k deg I O F IP(KKgtZKraquo5311 laquo A FUNCTION 3F IZIK1J1 HOR1Z AND CZltKI]2 VERT lpoundW2VL T 2raquo S M O w EVOLUTION OF VARIANCE IN OUTPUT EST I KATE WITH TIHE POSITION OF tflAXlPlUM VARIANCE APPROACHES STEADY-STATE VALUE FOR LARGE TIHE

tZltKJ]Z 05

11111111 TTTTrfTT 11111111 11111111 11111111 111111111 111111111 111111111 1111111111 11111111111 11111111111

111 i n n I I t i u t i i u U] J 3 I M n m 111111m m i i n i i i i i i n m i i i i i i i i i

1111111111 222

2222= 2 2222222 S^SSSSSSSS26222ZJ-^Z2 2222222222 222222222222 222222 -^olaquo--tradebdquobdquobdquo ^ 33333333533 2222 i l i i l l i i S s M S 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ^

22221 323 444 55 66SS6 22222 313 444 55 666G6 ZZ2Z 3pound3 444 35 66666 2222 3333 444 553 66656 2222 333 44 553 66G6G 22222 333 44 555 666CC6 2222 333 44 555 6CGe66 2222 333 4lt14 555 6666068 ZZ7ZZ 333 4ltI3 555 66CSCC666 2222 333 44 555 666G60C66666666S658 222Z2 333 C M 555 666G6G666666666e666 2222 333 44 553 6666G6666C6G6666 2222 33J 444 5555 2222 Di3 AAA 55JSS5S 2222 323 4444 55550555555555535555 22T 333 44444 2222 3333 44444444444444444444^444 2222 33333 444444444444 22222 3333333333 222222 333333333333333333333 1 222-222222 1 22222222222222222222 1 22222222222222222222222 2222222222

333333353333353 33333 3333 333 S A A A fl 4444 4 4 44444 44444lt4lt 14444fl44laquoJ4444444444 333 4444444 4 (bull A 444 AAAAAamp4A 333 _ bdquo laquo laquo bdquo 4444444 333 5355555555 44444 J33 535555535555 3 4 3 333 elaquo ^ laquo laquo bdquo 555555 4444 333 666bS666666 55553 4444 333 7 7 7 ---65Spound 553 444 333 - - - - I 7 7 7 7 ^66 555 444 3333 SDSB8Q 77 66 533 AAA 2333 D Q O a o o

a e 8a 7Z 66 355 444 33333 deg 9 3 9l2r f i 0 sect raquo Z7 66 555 444 33333 9399 86 77 6 555 444 33033 7 C66 550 444 33323 77 566 555 444 33533

2222 222 222 222 222 22-gt2 222 222 2222 2222 2222 2222

1111111111 111111111111111111111 11111 1111111111111111111111111111111 11111111111111111111111111

993 6B 2222122 22 tl _gt2232 2i3gt222222

222 22222222 222222222

COMJteuR LEVELS NO SYMBOLS SYHQ^EVEL RANGE (O) 56137E-02 (9gt (9) 6 5405E-02

B2673E-02 (8) (6) (7) (7)

S9940E-02 _B720Spound-02 I -4476E-02 5 1744E-02

(6) (6) 0 9011E-02

0 6279E-02 (5) C5) A3547E-02

laquo 0615E-02 (4) (41

96032E-D2 3 5350E-02

C3) (31 3 2 6 i a E - 0 2

B903CE-02 (21 (2) 6 7153E-02

C4421pound-02 (1) (1) B1609E-02

183572-02 BfOgt_l -6224S-02 ^ll^TioN 3 K O L c f c n e R i o r i CONSTRAINT 3

5-ooooe-oi

12500E-OU

OI

Figure 643C Contour plot of L^SKOJn f o r t h e f 1 r s t s a m P l e t K = 1 0 deg f o r t h e c a s e w l t h t h r e e

sources at z = [OlOSOS]1

262

previous examples 1s included at z = 03 and results in the rises 1n the s p a c e s near that location In Figure 634B the second source at z w = 01 1s added which significantly Increases the uncertainty in the region near the left end of the medium In Figure 643C a third source at z s 08 results 1n a slight rise in that area

It seems 1n Hne with the results of Section 639 that the dimenshysionality of the model effects the sensitivity of the response of the

It surface [Pbdquo(z] to the locations of sources ilaquo the medium This can -K -K n

be explained as follows The model used in these two cases has only five modes retained in the modal expansion The spatial mode shape or

elgenfunction for mode n is of the form cos ((n-1) TTZ) where 0 lt z lt 1 in these examples Thus near the end z = 0 all n modes have e1gen-functions which approach unity whereas for other positions out into the medium cancellations can occur Heur^stically the effect of a point source nearer z = 0 should be greater in each of the modal equations resulting in a larger uncertainty in that region of the surface than 1n other areas The response near z w = 03 and z = 08 should then be more like that in the area of z = 01 if a greater number of modes were retained demonstrate this concept Figure 644 shows the contour for [E^(laquo K)] for the same problem with j w as in (682) for three sources but with n - 10 modes retained Comparing this plot with Figshyure 643C shows greater definition in the response near the region of the source at z = 08 In the limit as n -raquo raquo the response of the surface [PIAZ)] to a single point source should be more nearly the same for all w 0 lt laquo lt 1

In cases with multiple sources the dimension of the model also efshyfects the variance in the estimate of the output ltj^+N(zJz) as a function

CONTOUR PLOT OF I P f K K J t Z(Kgt raquoJ1 t AS A FUNCTION CF I Z t K I J I HORIZ AND I Z ( K I 3 2 VERT EXAMPLE TO SHOW EVOLUTION OF VARIANCE I N OUTPUT ESTIMATE WITH T I M E POSIT ION OF MAXIMUM VARIANCE APPR6ACHE3 STEADY- TATE VALUE FOR LARGE T IME

IZ(Kraquopound 03

111111 11111 1111111 111111 11111111111111 11111111111111 1111111111111 -1111111111111 1111111111111 11111 1111 111 1111 1111 1111111 1111111 1111111 1111 111 111

222322 2222222 222222

2222 222 222 222 222 222 222 2 222 2222 2222 zzz

AAA

AAA

i53

6CG6 66SS 666 668

I 55 6 77 I 55 6 7 B 55 6 77 6 53 ee 7 ei 55 66 77

7777777 777777 777777 77777 7777 777 7 oeoeaoo

6 8 8 8 0 0 8 6 6 8 8 8 9 9 9

iliiilHliHHilaquo

111111 1111111 1111 11 1111111 11111111 11111111 11111111 11111111 i m i n i i i n i n t 1111H11

3333 3333 3333

3333 3333 3333 3333 3333 333 333 333 _ _ _ _ __ 333 AcA 53 66 7 88 8638 77777 3333 i4A 55 66 77 S68 77777 2222 3333 10 55 66 777777 666666 2222 333C 444 555 666666666 22222 3pound3 AAA S555S5amp535b5553553533 pound222222 C-33 444444 2222222 3333 4444441444444444444 2222222 33333333333 222222 333333333333333 22t2^22 33333333

2-ll 222222222222222pound 22222222222222222222222 pound2222222222222222 1111 111111 111111111 111111111 11 11

2222222222 2222222222222222222222222222222222 Z222222222222222 222222 333333 3333 22222 333 AA4AAAA4A 33 2222 444444444444 444444 555555 AA 33 22222

5 3 5 3 4A 3 3 5353353 - 5 5 6G666 55 44 333 5353555555iS3333 663660 03 44 333

553535555555 666 35 4 333 35355555555 555 4 333

55555553555033 44 33 666666066666 55555555 44 333

666 55555 44 333 77 66 55553 444 3333 3 7 66 5355 444 mdash

99999 999 68 7 66 555 44 93 6 1 666 55 44 O 93 J 77 666 55 44 323 222i2f2 99 6 77 666 55 44 333 Z22Z27gt 99 6 77 666 53 44 333 22222f2r3 99 6 77 656 35 44 333 222221212 99 6 77 666 5 44 333 222pound -22

11111 1111 11111111111111 til 11111111111111111111111 111 11111 till 11111111111 11111111111 111111111 1111111 1111 11111 1111 1111111 11111111111111111111(1111111111 111111111 11111111111 2222222 11111 11111 2222222 111 1111 1111

bull bull 1 1

2ZZ222 2 2 2 2

2 2 2 1 1 1 2 2 2 1 1 1 1 1 11 2 2 2 1111 I 11

2 2 2 1 1 1 ) 1 1 1 2 2 2 2

3 3 3 3 2 2 2 2 2 2 2 3 3 3 3

3 3 3

111111 111111111 111111111111111111111 1111111 1111

11111111111111111111111111111 m i 11111111

2 2 2 Z 2 2 2 J 2 2 2 2 2 2 2 2 2 2 2 i - 2 2 2 2 2 2 2 2 2

pound 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

SYI-S

( 0 1

LEVEL RANGE

6 T 3 1 2 E - 0 2

t9gt C9)

5 e9S-3E-02 3 6 6 Z G E - 0 2

( B ) ( 8 )

5 4 2 S 3 E - 0 2 5 19-CIE-Q2

C7) ( 7 )

4 9 5 9 7 E - 0 2 4 7 2 5 3 E - 0 2

( 6 ) ( 6 )

4 4 9 1 0 E - 0 2 4 2 5 6 7 E - 0 2

15) ( 5 )

4 0 2 2 4 E - 0 2 3 7 6 6 1 E - 0 2

( 4 ) C4gt

3 5 5 3 3 E - 0 2 3 3 1 9 5 E - 0 2

( 3 ) ( 3 )

3 0 8 5 2 E - 0 2 2 3 5 0 9 E - 0 2

lt2gt ( 2 )

2 6 1 6 6 E - 0 2 2 3 8 2 3 E - 0 2

( 1 ) ( 1 )

2 1 4 7 9 E - C 2 1 - 9 1 3 6 E - 0 2

ltcopyraquo 1 6 7 9 3 E - 0 2

ESTIMATION EPROR CRITERION CONSTRAINT =

5 0 0 0 0 E - 0 1

1 2 S n o E - 0 1 )

Figure 644 Contour p lot of | P [ [ ( Z K ) for the f i r s t sample at t K = 102 for the case with three

sources at z = [0 1 0 3 0 8 ] T but with f i l t e r model of dimension n = 10 Compare with Figure 643C where n three sources

5 note hiaher resolution in surface near positions of

5000DE-01

47000E-01

4400QE-01

41000E-01

3SOOOE-01

5SS 0000500000 9 00 I 5 0 I 5 1 S 0 3 0 5 3 0 5 0 3 0 0 Q 0 5 0 3 9 3 0 5300000000 9 0

9 0 6 3 0 99 0 3 9 0 9 9 0 0 S O ft 00 deg- laquobull bull o o 3 0 0 so o oo 30 0 00 3 0 0 000 3 0 9959 0000000 5 ) 0 35333 535555399355555 6 00 0 93 33 00 0 S3 3 000 00055 55 OOOOOOOOOOO 55 55 5 3 5 5335 5553 535

bull0E00 2OO0E-O1 400DE-OI 8000E-01 POSITION Z

Figure 645 Plots of oK(zzj at first sample times t as functions of position z in the medium for case with three sources at z = [010308]T and filter models of dimension n = 5 and 10 plotted with symbols 5 and 0 respectively Compare with cases with just one source

265

of position z in the medium The cases corresponding to the plots of

C E K U K gt ] 1 Figures 643C and 644 for n raquo 5 and 10 are plotted in

Figure 645 with symbols 5 and 0 respectively Here again dimenshy

s ional i ty effects the resul ts

64 Optimality in the Management Problem

Demonstration of the optimality of the monitoring sampling program as proposed in Section 58 can be made by cross-comparing many of the examples included above Two particular choices from Section 635 perhaps serve to demonstrate better than the others extension of the scalar results of Conclusions XVI and XVTI to the vector case Let Pjj = M Q at t Q be defined in (657) as before and choose the time inter-

2 val of nterest as 0 lt t s 1 Let cr = 0150 for a monitoring problem with bound on error in the output estimate However compare the followshying two sampling schedules

(1) Predict to time tbdquo when K l

sample then predict to t = 1 (2) Predict to time t bdquo when

K 2

7 9

sample then predict to t = 1 (683) The plot showing the trajectories for the two programs in (683)

plotted with symbols 1 and 2 respectively is in Figure 616 Both schedules result in only one sample time over the interval 0 lt t lt 1 such that since both require the same number of samples to maintain the estimation error within its bound the schedule resulting in the lower variance after both have sampled is clearly the better sampling program

12000E-01

S0000E-02

300D0E-D2

22 222

bull a

2 2 2 2 2

1 1 1 2 a 2 a r

1 1 1

11

pound22 22

22 222

11 111

11 11

bull i bull

1 I 1 n -

11

2 11

11 11

111 11

11 11

11 1 gt1 1 1

It 111 Ml

11

11 i

I 2

M 1 2

2 2 12

1 1

I 1

1 1 1

1 1 1

1 _1

11

2 [1

gt 0E00 2000E-01

Figure 646 Plots of ajLu Ui gt 2) versus time t K +bdquo for sampling schedules (1) and (2) given in (638) plotted with corresponding symbols note optimality of the second sampling program at end of time interval shown

267

Since the error in schedule (2) is lower at the end of the interval 2 2

sampling at the limit when at t cC gt a is seen to be superior Thus extension of the scalar results to this particular vector example shows that here sampling at the limit is optimal

Naturally this is not a proof but merely a demonstration in one particular example However for all cases studied to date extension of the scalar results for the optimal management problem to the vector case has been seen to be valid further indicating that proofs for the proposed extensions in Sections 582 583 and 584 may be possishyble for the vector case

268

CHAPTER 7 SUMMARY AND RECOMMENDED EXTENSIONS OF THE MAIN RESULTS

Here are gathered the main results for the class of optimal monishytoring problem considered in this thesis with suggestions of certain areas in the theory where future expansions should be considered The format is brief since concise statements of the conclusions resulting from this study as listed at the beginning of this report are conshytained within the main chapters themselves

71 Summary

The problem of the optimal monitoring of pollutants in d i f fus ive

environmental media has been studied in the contexts of the subproblems

of the optimal design and management of environmental monitors for bounds

on maximum allowable errors in the estimate of the monitor state or outshy

put variables Concise problem statements were made in Chapter 2 see

(27) and (28) Continuous-time finite-dimensional normal mode models

for distr ibuted stochastic d i f fus ive pollutant transport were developed

in Chapter 3 see for example (337) and (340) and Figure 32 The

resultant set of state equations was discretized in time for implementashy

t ion in the Kalman F i l t e r in thf problem of optimal state estimation in

Chapter 4 see the optimal f i l t e r algorithm summarized in Figure 4 1

The theory of the solutions for problems of the optimal design and

management of environmental monitoring systems was developed in Chapter 5

The general solution of the optimal monitoring problem with bound on ershy

ror in the state estimate has been stated see (513) The general solushy

t ion for the optimal monitoring problem with bound on error in the output

estimate has also been found see (563)

269

The main results of this thesis concern the special class of optishymal monitoring problem called the infrequent sampling problem For the case of time-invariant linear stochastic diffusive systems where the maximum errors allowable in the monitored estimates are relatively large drastic simplifications in the solutions of the optimal monitorshying design and management problems are possible as set forth in all of the conclusions in Chapters 5 and 6 The final results for the optimal monitoring design problem in the case of infrequent sampling with bound on error in the state estimate are contained in Conclusion VIII The final results for the optimal monitoring design problem for the case of infrequent sampling with bound on error in the output estimate are conshytained in Conclusion XII Extensions to systems including pollutant scavenging were made results are in Conclusion XIII Extensions were made to systems with fixed boundary conditions as summarized in Conclushysion XIV The theory was found to apply for systems with emission or radiation boundary conditions in Conclusion XV which completed the exshytension in the design problem to all systems with general homogeneous boundary conditions

The optimal management problem was solved analytically for scalar systems see Conclusion XVII Though an analytical result for the vecshytor case of the optimal monitoring management problem was not found an intuitively satisfying heuristic proof was proposed (see (5196)) based upon the concept of the amount of correction made to the error in an estimate at a measurement in the scalar case found in Conclusion XVI

The general result for the infrequent sampling monitoring problem in arbitrary coordinate systems with various boundary conditions is conshytained in Conclusion XVIII

270

In Chapter 6 a considerable number of numerical examples are ofshyfered in substantiation of the theoretical results of Chapter 5 Various forms of graphical computer results serve to illustrate many of the more salient points of the theory of the infrequent sampling monitor

72 Recommended Extensions

The main contribution of this study has been to demonstrate to future resuarchers that optimal solutions for monitoring problems in large comshyplex environmental systems will likely come from the study of an imporshytant special case the infrequent sampling monitoring problem A great number of extensions and refinements are seen possible by this author this work has really only begun to scratch the surface of a large set of problems where the theory of the infrequent sampling problem may apply Some o f the more important areas for future consideration are suggested in what follows

Recent extensions nave been made by others of concepts of industrial engineering and operations research to the areas of dynamic system theory and optimal measurement system design The work of Bar-Shalom et at

[16] applies stochastic system theory to the resource allocation problem when uncertainty 1s included in the system Aoki and Toda [5 ] have conshysidered adaptive resource allocation for decentralized dynamic systems All of these areas of theory - resource allocation as It applies to optishymization of measurements stochastic control as it relates to taking noise-corrupted measurements and decentralized dynamic systems for the study of large coupled dynamic processes mdashare relavent areas for future study in the optimal environmental monitoring problem

A useful extension of the fundamental concepts of Kalman Filter theory ib to the problem of optimal pollutant surveillance in environmental

271

systems (see for example Brewer and Hubbard [23]) By using the smoothing form of the Kalman Filter (see Gelb [44] Bryson and Ho [26] and Jazwinski [65]) it is possible to construct a monitor whose purpose is to identify from measurement data the source which is injecting a harmful pollutant into an environmental region - its location strength etc Such a detectionsurveillance monitor could prove t be of great value to regional pollution control districts

Many of the mathematical procedures used in this study are subject to refinement PosMbly the critical algorithm is that of the constrained optimization of a nonlinear function of many variables The algorithm used here by Westley [127]was thought to be one of the superior gradient techniques in nonlinear programming when it was written However Westley [128] has since suggested consideration of the newer algorithms due to Abadie [i 2] using the generalized reduced gradient method as alternative and more powerful local minimization techniques In this area of the extremlzation of a function with many local extrema there is still the problem of determining whether or not the local minimum found is the global minimum There still appears to be no analytical solution to the problem of global minimization [20] Though not considered here pure random search techniques rather than steepest decent or gradient techshyniques might possess better convergence characteristics for optimization in larger dimensional spaces which would result from a y practical applicashytion 1n monitoring system synthesis a starting point for future work here could be Ksrnopp [68]

The efficient and accurate modeling of environmental pollutant transshyport has long been a problem of concern to researchers and indeed conshytinues to be As the complexity and size oT systems studied grows so

272

does the need for more efficient modeling techniques A new application of the collocation methods from the theory of partial differential equashytions has been made by Michelsen et al [94124] state-space models of exshytremely small dimension (like five or six states) have been used with greater accuracy than more routine finite-difference models of very large size (like one thousand cells) for the solution of the transport equations of a fixed-bed chemical reactor This technique could be a powerful alshyternative to the separation of variables methods used in this study in systems where analytical expressions for eigensystems cannot be found as was the case for fixed-bed reactors [39]

The general results for the infrequent sampling problem suggest poshytential application to any modeling technique for physical systems where certain dynamic terms dominate all others in the asymptotic response This is allied to the theory of systems of stiff ordinary differential equations [43] and to the area of singuar perturbations in control sysshytem design [72131] Application is thus seen to extend to mechanisms of pollutant dispersal other than just Fickian diffusion through the use of say finite-difference modeling techniques (see Goudreau [47] for comparishysons of finite-difference methods) This is thought to be a particularly fertile area for future extensions since by applying finite-difference techniques to distributed systems of various configurations tiio resultshying differential-difference equations could be cast into a form which can be diagonalized into a finite set of modal state equations (see Loscutoff [79]) these modal equations would then clecrly exhibit the ordering of the eigenvalues which Is essential to the infrequent monitorshying problem

273

Extensions are thus suggested to pollutant dispersal processes which combine diffusion with convection Such processes embrace a wide variety of environmental systems among them being air pollution river and estuary water pollution and groundwater pollution A recent study by Oesalu et al [311 shows how stochastic models for air pollution can be derived a way which lumps lt11 the nondiffusive terms in the combined transport equation into time-varying source terms and then treats the resultant problem as one in Fickian diffusion The use of such a techshynique seems to open a logical area for application of the theory assoshyciated with the infrequent sampling problem

Other applications in such extensions to air pollution monitoring conceivably include use in the cost-optimal validation of regional and global atmospheric pollutant transport models [8081] Considerable effort is being made toward modeling regional atmospheric pollutant transport phenomena Extension of the infrequent sampling ideas ot this study to such areas couid result in the cost-effective validation of such models As mentioned before application to modeling the upper atshymosphere could help in determining where and when to fly high altitude aircraft for taking air samples for global atmospheric model validashytion A likely application of the extension to surveillance monitoting systems mentioned above would be in detecting radon gas source positions and strengths in uranium mine shafts and in geothermal wells the release of radon has been coming under closer scrutiny in recent years as man has increasingly disturbed the environments where it had heretofore remained entrapped

274

Another application associated with uranium might be to the Nationshyal Uranium Resource Evaluation Program In this study tens of thousands of soil samples are to be taken in the western United States Upon deshytermining the amounts of certain trace elements contained in these samshyples this data will be used in a large pattern recognition computer program in order to learn whether the existence of such trace elements is correlated to uranium ore deposits in the areas where the samples were taken An extension of the infrequent sampling ideas might include findshying time scales over which dynamic models ol the trace element transport through environmental systems would be valid With the use of such models which would apply over say days months or years cost-effecshytive sampling programs for the identification or uraniui deposits could result

The initial application of optimal monitoring system synthesis conshycepts to river and estuary pollutant transport has been proposed by Moore [95] This author feels that extensions of the infrequent sampling problem ideas could be made there to simplify monitoring system design for aquatic ecosystems

Finally applications could be studied in the areas of atomspheric and aquatic radiation monitoring systems Applications are suggested in designing minimum-cost air sampling letworks for example in the monishytoring of atmospheric radiation levels in regions where underground nu-ciear experiments are conducted An interesting extension of the surshyveillance application suggested above could be made here in attempting to identify sources of radiation from air samples gathered by a minimum-cost monitoring network Another possible application could be to the cost-effective design of radiation detection networks for monitoring

275

groundwater radiation levels [1203 Variations of this might also inshyclude applications in the siting of nuclear power reactors and in the determination of best locations for their associated nuclear waste stor age sites In such applications the intent would be to find locations where soil conditions were such tliat in the event of leakage of nuclear waste substances into the so Jl effects to surrounding groundwater sysshytems would be minimized

All of these areas may be hypotehtical at Lest but deserve future study for the application and extension of the concepts presented in this study for the infequent sampling problem possess a great potential for improving and advancing the design procedures of cost-effective environmental pollution monitoring systems

276

APPENDIX A DISCRETIZATION OF THE STATE EQUATION

Given the linear tine-invariant system x = Ax + Bu (Al)

Takahashi [121] and others have shovm that for step size T s (t K + - tbdquo)

bdquo e4Tbdquo AT iK+1 e =K -AT KJ1 = e~Xi + e- I e - BU(T) dT

J0 (fi2)

T = t - KT

This expression is now put into two more useable forms for machine app l i shy

cation

Since y ( t ) is held constant over time in terva ls i e y ( t ) = u ( t K )

TI _fl~ ^K+l e T x K + e T e T d T BuK

= e AT K + e A T [ _ ( e - A T T JJ A -1 B u K

where the matrix exponential is given by

n=0

(ST)

(A3)

(A4)

Equation (49) is ver i f ied with (A3) and (A4)

277

In cases where the system matrix A is singular A does not exist and (A3) cannot he used Starting with (A2) an alternative exshypression is sought for (A3)

x K + 1 - + eV[ I dT f e bull eA(T-x) d T

Bubdquo

By

(A2)

A ( T - T ) dt = I + A(T - T) + -bull 92(T - t ) 2

J0 L

IT 6(T - T ) 2 ft2(T - T )

dt

2 3

- [IT] - 0 - AT 2 A 2 T 3

AT 2 A 2 T 3

-IT + TT + TF +

~ + i = e ~ T ~ x K + T |J + 2 T + i r + - - - 5SK-AT (ATT 2T+ I F

Equations (410) and (411) are ver i f ied with (A6)

(A 5)

(A6)

278

APPENDIX B DISCRETIZATION OF THE STATE DISTURBANCE STATISTICS

This Appendix detai ls the development of a simple recursion for

5 K + 1 (see DAppolito 129]) as outlined in Section 412

Leibnitz s rule may be used to demonstrate that a is a solution of

a Riccati equation Starting from the def in i t ion

t bdquo r K+1 S K + 1 = Q( t ) | = (tT)DW(T)D TJ(tT) T dx

t _ t K + l (414)

d i f ferent ia te to get

ifs(t) at J(tT)DW(T)DT|(tT) dT

+ j(tt)DW(t)D TJ(tt) T ^ | 2

- laquo(tt K)DW(t K)D TJ(tt K) T -pound ( t K )

t bdquo L

(ft (tT)Vw(T)D T j(tT) T + j(tT)DW(T)DT U | |(tT)) dT

+ SWOOP

|A(tT)D|()(T)D T j(tT) T dT

+ (tT)DW(T)D T(tT) TA T d T + DW(t)DT

279

= A (tT)DW(T)D T jCtT) T dx

[f J(tT)DW(T)D TJ(tT) T dx AT + DW(t)DT (B l )

or f i n a l l y

j fsw + QAT + DW(t)DT pound2(0) = 0 (B2)

Since g K + must sat isfy the above matrix Riccati equation matrix Riccati

equation solution methods are sought for the evaluation of (414)

F i r s t define the Hamiltonian H in terms of x and the costate vecshy

tor 5 (see Kalman and Bucy [67] and Brewer [22 ] )

i xTDWDTx - sect TA Tx (B3)

From this obtain Hamiltons equations

dx 3H _ T df = af ~

|=-i=BWSVAC Adjoin the x and vectors to obtain

- - -x -A T g X X

mdash mdash s A

1 DWD T fl sect 5 bull

(B4)

Define the (i x 2n) state transition matrix J for the system matrix A

as

280

I I i - -H

$21 22

where

j = A ttt) = I

Define (laquo x n) matrices x and such that

- A T ~ 1

L T 1

DWD |

0 I - A T ~ 1

L T 1

DWD | A 0 1 _ _

x(o) = g 0(0) = g(o) = o

(B5)

(B6)

(B7)

Make the equality

sect = 8Xgt (B8)

Differentiate to obtain

6 = qx + gx- (B9)

Substitute from (B7) to find

DWDTx + AG = fix - af iV (B10)

Since x(0) = I and since x is a state transition matrix x(t)~ exists

so that i f

9 = Ox

then

copyx1 = n CBll)

and

X 1 = Q_1n (B12)

Multiply (B10) through by x 1 and substitute (B12) to get

281

DWD T + AOx1 = a - QA T

=gt- n = Ag + QA T + DWQT CB13)

Thus by making the equality (B8) it is seen that the solution of the matrix Hamiltons equations (B7) is linked to the solution of the mashytrix Riccati equation (B13)

The solution Q(t) of (B12) can now be found The solution of the Hamiltons equations (B7) may be written

x(t) I [~ x(o)

(t) 6(0)

i ll I 12 mdash J _

I $21 4 22

Thus x ( t ) = S u ( t ) (t) = 2 1 ( t ) and

5 ( t ) = $ 2 1 ( t ) 1 1 ( t ) 1

From the form of A in (B4)

S 1 2 = 9-

With th is observation and using (B6) i t is found that

22

bull laquo 1 1 -

A$22

sect2i = BhBTJii + 622raquo

From (B17) and (B18) for T = ( t K + 1 - t K )

$11ltW = I

2 2 ( t K t K ) = I

j 2 1 ( t K t K ) -o

bdquo-6 TT

-22 - - T

0 L J

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

(B21)

282

so that

$ l i 1 = 2 J - (B22)

Since

J 1 = |e 6 T j tB23)

and

pound2 2~ = [ e 6 T J (B24)

i t is seen that

iiSi = I = 22n = L e - T J T e~TT - I- ( B - 2 5 gt Thus it has been verified that since (B18) is the adjoint of (B17)

in1 = Zzz- ( B- 2 6gt This eliminated having to use an inverse resulting in the equation sought for y

3 = 2i22- (B-27)

Thus the problem of finding n reduces from solving a matrix Riccati equation to solving for two state transition matrices $bdquo and J

The computational algorithm for finding a i s now developed The

system under study i s time-invariant with calculational step s ize

T = ( t K + 1 - t K ) so that

(6T)n

nO Z (AT)

- i n - bull ( B - 2 8 gt

From i 7) and (B18)

283

n-0

V (AT) SffllT)

Since 1 2 ( T ) = 0 (AT) must have the form

(B29)

(B30)

(AT) n

(-6TT)

I (AT)

(B31)

An expression is sought for F to be used in computing $2i I n

order to obtain a recursive relationship for F_n right multiply (AT) n

by (AT)

(-A TT) n

En ( A T )

(-AT) I Q l_

l DWDT i AT

(-A TT) + 1

-E nCA TT) + (AT)nDWDTT | ( A T ) n + 1

(B32)

From which

Define

F n + 1 = (^T)nDWDTT - pound n ( A T T ) E 0 = Q

tn n s n n

Thus the algorithm equations are

En + l= iTT[5 n M T T-F n (A T T) ] E 0

S raquo

AT -A n+1 = n+1 V A o E i -

(B33)

(B34)

(B35)

(B36)

284

2 1(T) = ) Fn (B37)

(B38)

Here k is the number of terms necessary to adequately approximate the infinite series expressions In practice it is found using a method due to Paynter (see Brewer [22])

0 K + ] = 8(Tgt = $ 2 1CT)raquo 22(T) T = (t K + - t K ) (B39) Thus the discretized form of the state disturbance covariance mashy

trix convolution (426) has been shown as the product of two state transhysition matrices obtainable with the algorithm (B35) - (B39)

285

APPENDIX C STATE AND ERROR COVARIANCE PREDICTION WITHOUT MEASUREMENTS

In this Appendix are developed relationships useful to the monitor management problem for the extension of the predicted values of the state and error covariance terms in the Kalman Filter

The monitor management scheme proposed in Chapter 5 requires the exshytension of the predicted value of the state estimate error covariance matrix over times when no measurements are taken This requires modifishycations to the basic Kalman Filter algorithm of Chapter 4 Consider the filter equations rewritten as

amp i = -K+IEKK+IT + s ^ + i lt 4 - 2 7 gt

E K [ l - SKSKJEK1 K - J

~GK = E K 1 ^ fccEH1^ + X K ] 1 t c - 2 )

For the case of prediction only no measurements are taken so set C K = 0 and (see Bryson and Ho [26] p 361) let

V K _ 1

= gt g K mdash g (c3)

so that

266

Thus for the case of no measurements the predicted error covariance matrix may be calculated iteratively as a function of its own past values and the state noise uncertainty term Q|+1-

Equation (C4) serves as the heart of the prediction process for K B K + N which is the value of the error covariance matrix predicted ahead

N steps to time t K + f but based only on the knowledge of measurements made through time tbdquo In practice a fixed time interval T s (t K + 1 - tbdquo) is chosen so that

K+1 - bull ( W t l c ) 8 lt T gt = S 8 f t T (C5)

n K + 1 = s(t K + 1 - t R V g(T) i g (c6)

(see Appendixes A and B for details) With this computational time step T it is possible to formulate an expression for Epound + N-

First note that for fixed size time steps 8 in (C6) is a constant that is

8 = 8 K + 1 = 8 J + 1 a n lt ana J- (C7)

g represents the per step increase 1n the uncertainty in the state estishymate due to the stochastic input acting upon the state Thus if the statistics of w(t) in (414) are constant that is if

H(t) raquo W ( T ) all t and T (C8)

Then from Appendix B for fixed step size n is a constant With (C5) and (C6) (C4) becomes

The recursion to obtain pound raquo + N starts from the corrected error co-variance matrix at time tbdquo Ppound and predicts ahead one-step

287

EK-H = Kr + 5- (cio)

Subsequent steps ^re taken using (C9)

eU = S E + 1 S T + 5

] $PpoundS T + a W

2K 2 + 53JT + 0- (cll)

Finally for step t K+N

The two terms in (C12) represent the free and driven response of P as time grows If A is stable the first term decreases with tirne The second term a discrete-time convolution of the forcing term Q grows with time to some steady-state value

In practice the prediction is started with (CIO) and then extended recursively using (C9) until some error limits are reached say this occurs at time t K + f ) Now 1t is required to extend the state estimate Itself to time ti+N- For a fixed tine step from Appendix A

lei (K+I 0 I lt T s (C13)

and the predicted and corrected values of the state estimate can be written

ampltbull) raquo K + SHK ^C14)

288

hon (C3) the fact that no measurements are taken results in

xpound mdash xpound _ 1 (C16)

8 K + ] bull J K _ 1 + s a K - lt c - 1 7 gt

Thus the -urrent predicted value of the state estimate may be expressed as a function of its own past values and the past deterministic inputs

In a manner similar to (Cll) the value of the state estimate preshydicted ahead N time steps is found to be

KplusmnN-1 (CIS) 0 K - J AK+N-l-n

Thus once the covariance matrix has been recursively extended ahead to time t K +bdquo the state estimate may be predicted ahead all at once with (C18)

289

APPENDIX D ANALYTICAL MEASUREMENT OPTIMIZATION

The purpose of this appendix is to demonstrate the difficulties in attempting to solve the measurement placement optimization problem anashylytically The problem involves finding the optimum measurement matrix C at a measurement time time t K + Ngtwhich minimizes some performance criterion Two criteria are considered one in which the error in the state estiriate after the measurement is to be minimized the other where the sum of estimate error and measurement cost are to be minimized Both attempts are found to fail

Dl Minimize Estimate Error

For the case the performance criterion is chosen to be

J 1 i Tr

Define T S (CP K

K+ NC T + y)

(Dl)

bull2)

and drop subscripts for now Then following Athans [11] take the total differential of J

dJ1 = dTrfp - P C T T _ 1 C P 1

df- d(pc TT 1Cp

p(dC1)T_ 1CP - PCV 1 lt(dC)PCT

+ CpdCT)gt T_1CP + PcV^dCJP

=Tr

= Tr

(D3)

290

In (D3) use was made of the chain ru le The second term may be deshy

rived as fol lows

To f ind

AY i|cPCT + y |

f i r s t l e t

XY = I

X = Y1

= S gt d(XY) = (dX)Y + X(dY) = d l = 0

= gt dX = -X(dY)Y _ 1

= Y 1(dY)Y 1

dY1 = -Y 1(dY)Y 1

Now i f

then

and f i n a l l y

Y = I CPCT + y j

d = CdC)PCT + CP(rfCT)

dY1 = - i 1 (dQ)PCT + Cp(dCTJjY1

as sought

Return to (03) and expand the second term to obtain d J i = -Tlr(laquoicT)T1poundP - E E V ^ J D E E V ^ E

- EpoundTT~1CP(dCT)T1CP + PcV^dCJB (D4)

Bringing the total differential operator d() inside the trace operator Tr[] is valid since both are linear operators so is the partial differ-

291

ential operator bull pound (bull)bull Thus in order to take the partial derivative of 0 1 with respect to the matrix C follow Athans (pound11] p 19) with the use of unit matrices EJ^ to obtain

3C Jl 3C l r [ K+NJ

ijk - EcV 1 cp(E j i )r- 1 cP + reV^E^Ey

bull Z -IikEEjirSLEu + I 1 k poundpoundr 1 E 1 j PcV 1 cPE k j

ijk bull E^PcV^PE^T^CPEy - E^PcVE^Py

= Z -WuEufaSk+ [pcT-^EiiPEYV^ ijk

[ESVsJ ly ln f EKM - [poundpoundV1JkE f jPEk j

(see [11] Eq 5-H)

- Mi JT ^PI CH + TPCT1] [pcVcpl E

PCV^PI IT^CPI E - [PCV 1 ] [PLE L~~ ~ -~JkjL~ J l k - u L~~ - J k i ^ J k - i j

Ijk +

(now with rules of matrix multiplication)

= -I_16EP + I 1 pound T E T pound T QV poundPT

+ r ^ C P i V ^ P J_1QPTPT- (0-5)

292

Noting that

P = P -1 - 1 T

1 = 1 (D5) becomes

^ bull j = ^[T^CP2 - y ^ c V w (D6)

(D6) is the relationship sought the derivation of which may seem obshyscure A more simple derivation results from making a pair of identishyties and the statement of a Lemma [ H ]

^bullTr[AXB] = A TB Tgt (D7)

3X

These follow from

Lemma I f

| Tr[AXTB] = BA

Simi lar ly

bullpound- Tr[AX] = TrfAEj j then ^ | Tr [AX] = A T

e the above formulas

dTr[AXB] = Tr|A(dX)B] = Tr[BA(dX)j

Lemma

3-L- TrfAXB] = TrJjgA tfLJ - TrfgAE-J j | [AXB = A TB T

To demonstrate the above formulas

Now apply the Lemma

AXTB = BA

293

With the use of (D7) (D6) can be obtained d i rec t ly from (D4)

as fol lows

dJ 1 = -Tr[p(dCT)T 1CP - P c V ^ d C j P c V ^ P

3 i _ _T~VDD x T-rDTnlrTp-l r D T 3C u l J = -TCPP + T CPPCT CP1

+ T^CPPcV^CP - T W

)IT~PDZ _ tv~ ImrTrp = -2 ITCP4 - T CPCT CPj (D6)

as before

Now in the measurement optimization problem we seek an extremal

in C C which minimizes J-j = Tr Pj^Jj To that end set

af J i =raquobull (deg- 8gt j V P - PcYcPC1 + vV^P = 0 (DP)

Simplify (D9) with the use of

Lemma Matrix Inversion (see [78])

For P gt 0 V gt 0

p bullbull E pound T ( p pound T + y)1 ( V 1 + s 1- 1-) bull ( D - 1deg)

To prove that th is is t rue simply mult iply both sides by the inverse of

the right-hand side and col lect terms Substituting (DIO) into (D9)

obtain

i p1 + fV-y w J i = T l c p ~ 1 ^ T - 1 - 1

= C = 0 CD11)

294

Thus the extremalIzatIon results In the value C = 0 However this is only a necessary condition and obviously corresponds to a maximum 1n the performance criterion Noting the form of J in (01) the negashytive sign in front of the second term shows that for any pound Q J j that is the extremal found 1s a maximum This corresponds to the case where no measurements are taken The value of J from (Dl) for C = 0 can be seen to be equal to Tr |pjpound[j = Tr p|+N that is the predicted and corrected covarlance matrices are equal which agrees with the case when no measurements are taken

The opposite extreme is of some interest that is the case where the size of the matrix C as given Lv Its norm grows without bound p l l bull Consider the case where C is square and nonsingular Then from (Dl) dropping subscripts we find as C bullbull ltdeg

T r |^K+M] = T r [ - K T(--~ T + iO^EJ T r P - Ppound T(fcpc TV 1cpJ

= Tr P - PC T(pound TVV 1)poundpJ Tr[P - P] = 0 (D12)

This is the result we would expect As can be seen from Eq (417) for the filter

K +N pound K + N X K + N + W ( 0- 1 3 )

the larger C K + N the more deterministic information Is contained in y K + N and the greater the s1gnal-to-no1se ratio This manifests itself 1n the variances of the estimates of the states going to zero as seen in the diagonal terms of K+u vanishing The quadratic term dominates the measurement noise covarlance V in the expression to be Inverted which allows our limiting operation to take place

295

It should be noted here that even If this analysis had led to useshyful results a major constraint is placed upon the result In that the operations of taking derivatives of traces of matrices (as 1n (D5) and (D7)) are based upon the utilization of unit matrices J which are square matrices Thus only in the case where Q is a square matrix Ie as many measurement devices as states could this analysis apply This Is a serious limitation 1n the context of studying the optimization of measurement systems

D2 Minimize Estimation Error and Measurement Cost

To alleviate the degeneracy found above let

h T r[C + poundK+NlaquoK+N]

Let T = (CPCT + V)

Then dJ 2 = dTr P + C Tgcl

= Trl-P^dC1)^

+ ffiV1 (dpound)poundcT + gg(dpoundT)li1gp

- E G Y W G J E + (dpoundT)9pound + poundTQ(dpound)l

= Trl- P(dCT)T1CP + PcVfdCJPcJj^CP

+ ESV^EC^JT^E

PcV^dCjP + (dcjgg + CTg(dC)l (D15)

296

And

j jr J 2 = -T _ 1 CPP + T 1 C P V Q V 1 GET

+ r 1 1 1 l 1 P T pound T + 9pound + 9Tc - o

= -2ltfpz - T ^ C P V I V - gc = g = l V | E - EpoundT(lt-EQT)+ i CP - gc

= I ^CP^P 1 + c V c ) - gc

= CP - (CPC T + v)gc(p + c V c ) = o

= CEP^E 1 E cpc Tgcc Tv - 1 c

+ vggp- + vgcc Ty _ 1c - cp = g (oi6)

Thus extremalization with respect to a combined performance index one which includes a weighted term for measurement cost results 1n a very complicated expression

Now operate on the above equation to obtain C I S T 9 C I 1 + QPpoundTQQpoundTv-1c + vgcp1 + vgccV c - CP = g (Di7)

Assume C exists Thus

EpoundT99 + EEVEW + pound - 1ygc + c 1ygcc Ty 1cp - P 2 = g ( D I S )

or f inal ly

p(cTgg)+ (c 1laquogccTv 1c)p + c^ygc

- E(l - pound T 9 pound pound T V 1 C ) E = 9- (D19)

297

Discussion The drawback of the above equation is that it solves for the wrong variable P K + N gt in terms of C K + N required is the opposite to solve for pound K + N as a function of E t N which is known at time K+N

The equation could be used iteratlvely to find the P which matches the P L N already known in order to fUd the C K + ~ this type of method is not desirable however

Also to get -jraquo Jg into the form of a Riccati equation as in (D19) for which standard solutions exist a necessary assumption was that C K + f J

be nonsingular This implies having as many measurements as states at each measurement time which is a severe limitation when the point of the problem included minimizing the necessary number of measurements

D3 Results

Choices of the two performance criteria J- and J 2 show that obshytaining an eXtremum analytically is very elusive No modification made by this author to the above performance criteria led to a set of equations for which an analytical solution could be found

More importantly the fundamental concept of minimizing some pershyformance criterion with respect to the whole measurement matrix pound itself seems like the wrong thing to do By this is meant that the elements of C in a general formulation of the system equations have little to do with the placement of measurement sites An exception to this would be the case of decoupled state measurement where the model could he discreti2ed in space with one sensor in each element of the finite difference reshypresentation

Another possibility would be the formulation of the system in norshymal mode coordinates In this case the C matrix has a very definite

298

structure where the sensor placements z appear as arguments of the matrix C = C(z)

The former case with a diagonal matrix C was difficult to get into a form where optimal measurement locations would result In the latter case that of normal modes a way was not found to constrain the solution to fit the normal mode form for C

Also the addition of the quadratic term in C in J above is diffishycult to understand It was meant to represent measurement cost but in problem structure here any direct connection with cost of measurement is unclear

For these reasons a more fundamental approach was decided upon that of minimizing the performance Index directly with respect to the vector of sensor positions z The problem is also to he formulated in normal modes in order to simplify computation and also to direct the measurement positions to the problem structure through the measurement matrix C(z) The minimization 1s done for various dimensions of z repshyresenting various numbers of sensors Thus measurement cost is dirshyectly related to the dimension of j

299

APPFrtDIX E NUMERICAL MEASUREMENT QUALITY OPTIMIZATION

As mentioned in Section 537 the Inclusion of the optimal selecshytion o the types of measurement sensors to depoy at a measurement time depends upon the way in which the measurement cost is defined in the original optimal monitoring problem definition

The case outlined in this Appendix deals with measurement cost which is defined to be proportional to measurement instrument quality this is the general case first proposed in the optimal monitoring probshylem statement in Section 22 This is a realistic case in which a disshy

crete valued ikgtasurement cost function could be seen to apply as a funcshytion of the specific choices of measurement Instrument accuracy which could be obtained commercially In order to include the quality of meashysurement devices in the optimal design structure at each measurement time formulate the portion of the objective function associated with measurement Instrument quality first as a oontinuoua function of the sizes of the measurement errors or variances given by the diagonal elements of the measurement noise covariance matrix y that is the terms [ V L J 1 = l2m The optimal choice of measurement instrushyment accuracies would then be related to the resulting optimal values

for the variances [V]JJraquo the best instrument accuracies would then be those commercially available discrete choices which most closely correshyspond to the optimal measurement errors of values [V] i = l2m

To obtain the longest times between required measurements it seems plausible then to form an adjoined vector for the optimization in Sec-tion 536 a vector composed of the measurement sensor position z and their variances diag [V] as follows

300

_ i SSK- I I 5 I V 3 I

v 2 2

(E l )

To include selection of sensor accuracy in the optimization simply subshy

s t i tu te the 2m-vector Cu in (E l ) for i-vector zbdquo in the def in i t ion

(544) to obtain J(^ j ) the combined objective function for measurement

position and qual i ty optimization

A corresponding minor modification to the gradient in (549) with

T defined as in (548) results in the fol lowing

^SOV^KJK) ) ] (E2)

where from the definition of poundbdquo in (El)

laquo pound 7 S lt laquo E raquo (E3)

(see Athans and Schweppe [11] equation (717)) Thus the combined gradient in (E2) can be simply seen to be

301

laquo bull ) bull

wKih)

^ i If VI [ Zdiag HI J ^ J

(E4)

an adjoined 2m-vector of terms associated with z and V Note that finding pound at the first sample under the conditions of

Conclusion VI completes the design problem for all other sample tines to yield the final result stated as Conclusion VIII in Section 537

Notice that the main objective of every optimization problem in the monitoring design problem considered thus far has been to minimize the total number of samples taken over all necessary measurement times within the time interval of interest Adding selection of measurement instrument quality to the problem probably changes the design objective to one which seeks to minimize instead the total measurement cost as first discussed in Section 22 where more accurate measurements (smaller [VL)result in higher unit measurement costs This presents a tradeoff between using numerous low accuracy sensors and fewer high accuracy meashysurement devices This restructuring of the problem could easily be carried out with constraints placed upon available measurement instrushyment accuracies of the form

Vmin laquo t V ] 1 f lt V M X gt 1 - 1 2 m (E5)

These constraints entered as bounds on the bottom half of C in the gradient minimization algorithm would lead to optimal values for ^ for the entire range of possible dimensions for zbdquo m = l2n The optimal results forc K over all ra at the first measurement time ty

could then be extended over the whole time interval to determine which choice leads to the lowest total cost according to Conclusion VII this

302

optimal choice for [][J at the first sample time must be optimal for all other measurement times completing the design

The concepts of this Appendix for the inclusion of measurement instrument quality into the optimal monitoring design problem are preshysented to indicate how such an extension might be made The details though an important part of any realistic design are not crucial to the other results for the infrequent sampling problem and are omitted in the interest of brevity

303

APPENDIX F DESCRIPTION AND LISTING OF PROGRAM KALHAN

The major computer program written for this study is PROGRAM KALMAN It contains all the necessary coding for the optimal monitoring design and management computations It is written in FORTRAN IV for a CDC 7600 computer It accepts input via a card deck named INFILE and generates an answer file OUTFILE which is given to an ordinary lineprinter Bishynary disc files for intermediate storage are generated for use by the graphics package of postprocessor programs listed in Appendix Gj these two binary files are called PFILE and TFILE A flow chart of the intershyconnections among KALMAN its input and output files and its postprocessors is shown in Figure Fl The various computer-generated figures in this report listed with the programs from which they originated are included in Figure F2

The listing for PROGRAM KALMAN is included in this Appendix A nearly sufficient number of comment cards are included to permit usage directly A detailed explanation of its use is omitted here in the inshyterest of brevity the interested user should examine SUBROUTINE INPUT (lines 402 to 535) where all input statements for the file INFILE occur

A brief description is now given of the more important routines which comprise this program KALMAN is the main routine where the Kalman Filter algorithm of Figure 41 is implemented along with the logic assoshyciated with solution of the optimal monitoring problems as given in Conshyclusions II III X and XI SUBROUTINE FVAL computes [ P pound ( Z bdquo ) ] used

~K -K ]1

in the optimizations in SUBROUTINE KEELE for the optimal design problem

SUBROUTINE GRADNT is i t s f i rs t -o rder gradient that i s ^ f - [ppound(z)]

mdash

TOFT SIGMAT MAXTIME

TF1LE

POSTSP

plusmn_ POSTPLT

Figure Fl Relationships among PROGRAM KALMAN its input and output files and its postprocessors K 9 n a

305

PROGRAM FIGURES GENERATED BY VARIOUS PROGRAMS

KALMAN 6 2 6 3 6 4 6 5 6 1 3 6 1 7 6 2 0 6 2 2 6 2 4 6 2 6 6 2 9 6 3 1 6 3 2

CONTOUR 6 2 1 6 2 3 6 2 5 6 27 6 2 8 6 3 0 6 3 5 6 4 0

6 4 3 6 44

POFT 6 6 6 7 6 1 4 6 15

PELEM 6 8 610

SIGMAT 6 1 8 6 1 9

MAXTIME 6 1 2

POSTPLT 6 H 6 3 3 6 3 4 6 3 9 6 4 1 6 4 2 6 4 6

POSTFP 637

POSTSP 6 3 8 6 45

Figure F2 L is t of computer-generated figures and the programs from which they came

SUBROUTINE CONSTR defines the l inear inequality constraints of the form

(553) used in KEELE TRPKK and DTRPKK define Tr [ppound(z K ) ] and i t s gradishy

ent also UoOd in KEELE (they are only used in the comparison of perforshy

mance c r i t e r i a found in Section 623) bUBROUTINE SS computes the check

for the approach to steady-state monitoring as in step (3) of (572)

HAXSIG finds z the position of maximum variance in the output estimate

using SUBROUTINE MUELLER [61] as a root- f inder

SUBROUTINE KEELEA is th is authors modification of the or ig inal

l inear ly constrained nonlinear programming algorithm KEELE wri t ten by G

W Westley [127] the addition of a set of random start ing vectors has

been added to the or iginal routine (see lines 986 through 1000) Subshy

routines CONDRP PROJCT CONADD CUBMIN and PRBOLC are a l l routines from

the or iginal KEELE package

306

SUBROUTINE PAYNTER finds the number of terms necessary in the matrix AT

series expansion of J = e~ the matrix exponential state t ransi t ion mashyt r i x as discussed in Chapter 4 and Appendix A SUBROUTINE STM performs

1 1 i

the actual calculation of pound + 1 T pound + and r pound + in (412) for the discrete-

time state equation I t also performs the computation for g + 1 in (414)

and (415) as suggested by DAppolito [29] and detailed in Appendix B of

th is report

A number of matrix arithmetic algorithms are included (l ines 2076

through 2178) whose use was found to greatly simpli fy the numerous matrix

computations which arose in the solutions of the monitoring problems

SUBROUTINE INVERSE (lines 2179 through 2371) is based upon the LDU deshy

composition reported in Forsythe and Moler [ 38 ] i t is recognized as an

extremely accurate matrix inversion algorithm

NOISE NOISEW and NOISEV generate normally-distributed random vecshy

tors They use FUNCTION GN which is an implementation of the polar

method of generating random deviates from a uniform d is t r ibut ion as reshy

ported in Knuth [71] FUNCTION RAND returns a uniformly-distributed

pseudo-random number on the open interval (01) i t was coded by F N

Fritsch [42] and is completely portable in that is is useable on any b i shy

nary computer regardless of i t s machine word length

UBAR and UI generate the deterministic forcing function vector u( t )

in (41) A selection of possible analytical functions of time are i n shy

cluded see the l i s t i n g for deta i ls

A number of output routines complete the program the more notable

of which are XYPLOTS and ENDPTS wri t ten by H K McCue [84 ] These

routines provide the Hne pr inter plots of T r [ P K + N ] and cC + N as functions

of time t K + N Included in th is study

307

It should be mentioned that extensions of KALMAN to handle more complex problems could be easily accomplished The eigensystem which results from the boundary conditions of the particular problem under study is specified in SUBROUTINE INPUT problems other than that of one-dimensional diffusion with scavenging and no-flow boundary conditions as coded in this program can easily be included By moving the calls to PAYNTER (line 119) STM (123) SS (124) and MAXSIG (127) inside the main integration loop in KALMAN the loop between statements 20 and 100 (lines 141 and 349) time-varying system matrices and statistics could be inshycluded To handle noulinearities the basic Kalman Filter algorithm of Figure 41 could be modified to the form of the Extended Kalman Filter with some effort (see Oazwinski [65] Theorem 81) the basic structure of this program permits such a direct extension

Future work should include the development of a more complete invenshytory of pollutant source models Besides point sources representations for distributed background level and line sources in normal model form would broaden the scope of applicability of this program

308

1 PROGRAM KALMAN I INFILETAPE2=INK ILEOUTFILETAPE3=OUTFILE 2 2 PFILE1APE4=PFILETFILETAPES=TFILE) 3 VER = 10HVER43075 4 C 5 CALL CHANGE (7HKALMANI 6 COMMON Of NINNOUTNTTYNRUNVER 7 C 8 CALL CREATE (5HPFILE10000SUT) 9 INTEGER POUT 10 POUT = 4 11 CALL CREATE (5HTF1LE I 0000SWT) 12 INTEGER TOUT 13 TOUT = S 14 C 15 DIMENSION 16 C DIMENriONS OF FOLLOWING CARDS ARE DEFINED ONLY BY PROBLEM SUE MD 17 1 AIIOI0)B(1DI0)C(1010gt0(1010)AC(1010)BC(1010)DC(1010) 18 2 M0(lOJCAPMOi1010)V(10)CAPV(1010)Wl10)CAPW(1010) 19 3 Xl0)XKMl(10)XHKMlK(l0)XHKK(l0)Y(10gtYml0)Z(10)E(l0) 20 3 COV(IO) 21 4 SIGMAV(10)SIGMAW 1 0) Gl 1 0 1 01 P( I 0 10)PP(10 10) ID( 10101 22 5 U(10)lu(10)UK(103)W1(1010)W2(1010)W3(1010)DY(10) 23 6 ZU(lOlZWIlOlWKPIllO10) 24 C DIMENSIONS ON POLL I WINS CARDS ARE DEFINED BY NUMBER OF TIME 25 C POINTS TO BE STOKED FOR OUTPUT (NT) PROBLEM SIZE IND) AND 26 C NUMBER OF INDIVIDUAL VECTORS OR MATRIX COLUMNS TO BE STORED 27 C FOR PLOTTING AND OUTPUT (NP) DIMENSIONS OF IIOUT) AND (IPLT) 28 C COINCIDE WITH NUMBER OF CHOICES FOR OUI PUT AT STATMENT 20 OF 29 C MAIN PROGRAM AND N-JMBLR OK CHOICES FOR LERUGGING OUTPUT IN DEBUG 30 7 TST(110)ST(110105) JMAXi5)NAMESTI5)NCOLSTt5) 31 8 IOUT(10)IPLT(5)XYPWl(110)XrPW2(1IOITlTLES(48) 32 DI MENSIUN WSS(10lo)SYMBERRC2) 33 DATA 5VI1BERR 3HTRP3HSIG 34 REAL MO10 35 INTEGER FMAX 36 COMMON PRC5 NMZMAXAPCAPVWKP1WSSISING 37 EXTERNAL FVALGRADNTCONSTR 38 EXTERNAL TRPKK DTRPKK 39 PI = 314159266 40 C SET SIZE OF ARRAY DIMENSIONS HERE 41 ND = 10 42 NT = 110 43 NP = 5 44 C ND = THE MAXIMUM PROBLEM SIZE TO BE FIN (LENGTH OF X-VECTOR) 45 C NT i THE MAXIMUM NUMBER OF POINTS TO BE STORED FOR OUTPUT 46 C (CAUTIONTHIS DIMENSION IS USED IN THE 3-DIMENS1ONAL 47 C ARRAY (STltNTNDNP)) THUS IT RAPIDLY ADDS STORAGE 48 C TO LENGTH OF PROGRAM) 49 C NP = THE MAXIMUM NUMBER OF VECTORS TO BE STORED 50 C WHCR NP = (4 bull ND) AS PROGRAMMED IN ORDER TO STORE 51 C THE FALLOWING(X XH E COV AND ALL M COLUMNS OF G) 52 C HERE M CAN BE AS LARGE AS ND 53 C 54 C HERE THE FOLLOWING EOUALITIES ARE MADE FOR THE CALLS TO (0UTPUT3) 55 Nl = 110 56 NJ = NO 87 NK = NP 58 C 59 C HERE I MAX THE ACTUAL NUMBER OF POINTS TO BE STORED IS SET 60 C EQUAL TO NT THE DIMENSIONS OF ASSICIATED ARRAYS IT COULD BE 61 C SET SMAILER IF OESIREO BUT UNUSED STORAGE WOULD RESULT 62 I MAX = NT 63 C 64 C SET LOGICAL INPUTOUTPUT UNIT NUMBERS HERE 05 N1N = 2 66 NOUT = 3 67 NTTY = 59 68 C INITIALIZE RUN COUNTER AND START FIRST RUN 69 NRUN = 0 70 1 NRUN = NRUN 1 71 CALL INPUT (N LM LL NTL I PLT 10UTLENGTH 72 2 T0T10TACBCCDCIUUK 73 3 NOCAPMOWCAPWVCAPVIERRORNOPOEPSKMAXTITLESND 74 4 ZZUZWZMAXERRLIMLIMITALPHANSEARCHSYMBERR 75 5 NLINFMAX IWC0NVG0ELTEPSLONRH0DELTAPFLOWERACC I EXP) 76 C 77 78 80 C SET UP CONSTANTS FOR KEELE CALLING SEQUENCE 81 C 82 83 84 NP = N bull 1

M2 = M laquo 2 NE bull= 0 NP bull = N bull INITIALIZATION CALL NOISE (MOCAPMOXNND) GENERATE NXN IDENTITY MATRIX (ID) DO 3 I - 1N DO 2 J=1N

309

91 i n n Jgt = oo 92 3 10(1I) bull 10 93 C INITIALIZE INITIAL C0NDITIOMS OF SYSTEM MATRICES USE -00 FOR 94 C THOSE WHICH ARE UNDEFINED AT T = T0 95 DO 10 I M N 96 JO 9 J=1N 97 G(IJgt = -00 96 PI I J) = CAPMOd Jgt 99 9 PP(IJ) = CAPMOd J) 100 XKMld 1 laquo XII gt 101 XKKKI I) laquo M O I D 10pound YtIgt raquo -00 103 YH(I) = -00 104 Elt1) = -00 105 Wdgt = -00 106 VI I ) = -00 107 10 CONTINUE 108 T = TO 109 K = 0 110 NOP = 0 112 C COMPUTE STATE CONTROL AND NOISE TRANSITION MARTICES FOR THE 113 C DISCRETE PROBLEM [THEY ARE AIKK-11 B(KK-l) AND D ( K K - M 1 I M C GIVEN THEIH EQUIVALENTS FOR THE CONTINUOUS CASE CACBC AND D C ) 115 f WKP1 REPRESENTS THE DISCRETIZATION OF CONTINUOUS CONVOLUTION OF 116 C CAPW1T) FOR T BETWEEN TK AND TKraquo1 WHERE CAPW(T) IS THE 117 C COVARIANCE MATRIX FOR THE MODEL STOCHASTIC INPUT W(T) M S C FORiT DETERMINE NUMBER OF TERMS TO BE USED IN TRUNCATED SERIES KK 119 CALL PAYNTER ltKKKMAXNDTEPSNOUTACND) 120 C IF PAYNTER CRITERION WAS NOT MET SET NUMBER OF TERMS 121 C IN MATRIX EXPANSION OF EXP(AT) TO MAXIMUM ALLOWED IN INPUT DECK 122 IF(KKLTO) KK = KMAX 1Z3 CALL STM (NLLLACBCDCCAPWABDWKP1KKDTNOgt 124 CALL SS (NAWKPl100EPSNSSWSSND) 125 C NOTE THAT WIDTH OF INTERVALS AND MAXIMUM NUMBER OF ITERATIONS 126 C IN F1ND1N0 POSITION Of MAXIMUN SIGMA IS PROBLEM-SIZE DEPENDENT 127 IFCLIMITE02) CALL MAXSIGISIGMAXZSTARI(5raquoNgtCONVG5Ngt 128 C 129 tRI Tpound lPOLTgtNtltlLL NTL TO Tl LIMIT 130 WRITE(TOUT)NMLLNTLTOTlLIMITERRLIM 131 WRITElPOUTXiAil J)J=IN) l=lN) 132 WRITE(POUT)(IWKPlilJ)J=lN)I=1N) 133 WRITEIPOUT)(ltWSS(l J)J=1NI l=tN) 134 WRITE I POUT) UCAPWdJ)J=tLLgtl=1LLgt 135 W R I T E C P O U T K l C A P V d J ) J=1M)1=1M) 136 IF1NTL8T0) WRITE(POUT) lt (Tl TLES1 1 J) J--1 8) I =1 NTL) 137 IFINTLGTO) WRITE(TOUT) ((TITLESIJ)J=18)I=INTLgt 138 WRITEIPOUTINOPrERRLIMDT 139 WR1TEIP0UTX (CAPMOd J) J=1N) 1 = 1 N) 140 C 141 20 CONTINUE 142 C 143 C THIS IS THE BEGINNING OF LOOP WHICH CALCULATES SYSTEM AND FILTER 144 C TIME-HISTORIES WITH THEIR RECURSIVE EQUATIONS 145 C THE LOOP STARTS AT STATEMENT 20 AND ENDS AT 100 146 C 147 C 148 C SELECT ERROR CRITERION VALUE ACCORDING TO (LIMIT) 149 C 150 IF1L1MITEQ1) ERROR = TR (PPN) 151 IF(LIMITpound02) ERROR SIGKPN IZSTARPPNND) 152 C 153 C THIS IS THE CRUCIAL CHECK OF MANAGEMENT ALGORITHMIF THE ERROR 154 C IN THE ESTIMATE EXCEEDS THE GIVEN LIMIT GO TO MAKE A MEASUREMENT 155 C IF NOT RETURN TO CONTINUE PREDICTION 156 C 167 IFIERRORGEERRLIM) GO TO 28 156 C 159 C DO THE OUTPUT FOR TIME T 160 C NOTEFIRST TIME THROUGH INITIAL CONDITIONS ARE OUTPUTTED 161 C 162 C DEFINE THE VARIANCE VECTOR ICOV) FROM THE COVARIANCE MATRIX (Pgt 163 DO 5 1=1N 164 5 COVd I = PP(I I) 165 C 166 IF UCIUT(1gtNE-Igt 167 2 CALL DEBUG (NL M LLTTOXXHGYYHEWVPPPIOUTND) 168 C 169 IFdPLTdlEQil CALL 0UTPUT3 (X3H X 0 N T TO Tl TST ST 170 2 XYPW1XYPIgt2TITLpoundSNTLJMMESTNCOLST|MAXJMAXN1NJNK) 171 IFltIPLT(2gtEQDCALL 0UTPUT3 (XHKK3H XH0NTTOtlTSTST I 72 2 XYPWIXVPW2TITLESNTLNAMESTNCOLST I MAXJMAXNINJNK i 173 F(IPLT(3gtE01) C A L L 0 U T P U T 3 (E3H EONTTOTlTSTST 174 2 XYPW1XYPU2TITLESNTLNAMESTNCOLST(MAXJMAXNINJNK) 175 IFIIPLT(4)E01) CALL OUTPUTS (COV3H00V0NTTOTlTSTST 176 2 KYPW1XYPW2TITLESNTLNAMESTNCOLST IMAX JMAX N1 NJ NK 177 lF(IPLt(5)EQ11 CALL OUTPUTS (ERRORSYMBERRILIMITl 176 1 O 1TT0TITSTST 179 2 XYPU1XYPW2TITLESNTLNAMESTNCOLSTIMAXJMAXNlNJNKI 180 C

310

let c 182 bull S3 C 184 C STORE LAST VALUE OF CAVAR1ANCE IN (P) THEN PREDICTED VALUE IN IPP 185 C 186 CALL ATOB (PP P NNND) 187 CALL AOOTBT ltP AW1 N N N ND) 18S CALL ADOTB (AWlW3NN NND) 189 CALL APLUSB IW3WKP1PPNMND) 190 C 191 C OBTAIN INPUT VECTOR OF TIME FUNCTIONS (UlITgt Iraquo1 L) FOR DETER-192 C MINISTIC FORCING FUNCTION 193 IF(LNEO) CALL UBAR(LTUIUUKNDgt 194 C 195 C GENERATE PROCESS NOISE W(T) 196 CALL NO I SEW (TCAPWWS10MAWLLND) 197 C 198 C INCREMENT TIME (T) AND ITERATION COUNTER (K) 199 T = T DT 200 K = K 1 201 C 202 C CALCULATE MODEL STATE X(Kgt CALL IT (X) 203 C 801 DO 24 IIN 205 X(lgt laquo 06 206 DO 21 J=1N 207 21 X(I) = X(l) bull AllJ)laquoXKM1(Jgt 208 IF(LEQO) 00 TO 31 209 00 22 J=1L 210 22 XII) = X(lgt BIIJ)U(J) 211 31 CONTINUE 212 DO 23 J=1LL 213 23 X(l) = X(i) bull DJ)laquoW(J) 214 24 CONTINUE 215 C STORE CURRENT (X) IN (XKM1) FOR NEXT ITERATION 216 00 2S 1-1N 217 XKMKI) a XII) 218 25 CONTINUE 219 C 220 C CALCULATE PREDICTED STATE ESTIMATE XH(K-1Kgt CALL IT (XHKM1K1 221 C 222 DO 39 I = 1 N 223 XHKMIK(I) = 0 224 00 36 J=1N 225 36 XHKMIK(I) = XHKMIK(I) bull AltIJ1XHKKltJ) Z26 IFILEQO) GO TO 32 227 DO 37 J=1L 228 37 XHKMIK(I) =XHKM1K(I) B(IJ1laquoU(Jgt 229 32 CONTINUE 230 39 CONTINUE 231 C 232 C COPY PREOICTED STATE ESTIMATE VECTOR INTO CORRECTED ESTIMATE 233 C VECTOR FOR INITIAL VALUE IN NEXT PREDICTED CYCLE 234 C 235 DO 40 llN 236 XHKK(I) = XHKM1KU) 237 40 CONTINUE 238 C 239 C 00 TO CHECK FOR VIOLATION OF ESTIMATION ERROR CONSTRAINT 240 C 241 SO TO 20 242 C 243 28 CONTINUE 245 C THE ESTIMATION ERROR LIMIT (ERRLIM) HAS BEEN REACHED 246 C IT IS NOW NECESSARV TO TAKE A MEASUREMENT OF THE SYSTEM OUTPUT 247 C IN ORDER TO OBTAIN MORE INFORMATION ABOUT THE SYSTEM STATE 248 C 249 C UNLESS TIME IS AT INITIAL VALUE BR1NQ BACK TIME TO VALUE WHEN 250 C ESTIMATION ERROR WAS LAST SATISFIED IN ORDER TO STORE AND OUTPUT 251 C BOTH THE PREDICTED AND CORRECTED VALUES AT EACH MEASUREMENT TIME 252 1FIKEQ0) 00 TO 29 253 T = T - DT 254 K = K - 1 255 29 CONTINUE 256 C 257 C WRITE NUMBER OF OPTIMIZATION (NOP) AND (PI MATRIX FOR POSTPROCESS 258 NOP bull NOP 259 260 261 C 262 WRITE(N0UT2001)N0PT 263 2001 FORMAT tlaquo1laquol2laquo) SAMPLE TIME = E103gt 264 CALL MATOUTPPNNlHPN0l 266 C 266 C (Ml IS THE NUMBER OF MEASUREMENTS TO BE TAKEN FIND THE OPTIMAL 267 C PLACEMENT OF THOSE M MEASUREMENTS THE PLACEMENT WHICH MINIMIZES 268 C THE FUNCTIONAL WHOSE VALUE IS (TR2) THE OPTIMAL LOCATIONS ARE 269 C STORED IN THE VECTOR (Zgt 270 C

311

271 C CAUTION FIRST TWO ARGUMENTS ARE IMM2) AS USED HERE BUT 272 C THEY ARE CNM) AS USEO IN (KEELE) 273 C 274 CALL KEELEA CM M2 NENLINFMAX IWZP11CONVGOELT 275 2 EPSLONRHODELTAPTRPKKDTRPKKCONSTR1 FAILFLOWERACCIEXP 276 3 NSEARCH) 277 IFIISINGEO3) GO TO 994 278 IF(1FA1LGTO) GO TO 995 279 WRITECPOUTHZCI ) 1=1Ml 260 CALL KEELEA (MM2NENL1NFMAX1W2PI 1 CONVG DELT 261 2 EPSLaNRHODELTAPFVALGRADNTCONSTRIFAILFLOWERACCIEXP 283 IFCISINGEO3) GO TO 994 284 1FCIFAILOTO) GO TO 995 285 WRITECPOUT)CZCl)1=1M) 286 C 287 C WITH OPTIMAL MEASUREMENT POSITIONS ltZ1 CALCULATE 288 C OPTIMAL MEASUREMENT MATRIX IC) = (C(Zgti 289 C 290 DO 52 l=1M 291 DO 51 J = 1N 292 51 CIIJI t C0SdJ-1)raquoPIlaquoZII)) 293 52 CONTINUE 294 C 295 C KNOWING OPTIMAL PLACEMENT (Z) OF MEASUREMENT DEVICES 296 C CALCULATE MODEL OUTPUT MEASUREMENT YltKgt CALL IT (Y) 297 C 298 r SET MEASUREMENT NOISE V(T) 299 CALL NOISEV (TCAPVVSIGMAVMND) 300 C 301 DO 30 I=1M 302 Y(I) = 00 303 DO 26 J=lN 304 26 Y (I ) = Y ( I ) 305 Yd ) = Yd) 306 30 CONTINUE 308 C CALCULATE FILTER SAIN MATRIX G(K) CALL IT (Q) 309 C 310 CALL ADOTBT (PCWlNNMNDI 311 CALL ADOTB (C Wl W2 M N M ND) 312 CALL APLUSB ltW2CAPVWlMMND) 313 CALL INVERSE (MW1W2IERR) 314 IF (IERRLTO) GO TO 992 315 CALL ADOTBT IPCW3NNMND) 316 CALL ADOTB 1W3W2GNMMND) 316 C CALCULATE CORRECTED STATE ESTIMATE XH(KK) CALL IT (XHKK) 319 C ALSO CALCULATE ESTIMATE ERROR E(K) = XIK) - XH(KK) CALL IT ltE) 320 C 321 DO 42 1=1M 322 CXH = 00 323 DO 41 J=1N 324 41 CXH = CXH laquo CdJ)XHKMtKIJ) 325 YHltI) = CXH 326 42 DYU) = Yd 1 - CXH 327 DO 44 I = IN 328 GDY = 0 329 DO 43 J=1M 330 43 GDY = GDY bull GdJ)laquoDY(J) 331 XHKKW) = XHKMlKd) + QDY 332 44 Elll gtXIII bull X H K K d ) 333 C 334 C CALCULATE CORRECTED ERROR COVARIANCE MATRIX P1KK) CALL IT ltPP) 336 CALL ADOTB ltGCW1NMNND) 337 CALL AMINSB (IDWlW2 NNND) 338 CALL ADOTBT (PW2WlNNNNDgt 339 CALL ADOTB ltW2W1W3NN NND) 340 CALL AOOTBT (CAPVGWlMMNND) 341 CALL AOOTB IGW1W2NMNND) 342 CALL APLUSB CW3W2PPNNND) 343 C 344 C FILTER AND STATE CALCULATION FOR THIS STEP IS FINISHED 345 C RETURN TO TOP OF LOOP BETWEEN STMTS 20 AND 100 TO OUTPUT RESULTS 346 C THEN CHECK TIME LIMIT AND CONTINUE SOLUTION 347 GO TO 20 346 C 349 100 CONTINUE 350 C THIS IS THE END OF PROBLEM NUMBER (NRUN) TELL THE TTY AND GO TO 351 C NEXT PROBLEM 352 WRITECNTTY 1001INRUN 353 1001 FORMATI 23H OK) 354 C 355 C WRITE I NOP) SET TO ZERO TO CLOSE OUT POSTPROCESSING 356 NOP = -1 357 WRITEIPOUT)NOPTERRLIMOT 358 C 359 GO TO 1 360 99 CONTINUE

312

361 II = -I 362 WRITEIPOUTMI 363 WRITEIYOUTIll 364 CALL EXITIO) 365 C XXX ERROR EXITS XXX 366 991 WRITEiNTTV9391) 367 9991 FORMA I ltlaquo CANNOT CREATE OUTFILE TRY AGAIN) 3GB CALL EXITIO) 369 902 WRITEtNOUT9992) 370 9992 FORMATraquo 3IN0IJLAR MATRIX IN KALMAN SAIN EQUATION 371 2 OFFENDING MATRIX IS Ml laquo ICXPXCT CAPVlO 372 CALL MATOUTP IWlMM2HW1NDI 373 C DUMP OUTPUT GENERATED BEFORE SINGULAR CONDITION OCCURRED 370 CALL 0UTPUT3 (XIOM SINGULAR) 375 WRITE(NTTY9982)NRUN 376 99B2 FORMAT128H NG-SING) 377 C THIS PROBLEM SINGULAR SO GO TO NEXT PROBLEM IN INPUT DECK 378 GO TO 1 379 993 VRtTEINOUT 9993) a60 9993 FCRHATWS2H THE PAYNTER SERIES EXPANSION CRITERION WAS NOT MET) 381 WRITEINTTY990S1NRUN 382 9903 FORMAT128H NG-PAYN) 383 C THIS PROBLEM CANNOT BE RUN SO GO TO NEXT ONE IN INPUT DECK 384 GO TO I 385 994 CONTINUE 386 C A MATRIX BECAME SINGULAR IN THE OPTIMIZATION PROCEDURE 387 C DUMP OUTPUT BEFORE SINGULAR CONDITION OCCURRED 388 CALL 0UTPUT3 IX10H SINGULAR) 389 WRITENTTY99841NRUN 390 9984 FORMAT1212H NG-SING OPT) 391 C THIS PROBLEM SINGULAR SO GO TO NEXT PROBLEM IN INPUT DECK 392 GO TO I 393 995 CONT1NUE 394 C CONVERGENCE PROBLEMS IN OPTIMIZATION 395 WRITE(N0UT999SgtIFAIL 390 9995 FORMAT CONVERGENCE PROBLEMS IN (KEELEA1 IFAIL = 12) 397 CALL 0UTPUT3 IX I OH SINGULAR) 398 WRITpoundINTTY9S8SgtNRUNIFAIL 399 S995 FORMATJ220H NG-CONV OPT 1FAIL=I2) 400 GO TO 1 401 END

402 SUBROUTINE INPUT (NL MLLNTLIPLTI8UT LENGTH 403 2 T0T1 OTABCD 1UUK 404 3 MOCAPMOWCAPWVCAPVI ERRORNOPQEPSKMAXTITLESND 405 4 ZZU ZWZMAXERRLlMLIMITALPHANSEARCflSYMBERRi 406 5 NLINFMAX1WC0NV0BELTEPSLONRHaOELTAPFLOWERACCIEXP) 407 DIMENSION IPLTIS) 408 I IOUTI10)ANDND)BINDND)CINDND)DINOND)IU(NU) 409 2 UKCND3)MOND)CAPMO(NDNO)WIND)CAPWINDND) 410 3 V(ND)CAPVINDND)TITLESi48gt 411 4 Z(NO)ZUINOgtZWINDgt 412 DIMENSION SYMBERRI2) 413 REAL MO 414 COMMON I0 NINNOUT NTTYNRUN VER 419 READ1NIN101) NLMLLNTLIPLTII)1=15)(I0UT1J)J=1101 416 2 LENGTH 417 101 F0RMATC5I10511X01)1001 I 10) 418 IF INEQO) GO T6 99i 419 IFNRUNGTI) GO TO I 420 IF I LENGTHEOO) LENGTH = 20000 421 CALL CREATE I7H0UTFILELENGTHDUMMY) 422 F I DUMMYLT0) GO TO 992 423 1 WRITEIN6UT103gtVERNRUN 424 2 NLMLLNTLIIPLTII)1 = 15)IIOUTIJ) J=110) LENGTH 425 103 FORMAT I44H10ISCRETE KALMAN FILTER SIMULATION PROGRAM A10 426 1 10H RUN NO 12 427 2 31H PROBLEM INPUT IS AS FOLLOWS 428 3 I OXIHNI OXI ML10X1HM9X2HLLOX3HNTLIXI OH IPLT 429 4 IXI OH -I0UT5X6HLENGTH5I1XI 10)IX5IX01-IX1OOI 430 5 IX110) 431 C SEE IF ANY IOUTIII IS NONZERO IF NOT SET I0UT(1gt=-1 AS A FLAG 432 C THIS IS TO SIGNAL THAT (DEBUG) IS NOT USED (DEBUG) IS MAINLY 433 C USED FOR DEBUGGING PURPOSES IT PRODUCES OTHERWISE POOR OUTPUT 434 NDEBU3 = 0 435 DO 3 I = 110 436 3 I F I 0 U T I D l E Q I ) NDEBUG = NDEBUG bull 1 437 IF(NDEBUGEQO) IOUT1 ) = - I 438 READ (NIN102) TOT1DTNOPQEPSKMAX 439 102 FOMAT 13E103I 10ElO3110 440 IF lEPSEOOOS EPS = 1 E-5 441 IF(KMAXEOO) KMAX = 100 442 WRITE(N0UT105I TOTlDTNOPOEPSKMAX 443 105 FORMAT9X2HT09X2HT19X2HDC7X4HN0PQ8X3HEPS7X4HKMAX 444 2 3I1XEI03)1X1101XE103IX110) 445 Tl = 99999999 laquo Tl _ _bdquo 446 READININ 120)NLINFMAXIWlEXPCONVGBELT EPSLONRHO DELTAP 447 2 FLOWERACC 448 120 F0RMATI4I1O7E1O3)

313

4 4 9 IF ( N T L F O O ) 6 0 TO 5 450 DO 2 1=1NTL 45t READ i N I N 1 0 0 ) ( T l T L E S f I J ) J = I 8 ) 452 100 FURMAT(8A10) 45 WRITE (N0UT108) ( T I T L E S ( I J ) J = 1 8 ) --54 100 FORMAT IX 8A10I 455 2 CONTINUE 456 5 CONTINUE 457 IF(LEO 0) 00 TO 7 458 WRITE (NOUT1061 459 106 FORMAT INPUT SEI ECTORS AND PARAMETER VALUES ARE AS FOLLOWS 460 2 I 1NPT Algt A(2) Alt3gtlaquo) 461 DO 10 l=lL 162 READ (NIN104) IU(1)(UKlt1JgtJ=l3) 463 104 rORIlAI I I 1 9X 7E1 0 3) 464 WRITE (N0UTI07) IIU(1)ltUK(IJ)J=I3) 465 107 FORMAT tl3 I 67(1XElO3)) 466 10 CONTINUE 467 7 CONTINUE 468 CALL VECINPT (MON2HM0ND) 469 CALL MATINPT ICAPMCNM5HCAPM0NO) 470 CALL MATINPT ICAPWlLLL4HCAPWND) 471 CALL MATINPT ICAPVMM4HCAPVND) 472 C 473 C PRODI FM STRUCTURE IS FORMULATED IN DIMENSIGNLESS COORDINATES 474 _bull SO 1 i-IAT 0NE-DII-ILNS10NAL MEDIUM IS OF UNIT LENGTH 475 ZMAK = I0 476 C 477 1F(L NEO) CALL VECINPT IZUL2HZUND) 478 CALL VECINPT IZWLL2H2WND) 479 CALL VECI PT(ZM1HZNO) 480 READININ 111 ) ERRLIMLI MlTALPHANSEARCH 461 lit FOFMAT(ltE103 I 10)) 482 WRITECNOUT112) NSEARCH 463 I 12 FORMAT ( 484 3 lCH NUMBER OF POINTS FOR RANDOM SEARCH INITIALIZATION INSEARCH) = 485 4 15) 486 IFCLIMITEO 1) WRITElNOUT 1 I31ERRLIM 487 113 FORMAT THIS IS A MONITORING PROBLEM OF THE FIRST KIND 488 2 bull WITH A C0NS TRAIN1 ON THE ALLOWABLE ERROR IN THE STATE ESTIMATE 489 3 THE ESTIMATION ERROR CRITERION IS THE TRACECPCKK+N)3 490 4 bull fHC CONSTRAINT ON THE ERROR IN THE STATE ESTIMATE IS FIXED AT 491 5 bullbull TRLIM bull-raquo El 0 3 laquo 1 laquo ) 492 I F I L I M 1 T E 0 2 ) W R 1 T E ( N 6 U T 1 1 4 1 E R R L I M 403 114 FORMATbull THIS IS A MONITORING PROBLEM OF THE SECOND KIND 494 2 WITH A CONSTRAINI ON THE ALLOWABLE ERROR IN THE OUTPUT- 435 3 ESIIMATE THE ESTIMATION ERROR CRITERION IS THE MAXIMUM 406 4 VALLE OVER I HE LENGTH OF THE MEDIUM Zlaquo 497 5 OF THE VARIANCE OF THE ESTIMATE OF THE OUTPUT GIVEN BY 490 6 bull SIGMA(Zgt = CT(Z) tP(KK+N)] CIZ) 499 7 bull THE CONSTRAINT IN THE ERROR IN THE OUTPUT ESTIMATE IS FIXED- 500 8 bull AT- SIGMALIM = raquo El 0 3 1 ) 501 WRITE (NOUT H O I ALPHA C02 110 FORMAT ARAMLTERS FOR SYSTEM DESCRIPTION ARE 003 2 laquo DIFFUSION CONSTANT K = IOOOE+00 5D4 3 laquo LENGTH OF MEDIUM L = 1OOOE00 505 4 SCAVENGING RATE ALPHA = laquoE103) 506 C KNOWING ZU AND ZW VECTORS DEFINE SYSTEM MATRICES AB AND D 507 PI = 31459266 506 DO 12 1 = 1 Ngt 509 DO 11 J=1N 510 11 A(lJ) = 6 511 12 A(ll) bull -(((I-1 )raquoP1 )raquolaquo2 ALPHA) 512 DO 15 1=1N 513 IF(LEOO) GO TO 8 514 DO 13 J=1L 515 B(IJ) = COS(I-1)laquoPIZU(J)gt 516 13 I Ft 1 EO 1) BltIJ) = 5 517 8 CONTINUE 518 DO 14 J=]LL 519 D(IJ) = COS((I-1)PIZW(Jgt) 520 14 IF(IEQ-I) D(IJ) = 5 521 15 CONTINUE 522 CALL MATOUTP (ANN1HAND) 523 IF (LNEO) CALL MATOUTP (BNL1HBND) 524 CALL MATOUTP (DN LL1HDND) 525 I ERROR = 0 526 RETURN 527 C ERROR EXITS 528 C I ERROR = 0 OK 529 C IERROR s -I END OF INPUT DECK RETURN TO EXIT 530 C IERROR = -2 CANNOT CREATE OUTPUT FILE RETURN TO EXIT 531 991 I ERROR = -1 532 RETURN 533 992 I E R R O K S -2 53ltt RETURN 535 END

536 SUBROUTINE FVAL (ZPI11

314

937 C RETURNS tPCKK)(Z(Kgtgt1C11) 538 C FOR USE IN MAXIMIZATION OF ERROR-LIMIT INTERCEPT TIME By 530 C MINIMIZING- THE (II) ELEMENT OF THE CORRECTED COVARIANCE MATRIX 540 C AT TIME IK) 541 COMMON PROB NMZMAXAPCAFVWKPIWSSISINB 542 DIMENSION A( 10 lol PC 10 |0gt CAPlC 10 10) WKPI 1101 0) WSS( 1 0 10) 543 DIMENSION 0lt10101 PSII(1010)2(1)Wl11010)W2(10 I 0)W3(10101 544 N D gt 10 545 F = 3I4I5926B 54E DO 12 1=111 547 DO 11 J=1N 548 II C(lJ) = C0S((J-1)raquoPIraquoZ(Igt) 549 I 2 CONTINUE 550 C FIRST COMPUTE IPSIIJ tClaquoP(K-lK)laquoCT1INVERSE 551 00 5 1AMM 952 00 2 IC=1N 553 WKIAIC) = 0 554 DO 1 101N 555 I W K I A I C ) = W K I A i C ) bull C( I A 10) P( ID IC) 550 2 CONTINUE 557 00 4 1B=IM 556 W 2 M A I B ) CAPVUAIBI 559 DO 3 IE=1N 560 3 W2C1AIB) = W2UAIB) Wl (I A I E)raquoC( IB I E) 551 4 CONTINUE 562 5 CONTINUE 563 CALL INVERSE (MW2PSIIIERR) 564 IF(IERRLTO) GO TO 991 565 C COMPUTATION OF IPIZK)(KK)1111 566 P11 = P(ll) 567 00 7 IC=tM 568 W1PI = 0 559 DO 6 1DraquoIM 570 6 W1PI = W1PI bull W1CIDl)raquoPSII110IC 571 7 PI1 = P11 - W1PtlaquoWlilC1) 572 ISINB gt 0 073 99 RETURN 574 991 1S1NG s 3 57 RETURN 576 END

577 SUBROUTINE GRADNT (Z0P11) 576 C 579 C RETURNS OCPCKKlIZCK))Jl1Igt0Z 580 C THE DERIVATIVE IF THE (11) ELEMENT OF THE CORRECTED COVARIANCE 581 C MATRIX AT TIME (K) WITH RESPECT TO THE VECTOR (Z(Kgt) 552 C 583 COMMON PROB NMZMAXAPCAPVWKP1WSSISINO 584 DIMENSION Alt1010)Plt1010)CAPVl1010)WKP1(1010)WSS(1010) 585 DIMENSION CC1010)DOC 1010)Z(1)DPI 1(1)Wl(1010)W2(10to) 506 2 W3C1010)PSI1(1010) 587 NO = 10 588 PI o 314158266 569 C 590 C FIRST COMPUTE CPSIIJ tClaquoPltK-lK)laquoOT]INVERSE 591 C 592 C GENERATE C(Z(Kgt) MATRIX (CALL IT C ) 593 C GENERATE 0C( I J)DZC I ) MATRIX (CALL IT D O 594 DO LO IlM 595 DO 19 J1N 596 C(IJgt bull COSltJ-1)PI-2(l)) 597 19 00(1J) gt -1J-1)PIlaquoSIN((J-1)laquoPIraquoZ(I)) 598 20 CONTINUE 599 C 600 DO 5 IAlaquo1M 601 DO 2 ICalN 602 WKIAIC) gt 0 603 DO 1 IDIN 6J4 1 WKIAIC) a UKIA1C) Clt I A ID)raquoPlt 10 1C) 605 2 CONTINUE 606 00 4 IB1M 607 W2lt1AIB) - CAPVlIAIB) 60S DO 3 lEolN 609 3 W2CIAIB) = W2ltlAtB) bull Wl ( I A IE)raquoCUB IE) 610 4 CONTINUE 611 5 CONTINUE 612 CALL INVERSE ltMW2PSIIlERFt) 613 IFCIERRLT0) GO TO 991 614 C 615 C COMPUTE PSIIlaquoCraquoP 616 C 617 00 7 IA=1M 616 W2CIAI) bull 0 619 DO 6 |B=1M 620 6 W2IIA 1) s W2CIA 1) PSI I (IA IBXW1 IB I ) 621 7 CONTINUE 622 C 623 C COMPUTE BRACKETED MIDDLE TERM OF SECOND MATRIX EXPRESSION 624 C

315

625 DO 12 IA=1M 626 DO 11 IC=1M 627 W3(1AIC) 3 0 628 DO 10 IB=1N 629 10 W3(IAICgt = W3(1AICgt + W1 ( I A IB) raquoDC( 10 1B1 630 11 CONTINUE 631 12 CONTINUE 632 C 633 C NOW COMPUTE THREE MATRIX TERMS IN GRADIENT 634 C FIRST TERM 635 C 636 DO 69 I IraquoIM 637 C 638 DPI 1(1 I) = 0 639 C 640 PDC = 0 641 DS 8 1A=1N 642 8 PDC = PDC bull P(l1A)laquoDC(IIIAgt 643 DP1K I 1 ) = PDCraquoW2(I 11 ) 644 C 616 C THIRD TERM EQUALS FIRST TERM SO JUST DOUBLE THE FIRST 646 C 6 4 7 D P I K I I ) bull 2 lt D P I K l I gt 648 C 649 C FINALLY COMPLETE SECOND TERM 650 C 651 DO 24 1B=1M 652 IF(IBEQII) 00 TO 22 653 POCP - W2III1)raquoW3(IBII) 654 SO TO 24 655 22 POCP = W2I1I 1 )laquoW3(I1 II ) 656 00 23 IA=1M 657 23 POCP = POCP W2(1AIgtraquoW3(lAlIgt 65B 24 DPIKII) = DPI 1(11) - PDCPraquoW2(IB1gt 659 C 660 C INCLUDE OVERALL MINUS SIGN 661 C 662 DPIKII) = -lraquoDPIKII) 663 C 664 89 CONTINUE 665 90 ISING = 0 666 RETURN 667 991 ISINQ = 3 668 RETURN 669 END 670 SUBROUTINE CONSTR 671 COMMON BAMRWH G(1020)B(20) 672 DIMENSION At 1010)Plt1010)CAPVM 1010)laquoKP1lt1010)WSS(10lO) 673 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 674 DO 1 I=1M 675 G(ll) = -I 676 B(l bull 0 677 G(IMIgt = 1 676 1 B1MI) = ZMAX 679 RETURN 680 END 681 SUBROUTINE TRPKK (ZTRP) 682 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 6B3 DIMENSION A(10I 0)WKP1(to10)WSS(1610) 684 DIMENSION PI 10 10)C[10 10)CAPV(1010)PSII(1010) 685 DIMENSION Z(1)Wllt1010)W2I1010) W3(10 10) 686 IB laquo 10 687 PI raquo 314159266 688 C CALCULATE C(Z) AND PSIKC(Z)) AND PUT IN COMMON 689 DO 2 I=1 M 690 DO 1 J O I N 691 1 C ( I J ) 3 C O S K J - I gt raquo P I raquo Z ( I ) gt 692 2 CONTINUE 693 CALL ADOTB (CPW1MNNND) 694 CALL AOOTBT (Wl6W2MNMND) 695 CALL APLUSB ltW2CAPVW3MMND) 696 CALL INVERSE (MW3PSIII ERR) 697 IFIIERRLT0)00 TO 991 698 CALL ADOTB (PSIIW1W2MMNNDgt 699 CALL ATDOTB (MlU2W3NMNND) 700 CALL AM1NSB (PW3W2NNND) 701 TRP 0 702 DO 10 l=1N 703 10 TRP = TRP W2(II) 704 ISING laquo 0 705 99 RETURN 706 991 ISINQ = 3 707 RETURN 708 END

316

709 SUBROUTINE DTRPKK CZDDZ1 710 COMMON PROB NMZMAXA PVWKP1WSS I SING 711 DIMENSION A(1010)WKP1(100)WSS(10101 712 DIMENSION P(10 10)C(10 10)CAPV(10 I 0 ) PS1Ilt10 101 713 DIMENSION Z( 1)DDZTRP(1)Wl(1010)Wpound(10101 714 2 W311010 W4(1010gtW5(i010gtW6(1010gtDClt1010) 715 ND = 10 716 PI = 3 14159266 717 C GENERATE C 718 DO 10 l = lM 719 DO 9 J=lN 720 9 C(IJ) = COS((J-l)PIZ(Igtgt 721 10 CONTINUE 722 C FIND PS II = PS I INVERSE 723 CALL ADOTB (CPWlMNNND) 724 CALL ADOTBT (WlC W2MNMND) 2S CALL APLUSB IW2CAPVW3MMND) 728 CALL INVERSE IMW3PSII I ERR) 727 IF(IERRLTOJGO TO 991 728 CALL ADOTB (PSIIWlW2MMNND) 729 DO 89 II = 1M 730 C GENERATE 0C(1J)DZ(1) MATRIX (CALL IT D O 731 DO 6 1=1M 732 DO 5 J=l N 733 S DC(IJ) = 0 734 6 CONTINUE 735 DO 7 J=l N 736 7 DCIIIJ) = -(J-l)laquoPISIN((J-1]PIraquoZCII)) 737 C NOW CALCULATE THREE MATRIX TERMS FIRST TERM (W4gt 738 CALL ATDOTB ltDCW2W3NMNNO) 739 CALL AOOTB (PW3W4NNNND) 740 C SECOND TERM (W5gt 741 CALL ADOTBT (WlDCW3MNMNO) 742 CALL APLUSBT(W3W3W5MMNO) 743 CALL ADOTB (W5W2W6MMNND) 744 CALL ATDOTB (W2W6W5NMNNO) 745 C THIRD TERM NOTE THIRD TERM = (FIRST 1ERM1T SO --ST ADD UP TERMS 746 CALL AM1NSB (W4W5W6N NND) 747 CALL APLUSBT(W6W4W5NNNDI 748 DDZTRPU I gt = 0 749 DO 12 l = lN 75C 12 DDZTRPU I gt = DDZTRP(I I) - W5(II) 751 89 CONTINUE 752 90 ISING = 0 753 RETURN 754 991 ISING = 3 755 RETURN 756 END

757 FUNCTION SIGKPN (ZSTARPPNND) 758 C FINUS 759 C SIGMA--21ZKZSTAR) = C(ZSTAR)T PP(ZK)(K ION) - C(ZSTAR) 760 DIMENSION C(10)PPC1010) 761 PI = 314159266 762 DO 1 1 = 1 N 763 1 C(I) - COS((1-1)PIZSTAR) 764 CALL XTAY (CPPCSIGKPNNND) 765 RETURN 766 END

767 FUNCTION SIGMA(Z) 768 COMMON PROB NMZMAXAPCAPVWKP1WSS I SING 769 DIMENSION A(10 10)P(10 10)CAPV(10 I0)WKP1(10 I0)WSS110 10) 770 DIMENSION C(10) 771 PI = 314159266 772 DO 1 J = 1 N 773 1 C ( J ) = C O S U J - I ) laquo P I raquo Z ) 774 CALL XTAY (CWSSCSIGMAN10) 775 RETURN 776 END

777 FUNCTION DSIGMA(Z) 778 COMMON PROB NMZHtXAPCAPVWKP1WSS1S1NG 779 DIMENSION A(I 010)P(010)CAPV(1010)WKP1(10 10)WSS( 1010) 780 DIMENSION C(10)DC(10) 781 PI = 314159266 762 DO 1 J=1N 783 CIJI = COS( (J-l )PlZ) 764 1 DCIJ) bullbullbull -( J-l )raquoPIS1NC (J -1 ]PIZ) 765 CALL XTAY (DCWISCTERMN10) 786 DSIGMA = 2sTERN 787 RETURN 788 END

317

791 XI - WMlNl5NNISf6WkpIilSSi6iWSS1010 793 2 W1(tO10)W2(10 0)SUMi10 10) 794 NSS = 1 795 1 NSS NSS+1 bdquo 796 RATIO = A(22lNSSAlt22) 797 IFCRATIOLEEPS) 60 TO 2 796 GO TO 1 BOO C 2 M N o t w I s ) STEADY-STATE MATRIX CONVOLUTION OF ltUKP1 ) 601 CALL ATOB IWKP1W2N N ND1 60 CALL -TOB (WKPI SUM N N ND) 803 DO 7 K=1 NSS 804 CALL ATOB (W2W1NNND 805 CALL ABAT I AWlW2NND) 806 CALL OPLUSB (SUI1U2 SUM N N ND) 807 7 C0N1INUE 608 CALL ATOB (SUMWSSNUND) 809 CALL MATOUTP (WSSNN3HWSSND) il 108 FORMA BTHE SNUMiSER OF 1ERMS IN THE TRUNCATED MATRIX 812 1 CONVOLUTION SERIES bdquo 813 2 FOR THE STEADY-STATE VALUE OF 1WSS) NSS = laquoI3) 814 RETURN 815 END 816 SUBROUTINE MAXSIG (SIGMAXYSTARGEPS ITER) 817 EXTERNAL DSIGMASIGMA 818 YMIN = 0 81 9 YMAX = I 620 DY = GMYMAX-YM1N) 821 YL = YMIN 822 YR = YM1N+DY 623 SUP - SIGMAIYL) 624 Y S U J = YL 825 I END = ITER 626 1 CONTINUE 827 CALL MUELLER (YFYDSIGMAYLYREPS I END IER) 828 C FINISHED WITH CURRENT INTERVAL SLIDE LiMITS OF SEARCH RIGHT 829 C CHECK FOR BOUNDARY AND GO ON 830 IFUERGTO) GO TO 13 831 C IF AN EXTREMUM WAS FOUMD IN THIS INTERVAL CHECK IT AGAINST LAST 832 C VALUE OF SUPREMUM 633 FMUEL = SIGMA(Y) 634 IFIFMUELLTSUP) GO TO 11 635 SUP = FMUEL 636 YSUP = Y 837 11 CONTINUE 838 13 CONTINUE 639 VL = YR 640 YR = YRDY 641 IF(YROTYMAX) GO TO 20 842 FR = SIGMAtYR) 843 IF(FRLTSUP) GO TO 12 844 SUP = FR 645 YSUP = YR 646 12 CONTINUE 647 GO TO 1 846 20 CONTINUE 843 C INTERVAL CYI1INYMAX) HAS BEEN SEARCHED 850 SIOMAX = SUP 651 D5IGMAX = DSIGMA(YSUP) 652 YSTAR lt= YSUP 8f3 W R 1 T E O 101 gtYM1NYMAXGSIGMAXDSIGMAXYSTAR 654 101 FORMAT (laquo MAXIMUM SIGMA SOUGHT BETWEEN YMIN - raquoE103 655 2 AND YMAX bull raquoE103raquo WITH INTERVAL WIDTH DY = laquoEI03 856 3 - SIGMAX = EI03laquo OStGMAX = E103raquo YSTAR = raquoE103) 857 RETURN 858 END

659 SUBROUTINE MUELLER (X FFCTXLIXRIEPS I END IFR) 660 C 661 C REFIBM SCIENTIFIC SUBROUTINE SUBROUTINE PACKAGE 662 C SUBROUTINE RTMI IBM SSP PROGRAMMERS MANUAL EDITION 4 1966 863 C P 217 864 i 865 IER0 866 XL=XLI 867 XR=XRI 666 X=XL 669 T0L=X 670 F=FCT(TOLgt 871 IF(F)1I61 672 I FL=F 373 X=XR 874 TOL=X 675 F=FCT(TOL) 676 IF(F)2I62

318

87 2 FRraquoF 876 C CHECK FLlaquoFR LT 0 879 IF(SIGN(1FL)+SIGN(1FR))25325 660 3 I=0 881 T0LF=100laquoEPS 682 A 1=11 883 DO 13 K=11END 864 X=5raquoXL^XR) 885 TOL=X 886 F=FCTltTOLgt 867 IF(F)5165 668 S 1 F C S I G N U FJSIGNC1 F R ) ) 7 6 7 889 6 TOL=XL 890 XL=XR 691 XR=TOL 892 TOL=FL 893 FL=FR 894 FR=TOL 8S5 7 TOL=F-FL 896 A=FraquoTOL 897 A=AlaquoA 893 IFltA-FRraquoltFR-FL)gt699 899 8 IFII-IENDJ17179 900 9 XR=X 901 FR-F 902 TOL=EPS 903 A=ABS(XR) 904 1F(A-1)111110 905 10 TOL=TOLA 906 11 F(ABS(XR-XL)-T0L)121213 907 12 |F(ABS(FR-FL)-T0LF)141413 908 13 CONTINUE 909 C END OF BISECTION 910 C ERROR RETURNNO CONVERGENCE WITHIN (1END) ITERATIONS 911 IER=1 912 14 F ( A B S ( F R ) - A B S ( F L ) ) I 6 16 15 913 C NORMAL RETURN 914 15 X=XL 915 F=FL 916 16 RETURN 917 C ITERATED INVERSE PARABOLIC INTERPOLATION 918 17 A=FR-F 919 DX=CX-XL)laquoFLlaquo(ltFCA-TOLgtltAMFR-FL)gt)TOL 920 XM=X 921 FM=F 922 X=XL-DX 923 TOL=X 924 F=FCTltTOL) 925 IFCF1181616 926 16 TOL=EPS 927 A=ABS(X) 928 IF(A-11202019 929 19 T0L=T0LraquoA 930 20 IF(ABS(DX)-T8L)212122 931 21 IF(ABS(F)-T0LF)I61622 932 22 IF(S1GNlt1F)S1GNC1FLgtgt242324 933 23 XRaX 934 FR=F 935 00 TO 4 936 24 XL-X 937 FL=F 936 XRaXM 939 FR=FM 940 GO TO 4 941 C ERRORWRONG INPUT DATA 942 26 I ER=2 943 RETURN 944 END

945 SUBROUTINE KEELEA (NMNENLINFMAXIWXINFFINFC0NV6DELT 94B 2 EPSLONRHODELTAPFVALGRADNTCONSTRJ FAIL FLOWERACC IEXP 947 3 N5EARCH) 948 C VERSION (A) OF (KEELE) (NSEARCH) MINIMIZATIONS laquonE ATTEMPTED 949 C EACH FROM A DIFFERENT RANDOM VECTOR WHOSE ELEMENTS ARE SCALED 950 0 TO LIE WITHIN OLEZ(I)LE2MAX 951 DIMENSION SC1010)GTSGlt2020)P(20gtPAR(20)PLlt20)PAlt20) 952 DIMENSION XBlt10)EXTRA10) 953 DIMENSION XINF(l6) 954 ZMAX = 1 953 REAL NORMNORM IN0RM2 9S8 INTEGER C0LI20)DEPClt20)FNUMFMAXCOLICOLJ 957 COMMON BAMRWH G(10 20)B(20) 95B C REFERENCE 9GS C 960 C PROGRAM AUTHOR 0 W WESTLEV 961 C COMPUTING TECHNOLOGY CENTER UNION CARBIDE CORP 962 C NUCLEAR DIVISION 963 C nraquoV RIDGE TENN

319

965 C 96S C 967 C 966 C 969 C 970 C 971 C 973 C 973 970 975 976 C 977 976 979 9eo 961 C 982 963 964 965 966 987 968 1 989 990 991 992 2 993 994 995 996 997 C 998 999 3

1000 5 1001 1002 1003 1004 1005 1006 1007 100B 1009 1010 1011 1012 1013 C 1014 C 1015 1016 1017 10 1018 20 1019 1020 C 1021 C 1022 C 1023 1024 1025 1026 1027 1028 30 1029 C 1030 C 1031 C 1032 C 1033 1034 C 1035 C 1036 C 1037 C 1036 C 1039 C 1040 C 1041 1042 1043 1044 40 1045 1046 1047 SO 1048 60 1049 C 1000 C 1051 1052 1053 1054

MODIFIED TO RUN AT LLL 72572 BY RFHAUSMAN JR IV IS THE MAXIMUM NUMBER OF VARIBLES ALLOWED IC IS THE MAXIMUM NUMBER OF CONSTRAINTS ALLOWED

101 IS THE LOGICAL UNIT NUMBER FOR PRINTOUT

LA3EL1 = 6H OONV LABEL2 = 10HERGENCE raquos LBLMAX = N + 1 IF(LBLMAXGT7) LBLMAX = 7 T0L1 = 1E-10 IF (IWGTO) WRITECI01 1040 ) NMNE I EXP NLINFMAXIWCONVGDELT gt EPSLONRHO DELTAP TOL lF([WEQ2)WRITE[I0t 1149) 1 SEARCH = 0 00 1 I=1N XBCI ) = X1NFM ) CALL FVAL (XINFFINF) IF(NSEARCHEQO) GO TO 5 NSEARPI = NSEARCH 1 1 SEARCH = I SEARCH 1 IFIISEARCHEQ1) GO TO 5 IFCISEARCHGTNSEARPI)G0 TO 798 ISEARM1 = [SEARCH - 1 WRITEtIOl1048)1SEARM1 GENERATE A NEW RANDOM STARTING VECTOR DO 3 I=1N XB(I ) = ZMAXXRANDCIY) CONTINUE I FAIL = 0 I LAST = 0 NBC = 0 FNUM = 0 IFRST - 0 NDEP = 0 NDEPEQ = 0 FNUM = FNUM + 1 CALL FVAHXB FB) IF((IWGTO)AND(1WNE2))

2 WRITEdOl 1050 ) FNUM FB (XB( I ) I = 1 N) IFltIWEO2)WRITE1011051)FNUMFB(XB(I)11Ngt SET THE INITIAL S TO I DO 20 I=1N DO 10 JalN S(IJ) = 0 S(II) = 1 IF (MEQO) GO TO 90 ZERO OUT THE COEFFICIENT MATRIX

DO 30 J=1M COL(J I = 0 DEPC(J) = 0 B(J) = 00 DO 30 I=1N GilJ) - 0

OALL CONSTR

ADJUST THE CONSTRAINTS TO UNIT NORM G IS THE COEFFICIENT MATRIX G(11)laquoXlt1) G(21)raquoX(2) B IS THE VECTOR OF CONSTRAINT CONSTANTS DO 60 J=1M SUM = 0 DO 40 ldeg1N SUM = SUM GI1J)raquoGlt1J) SUM = SORT(SUM) DO 50 I=1N

8(1 J) = G(l J)SUM B(Jgt = BCJ1SUM NE1 = NE + 1 NE2 = NE raquo 2 IF (HEEOO) GO TO 90

320

1055 CALL C0NADD(GTSGS1COLPPLNNBCIVIC) 1056 IF (IWGE2) WRITE1011110 ) 1NBC 1057 IF (NEEOl) GO TO 90 1056 DO 80 I=2NE 1059 C 1060 C PROJECT THE I-TH CONSTRAINT TO TEST FOR LINEAR INDEPENDENCE 1061 C 1062 CALL PROJCTIPLPEXTRASGTSGNNBCCOLIIVIC N0RM1) 1063 IF UWGT2) WRITE1011120 ) INORMlTOLI 1064 C 1065 C TEST AGAINST TOL1 FOR LINEAR DEPENDENCE 1066 C 1067 IF CN0RM1GTT0L1) GO TO 70 1068 NDEP = NDEP 1 1069 NDEPEO = NDEP 1070 DEPCINDEP) = I 1071 GB TO 60 107 70 CALL CONADDIOTSGSICOLPPLNNBC IV IC1 1073 IF IIWGE2) WRITE1011110 ) INBC 1074 80 CONTINUE 1075 NE1 = NE - NDEPEQ + 1 1076 NE2 = NE1 bull 1 1077 C 107B 0 1079 C CALCULATE THE PARTIAL VECTOR OF THE OBJECTIVE FUNCTION 1080 C 1081 90 CALL GRADNTIXBPAR) 1082 C 10S3 C GENERATE THE SEARCH DIRECTION 1084 C 1085 100 CONTINUE 108E DO 110 I = 1N 1087 110 PAI) = -PAR1) 1088 C 1089 C IF THERE ARE CONSTRAINTS IN THE BASIS THEN CALCULATE THE PROJECT1 1090 C 1091 IF (NBCEOO) GO TO 170 1092 DO 120 1=1N 1093 PLI) = 0 1094 DO 120 J=1N 1095 120 PL(I) = PL11) + S(IJ)raquoPARJ) 1096 C 1097 C COLI) = K IMPLIES THAT THE K-TH CONSTRAINT IS IN COL 1 OF BASI 1098 C 1099 DO 130 1=1NBC 1 1 00 PA I ) = 0 1101 LA = COL(l) 1102 DO 130 J=1N 1103 130 P A I D = P A I D GJLA)raquoPLJgt 1104 C 1105 C PUT THE LADRANGE VECTOR IN THE VECTOR PL 1 106 CC I 107 DO 140 Ideg1NBC 1108 PLI) = 0 1109 DO 140 J=1NBC 1110 140 PL) laquo PL(I) OTS G d J)laquoPAIJ) 1111 C II 12 C 1113 DO 150 I = 1 N 1114 PAI) = 0 1115 DO 150 J=1NBC 1116 COLJ = COL(J) Z l 5 0 bdquo P A lt P A ( 0(1 COLJ gtlaquoPLJgt

1118 DO 160 1 = 1 N 1119 160 PA(I) = PA(I) - PARI) 1 120 C 1121 C I 122 170 CONTINUE 1 123 C 1124 C 1126 C P A H 0 L D S r H pound N F 0 F 0 R T H E DOWNHILL-POSITIVE DEFINITE CHECK 1127 C P HOLDS THE SEARCH DIRECTION 1 126 C 1129 00 180 I = IN 1130 PI) = 6 1131 00 180 J=1N 132 160 PCI) = PII) bull SIIJ) laquo PAIJ) 1 133 C 1134 C 1135 C 1136 C 1138 C F D trade E N deg R M deg F trade E D R E C r i 0 N VECTOR 1139 N0RM1 a 0 1140 NORM = 0 1141 DO 190 ldeg1N H S laquolaquo K2SM I bull N degRraquo + P A ( I ) raquo laquo 2 1143 190 NORM = NORM bull Pltl)raquoraquo2 1144 NORM = SORT I NORM)

321

1145 N0IM1 = SQRT(NORMl) 1 1 46 NORM2 = NORM 1 147 BETA = 0 1146 J = 0 1149 IF (NBC EQ (NE-NDEPEC1) 1 GO TO 220 1 ISO C 1 151 C 1 I 52 c 1 153 C 1154 C 1155 J = NE1 1156 CC = PL(NEl) 1157 IF (NBCE0NE1) GO TO 210 158 DO POO I=NE2NBC 1159 IF (PL (IgtLECC) GO TO 200 1160 J = I 1161 CC = PL(I1 1162 200 CONTINUE 1163 210 BETA = 5raquoCCABS1GTSGl J 0) gt I 16-1 22U CONTI NUE 1165 IF (1WGT2) WRITE1011010 ) NORMBETA J 1166 IF (NORMLECONVGANDBETALECONVG) GO TO 710 1 167 C 1 168 C 1169 C THE PROCEDURE HAS NOT CONVERGED YET EITHER DROP THE J-TH COL 1170 C OF THE BASIS AND RE-CHECK OR STEP ALONG THE DIRECTION IN P 1171 C 1172 C 1173 IF (NORMGTBETA) GO TO 250 1 174 C 1175 C DROP THE CONSTRAINT CORRESPONDING TO MAXIMUM LAGRANGE 1 176 C 1 177 C 1173 C SINCE A CONSTRAINT IS BEING DROPPED - FORGET ABOUT ALL OF TH 1179 C PREVIOUS INEQUALITY DEPENDENCE 1 180 C 1181 IF (NDEPEQO) GO TO 240 1182 K = NOEPEO 1 1103 DO 230 I-KNDEP 1184 230 D E P C ( 1 1 = 0 1185 NDEP = NOEFFQ 1185 240 ILAST = COL(J) 1167 IF (IWGT2) WRITEt1011080 ) ILAST 1166 CALL C0NDRP(C0L J NBCGTSGPL 1C1 1 1 89 GO TO 1 00 1 90 C 1 191 C 1 192 C 1 193 C 1 1 94 0 1 195 C I 196 pound50 CONTINUE 1197 LL = 0 1198 CC = 1E+60 1199 IF I(NBC+NOEP)EQM) GO TO 320 1200 DO 310 I = 1M 1201 IF (ILASTEOI) GO TO 310 1202 IF INBCEQ01 GS TO 280 1203 DO 260 K=1NBC 1204 IF (IEQGOL(K)) GO TO 310 1205 260 CONTINUE 1206 IF (NDEPEQO) GO TO 280 1207 DO 270 K=1NDEP 1208 IF (I EQDrPClKgtgt 00 TO 310 1209 270 CONTINUE 1210 C 1211 C CONSTRAINT I IS NOT IN THE BASIS IS IT BINDING 1212 C 1213 281) C0N1 = B(l I 1214 C0N2 = 0 1215 DO 290 J=1N 1216 C0N1 = C0N1 1217 290 C0N2 = C0N2 bdquo -raquo 1216 IFC IWEC13)WRITEI 101 1000 ) IC0N1C0N2 1219 IF (C0N2EQ0 ) GO TO 310 1220 NORM = ABSfCONl) 1221 IF (NORMGT1E-141 GO TO 300 1222 IF (C0N2GT0 ) GO TO 700 t223 GO TO 310 1224 300 C0N1 = C0N1C0N2 1225 IF(C0N1 LEOE-OOeRCONl GECC) GO TO 310 1226 CC=C0N1 1227 LL=I 1228 310 CONTINUE 1229 C 320 NORM = OMlNl(1DOCC) 1230 320 NORM = CC 1231 IF(NORMGT1) NORM = 1 1232 ILAST = O 1234 C CALCULATE THE INDEX OF IMPROVEMENT C0N2

322

1235 C IMPROVEMENT IS ACCEPTED IF F(K) - F(kll GL tPSLON bull CON2 1236 C 1237 C0N2 = 0 1238 00 330 1=1N 1239 330 C0N2 = C0N2 - PARUgtlaquoPtlgt 1240 IF CIWGT2) WRITEC 1011020 ) C0N2 CO 1241 ICON - 0 1242 IF (C0N2LT0 ) 00 TO 370 1243 CPAR a -C0N2 1244 C0N2 a COM2 laquo EPSLON 1245 C 1246 C STEP TO THE LIMIT TO THE NEAREST CONSTRAINT TO CHECK FOR IMPROVEM 1247 C 1246 DO 340 1=1N 1249 340 PLC I) a XBl I ) bull NORMPCIgt 1250 FNUM o FNUM bull 1 1251 CALL FVALCPLFL) 1252 IF (IWGT2I WRITEC 1011090 ) FNUMFL CPLCI)I a IN) 1253 IF CIWGT2) WRITEClOl1030 gt 1254 IF ICFB-FLgtQEN0RMlaquoC0N2gt 00 TO 350 1255 C 1256 C 1257 C NO SIGNIFICANT IMPROVEMENT ATTEMPT TO LOCATE THE OPT ALONO 1258 C THE DIRECTION P TO MORE DEFINITION 1259 C 1261 ^ IF CIEXPEQO) CALL CUBMINCXBFBPLFLTEXTRAFVALh C0N2N0RM 1262 gt FNUMIWNLINLLGRADNTCCCPARgt 1263 IF IIEXPEQ1) CALL PRBOLCIXBFBPLFLNORMC0N2 PNFNUMFVAL IW 1264 gt NL1NLL CCFLOWERACCCPARgt 1265 IF (FNUMGTFMAX) SO TO 740 1266 IF CLLNE2) GO TO 410 1267 QO TO 370 1268 350 DO 360 1 = 1N 1269 EXT a pLCI) - XBI1) 1270 XBCI o PLC I) 1271 360 PLC I) a EXT 1272 FB a FL 1273 ICON = 0 1274 IF ICCLE1 ) ICON a 1 1275 GO TO 41O 1276 C 1277 0 NO IMPROVEMENT IN THE FUNCTION SO RESET THE S MATRIX TO 1 1276 C 1279 370 IF (IFRSTEQO) GO TO 750 1260 DO 390 I=1N 1281 DO 360 Ka1N 1262 380 StKgt a 0 1283 390 SCII) a 1 1284 IFRST a 0 1285 IF (NBCEOO) GO TO 670 1286 C 1287 C RESET GTS3 1288 C 1289 LA a 0 1290 08 400 1=1NBC 1291 10 = COLCI 1 1292 400 CALL CONADDCGTSBS10COLPPLNLAIVI0gt 1293 GO TO 670 1294 C 1295 C 129B C XB = XCKtD P = Q(K1) PLa PCK11 THEN PL a P(KIgt - SIK 1298 C 1299 C UPDATE SGTSG FOR Kl AND POSSIBLY GTSQ FOR NBC bull 1 1300 C 1301 410 CALL GRADNTCXBEXTRA) 1302 IFIIWE03)WRITECI011050)FNUMFBCXBCI ) I al Ngt 222 FIIWpoundQ2)WR1TEII011051IFNUMlFBCXBltI 11 = 1 N) 1304 IF CFNUMGTFMAXgt GO TO 740 1305 IFRST a 1 1306 00 420 lraquo1N 1307 420 PCI) a EXTRAI) - PARC 1) 1308 DO 430 llaquo1N 1309 IF ( ABSCPII))GTT0L1) GO TO 440 1310 430 CONTINUE 1311 GO TO 370 1312 440 CONTINUE 1313 C 1314 C MVL pound RESCALE THE ALFA AND THE S MATRIX HOWEVER LEAVE THE STEP SIZE 2 1 pound WSk T E8 EPi -IHUS F A L F A is SCALED UP THE S IS SCALED DOWN Wl pound fiLdeg SCALE THE S AND THE GTSG MATRIX TO SATISFY THE NORM RE-1318 C QUIREMENT 1319 C 1320 C 1321 C0N2 = NORM I 322 AF a 1 1323 IF IC0N2GEDELTAPI GO TO 450 1324 AF a C0N20ELTAP

323

- bull I O -^0 K i l l C bull

- | - gt raquo lC 1 0 S O

bull ( j) v n i i i i i i o i i r o ) A ( I I M

--V bull bull C i - l 1A

1 I ~ S(K I gt i bulllt c i CM TO s i o

bull bull I i i-C bull V i NBC bull bull bull bull K i = CTOI 1K) AF

K bull bull i rJO TO Olo -V 1 c

bull bull(bullbull K--- IA bull ) I i bullbull ) OTMi I J

- I h J - 1 N

gtbull( U i PLC I I bull bull C

gtS PLltIgtlaquo=2 ic bull L ( l ) laquo P A t l )

10 ) GO TO 370 bull bull bull bull l i CE CCOMVOraquoC0N2gt)AN0CCN3RMCON1)GTOELTgtgt GO TO

iT rLiAIN POS DEF FOR K l USE RESET 2 CASE

2 ) URITECI011100 )

W Me SltK) TO StK + 1 )

| v UW = 0 bull bull bull 0 I =7 N

HU 50 J=1N C1Jgt = S lt l J ) bull PLlt1)laquoPL(JgtC0N1

I I I - 2 N I A 1-1 Iif 80 J M L A

rraquo( i j ) raquo S ( J I )

P = C bull II-TRANSPOSE laquo Y(Kraquo1) A = VCKH ) bullbullbullT = Y ( K ) - T raquo S-M raquo (G-M-T bull S(K) G-M) - INVERSE

- ii ncfQOI GO TO 650 rori THE UPDATE SCHEME USED HERE SEE RALSTON AND W1LF VOLUME I

DO S90 1 = 1 NBC P( I I = 0 LA = COLU ) DO 590 J=IN P(l ) = P(ll bull SltJLA1 laquo PL(J) Wj i00 1 = 1 NBC PAltI) = 0 CD 600 JMNBC P A M ) = P A ( I ) bull GTS3lt I J ) laquo PltJ)

iiHZ - CJNI

X 5-0 1=1NBC IJ-IS = C0N2 + Pltl ) laquoPA( I )

i) V 1 = 1 NBC 1 W ( 1 ) = 0 laquo u0 J=1NBC

PAP l l l = FAR(igt P ( J ) raquo G T S O ( J I ) DO i 0 1 = 1 NBC

Ou eno J = I N B C O C O l l J ) = G T S B U J ) - PAU l iPARCJ I CSNS O I - W 1 1 n gt ( - U I O H l I

IF (NftC t J1 I ) tlO TO 6S0 DO 6I0 =2 NBC

LA 1~S

324

1415 1416 1417 1416 1419 1420 1421 1422 1423 1424 1425 1426 1427 1426 1429

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1480 1451 1452 I4S3 1454 1455 1456 1437 14S8 1459 1460 1461 1462 1463 1464 1465 1466 1467 1466 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1181 1482 I4B3 1404 1485 I486 1487 1468 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1S02 1S03 1504

00 640 J=1LA 640 GTSG11J) = GTSG1JI) 650 DO 660 I = 1 N 660 PARC 11 = EXTRAI)

GTSG HAS NOW BEEN ADJUSTED FOR SCK+1)

NOH IF A CONSTRAINT HAS BEEN ADDED ADD IT TO THE BASIS- 670 IF (ICONEQO) GO TO 100 680 IF (NBC EQO) GO TO 690

Cfc_V- PW5tCT^PuPElVSftfcSSScopy1NWampSlaquoK--i_ W hZ M O m i l IF (IWGT2) WRITEdOl 1120 1 LLN0RM1T0L1 3 TEST AGAINST T0L1 FOR LI NEAR DEPENDENCE IF IN0RN1GTT0L1) GO TO 690 NDEP = NliEP raquo 1 DEPC(NDEP) = LL GO TO 100 690 CALl- OONADOIGTSGSLLCOLPPLNNBC IVICgt IF UWGT2) WRITE101 I 110 ) LLN8C GO TO 100 700 LL I GO -TO S80 710 CONTINUE IF( MWGT 0) AND ( IWNE21 ) 2 WRITE1011050 ) FNUMFBCXBII)I=1N) IF(IWEO 2)WRITE I 101 I 131)( I LABEL ILABEL2) l=lLBLMAXgt IF IIWLT1ORNBCEQO) GO TO 760 WRITE1011030 gt WRITE1011140 ) DO 720 1=1NBC 10 = COLIgt 720 WRITE1011160 ) I 0(G(K10)K=l N) IF (NDEPEQO) GO TO 760 WRITEUOI 1030 ) WR I T E 5 0 ) WRI1EII0I1140 ) DO 730 l=1NDEP |0 = DEPCII) 730 WRITE1811160 I 10 (G(K10)K =1 N) GO TO 760 740 IF llWGTO) WRITE101 1 ISO ) FNUMFMAX l f A f e 760

IIWGT 750 IF 760

761

771 772

79B 799

1FAJL N T I N

2 0) WRITEilOl1190 ) CONTINUE IFlMSEARCHGTO) GO TO 771 DO 761 1=1N XINFI I 1 = XB(I ) FINf = FB GO 10 799 IF(FBGEFINF) GO TO 2 DO 772 l=lN XINFI) - XBI I ) FINF = FB I FA 1 LA = I FAIL GO TO 2 IFAIL = 1FAILA IFIWGT0gtWRITE(101I052)NSEARP1

_ _ RETL RN 1000 FORMAT1H I 102E20 I 0) 1010 FORMATUH NORM = E168 1020 FORH ~

FINFIX1NFIII1=1NI

OFHATIIH VNDEX 0F~iMPR6vEMENTElea loX laquo1HE UPPER MOUND ON STEP SIZElaquo El 88) 1031) FORhAT iH )

1040FORMAT tlHl ax laquoWraquo9KMgt 8X laquo1W IH 71I0IH04XraquoC0NVGraquo6XlaquoDELTraquo4XraquoEPSLONraquoeXraquoRH

a 4Xraquo0ELTAPlaquo7XT0L1laquo1H 6E103 I 1048 F 6 R M A T laquo ITERATION NO raquo|3 2 bull FNUM FUNCTION VALUE Z(1) - -bull 1049 FORMAT41H FNUM FUNCTION VALUE 1050 FORMATIH raquoTHE NUMBER OF CALLS TO FVAL IS I 2H t6X6E168)gt 1051 FORMAT151X7E168I22X6E1B 8) ) 1052 FORMAT BEST LOCAL MINIMUM FOUND AFTER

Zli) raquo I32H

laquo 13 TRYS IS-1060 FORMAT1H THE CONSTRAINT I 3HAS BEEN PUT IN THE BASIS

1 |H THERE ARE I5C0NSTRAI NTS IN THE BASIS NOW) 1070 FORMATIH raquoTH6 COEFFICIENTS OF THE NEW CONSTRAINT ARE 1H

I 7E16BI1H 7EI68)) 1080 FORMAT1H0CONSTRAINT15 laquo HAS BEEN DROPPED FROM THE BASIS) 1090 F0RMATI1H AFTER 15 CALLS THE MAXIMUM STEP TOWARD THE NEARES1

1 CONSTRAINT GIVES1H 7E168I1H I6X7E168)) 1100 FORMATHH laquoXXXX RESET S FOR THE POSITIVE DEFINITE FAILURE) 1110 F0RMATI1H laquoTHE CONSTRAINT raquoI5 laquo HAS BEEN PUT IN THE BASIS

325

ISOS 1 1H THERE ARE 15 CONSTRAINTS IN THE PRESENT BASIS) 150G 1120 FORMAT ( 1 HO THE PROJECTION OF CONSTRAINT I3 1607 I bull AGAINST THE CURRENT BASIS IS E168 1606 1 laquo THE TOLERANCE FOR L1N-DEP IS E168gt 1609 1130 FORMAT1H AFTER IS laquo CALLS THE CONVERSED POINT IS 1H 1510 1 7EI68I1H 16X6E168)) 1611 1131 FORMATCCH bullraquo 7tA6A10)gt 1512 1140 FORMATdH CONSTRAINT laquo 10X COEFFI CI ENTSraquo) 1513 1 150 FORMAH 1H0 1514 1 THESE CONSTRAINTS ARE DEPENDENT BN THOSE IN THE BASIS laquogt 1515 1160 FORMATdH I 55X6E168(1H 1 OX 6EI68)) 1B16 1170 FORMAT1 HOTHE S MATRIX MUST BE SCALED TO SATISFY NORMS THE 1517 1 1H NORM SCALE FACTOR IS laquoEt68) 1518 1100 FORMATI1H TOO MANY CALLS 21101 1519 1190 FORMAT1H THE IDENITY RESET USED IN SUCCESION) 1520 END 1521 SUBROUTINE CONDRPICOLJNBCGTSGPLIC) 1522 DIMENSION GTSG1 IC IOPLIIC) 1523 INTEGER COL(IC) 1524 IF JEQNBC) GO TO 30 1525 C 1526 C SWITCH VOLUMNS JNBC SWITCH ROWS JNBC 1527 C 1528 DO 10 1=1NBC 1529 CC = GTSG(INBC) 1530 GTSGIINBC) = GTSG(IJ) 1531 10 GTSGIIJ) = CC 1532 DO 20 1=1NBC 1533 CC ltbull GTSGtNBC I ) 1534 GTSGINBCI) = GTSGIJ I) 1535 20 GTSGIJI gt = CC 1536 C 1537 C CALCULATE THE NEW INVERSE 1536 C 1539 30 CONTINUE 1540 IF INBCGTl) GO TO 40 1541 NBC = 0 1542 COL1 gt = 0 1543 RETURN 1544 40 NBI = NBC - 1 1545 CC = GTSGtNBCNBC) 1546 DO 50 l=lNB1 1547 C0N1 - GTSGII NBC) 1548 DO 50 K=lNB1 1549 50 GTSG(IK) = GTSGllK) - C0N1laquoGTSG(NBCK)CC 1550 IF INBlEOl) GO TO 70 1551 DO 60 I=2NBI 1552 LA = 1-1 1553 DO 60 K=1LA 1554 60 GTSGIIK)=GTSGIK1) 1555 70 IF (JLTNB1) GO TO 80 1656 IF (JEQNB1) COL(NBI) = COLNBC) 1557 COL I NBC) = 0 1558 NBC = NBI 1559 RETURN 1560 C 1561 C ~ 1562 C 1563 C 1564 80 00 90 1=1NBI 1565 90 PLII) = GTSGIIJ) 1566 NB2 = NBI - 1 1567 DO 100 K=JNBB 1568 LA = Kl 1569 DO 100 1=1NBI 1570 100 GTSGIIK) = GTSGIILA) 1571 DO 110 1=1NBI 1572 110 GTSGIINB1) = PLII) 1573 00 120 l=lNB1 1574 120 PL(1gt = GTSGIJI) 1575 DO 130 K=JNB2 1576 LA = Kl 1577 00 130 1=1NBI 1578 130 GTSGlKl) = GTSGILAI) 1579 DO 140 1=1NBI 1580 140 GTSG(NBII) = PLII) 1581 DO 150 l=JNB1 1582 150 COL(l) = C0LII1) 1583 COLI NBC) = 0 1584 NBC = NBI 1585 RETURN 1586 END

1588 C SUBROUTINE PROJCTIPLPEXRASGTSGNNBCCOLIIVIC NORM) 1589 1590

326

1 ^91 t NTEO R lt-nt t c i n r _ ini j 159 cnii i i bull bullbull i ) bull ) f bull o i gt 1 J Tl PV I - -bullbull bullbullbull i i--RM o r TIC PROJECTION OK THE I -TH 11- i- bullbullchi^rvin i gtoiraquo 1 bull H DO 1 0 K -1 l I v O poundgt iPVK) bullbullbull U 1 w n DO 10 - - I N loOi 0 EURI ) ( T ) bull S lt K J ) G lt J 1 gt 150 no ro io i NT- I0T- PL (K) = 0 1 OO j LA = COL(K 1004 DO 20 J = l N WOE 20 PL(Ilt) = PI IK) bull bull - LA EXTRACJ) 1 500 DO 30 K= I NSC 1607 P I K ) - 0 1 toe DO 30 = bull NtC 1003 30 PCX) = PI ) O 0 (K J ) laquo P L ( J gt IG10 00 40 K - I N 1611 P L I K ) = 0 15 2 DO 40 J- I NBC 131 3 COLi - CO_l l ) 1014 -10 PLCK) - PL1K1 bull 0 KCOLJ ) laquo P ( J I I 0 i DO C 0 K- 1N 1 fi 1 6 F- IK) bull IX 1 RA K i 101 DO i ic J - M 1GK1 0 P l U = Pl - I ltK J ) P L ( J ) I Ma c 1620 C P I iOv H i P i t - i 11raquo OF THE I -TH CONSTRAINT 1021 C l o 2 imMi = 0 16 3 0 0 lt bull I N 11524 1 i-Arhl - II0PI1 H P I K ) laquo raquo 2 )52Ti i1JK- - GOUTchuRMI) 1 6 2 rCLUKN I 6 t END

1628 -OcTOi TINE C^fiAriOl GTSO S LL COL P PL N NBC I V IC) 1629 traquo - I laquo I f f S T j O C i C l r l SC IV W l P I l I P L U I 1530 Hlfr R Ot)_( |C) COLI COLJ 1631 f5tll LMRwH Glt1020)BI20) 1632 0 1633 C 1S34 C TIM f - O l l M E UPDATES THE MATRIX (G(M) - T laquo S (K ) raquo GCM) gtbullINVEF 163igt c IO IHF A IRX IOCf1lt ) -T laquo SCK) bull GCM1) ) - INVERSE WHEN THE LL 1636 C C J M M I H T IS f JT IN TtiC BASIS 1637 C 1636 C 1639 II 1 = HOC t 1 1640 COL (KIM ) = LL 1641 C 1642 C SET OF A12 1643 C IG44 00 10 l=lN 1643 Pltl) = 0 1646 00 10 J=lN 1647 10 P(I) s PCI) laquo SCIJ) GIJLL) 1648 AO = 0 1643 DO 20 I si N 1650 20 AO - AO + Q(lLL) Ptll 1651 IF IHBC fcOO) BO TO 100 I 652 DO JO I=1NUC 1653 PL(I) = 0 1654 DO 30 J = 1N 1655 COLI = COL (I ) 1656 30 PL(I) raquo PLCI) OIJCOLI ) raquo P1J) 1657 C 1658 C 1659 C SET UP -All-1 bull A2 1660 C 1661 C 1662 DO 40 I-1N3C 1663 PU ) sO 1664 DO 40 J=1NBC 1668 40 Pill bull Pill bull OTSO(IJ) s PLJ) 1666 C 1667 C COMPLETE CALCULATION OF AO 1660 C 1E69 DO 50 Is INBC 1670 50 AO - AO bull PLCII laquo PC I 1 1671 OO 60 Is INBC 1672 DO 60 JslNBC 1673 60 GT5QIIJ) = QTSOIIJ) PC I I raquo PCJ) AO 1674 IP CNdC E O l l GO TO 80 1675 00 70 |s2NBC 1676 LA = I - I 1677 00 70 J=tLA 1676 70 OTS Q U J ) sGTSGCJl)

37

1679 80 DO 90 1=1NBC 1600 GTS6IINB1I = P(1)A0 1661 90 GTSGINB1I) = GTSGlt1NB1) 1682 1 00 0TSGIND1NBU = 1 AO 1amp63 NBC = NB1 1684 RETURN 1685 END

1666 SUBROUTINE CUBMI NIXB FB PLFLPEXTRA FVAL 1 1 NLINLLGRADIITCCCPAR) 1687 SUBROUTINE CUBMI NIXB FB PLFLPEXTRA FVAL 1 1 NLINLLGRADIITCCCPAR)

1666 C 1569 DIMENSION XBC1gtPC1gtPLlt1)EXTRA1) 1 690 REAL NOFM NeRM 1 1691 1 NTFGER FNUM 1692 C 101 IS THE LOGICAL UNIT NUMBER FOR PRINTOUT 1693 101 = 3 1694 LL = 0 1695 NL = 0 1696 NORM = DST 1697 CALL GRAONTIPLEXTRA) 1696 GB = 0 1699 DO 10 1 = 1 N 10 GB = GB + PCI) EXTRA1) 1700

DO 10 1 = 1 N 10 GB = GB + PCI) EXTRA1) 1701 GA = CPAR 1702 IF (GBGTO ) SO TO 120 1703 GO TO 30 1704 20 LL = 2 1705 FNUM = FNUM NL 1706 RETURN 1707 30 IF (CCGINOFM) GO 10 80 1708 40 NORM = NORM 2 1709 DO 50 l=lN 1710 50 PL(I 1 = XBCl) bull NORM raquo PC I ) 1711 NL = NL bull 1 1712 CALL FVALI PL FE)

IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60

1713 CALL FVALI PL FE) IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60 1711 CALL FVALI PL FE) IF C1WGT2) WRITE1011000 ) FE NORM IF 1ITB-FE)GEN0RNlaquoC0N2) GO TO 60 1715 IF NL IENLIN) GO TO 40 1716 GO TO 20

1717 60 CALL GRADNKPLEXTRA) 1716 GB = 0 1719 DO 70 1 = 1 N 1720 70 GB = GB bull PCI)-EXTRAI) 1721 IF CGBLEO ) GO TO 210 1722 FL = FE 1723 GO TO 120 1724 80 GA = GB 1725 Fl = FL 1726 N0RM1 = NORM 1727 C NORM = DlilNl INORMI DSTCO 1728 NORM = NORN bull DST 1729 IFINORMGTCC) NORM = CC 1730 DO 90 1=1 N 1731 90 PL(I) = XB(I) + N0RMraquoPI) 1732 CALL GRADNTIPLEXTRA) 1733 GB = 0 1734 DO 100 1=1N 1735 100 GB = GB t P(|) raquo EXTRAI) 1736 CALL FVAL1PLFL) 1737 IF I1WBT2) WRITE101 1020 ) FL NORM 1738 NL = NL bull 1 1739 IF (GBOTO ) GO TO 110 1740 IF ltFB-FLIGEN0RMlaquoC0N2gt GO TO 200 1741 IF INORMGECO GO TO 20 1742 IF CNLLTNLIN) GO TO 80 1743 GO TO 20 1744 110 A = N0RM1 1745 B = NORM 1746 GO TO 140 1747 120 A = 0 1748 B = NORM 1749 Fl = FB 1750 GO TO 140 1751 130 IF (NLGTNLIN) GO TO 20 1752 14U 2 = 3 bulllt(F1-FL)(B-AgtIGAraquoGB 1753 W = SQRT1Z-Z-0A-GB1 1754 AS = B - UGBW-ZgtCGB-GA200raquoWgt) raquo CB-A) 1755 IF (ALTASANDASLTB) GO TO ISO 1756 AS = 5gtCAlaquoB) 1787 ISO DO 160 l=lN 1758 160 PL1I ) = XBCI ) AS raquo P(l ) 1759 NL = NL bull 1 1760 CALL FVAL(PLFEI 1761 IF (IW0121 WHITE1011010 ) FEAS

IF ((FE-FB)GEASgtC0N2) GO TO 170 1762 IF (IW0121 WHITE1011010 ) FEAS IF ((FE-FB)GEASgtC0N2) GO TO 170

1763 NORM = AS 1764 GO TO 210 1765 170 CALL GRAONTPLEXTRA) 1766 2 = 0

328

1767 DO 180 l=1N 176S 180 Z = Z + ~ 1769 IF (ZGEO 1 770 A = AS 1771 GA = Z 1772 1773 1774 1776 FL raquo FE 1776 SB = Z 1777 00 TO 130 1778 200 FE = FL 1779 210 DO 220 1=1N 1780 W = PLC1) - XBCI) 1781 XB I) = PLC I 1 1782 220 PLC 1 ) = W 1783 FB = FE 1784 FNUM = FNUM NL 1785 DST = NORM 1786 RETURN 1787 1000 F0RMAT13H H E20125XE156) 1788 1010 F0RMATC3H C E20125XE156) 1789 1020 FORMATC3H E E20125XE156) 1790 END

1791 SUBROUTINE PRBOLCCXBFBPLFLDSTC0N2PNFNUMFVALIWLINMIN 1792 gt LLCCFLOWERACCCPAR) 1793 REAL NORM 1794 REAL L1L2L3 1795 DIMENSION XBC1)PC1)PLC 1 J 1796 INTEGER FNUM 179 C 101 IS THE LOUICAL UNIT NUMBER FOR PRINTOUT 17911 101 = 3 179S IF (FBLTFLOWER) FLOWER = -lE30 180D IWK = 0 1801 LL o 0 1802 NLN = 0 1803 NORM = CPAR 1804 CON =-NORM 1805 NORM = 2 bull ABS((FB-FLOWER)NORM) 1803 C RO - DMINKNORM 1 DO 5D0CC) 180V RO = 5raquoCC 1808 IFCROGT1 gt RO = 1 1809 IFCROGTNORM) RO = NORM 1610 IF CROEQDST) GO TO 20 1811 DO 10 1=1N 1812 10 PLC I I o XBCi) ROPCl ) 1813 CALL FVALCPLF1) 1814 I F CIWGT2) WRITEC 1 0 1 1 0 1 0 ) F1 R0 1815 NLN = NLN bull 1 1816 IF CNLNGELINM1N) GO TO 240 1817 0 0 TO 30 1818 20 F1 = FL 1619 30 LO = 0 1820 L I = RO 1821 FO = FB 1822 40 Rl = 5 CONROlaquoROCF1-F0+ CONRO) 1823 IF I R 1 G T 0 ) 00 TO 80 1824 C 5 0 L2 = DM1NI ( 2 D0laquoL1 L1 bull 9 9 9 I CC-L1 ) 1 1825 50 L2 = LI + 999raquoCC0-L11 1826 IFCL2GT(2raquoL1)gt L2 = 2laquoLI 1S27 60 00 70 I=1 N 1828 70 PLC I) = XBCI) raquo L2laquoP(I) 1829 CALL FVALCPLF2) 1830 IF IIWGT2) WRITE1011010 ) F2L2 1831 NLN = NLN 1 1832 IF CNLNOTLINMIN) GO TO 230 1833 IF IF2GEFI) GO TO 140 1634 LO a LI 1835 FO = Fl 183G LI = L2 1837 Fl o F2 1838 00 TO 50 1839 80 IF IR1-L1) 1005090 1840 C 90 L2 = DMIN1CR1999laquoCC) 1841 90 L2 = 999CC 1842 1FCL2GTRI) L2 = Rl 843 GO TO 60 844 C 100 D = 0MIN1C7SD0R0R1) 845 100 D = 75raquoR0 846 IFC0GTR1) 0 = Rl 847 C Rd - DMAX1 I 25D0laquoR0D) 848 R2 = 25laquoR0 849 IFIR2LTD) R2 = 0 850 DO 110 I = 1 M 851 110 PLCI) = XBCI) R2laquoPCI) 1852 CALL FVALCPLNORM) 1803 IF CIW0T2) WRITEC 1011010 ) N0RMR2 1854 NLN = NLN 1

329

1655 IF INLNGTLINMIN) GO TO 240 1856 IF (NJRMLTFO) GO TO 120 1857 LI = R2 1850 Fl = NORM 1859 I860 1661 1662 10 = R2 1863 FO = NORM 1861 GO TO 50 18o5 130 L raquo Li 1 J6E F2 = F 1 136 7 LI = R2 1860 Fl = NORM 1869 M O K = 1 1670 IF (IWKFQO) GO TO 150 1671 IF ( (FB-M ) GE 11 -CONK) GO TO 260 1672 150 JWK = 1 1373 R3 = 500-(F0CLllaquo2-L22) + F1 (L2lt2-LO2) + F2( L0laquo2-L1laquo2 1874 gt )ltF0(L1-L2) F1KL2-L0) + F 2 M L 0 - L O ) 1875 IF ( AB5(R3-Lt)LEACCL1) GO TO 260 1676 C D = DMIN1(L0+9D0CL2-L0)R3) 1877 D = LO + 9(L2-L0) 168 IFIDGlR3J 0 = R3 1879 C R4 = OMAKULO 1D0(L2-L0) 0) 1880 R4 = LO + 1ML2-L0) 1861 IF(R4LTD) R4 = D 1882 160 DO 170 1 = 1 N 18C3 170 PL() = XB(I) + R 4 raquo P U ) 1884 CALL FVAL(PLNORM) 1685 IF (IWGT2J WRiTE(1011000 ) NORMR4 1 Dub NLN = NLN bull 1 I (87 IF (NLNGTLINMIN) GO TO 240 1380 IF (R4E0L11 GO TO 260 1689 IF (R40TL1gt GO TO 210 1890 IF INCiRMLTFU GO TO 190 1891 LO = R4 T632 FO = NORM 1893 IF tKEQ2) GO TO 140 1694 R4 = 5ML1+L2) 1895 180 K = 2 1896 GO TO 160 1897 190 L2 = L1 1896 F2 = F 189S 200 LI = h 1900 Fl = NURM 1901 OO TO 140 1902 210 IF (N0RMGEF1) GO TO 20 1903 LO = L1 1904 FO = Fl 1905 GO TO 200 1906 220 L2 = R4 1907 F2 = NORM 1908 IF (KEQS) GO TO 140 1909 R4 = 5ML1+L2) 1910 r0 TO 180 191 230 IF (F2GcF1) GO TO 240 1912 Fl = F2 1913 L1 = L 1914 240 LL = 2 1915 IF UKB-F1) LTC0N2Ll) GO TO 280 1916 LL = 1 1917 DO 250 1=1 N 1918 250 P H I ) = XB(I) + L1P(I) 1919 260 IF (FDLEF1) GO TO 240 1920 FB = Fl 1921 OST = LI 1922 DO 270 I=1N 1923 D = PL(I) - XB(I gt 1924 X B U gt = P L U ) 1925 270 PL( I gt o D 1926 2^0 l-NUM - FNUM + NLN 1927 RETURN 1928 1000 J-0RMATC3H0B E25125Xpound1561 1929 1010 FORMATC3H0S E25 12 5XEl 56) 1930 END

1931 1932 1933 1934 C THIS SUBROUTINE SOLVES FOR THE PAYNTIiR TRUNCATION NUMBER K SOLVE FOR 1935 C A K SUFFICIENTLY LARGE THAT THE FOLLOWIN3 INEQUALITY IS SATISFIED 1936 C I1FACT0RlAL(k))(QraquoK)EXPCQ)ltERRQR 1937 C 1938 C REF ANALYSISSIMULATION AND CONTROL OF DYNAMIC SYSTEMS BY J W 1939 C BREWER PP100-1B2 FOR THE JUSTIFICATION OF THIS METHOD 1940 C AND MCCUE H K UNIVERSITY OF CALIFORNIA 1941 C LAWRENCE LlvERMORE LABORATORY (PRIVATE COMMUNICATION) 1942 C

330

1943 1944 1945 1946 1947 1346 1949 1950 1951 1952 1353 1154 1905 1956 1957 1958 1959 I960 1961 1962

C THE LARGEST FACTORIALS THAT ONE CAN REhVr-FNr ON A 60 pound51 T MACHINE C ARE AS FOLLOWS C 18 FACTORIAL INTEGER C 154 FACTORIAL FLOATING POINT C THIS FACT ALONG WITH IOVI ONE IMPLIMENTS THE FAYNTfriR INEQUALITY C PLACES AM UPPEK 1JOUHI IN KMAX (ASSUMING SINGLE PRECISION) C A REASONABLE VALUE IS KHAX-100 (OR FLOATING POINT FACTORIALS C

DIMENSION A(N0N0) C SET K = 0 FOR CHECK ON RETURN

K = 0 C SOLVE FOR THE LfRGFST ELEMENT IN THE A MATRIX AMAX = ABStAll1)) DO 1 I = 1 N1 DO 1 J=1NI 0=ABS(A(I J)) 1 IF(QGTAM))AMiX~Q C SCALE AMAX TCI TIG bullbullbull 1011 lif) VALUE

1 96- 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1963 1984 1985 1986 1987

Q=AMAXraquoOELTAN PERFORM THE PAYNrtfi If

AMAX=EXP(U) X1=00 XK=00 DO 2 1=1KMAX XK=XK16 X1=QXK AMAX=AMAXlaquoXI IFIAM) IL rRl- K COM) 1 MUE INECUAIi Ti T bulllt K = -1 GO TO 11

I 1 I I bull m if

CAI TY AND SOLVir

ro IO 1 [ [ 1 OT KKMAX

1 I -J f w K = I

CON 111 II RETURIt END

1968 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 20i9 SCJO

THIS Ptu M7

SPECIAL CAE THIS SUElPoUV |~ bull NO I S t R - gtpound I S

X ( K ) = - M X i GIVEN THC 11ATF 1

X(T)DOT = bull

P = 3UMMA0N I - - Q=5Utf)Ai ION R=SUNKATIJN | - i

TJ

L1A gt

or I T ALSO COI^PUTLH Tl-i bull A H lt 0 t v- WHERE

F T L D ( I ) = ( l l I X 4 U I K I -1gtlaquo0 T n - i l l C A T L D ( I ) = ( A T I ) gt I A I raquo I - I ATLI lC) bullbull i PH121 = SUMMATION 1= 0 bull ) Of bull 10i PH122 = SUMMATION I D I O bull - I u V U - WKP1(TKTK-1) = P H I 2 I ( r - r i i i l laquo T

REF D APPOLITO J A A l l r L E Al iV I I LINEAR STATIONARY CONINMCj Y5lty-k I N PP 2 0 1 0 2 0 1 1 DEC 196c AHO GELB A ( E D ) APPLIED U P T l A - c iTI MATO COURSE NOTES A SHORT COUR- C I A L M A I I r THE ANALYTIC SCIENCES CORF JIAi 1 VI I t r tDI I -

DIMENSION A ( 1 0 1 0 I B I I 0 1 0 ) 0 ( 1 0 1 0 ) P i 10 DIMENSION S ( 1 0 1 S U M ( 1 0 ) A 1 I lO CAPWI bull bull

2 PHI 21 ( 1 0 1 0 gt P H T 2 2 t O ) F T I IK t o I U I A ND = 10

I T I A L I 2 E THE MATRICES CALL ADOTBT CCAPWDFTLDN3N3Nl NDgt CALL AOOTB ( D FTLD DTLO Nl iMI N l ND) DO 2 1=1N1 DO 1 J raquo I N 1 O T L D I l J ) = DTLD(1 J ) DELTA P ( I J ) = 0 P H I 2 1 ( 1 J ) = 0 F T L D ( i j ) = 0

T I ) f L H

FINALLY

I-S K-7 l OR

l l r i r (ltgt I L I M l

331

2031 AT(I gt = A d I gt DELTA 2032 SUM(I) raquo 1 2033 Sill bull I 2034 PHI22(Igt_raquo I 2036 C 2 COMPUTE STATE NOISE COVARIANCE TRANSITION MATRIX WKP1(TKTK-1gt 2037 0 AND STATE TRANSITION MATRIX P(TKTK-igt 2038 KKM1 laquo KK-1 2039 DO 6 K=1KKM1 2040 DO 4 I=1N1 Ideg42 FTLD(IdegJ| N= (ATLDltI)laquoDTLDltIJ) - FTLOd J) AT( J) gtK 2043 3 PHI2K Jgt = PHI2HIJ) FTLDdJ) 2044 ATLOd) = AT(I)laquoATLD(I gtK 2045 4 PHI 22(1 ) = PHI22d) ATLD(1) 2046 5 CONTINUE 2047 DO 7 I=1N1 lo49 C N O T I J = S N C E A IS DIAGONAL PHI22 = (PHI22)T 2J50 6 WKPHIJ) = PH121(IJ)PHIZ2(Jgt I8I2 C 7 COMPUTE^duMffTHE INTERMEDIATE SUMMATION TIMES (DELTA) 2053 DO 15 J=2KK 2054 DO 14 I=Nl 2055 S([) = S() laquo AT(I)J 2056 14 SUMd) = SUMd) bull S( I ) 2057 15 CONTINUE loll C COMPUTE CONTROL TRANSITION MATRIX Q(TKTK-1) 2060 DO 18 I=1N1 2061 DO 17 J=1N2 2062 17 0(1J) = DELTASUM(I)laquoB(IJ) 2063 18 CONTINUE 2064 10 CONTINUE 2065 C COMPUTE NOISE TRANiTION MATRIX R(TKTK-1) 2066 DO 20 1=1Nl 2067 DO 19 J=1N3 2060 19 R d J ) = DELTASUMd ) laquo D ( I J ) 2069 20 CONTINUE 2070 CALL MATOUTP (PNlNl2HAKND) 2071 IF1N2NE0) CALL MATOUTP (6N1N22HBKNOgt 2072 CALL MATOUTP (RNlN32HDKND) 2073 CALL MATOUTP (WKP1NlNl4HWKP1ND) 2074 RETURN 2075 END 2076 2077 C 2078 2079 2080 2081 2062 20B3 2064

SUBROUTINE ATOB (ABNMND) COPIES (A) INTO ltB) DIMENSION A(1010)B(1010) DO 2 I = 7 N DO 1 J=IM B( lJ) = A d J) CONTINUE RETURN ENO 2086 2066 C 2087 C 2068 2089 pound090 2091 2092 2093 1 2094 Z 2095 3 2096 2097

SUBROUTINE ADOTB ltABCLMNND) ROUTINE PERFORMS FOLLOWING MATRIX MULTIPLICATION C(LXN) = AC-XMI BltMXNgt DIMENSION A(1010)B(1010)C(1010) DO 30 I = 1L DO 20 J bull IN C(lJ) = 06 DO 10 K e IM CdJ) = 0(1 J) AdK)laquoB(KJ) CONTINUE CONTINUE RETURN END

2098 SUBROUTINE ADOTBT (ABOLMNND) 2099 C ROUTINE PERFORMS F0LL0W1N0 MATRIX MULTIPLICATION 2100 C C(LXN) = A(LXM) BT(MXN) Sraquo2i S H E N S 2 N S -iMN) REFER TO MATRICES AFTER THEY ARE TRANSPOSED 2102 DIMENSION A(10 I 0)B(10 10)C(10 0) 2103 DO 30 I = 1L 2104 DO 20 J 1N 2105 C(lJI = 06 2106 DO 10 K = IM 2107 10 CdJ) = 0(1J) bull A(IK)raquoB(JK) 21OA 20 CONTINUE 2101 30 CONTINUE 2110 RETURN 21 1 1 END

SUBROUTINE ATOOTB (ABCLMNND)

332

pound113 C ROUTINE PERFORMS FOLLOWING MATRIX MULTIPLICATION 2114 C CU-XN) = AT(LXM) B(MKN) 2115 C DIMENSIONS (LMN1 REfFR TO MATRICES Al-TER THEY ARE TRANSPOSED 2116 DIMENSION A( 1 0 I 0) B( 0 103 C( 10 1 0) 2117 DO 30 I = IL 2118 00 20 J e IN 2119 CltIJl - 00 2120 DO 10 X = 1M 2121 10 COJ) = C(IJ) + AfKI)raquoB1KJ) 2122 20 CONTINUE 2123 30 CONTINUE 212D RETUilN 2125 END

2126 SUBROUTINE APLUSB CABCNMND) 2127 DIMENSION AC 1010)HI 10 I 0)C(ID10) 2128 DO 2 = 1N 2129 DO 1 J = 1 M 2130 I CMJ) = ACIJ) + Blt[J) 2131 2 CONTINUE 2132 RETURN 2133 END 2134 SUBROUT I igtIE AMINSB I A B C N M ND) 2 3 5 DIMENSION A l l 0 1 0 ) B l I 0 I 0 ) C I 1 0 1 0 ) 2136 DO 2 I = 1N 2137 DO 1 J = 1M 2138 1 C ( I J ) = A l l J ) - B l J gt 2139 2 CONTINUE 2IltI0 RETURN 2141 END 2142 SUDROUTIMF APLU B (A amp C N M MO) 2143 DIMtNoOH A l 1 0 1 0 ) B ( 1 0 1 0 ) C ( 1 0 1 0 ) 21(14 F PERFOIM FOLLOWING MATRIX OPERATION 2145 C C(NXM) - A(NXM) + BT(NXM) 2146 DO 2 1=1N 2147 DO 1 J=1M 2148 1 CCIJl = AIIJ) BCJ1) pound149 2 CONTINUE pound150 RETURN 2151 END 2152 SUBROUTINE ABAT IABCNND) 2153 C COMPUTES C = AraquoE-T FOR SPECIAL CASE WHERE CAgt IS DIASONAL 2154 DIMENSION A(10 1OiBiI 010)C(10 10) 2155 DO 2 1=1N 2156 DO I J=1N 2157 1 C(IJ) = AI I I )BC 1 J)AC J J) 218 pound CONTINUE 21 59 RE TURN 21 60 END

2161 2162 pound163 TR = 0 2164 DO 1 1-1N 2165 TR = TR bull AltI I gt 2166 RETURN pound167 END 216B SUBROUTINE XTAY ( X A Y Q N N D ) 216S C FINDS VALUE OF QUADRAT IC FORM Q 21 70 DI MENS I ON X ( I 0 J A ( 1 0 1 0 ) Y M 0 ) 2171 0 = 0 pound172 DO 2 J = l N pound 7 3 XA = 0 2 4 DO 1 I = 1 N 2 5 I XA = XA XI I ) A ( I J ) 2176 pound 0 = 0 + XAYltJ) 2177 RETURN 2176 END

2179 2180 C pound161 C pound162 C SUBROUTINE COMIUTFS THE INVERSE IF AN NXN REAL MATRIX (A) AND 2163 C RETURNS IT IN (AINV) (A) IS NOT DISTURBED IN THE PROCESS pound184 C GAUSSIAN ELIMINATION USING THE LU DECOMPOSITION AND pound185 C ITERATIVE IMPROVEMENT IS THE METHOD FOR SOLUTION 2186 C 2187 C 2188 C

333

Of UXiffi MrC iRiVTMr NO CLCVE (i MPLER COMPUTER SOLUTION iAIC iYS (EMS fPENlICE-HALL(1967) CHAPT 17

bulli I 9 J 1 i cgt t 2194 2 t 9f 2 1 97 bull 2U-gt 2199 praquo0lt i^Ol 203 SJ-Ofl 2 20J 220 2200 2209 2210 pound21 1 2212 2213 22)4 2215 216 2217 1 21H 2219 2220 2221 2tgt2 pound pound-223 2221 2225 2226 2227 2228 2229 C 2210 2231 2232 2233 2234 223 o 2236 2237

ON RETURN nERROR J IS THE ERROR FLAG IT SHOULD BE CHECKED I TIMOR - 0 EVERYTHING SEEMSfi OK lEMNO^ = -1 ROW WITH Ail ZfciW ELEMENTS WAS FOUND poundiFf-( = = -2 ZERO Puor ELEMENT WAS FOUND JCf oR- = -3 ITERATIVE IMPROVEMENT DtD NOT CONVERGE THE A MATRIX IS IL -CONDI nONED SUCH THAT NO SIGNIFICANT DIGITS OF THE TRJC ^OLuTlCN WERE OBTAINED IN THE ORIGINAL SOLUTION FROM SOLVE NOTE VARIABLE D MENS I ONI NG IS USED THROUGHOUT THIS PACKAGE ND - 312F Of DIMENSIONED ARHAYS IN CALLING ROUTINE r-N = T H E ACTUAL PROBLEM SIZE BEING USED (NNLEND OF COURSE)

DIMENSION Af1010)AINV(1010gtUL(1010)B(10)X(10) 2 SCALES I IQ)R( 0)OX10) ( IPS(IO) IFCNNEO1gtGO TO 10 ND = 10 CALL ntiCCMP (NN A UL SCALES IPS I ERROR ND) If- ( IEftRraquoRLTD) RETURN INDEX=1 DO 1 1=1NN iafNf-MiL iHE PROPER B VECTOR DO 2 J=1 NN B(Jgt=00 CONTINUE VOLvr FOR IMF COLUMN OF INVERSE Bt IND=X) = 1 0 CALL SOLVE (NNULBX I PSND) CALL iMFRUV (Nil A UL amp X R 3X IPS DIGITS TERROR ND) IF ( lERrtORLl 0 ~

-gtyigtMi COuUMN IN IN mdash v J=1HN AINV (JINDEX) CONTINUE INDE MNDEX+l CONTINUE RETURN SCALAR CASE CONTINUE JF(A) I 120 11 AINV = 1 A CRROR = O RETURN I ERROR = -2 RETURN END

RETURN ^E MATRIX X( J)

2P1amp SUBROUTINE prCOMP NN A ML 5 ^Al t S I PS 1 ERROR NDgt 2239 D I MEN- I ON A( ND NO UL ( Hi ND JCALF51 NO ) IPS(ND) 2240 N = NN 2241 C 2242 C INITIAL^ (PS UL AND SCALF3 2243 DO 5 I s 1N 224-1 J P S U ) s I 2245 ROWNRM a 00 2246 DO 2 J = 1N 2247 ULtIJ) = A(lJ) 2240 IF(ROWNRM-gt=Bjf UL(I J) )) 122 2249 1 ROWNRM = ABSfUL(IJ)J 2250 pound CONTINUE 2251 IF (ROWNRM) 3913 2252 3 SCALES(I) = I 0ROWNRM 2253 bullgt CONTINUE 2254 C 2255 0 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING 2206 NM1 s N-l 2257 DO 17 K = 1NM1 2250 BIG = 06 2259 DO 11 1 = KN 2260 IP = J P 5 U gt 2261 SIZE = ABSIULfIPK))laquoSCALES I IP) 2262 IF (SIZE-BIG) 111110 2263 0 BIG = SIZE 2264 IDXPIV s I 2265 11 CONTINUE 2266 IF (BIG) 139213 2267 13 IF HDXPIV-K) 141514 2263 14 J = |PS(K) 2269 IPS(K) = IPS(IDXPIV) 2270 IFSMDXP1VJ = J 2271 gt5 KP = IPS(K) 2272 PIVOT = UL(KPKgt 2273 KP1 = Kl 2274 DO 16 I = KPIN 2275 IP = I PS I I ) 2276 EM = -UL(IPKIPIVOT

334

2277 227S 2279 2280 C 2281 C 2282 2283 2284 2285 poundpound66 19 2287 2286 C 2289 C 2290 C 2291 C 2292 91 2293 2294 2295 2296

ULOPK) = -EM DO 16 ) = KP1N ULUPJ) = UHIPJ) bull EMraquoUL(KPJ) INNER LOOP USE MACHINE LANGUAGE CODING IF COMPILER OOES NOT PRODUCE EFFICIENT CODE CONTINUE 16 17 CONTINUE KP = IPSIN) IFtUL(KPN)gt bullERROR bull 0 RETURN ERROR EXITS I ERROR I ERROR I ERROR I ERROR RETURN t ERROR RETURN END

EVERYTHING SEEMED OK ROW WITH ALL ZERO ELEMENTS WAS FOUND -2 2ER0 PIVOT ELEMENT WAS FOUND -1 -1

2297 SUBROUTINE SOLVE (NNULBX[PSND) 2298 DIMENSION ULCNDND)B(NOgtXIND)IPStND) 2299 N = NN 2300 NP1 s Nlaquo1 2301 C 2302 IP = IPS(I) 2303 X(ll laquo B(IP) 2304 DO 2 I = 2N 2305 IP = IPSI) 2306 I Ml = 1-1 2307 SUM =00 2308 DO 1 J raquo 1IM1 2309 I SUM = SUM bull ULUPJ)laquoXU) 2310 H I D = BIIP) - SUM 2311 C 2312 IP = IPSCN) 2313 X(Ngt = X(NgtULt]PNgt 2314 00 4 I BACK o 2N 2315 I = NP1-IBACK 2316 C 1 GOES (N-1) 1 2317 IP bull IPS(I) 2316 IP1 = 11 2319 SUM = 00 2320 00 3 J = IPIN 2321 3 SUM - SUM bull ULCIPJ)laquoX(J) 2322 4X(I) = (X(I)-SUMgtUL(IPIgt 2323 RETURN 2324 END

2325 2326 2327 C 2328 2329 2330 C 2331 C 2332 2333 2334 C 233B 2336 2337 2338 2339 2340 2341 C 2342 2343 2344 2345 2346 2347 2348 2349 C pound350 C 23SI 2352 2353 2354 23S5 2356 2367 2388 2359 2360 2361 9 2362 C

SUBROUTINE It-IPRUV (NN AULB X RDX IPS DIQI TS IERROR ND) DIMENSION A(NDND)ULiNDN6gtBltN0gtX(N0)R(NDgt0XlNDgtIPStND) USES ABSU AMAXlti AL0G10O DOUBLE PRECISION SUM N a NN XXX EPS AND ITMAX ARE MACHINE DEPENDENT XKX EPS = 2raquoraquo(-47) ITMAX = pound9 XNORM laquo 00 DO 1 I bull lN 1 XNORM laquo AMAXKXNORMABS(X(l))) IF tXNORM) 323 2 DIBITS r -ALOOIO(EPS) GO TO 1U

3 DO 9 I TER bull I ITMAX 00 5 I bull 1N SUM bull 00 DO 4 J bull 1N 4 SUM bull SUM bull A(IJ)raquoXIJgt SUM raquo BltI) - SUM 5 R(Igt raquo SUM XXX IT IS ESSENTIAL THAT A(lJgtgtX(Jgt YIELD A DOUBLE PRECISION RESULT AND THAT THE ABOVE AND - BE OOUTLE PRECISION XXX CALL SOLVE ltNULRDXIPSND) OXNORM bull 00 DO 6 I bull IN T bull X(ll X(l) laquo XCI) DXII) DXNORK a AMAX11DXN0RMABS(X(I)-Tgtgt 6 CONTINUE IF 11TER-I) 8 78 7 DIGITS = -ALOG10IAMAX1(DXNORMHNORMEPS)) 8 IF IOXNORM-EPSltXNORM) 10109 CONTINUE ERROR EXIT

335

2363 C I ERROR = 0 OK 2364 C IERROR = -3 ITERATIVE IMPROVEMENT DID NOT CONVERGE THE A MATRIX 2365 C IS ILL-CONDITIONED SUCH THAT NO SIONIFICANT DIBITS OF THE 2366 C TRUE SOLUTION WERE OBTAINED IN THE ORIGINAL SOLUTION FROM SOLVE 2367 I ERROR = -3 2368 RETURN 2369 10 I ERROR = 0 2370 RETURN 2371 END 2372 SUBROUTINE NOISE (XBARCAPXXNND) 2373 DIMENSION XBAR(ND)CAPXINOND)X(ND) 2374 C RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS X(I) 2375 C ARE NORMALLY DISTRIBUTED ABOUT A MEAN VALUE VECTOR (XBAR) 2376 C WITH A (DIAGONAL) COVARIANCE ltCAPXgt 2377 C THAT IS 2378 C X - N (XBARCAPX) 2379 C NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX 2360 C 2381 00 10 1 = 1N 2362 10 X(I) = GN(XBAR(1)CAPX(Ilgtgt 2363 RETURN 2384 END

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2406

SUBROUTINE NOISEW (TCAPXXSIGMANND) DIMENSION CAPXINDND) XIND)SIGMAIND) COMMON I0 NINNOUTNTTYNRUNVER DATA NENTER O RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS XC I gt HAVE VARIANCE CAPXdI) CAPX BEING THE COVARIANCE MATRIX FOR X THAT IS CAPX o EIXXT) NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX XXX CAUTION XXX THIS ROUTINE HAS MEMORYUSE FOR ONLY ONE VARIABLE XX) THIS ROUTINE (NOISEW) USED FOR PLANT DISTURBANCE VECTOR (W) NOTEBY REMOVING STMT 1 BELOW THE ROUTINE WILL ACCOMODATE TIME-VARYING STATISTICS (IE CAPX(T)NECONST ETC) IF (NENTEREQNRUN) GO TO S NENTER = NRUN THIS FORM FOR TIME INVARIANT STATISTICS SUCH THAT STANDARD DEVIATIONS ARE CALCULATED ONLY AT BEGINNING OF RUN GENERAL CASE WOULD BE TO CALCULATE SIGMA(T) A FUNCTION OF TIME DETERMINE STANDARD DEVIATIONS FlhST TIME THROUGH 00 2 l=lN SIGMA(I) raquo SQRTCCAPXU)) DO 10 1 lt 1N 0 X(l) raquo GN(0SIGMA(l)gt RETURN END

2409 SUBROUTINE N8ISEV (TCAPXXSIGMANNDgt 2410 DIMENSION CAPXINOND)X(ND)SIGMA(ND) 2411 COMMON le NINNOUTNTTYNRUNVER 2412 DATA NENTER O 2413 C RETURNS A RANDOM VECTOR (X) WHOSE ELEMENTS X(Igt HAVE VARIANCE 2414 C CAPX(I1gt CAPX BEING THE COVARIANCE MATRIX FOR X THAT IS 2418 C CAPX = E(XXT) 2416 C NOTE IT IS ASSUMED THAT CAPX IS A DIAGONAL MATRIX 2417 C XXX CAUTION XXX THIS ROUTINE HAS MEMORYUSE FOR ONLY ONE VARIABLE XX) 2418 C THIS ROUTINE (NOISEV) USED FOR MEASUREMENT ERROR VECTOR (V) 2419 C NOTEBY REMOVING STMT I BELOW THE ROUTINE WILL ACCOMODATE 2420 C TIME-VARYINS STATISTICS (IE CAPX(T)NECONST ETC) 2421 I IF (NENTEREONRUN) GO TO 5 2422 NENTER = NRUN 2423 C THIS FORM FOR TIME INVARIANT STATISTICS SUCH THAT STANDARD 2424 C DEVIATIONS ARE CALCULATED ONLY AT BESINNING OF RUN 2425 C GENERAL CASE WOULD BE TO CALCULATE SIGMA(T) A FUNCTION OF TIME 2426 C DETERMINE STANDARD DEVIATIONS FIRST TIME THROUGH 2427 DO 2 I=1N 2426 2 SIOMAU) bull SORTICAPXII I ) ) 2429 9 DO 10 I bull 1N 2430 10 X(I) - QN(0S10MAltl)gt 2431 RETURN 2432 END 2433 2434 C 2435 C 2436 C 2437 C 2436 C 2439 C 2440 C 2441 C 2442 2443 2444

FUNCTION GN (MUSIGMA) SUBROUTINE RETURNS A NORMALLY DISTRIBUTED (PSEUDO-) RANDOM NUMBER WITH MEAN (MU) AND STANDARD DEVIATION (SIGMA) THE ROUTINE USES (RAND()gt WHICH IS TO RETURN A (PSEUDO-) RANrampM NUMBER WITH UNIFORM DISTRIBUTION ON THE OPEN INTERVAL (01)

DATA NENTER O REAL MUSIGMA NENTER a NENTER

336

2445 pound446 2447 2448 2449 2450 2451 24S2 2453 2454 2455 2456

IF (NL-NTEREQ2) GO TO 2 VI 2 laquo RANLUKERNEL) - I V2 = 2 RANDEKERNEL) - 1 S = VI VI bull V2 V2 IF (SGE1) GO TO I

RAD = CRT 6N = sicrn RETURN GN = SIGMA NENTER - 0 RETURN

(-2 VI V2 RAD + MU

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 247S 2476 2477 2478 2479 2480 2481 2482 2483 2484 2465 2486

FUNCTION RANO (IY) ROUTINE REUIW A (PSEUDO-) RANDOM NUMBER UNIFORMLY LTI - fl- I BUTEO ON THE OPEN INTERVAL (0Tgt ROUTINE IS laquo u IABLE IE IT SHOULD WORK ON ANY MACHINE i SEE REF FOR JETAILS) REFFRITSCM F N UNIVERSITY OF CALIFORNIA LAWRENCE L I VI-MORF LABORATORY (PRIVATE COMMUNICATION) AND INTERNAL DOC -IENT NUMERICAL MATHEMATICS SECTION NOTE NO FEB 7 1973 UCLLL DATA M2 O I TWO 2 IF (M2 NE 01 SO TO 20 COMPUTE WORD SIZE OF MACHINE M = 1

10 M2 = M M = ITW0M2 IF (M GT M2) Oe TO 10 HALFM = M2 COMPUTE MULTIPLIER INCREMENT AND SCALE FACTOR u t c IIgt-gtL bull i r i i t n i IIUIH-I ii_n bull nnu IA = 8IFIX(HALFMlaquoATAN(1gt8gt + 5 IC = 2laquoFIX(HALFMraquo(05-SQRTI316gt) 1 S = 05HALFM COMPUTE THE NEXT RANDOM NUMBER

20 IY = IYlaquoIA IC IF (IY2 GT M2I IY = (IY-M21-M2 IF (IY LT 0) IY = (IYM2)M2 RAND - FLOATClY)S RETURN END

2487 2488 243U 2490 2491 2492 2493 2494 2495 496 2497

SUBROUTINE UEJAR (LTUIUUKNO) DIMENSION UKND3)IU(NDgtUltNDgt SUBROUTINE RETURNS THE INPUT VECTOR (U(IT)I=1L) IT USES OIERJAL FUNCTION Ul I I WHICH SETS EACH ELEMENT SEE (FUNCTION Ul) LISTING FOR MEANINO OF SWITCH (IU) AND ARRAY OF FUNCIION PARAMETERS (UK) EXTERNAL Ul DO 1 I=1L Ull ) = Ul(IUII) lUKNDgt RETURN END

2

2498 2499 2500 2501 2S02 2501 250-1 2505 2506 2507 2508 2509 2510 2511 251 2 pound513 2514 C 2515 3 2516 2517 C 2518 4 2510 2520 C 2521 5 2522 2523 C 2524 6 2525 2526 7 2527 2526 8

FUNCTION Ul ltIUlUKNDl U S R H U T N Ei RETURNS (Ul) AN ELEMENT OF AN INPUT VECTOR WHICH IS Abdquopound UFJlpoundM gE TME A s SELECTED BY (IU) INCLUDED TIME FUNCT ONS $ E I - T A S r f R ^ B E L 0 H PARAMETERS FOR THOSE FUNCTIONS ARE PASSED THROUGH (UK(IJ)) (I) IS THE VECTOR ELEMENT INDEX DSinBi0N U M N U 3 E N F deg R deg F 3 P A R A M E T E R S p e R INPUT |tj I S A SW|TCH TO SELECT TYPE OF FORCING FUNCTIONSEE BELOW GO TO (123456789)IUP1 ZERO ELEMENT Ul = 00 RETURN STEP INPUT OF MAGNITUDE UK(11) III =1X1111 RETURN RAMP INPUT OF 0A1N UKltI1) WITH INITIAL VALUE UK(I2) Ul = UK(I1)bull T + UKlt12) RETURN PARABOLIC INPUT HUbdquoV K 1 ) T T bull UK(I2)laquoT UK(13) RETURN AgtSIN(OMEGAraquoT PHI) INPUT Ul UKII1)raquoSIN(UK(I2)laquoT t UKII3)) RETURN GAUSSIAN NOISE INPUT WITH MEAN UK I I 1) AND STO DEV UK(I2) UI = GN lt UK ltI I )UK(12)) RETURN CONTINUE RETURN CONT1NUE

337

259 2530 2532

Rf- TURN CONTINUE RETJRN END

533 2534 25ii5 2536 2537 2530 2539 250 2541 as J 2

SU6P0UTINE MATNPT (AN MNAMEND) DIMENSION A(NDND) COMMON IO NINNOUTNTTYNRUN DO 1 1=1N READ ltNJNIOIgt ltACJJ)J=IMJ y DfllAT f 8E10 3 ) WRITK (N0UT102)NAME FORMAT ( IX A I-)- MATRIX IS) 00 C I = 1 N U f t l I t t M O U f 1 0 3 ) l-ORMAT ( IUI i X E RiiTURN END

25ltli 2 5 4 9 2 5 5 0 I O 2 5 5 1 25f 10pound 2 S M 2554 1 OCl

SUBRCJTlNf V i bull-laquo (XNNAMENDgt DIMLJVJIOI X C COHKOil M O hNOUTNTTYNRUN RiAP t NIC 10 ) fXC 1 gt 1 = 1 N ) FORMAT (poundT i 0 3) WR1 f i (NVlt I02JNAME FORMAT ( I K A 1 3 H VECTOR I S WRI7ENOUT103) lt X lt I 1 = 1 N ) TORMal ( 10lt 1 X E 1 0 3 M RETURN END

2557 SUBROUTINE MATOUTF ltANMNAMEND) 2558 LlMtMMON AiNDNO) 2559 COIIhON Q NI N N C W NT TY NRUN SSPO VRJ pound NOUT I T 1 )NAME 2561 IUI fORMAl IXA3H MATRIX IS) 2562 00 1 I=1 tN 2S-63 1 Wftl TE-NOUT I 0 2 ) ( A C I J raquo J = 1 M gt 2364 10 LirltMATl0( 1 F 1 0 3 ) ) 2$65 RL1URN 2566 END

li

SUBROUliNE VECOUTP (X N NAME ND) DIMENSION X(ND) COIMOlaquo io NINNOUTNTTYNRUN WKiIE(N0UTIC1(NAME FORMAT I1XAV13K VECTOR IS WRITE NOUT 102)(XlI 11 = 1 Ngt FORMATl IOC 1XE10 3) ) RETURN END

2570 SUBROUTINE DiiBUG (N L M LL T TO X XH G Y YH E U V P Pp I OUT ND) 257 C THIS ROUTINE USED TO GENERATE STRUNG-OUT LIST OF (ALMOST) ANY OF 2370 C THE PIVOliLEN VARIABLES AS TIME PROCEEDS IT IS MAINLY MtANT FOR lt3Araquo C OtBUGOIKi PURPOSED SINCE THE FOnM OF THE OUTPUT IS DIFFICULT TO 2560 C INTERPRET pound501 DI PENSION XI ND) XH N[l) G( NO NO) Y( ND) YH( ND) E(I-ID) W ND ) V( ND) 2562 2 PINONDIPPINDND) lOUT(lO) 2503 DIMENSION EQUALS10) 2S84 DATA EQUALS I 1 0raquo 1 C H mdash mdash - = -- 25B5 COMHON I0 NINNOUT NITV NRUN 2566 IFlIFQTO)WRIlpound(NOUT101JNRUN 256 o i roRwviormncBOouirCi OUTPUT I S AS FOLLOWS RUN 12) 2500 WRI TE(NOUT103)(EQUALS(I)1=1N) 2563 IO0 FORMATIX10A10) 2590 WRI1EIN0UTI02)T 2591 102 FORMATbull T = -E103gt 2592 0 THE CODE FOR ( 10UT( I ) 1 = 1 101 CAN BE DEDUCED FROM THE FOLLOWING 20S3 C 1EN STATEMENTS IF A OIVEN (IBUTIDI SS I ITS CORRESPONDING 2594 C VECTOR OR MATRIX IS PRINTED AT EACH TIME STEP 2595 IFUOuTI lltODCALL VECOUTP (XNIHXND) 2596 IF1I0UT 2)E01)CALL VECOUTP 1XHN2HXHND) 2597 IFIIOUT 3)EG11CALL MATOUTP GNM1HGND) 2596 IFI10UT 4EQ1CALL VECOUTP (YM1HYND) 2599 IFUOUTl 9) EQ 1 1CALL VF-COUTP (YHM 2HYH ND) 2600 IF(IOUT( 6)E01)CALl VFCOUTP (EN6H(X-XH)NO) 2601 IF(ICUT( 7)EQ1)CALL VCCOUTP (WLLIHWND) 2602 IF(IOUT( 6)EQ1JCALL VECOUTP IVM1HVND) 2603 IF1I0UTI 9)EQ11CALL MATOUTP (PNNTUPNO) 2604 IFlIOUTI101 EQ1)CALL MATOUTP (PPN N2HPPND) 2603 RETURN 2606 END

338

2607 2608 2609 C 2610 C 2611 C 2612 C 2613 C 2614 C 261 S C 2616 C 2617 C 2E18 C 2619 C 2620 C 2621 C 2622 C 2623 C 2624 C 262B C 2626 C 2627 C 2628 C 2629 C 2630 C 2631 2632 2633 2634 263B 2636 C 2637 C 2638 C 2639 2640 2641 C 2642 C 2643 C 2644 C 2640 C 2646 2647 2648 2649 26S0 2661 2652 2653 I 26B4 C 2693 C 2656 C 2697 C 2658 C 2659 C 2660 C 2661 C 2662 266Z 2664 2 2665 C 2666 C 2867 2666 pound669 2670 2671 2672 3 2673 2674 2675 A 2676 C 2677 2678 2679 2680 S 2681 6 2682 C 2683 2684 2665 2686 7 2687 C 2688 2689 2690 8 2691 C 2692 C 2693 2694 2699 1lt 2696

SUBROUTINE OUTPUTS (XNAMENCOLNTIMETOTlTST 2 XYPWIXYPWpoundTI TLES NTL NAME3T NCOLST 1 MAX JMAX NI N J NK gt ROUTINE X(Jgt N TIME TO Tl TCI) ST(IJK

1MAX JMAX(K) NINJNK

NAME NOTE

VARIABLES ARE AS FOLLOWS THE VECTOR OF LENGTH TO BE STORED FOR PLOTTING AT TIME WHERE TIME RUNS FROM INITIAL VALUE OF TO FINAL VALUE OF THE VARIOUS TIMES ARE STORED IN THE PLOTTING VECTORS ARE STORED IN ) WHERE 1 bull THE LAYER OF STORED VALUES OF THE VECTORS AT TIME T(I) J = THE ELEMENT INDEX ON X(J) AND K = THE NUMBER OF THE VECTOR STORED THUS IS THE MAXIMUM NUMBER OF POINTS tlN TIME) PER PLOT IS A STORAGE ARRAY OF THE LENGTHS OF THE K VECTORS ARE THE PHYSICAL DIMENSIONS OF THE APPROPRIATE ARRAYS IN THE CALLING PROGRAM

IS A SWITCH IT IS TO BE ZERO IF X IS A VECTOR IT IS TO BE SET TO THE COLUMN NUMBER IF X IS A COLUMN OF A MATRIX (USED ONLY IN LABELLING) IS A 3-CHARACTER HOLLERITH NAME FOR X USED FOR LABELLING (EG NAME laquo 3H XKgt IMAXLENI JMAX(KgtLENJ KMAXLENK DIMENSION X(NJ)T(NI)ST(NINJNK)JMAX(NK)NAMEST(NK) TITLES) 48 DIMENSION XYPW1tNI)XYPW2(N|gtNCOLST(NK) DATA K1 DATA 10 COMMON I0 NINNOUTNTTYNRUN IF A PROBLEM MATRIX HAS BECOME SINGULAR SO THAT THE PRESENT RUN IS TO BE ABORTED GO TO DUMP OUTPUT UP TO PRESENT TIME AND REINITIALIZE POINTERS FOR NEXT PROBLEM IFCNAMEEQ10H SINGULAR)GO TO 11 IF(TIMENETO) GO TO I INITIALIZE ROW LENGTHS FOR VARIOUS VECTORS TO BE PLOTTEDJMAX(K)) ALSO DETERMINE MAXIMUM NUMBER OF VECTORS TO BE PLOTTED (KMAX) STORE VECTOR NAMES AS THEY COME DOWN STORE (NAME) IN (NAMEST) STORE (NCOL) IN (NCSLST) TO SIGNIFY WHETHER (X) IS A COLUMN OF A MATRIX OR JUST A SIMPLE VECTOR KMAX bull K JMAX(K) bull N NAMEST(K) - NAME NCOLST(K) bull NCOL TM1 laquo TIME IF(KNEl) GO TO 8 GO TO 2 IFITIMEEQTM1gt GO TO 8 START A NEW LAYER AT NEXT TIME TM1 IS USED AS A MEMORY ELEMENT FOR SWITCHING IF TM1EQTIME THEN IT MEANS THAT THIS IS NOT THE FIRST VECTOR T( BE STORED IN THE SEQUENCE OF CALLS TO (0UTPUT3) IF TM1NETIME (BUT ACTUALLYIT EQUALS THE PREVIOUS TIME) IT MEANS (TIME) WAS JUST INCREMENTED IN THE CALLING PROGRAM SU6H THAT A NEW LAYER SHOULD BE STARTED IN STORING THE VECTORS (THUS SET K=1 1=11 AND T(HlaquoT1ME) K a 1 TM1 raquo TIME IFdNE IMAX) GO TO 7 1 IS AT THE ALLOWABLE MAXIMUM OF TIME POINTS PER PLOT UMAX) 00 THE PLOTTING DO 4 K bull IKMAX JMAXK raquo JMAX(K) DO 3 J bull 1JMAXK CALL XYPLOT CTSTI1JK)IJXYPWIXYPW2 2WMESTCK)NCOLSTIKi tlTLESNTLNRONNOUTNl) CALL TABULAR(TSTltt11KgtIJMAX(K)NJ 2 NAMEST(K)NCOLST(K)tlTLESNTLNRUNfojUTM) CONTINUE COPY PRESENT LAYER INTO FIRST LAYER FOR CONTINUATION PLOT DO G K ItKMAX JMAXK a JMAX(K) DO 9 J bull 1JMAXK SSNTINOE bullWlaquoIWltWKraquo RESET INDICES TO POINT TO FIRST PLOTTED VECTOR OF FIRST LAYER 1 bull I T(l) laquo TIIMAXI CONTINUE AT=START OF NEW LAYER (NEW TIME) INCREMENT I AND STORE T(U T(gt raquo TIME CONTINUE STORE PRESENT VECTOR X(J) INTO KTH VECTOR POSITION IN ITH LAYER JMAXK aJMAX(K) OO 10 J bull 1JMAXK ST(IJK) bull X(J) IF(TlMELTTI) GO TO 20

339

2697 IF(KLTKMAX) GO TO 20 2698 C AT THE END OF TIME INTERVAL (TOTI) FOR THE FINAL VECTOR 2699 C DO THE PLOTTING 2700 11 CONTINUE 2701 DO 18 K n 1KMAX 2702 JMAXK s JMAXIK) 2703 DO 15 J = IJMAXK 270-1 CALL XYPLOT ( T ST( 1 J K) I JXYPW1 XYPW2 205 2 NAMESTltK)HC0LSTltIOTITLESNTLNRUNNOUTNlgt 270b IB CONTINUE 2707 CALL TABULARIT ST( I 1 K ) I J M A X ( K ) NJ 2706 2 NKEOTltK1NCOLST(K| T ITLES NTL NRUNNOUTNl ) 27JM 16 COM r INUE 2710 WRITCOH 2711 WRlTElSXTd I I I 1 = 11 ) 2712 WRITE 5MSTI1 I1KMAX)1 I=1I ) 271 a C RESE1 INDICES FOR NEW PnOBLEM AS IN DATA STATEMENTS 2714 K = 1 2715 I = 0 2716 GO TO 99 2717 20 CONTINUE 2718 C ADVANCE PLOT VECTOR INDEX FOR NEXT CALL 2719 K bull K 1 2720 99 RETURN 2721 END

2722 2723 2724 2725 2726 2727 2726 2723 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

SUBROUTINE TABULAR tTXNTNNJ 2 NANENCOLTlTLESNTLNRUNNOUTNI) C ROUTINE GENERATES A TABULAR LISTING OF X(T1 X AN N-VEOTOR C ROUTINE VARIABLES ARE AS FOLLOWS C X(lJgt THE ARRAY OF N-VECTORS AS A FUNCTION OF TIME C STORED ROW-WISE C T(lgt THE CORRESPONDING TIMES FOR WHICH ELEMENTS OF X C WERE STORED C NT NUMBER OF POINTS IN TIME FOR VECTORS STORED C NA1E A 3-CHARACTER HOLLERITH NAME FOR LABELLING C TITLES(48) DESCRIPTIVE INFORMATION C NOUT LOGICAL UNIT NUMBER FOR OUTPUT C NRUN RUN NUMBER C NTL NUMBER OF TITLE CARDS C NlNJ DIMENSIONS OF X(NlNJ) AND T(NI) IN CALLING PROGRAM DIMENSION X(N1NJ)T(NI1TlTLES(48)LABEL(I 0) DO I I = 1N 1 LABEL ltI gt = NAME WRITEINOUT 101JNRUN 101 FORMATOhlRUN NO 12) IF(NTLEOO) GO TO 6 DO B I = 1NTL

5 W R I T E ( N 0 U T 1 0 5 M T I T L E S C I J ) J - l 8 gt 105 FORMAT(1X8AIOgt 6 CONTINUE

IF(NCOLNEO) GO TO 10 WRI TECNOUT 102)((LABELI II) llaquolN) 102 FORMATIIH TIMEI0(4XA31H(12IH))) GO TO 20 10 WRITEINOUT120)(ltLABELI)lNCOL)I-1Ngt 120 FORMATIIH TIME16(IXA3(HI|2IH I 21Hgtgt) 20 CONTINUE DO 2 I o INT 2 WRITE(NOUT1041TII(X1J)J=1Ngt 104 FORMATv11(1XE103)) RETURN END

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2778 2780 2781 2782

SUBROUTINE XYPLOT (XINYINNUMPTSNROWXY 2 NAMENCOLTITLESNTLNRUNNOUTND) C C REFMCCUE H K UNIVERSITY OF CALIFORNIA C LAWRENCE L1VERM0RE LABORATORY (PRIVATE COMMUNICATION) AND C PHD DISSERTATION UNIVERSITY OF CALIFORNIA BERKELEY 1979 C DIMENSION XIN(ND)YIN(ND)X(ND)Y(ND) DIMENSION POINTSIIOI gt BUTI6) Tl TLESUai IFINUMPTSLT2)G0 TO 999 C COPY INPUT VECTORS (XINYIN) INTO WORKING STORAGE (XY) DO 1 1=1NUMPTS XII) - XlNIl) Y(l) = YIN(l) 1 CONTINUE C WRITE OUT TITLE CARDS WRITEN0Ur6) 6 FORMAT1 Hi) DO 3 1=14 GO TO (301302 303303) I 301 IFILENTL1WRITENOUT3001)NRUN(TITLES(IJ)J=18) 3001 FORMAT3X9HRUN NO I22X8A10) IF( LOTNTL)WRITEINOUT 3011 gtNRUN 3011 FORMAT(3XraquoHRUN NO 12)

340

2 6 3 aaa 276U 2706 27iJ 2 0B 2 7a9 2790 2791 27 j2 2793 2794 2H 3796 2797 pound7laquoA 2799 000 D n l EU02 2603 2t04 pound609 2098 I

GO TO 3 (NRPVM IS lOU ELLMENT NUMBER (NCU- I IS COLUMN El tttetil NUMUER IF ( Y I N ) IS A

I F IS 7EK0 IF (Y IN) IS A SIMPLE VECTOR I F l I l ENTL) AND I NCOI NEO) )

2 WRI TENOUT 9n I JNAMENROVNCOL ( T ITLES( 1 I FORM- r O X A 1 1M( 12 1H 12 IIIJ 2X 8A10)

I K ( I L E N T L 1 AND (NCQL EQ 0gt ) 2 WRlTElNOUT JuSairAMENrrOW (TITLESC I J ) J =

bull- FORMA I ( 6 r A3 1 H ( I 2 1 H I 2X SAI 0 ) I F l I OTNVI I AND (NCOI NE0I I

2 U R I l t l TOUT -02C) NAME NROH NCOL I r-OfraquoMA- C3y A3 I H i 12 1H 12 1H)gt

t r i l l O T N I L ) A 0 INCOL E O O l ) 2 WRI rEltHOUTltC2ClN4MENReU

GO TO 3 I F t I I E N T L ) WRI TECI0U1 3031 ) i T I T L E S I J ) J = l

I bull 5RMA I I 1 5X DA 10 gt IFl I Xl NTL)WlaquoITE(IMUT5) CONTINUE

3Y THE Y AXIS

COLUMN OF A MATRl J)-1=18)

C-IO bull - gt v r FOF MAX 2 f gt 1 0 1 = 1 poundbullbullgt 1 2 0 C O N T I N U E 2 0 1 2 JJ-l 2 f t 13 YNAX V 1 ) 2 t t l 4 DO 10 J - l N U K P T S

H Y ( J ) L E Y M X ) G O TO 10 i 3 1 5 DO 10 J - l N U K P T S H Y ( J ) L E Y M X ) G O TO 10

at- i e Y N A X = Y ( J I t 1 J J = J bull t i 1deg now n r-iUE B 1 1 I I I T MOE A 2 0 t - Y ^ Y I J gt lt f f i x lt = X i I 1 xiti Y ( I ) - Y lt J J ) t ^ f ^ j M M X ( J J ) pound 0 Y ( J J ) = Y Y

Xlt J J l - X X pound b G l = M 1 2 r 7

i 1

i F ( 1 r J N U ^ I J n 3 0 TO 3 H GO TC 2 0 -( NT 1 NUE

CO 0 bull V t K u P ttNfWU OF X AND Y gt( J I XM 1 H bull X ( 1 ) F t 3 M A gt - - X lt 1 ) 2 r j 3 YltHN = Ylt 1 J lt j [ IAX -V ( 1 ) f V j 1)0 a l laquo l H L I P T S 2ampLgt6 I F ( 1 1 ) L r X M I N X M I N - t X d ) 2 0 j 7 raquo F ( X lt i raquo ( gt I M A X ) X M A X - X ( I ) 2 f 3 0 F ( Y ( 1 IUTYHtN)YMIN=Y(J) laquoJ9 I F ( Y U ) C I Y M A X ) Y M A X = Y a ) rraquo lt- j

( tT C O N T I N U E

f T THE S N U P O I N T S ^ f t f l 2 C A L L E M D r i S X h l N X M A X ) ipoundraquo 3 C A L l t l D l T S t Y M l N Y M A X )

H A I f U F I X AMD t E L Y C A L l t l D l T S t Y M l N Y M A X )

H A I f U F I X AMD t E L Y Zi - laquo i U T L X - lt X N X - X i laquo M N gt 1 0 0 0 2^ iG D F i Y i y M A A - Y M l N i 5 0 0 7 1 U f--rM i E I H i - P L O T bullbullbull 3 KK bull AB r ( AC i r i D E L X I o i f I S t2 l Flt0 = 0 ( - j I F ( I X N I N L L 0 Cigt A N D l 1- iAX 3E 0 0 ) ) I 2 E I 21 1 1 C O U N T = 1 0 2 pound ^ 2 L I S T = 1 a w Q Q t o g ^ - 1 ( i l 2 8 5 4 X l = l aoamps Z 2 - Y M A K - X U D E L Y 2 6 5 E - Y 7 1 - Y pound + D E L Y 2 0 5 7 1 A A = 0 2 0 8 0 l i ( ( Y 2 1 0 E 0 0 ) A N D ( Y Z 2 L E 0 0 D I A A = 1 2 0 0 9 0 0 1 0 J = 1 1 0 1 2 6 6 0 1 0 1 P Q I N i S ( J ) = 1 H 2 a c i 1 F ( 1 C O U N T N E 1 0 raquo G 0 TO 105 2 8 G 2 0 0 1 0 6 J - 1 1 0 1 2 2 G 6 3 1 0 6 P 0 I N T S ( J ) - 1 H 9 6 r t 1 0 5 C O N T I N U E 2 t ) 6 5 P O I N T S t 1 ) = 1 H 2 8 6 6 P a I N T S ( 2 1 ) = 1 H 2 6 6 7 P 0 1 N T S ( 4 1 ) = 1 H 2 laquo 6 B P O I N T S C 6 1 I s l H 2 0 6 9 P Q N T S ( 6 1 I s l H 2 8 7 0 P O I N T S t 1 0 1 1 = I H 2 6 7 1 I F I I Z f R O E Q 1 ) P G I N 1 S ( K K ) = 1 H I 2 3 7 2 I F ( I A A N E 1 1 G 0 TO 1 3 7

341

2R74 116 26a 1 37 2676 2577 1 02 2070 2679 21100 26BI 260 2r33 2r0l 1 10 2PH5 2606 260 2CJ8 1 1 1 20O9 2690 1 12 2691 2692 2893 2P94 2e95 1 13 2696 109 289 7 2690 2099 2900 2901 121 2902 2903 122 2904 2905 202 2906 999 2907 2906

2909 2910 C TH1 2911 C 2912 C 2913 c 2911 0 2915 c 2916 2917 2918 2919 pound920 r CHt 2921 2923 2924 2925 1 2926 2927 2926 2929 2930 2931 pound932 2 2933 C DEL 2934 2935 2936 5 2937 2936 2939 29-10 10 2941 2942 2943 2944 1 1 2gt145 20 2946 294 7 2946 2949 2950 2951 2952 2963 29S-1 C XXM 2955 2D56 2957 2956 32 2959 33 2960

101 1

COIN I I NUE YLOW-- tMAX XI DELY CON NJE l f ( l S r BTNUMf T t ) t3 igt TO 110 IFIYvLISTJ LI YLOWGO TO 110 K M X L I ST ) -XMIN) DFLX+1 0 I 0 I N T 3 I K ) = 1IIX L IST = L I S T M GO TO 102 CONTINUE IF ( I COUNTpound0 10 )00 TO 112 ICeUNT=ljUNTl WRI rElNOUT I 11 1(POINTSJ) J=l101) FORMATliXI01A1) GO TO 100 CON I INUE YY=YLOWgtDELY ICOUNT=I I F ( ( Y Y S T - I O E - 9 ) A N D I Y Y L T 1 O E - 9 ) ) Y Y = 0 0 WR PKNOUT 1 13) YY 1P01NTSlt J ) J = 1 1 0 1 ) FORMAT(2XEll 42X101AI ) CON)1NUE DO 121 116 Jt I - I - 1 BUT(I)=XN1N200DELXlaquoXI bdquo_ _ bdquo IF( (BUT( I) LT 1 OE-9) gtND BUI C I ) GT -1 OE-9) )BUTlt I 1=00 CONTINUE WRITElNOUT 122)(BUTJ)J= I 6) FORMAT 10X6(E103 1 OX) ) WRITE INCUT 202) FORMAT 1 51 ( 20h I ME I 01 MENS 13NLLSS)) CONTINUE RETURN END

REFMCCUE H K UNIVERSITY OF CALIFORNIA LAWRENCE LIVER1WRE LABORATORY (PRIVATE COMMUNICATION) AND PHD DISSERTATION UNIVERSITY OF CALIFORNIA BERKELEY 1978

bdquobdquo ~ -- bdquobdquobdquobdquo 25050075 10 I 1 1 25 1 SO 1 75 220025030035040045050607080901001112 5 315I 752025303540455060 708090100 OK XMINXMAX TERMS 1FIXMINNEXMAX1G0 TO 1 XMINXM1N-I0 XMAX=XMAXraquoI0 00 TO 999 CONTINUE OEL=XMAX-XMIN IFIDELOT00)60 TO 2 XX=XMAX XMAX=XMIN )MIN = XX 1 EL=-DEL CONTINUE IS POSITIVE AT THIS POINT VALUE1 0 IFIDELLE10)00 TO 10 CONTINUE IFIDELLTVALUEIGO TO 20 VALUE-VALUElaquo100 60 TO 5 CONTINUE IFIDEL GEVAlUE)GO TO 11 VALUE=VALUEraquo0 I GO TO 10 VALUE-VALUEIOO CONTINUE XX=XMINVALUE IXX=XX XX=IXX XX=XXlaquoI00 XXMIN=XMINlaquo10 0VALUE -XX XXMAX-XMAX100VALUE-XX 1FIXXM1NE000)00 TO 30 1FIXXM1N LTOOIGO TO 35 IN IS POSITIVE DO 32 1=238 AAA = A U ) IFIXXMINLTAAA1G0 TO 33 CONTINUE 1 = 1 -I XXMIN = AII I

342

pound961 GO TO 90 2962 35 CONTINUE 2963 C XXMIN IS NEGATIVE 2964 XXMIN=-XXMIN 2965 DO 36 1=238 2966 AAA=A(I) 2967 IF(XXMINLTAAA)GO TO 37 2968 36 OONT1NUE 2969 3 XXMIN=-A(I) 2970 30 CONTINUE 2971 IF(XXMAXEQ00)G0 TO 40 2972 IFCXXMAXLTOOIGO TO 45 2973 C XXMAX IS POSITIVE 2974 00 42 1=236 2975 AAA=A(1) 2976 IF(XXMAXLEAAA)G8 TO 43 2977 42 CONTINUE 2970 43 XXHAX=A(I) 297S GO TO 40 2960 45 COMT1NUE 2981 C XXMAX IS NEGATIVE 2982 XXMAX=-XXMAX 2983 00 46 1=238 2984 AAA=A(t) 2985 IF1XXMAXLEAAA1G0 TO 47 2986 46 CONTINUE 2987 47 1 = 1-1 298B XXMAX=-A(I) 2989 40 CONTINUE 2990 C SOLVE FOR NEW END POINTS 2991 XMIN=(XXtXXMIN)VALUE100 2992 XMAX = I XXtXXMAX) raquoVALJE100 2993 999 CONTINUE 2994 RETURN 2995 END

343

APPENDIX 6 DESCRIPTIONS AND LISTINGS OF POSTPROCESSOR PROGRAMS

All of the postprocessor programs listed in this Appendix have as their sole inputs the binary (unformatted) intermediate disc files PFILE or TFILE generated by PROGRAM KAIMAN see Figures Fl and F2 for their relationships to KALMAN and their own output files

CONTOUR generates contour plots of the surfaces [Ppound(Z)] at all measurement times tbdquo The idea for the format of the plots was taken from Case Study 26 in McCracken [83] the coding was this authors own

POFT computes and plots surfaces for Tr[P^ + N(zbdquo)] for increasing values of time tK+ The particularly efficient algorithms for the evalushyation of the trace function as in subroutines FVAL anci PVAL are called to the readers attention the amount of computation involved in generatshying the (51 x 81) point grids in these contour plots grows enormously with the size of the problem such that computational efficiency is of prime importance in their generation

PELEM plots the contour surfaces of the diagonal elements of the co-variance matrices [poundD(z K)] i = lgt2 n They show the decomposishytion of the trace of that matrix which led to the fundamental result for the infrequent sampling problem of Conclusion II

SIGMAT plots the family of curves for aj+bdquo(zpoundz) as functions of the position z in the one-dimensional medium for a set of consecutive times tK+N = ^K t K + Y K + 2 Y bull bull ) bull w n e r e Y is selected at the teletype This routine was instrumental in showing the asymptotic movement of the position of maximum variance in the output estimate with time see (654)

if MAXTIME was used to compare the two performance criteria Tr[P^(zbdquo)] and [Pp(Z|)] It showed that minimizing the trace at the time of the

344

measurement is not optimal whereas minimizin its first element is optishymal for large time

POSTPLT is used in various places to plot families of curves as functions of time resulting from multiple runs in KAIMAN Doing graphishycal displays with such a postprocessor that is a program which opshyerates on data generated by another (usuallyNlarger) program was found to have a number of programming and computationaladvantages Among

them were small program size ease of execution and versatility

K s-P0STFP was used to plot sections through the lPj(zbdquo)X surfaces in the study of the sensitivity of the optimal monitoring probIenV-resuIts to dimensionality of the model used ir the monitor

POSTSP plots o^(zjz) as functions of z for monitor models of vari- N

ous dimensions Numerous extensions of the programs listed here can be conceived

Among them is the use of the various plotters in conjunction with other programs the basic plotting routines are quite versatile in that sense In the case of the contour plots where the dimension of the measurement vector y must be m = 2 an obvious refinement is to replace the general purpose matrix inversion package with a simplified algorithm for invershysion of the statistics matrix

[4J1 s P ( K + N K + N ( S K ) ( trade ) T + ] V

in the covariance matrix correction algorithms for these cases T K + N is

a (2 x 2) matrix

345

P R C U W 1 [ O N T O I K ( P F I L E T A P F 3 = - f F I L E J 0 0 U T T A P E 3 = C 0 U T ) C A M - H A N O r ( pound H t - C J C A L I fct fiZtAHCQVi 4 0 0 Q U S W T ) N I N - 2 (OUT = 3

n m N f i - r i A t c I O I p lt i o i 0 ) C A P V ( I O I O J W K P I d o i o gt w $ S ( i o i o ) M I N I Ni u N CAPWt 1 0 1 0 ) M K h T f iV 7 L U M f 1 0 ) iMgtlaquo = 1 0 ti-(-iOH F R W N M lt - M A X A P C A laquo WKP1 W S S I S I NG

IIKE l lt 1 0 N r i 5 l 8 1 ) X ( 2 gt J S t l 9 gt S L 1 N E ( amp 1 ) S Y f 1 B C 9 ) D A T A 1H I H I J I I j 1 H 2 1 H 1 H 3 1H H 4 1 H 1 H 5

2 1H 1 H 6 1 H 1 H 7 1 H 1 H 8 1 I I 1 H 3 1 H WAT A o V P n i l 1 H 2 I M S 1 H - 1 1 H S 1 H S I H 7 1 H 8 1 H S l i I bull i U - i - j I I T I L 3 1 4 laquo J ( P P F M 5 1 ) f c O A L pound H ( 5 I ) S C U E V ( 1 1 ) S A M P L E ( 1 0 ) CAit MM 1 1 U 1 1 H I H + 4 - 1 H I H + ^ J - I H 1 H 4 laquo 1 H raquo H + 4 1 H

1 bullbullraquo 1 H H + 4 raquo 1 H 1 H 4a 1 H 1 H 4 raquo I H 1 H 4 1 H 1 H + n - C f l i F t - V I O H t C + 1 I 0 H I OH 0 9 +

P 4 - I O H 0 H 0 8 + 4 1 0 H 1 D H 0 7 + C - - 0 1 0 1 1 0 6 + J 2 1 0 H 1 0 H C Z C K J 1 2 4 TOM 1 0 H 0 5 + bullJ 4 1 C H 1 0 H 0 4 + 4 1 0 H 1 0 H 0 3 + G 4 raquo i O M I O H 02 + 4 1 OH j l O H 0 1 + 7 4 - O K 1 0 H 0 0

H A i - C V KV f l H O O 6 H 0 1 S H 0 2 S H 0 3 k W O 0 1 1 0 5 8 H 0 6 8 H 0 7 Q H O S Clt --gt) i l T H l 0

OAf gt n i L 7 - O H ^ L R O E T H 1 flhriRSl B H S E P O N D 6 H 7 H I R D e H F O U R T H P 6 h r I T T H OHS I X f H 4 8 H S E V E N T H 6 H E I Q H T H J 8 H N I N T H

D l T - l T i r i M L1DRM181 ) CAT A 111 H M I H 7 11-1 1 H 7 I H 1 H+ 7 - 1 H 1 Hlt 7 laquo 1 H 1 H+ 7 H

d l H v 7 laquo ) H 1 M - 7 x ) H 1 ^ 7 1 1 1 1H + 7 1 H 1 H + 7 1 H H

X M I N CAr i - r i l w

P L O T L I M I T S

laquoH- i laquo I M l N II N I L 1 0 T l L I M I T i r bull M L 7 ut ro to JI9 I T A M bull i l t H ( i l l J J 1 - 1 N gt 1 = N gt bull T i i gtti bull n K p i ( ) = i r bull U i N )

i M i I V W l | J ) J M N ) U l K ) M n bull ilt | j i 1 J l f = l U raquo i = - L L gt rltr lt - 1-lM t t W I V i I n bull - M ) laquo 1 M J I F i l h bull O J R ALraquo- N1M) lt r M L K S ( bull J J ) J lt 1 8 ) I - l N T L J

O H i 1MUE-K L - r - ) W n i l O - T L h P u M LIT 11 r-O II u) nn io duoo fit Af t ( N I N j n P l | J ) J = 1 N ) l = l N ) ( F i - N C - U 0 gt r F - 0 ( p H N ) T O U M i I 1 = 1 H ) I f d N o i (it C ) R i - O i N I N M pound L X i M ( I I = t M ) X ( 1 ) = X M I N ( 2 1 - V M 1 N C A L L VAL I X r M I N l K i A K - I K I N 0 0 pound I - I N r T 1 M I I H l - O f J T U L Y ltKltpound) E B M C A L L Y X ( f t bull-bull YM1M ( I - I l laquo O Y DO - I N A P I - I i ) bull x i i N + t J - i ) raquo n x

i UL r-VAL f X F i | J ) ) I F l T I I J l L l f M l f U F M I N - f U J ) n i igt r v r r A ) r M A x = F ( I J gt I o n I H L E f O H i l N U E Of ~ L f M A K t - C U N I N L N O p i l N O P ) WRI i F i i M O U l 1 0 1 ) 1 ( T I T L E ( I I ) bull I 8 ) S A M P L E ( N 0 P P 1 raquo

pound ( T 1 T L E S ( 2 J 1 J - I a ) FOfJMA ( bull I 0 gt C O t n O U R P L O T O F [ P ( K K ) ( Z lt K ) gt ] H A S A F U N C T I O N O F -

2 L 2 i K lt ] H O R I Z A N b [ Z I K U 2 V E R T 9 X T I M E E 1 1 4 1 3 I I X U A 1 0 O X A f - M E A S U R E M E N T A M X 3A ) 0 bull ) WPI lFHOjl IC7JDDRH 1 UIW1 T l I O X 0 1 A 1 S X 1 6 ( I H = ) ) h O K t O O I = K N V P 1 DO 9 J = l N X P 1 DO 5 K = l N L

36

59 21 100 201 101 102 22 103 202 104 105 23 106 203 107 103 24 109 204 110 111 25 112 1 13 20 1 14 206 115 1 16 27 1 17 207 1 18 119 120 121 260 122 123 28 124 125 203 126 127 128 29 129 30 31 32 350 33 34 35 35 235 36 37 36 38 39 37 40 237 41 42 38 43 238 44 4S 39 48 239 47 48 40 49 240 50 01 42 52 242 S3 94 43 SB 243 se 57 44 58 244 09 SO 45 SI 245 62 S3 47 laquo4 247 85 86 48 67 248 68 69 50 70 250 71 72 51 73 74 52 7S 100C 78 77 78 2S3 79 bull 0

lFliFMINlaquoKlaquoOFgtGTFWl-H-l)gt00 TO 6 CONTINUE SLINEIJ) = SIK1 I F l l F - N Y P 1 1 - l J D E O F M l N I S L I N E ( J ) = 1Hlaquo I F I I F I N Y P 1 M - I J M E Q F M A X ) S L I N E I J ) = 1H0 CONTINUE I F lt I 0 T 7 ) 0 0 TO 280 GO T 0 1 2 1 2 2 2 3 2 4 2 5 2 6 2 7 ) 1 WRITE(N1JUT201gtSCALER|I gt SL1NEBDRI Igt F 0 R M A T I A I 0 8 1 A 1 A I 8 X CONTOUR LEVELS) GO TO 1000 WRI(E(MOOT202)SCALEH1 IgtSLINEBDRI1gt F0RMATIA1061A1A18X AND SYMBOLS) 00 TO 1000 WRITE INCUT2031SCALEHI1)SLINEBORI1) FORMATA1081AlA18X16lt1Hraquogt) GO TO 1000 WRITEIN0UT204)SCALEH(I)SLINEBDRII) F0liMATIA108IA1A10XlaquoSYMB LEVEL RANGE) GO TO 1000 WRITEINOUT203)SCALEH(11SLINEBDRtI) GO TO 1000 WRITENOUT206JS0ALEHII)SLINEBDRII)FMAX FORMATA1061 A1A16X4H (0)Ell4) 00 TO 1000 WRITElNOUT207)SCALEHlt IgtSLINEBDRII) FORMATA1081A1A16X 16ilH-gtgt NSKIP a 1 NLEVEL = 9 GO TO 1000 IFIGT34)G0 TO 350 GO T0(282829)NSKIP FLEVEL a FM1N 2raquoNLEVELraquo1-NSKIPXDF WRITE(N0UT208ISCALEHII)SLINEBDRlt i) FORMATAI08IA1AI8Xlaquo IlaquoA1laquo)laquoEl I NSKIP = NSKP1 OO TO 1000 NSKIP = 1 NLEVEL = NLEVEL - 1 URITENSUT207)SCALEH(I)SLINEBOR1I SO TO 1000 LINE = 1 - 3 4 30 T0I35 3637 3839 40 36 42 43 4445 36 47 48 44 50 51 52) LI NE WRi TElt NOUT235)SCALEHII ISLINEBDRII) FMIN FORMATA1081A1At6X4H (a)Ell 4) SO TO 1000 WRITENOUT203)SCALEH(I)SLINEBORI) GO TO 1000 MRITECN0UT237gtSCALEHlt1)SLINEBDR(1gt FORMATCA1061A1AI 8XESTIMATION) GO TO 1000 WRITEINOUT238gtSCALEH(IlSLINEBDRI1) F0RMATltA10atA1A18XERROR CRITERION) 00 TO 1000 WRITENOUT239)SCALEH11gtSLINEBURII I FORMATCAIO 81 A1A1 8X bullCONSTRAINT raquo) SO TO 1000 WR1TECN0UT240gtSCALEH(IgtSLINEBDRI1)ERRLIM F0RMATIA1081AIAI12XEI14gt 00 TS 1000 WRITEIN0UT242ISCALEHI)SLINEBDRII) FORMATIAIOBIAIAIBXSOURCE NPUTraquo) 00 TO 1000 WRITENOUT2431SCALEHI)SLINEBDR(1) F0RMATlA1OBlAIA18XaC0VARIANCE CW)gt) 00 TO 1000 WRITE(NOUT244gtSCALEHltI)SLINEBDRI) F0RMATCA10B1A1A1) GO TO 1000 WRl-|E(NOUT245gtSCALEHU ) SLI NEBDRI I gtCAPWI1 1 ) FORMATltA10eiAlAI8XC Ell4laquola) OS TO 1000 WRITElNOUT247)SCALEHI1ISLINEBDRI) FORMAT tA1081 Al A1 6XMEASUREMENT) GO TO 1000 WRITE(N0UT248)SCALEH(I)SLINEBDRI1) F0RMATIA10S1A1A18XERROR COVAR [V]) 00 TO 1000 WRITEINOUT280)SCALEH(I)SLINEBDRII)CAPV(1IgtCAPVI12) F0RMATIA1LB1AlA1laquoXtF93 4XFBamp]bullgt GO TO 1000 WRITEtNOUT 2 5 0 ) 3 C A L 6 H I I S L I N E B 0 R U gt C A P V 1 2 D C A P V I 2 2 ) GO TO 1000

i - _ raquo WRJTEINOUT203)SCALEHltI ) SLINEBDRI I ) 1000 CONTINUE

UNITEINOUT1O7IB0RH WRITEINOUTZ83)3CALEV F 0 R M A T I 9 X 1 1 A 8 5 1 X [ Z I K ) ] I gt ) CALL MATOurf ( e N N IHPNOUT10) GO TO 3

347

181 99 CALL EX1TU) 182 END 183 SUBROUTINE FVAL ltZPI1) 184 C SEE PROGRAM KALMAN FOR THIS ROUTINE 185 END 186 SUBROUTINE HATOUTP (ANM NAME NOUT NO) 187 DIMENSION AINDND) 188 WRITEINOUTIOIjNAME 189 101 FORMATC10XA4I3H MATRIX IS) 190 00 1 1=1N 191 I WRITE(N0UT102)CAltIJ)JIM) 192 102 FORMATIIOX10CE103IX)) 193 RETURN 194 ENO 195 SUBROUTINE INVERSE INNAAINVI ERROR) 196 C SEE PROGRAM KALMAN FOR THIS ROUTINE 197 END

198 SUBROUTINE DECOMP ltNNAULSCALESIPSI ERRORND) 199 C SEE PROGRAM KALMAN FOR THIS ROUTINE 200 END 201 SUBROUTINE SOLVE (NNULBXIPSNO) 202 C SEE PROGRAM KALMAN FOR THIS ROUTINE 203 END

204 SUBROUTINE IMPRUV (NNAULBXRDXIPSDIOITSIERRORND) 205 C SEE PROGRAM KALMAN FOR THIS ROUTINE 208 END

348

1 PROORAM POFT (PFILETAPE2=PFILEPTOUTTAPE3aPT0UT) 2 C SET CNPLOT) TO THE NUMBER OF THE MEASUREMENT FOR WHICH THE CONTOUR 3 C PLOTS ARE DESIRED (I 2) SET IT TO ZERO (0) IF PLOTS 4 C ARE DESIRED AFTER ALL MEASUREMENTS CAUTION THERE ARE (UMAX) 6 C PLOTS ASSOCIATED WITH EACH MEASUREMENT EACH SPACED [KNSDTgt 5 C UNITS OF TIME AFTER ITIKI) FOR EACH MEASUREMENT GETS COSTLV 7 CALL CHANGE lt2HP) 8 CALL CREATE (SHPTOUT40000SWT) 9 NIN = 2 10 NOUT = 3 I I NTTY bull 59 12 OIMENSION A ( I O l O l W K P K I O 10 ) CAPM10 ) 0 ) P ( I O 10) 13 OIMENSION CAPWI10101 14 OIMENSION WSSIIOIO) 15 DIMENSION Z0UMd6gt 16 ZMAX bull 10 17 COMMON PROB NMZMAXPCAPVISINO IB COMMON PR0B2 AWKPIOTT 19 C 20 DIMENSION F ( 5 1 8 1 gt X ( 2 ) S ( 1 9 ) S L I N E I 8 I gt S Y M S ( 9 gt 21 DATA S IH 1 H 1 1 H 1 H 2 I H U I 3 1 H 1 H 4 I H I H 5 22 2 IH 1 H S I H 1 H 7 1 H 1HB1H 1 H 9 1 H 23 OATA SYMB 1 H I 1 H 2 1 H 3 | H 4 1 H 5 1 H 6 1H7 IHB1HS 24 OIMENSION T I T L E S 1 4 8 ) B 0 R ( 5 1 ) SCALEH(31 I SCALEVd I ) S A M P L E ( 1 0 ) 25 OATA BDR 1Hraquo 4raquo I H 1Hraquo 4 I H I H t 4raquo I H IHlaquo 4laquo I H 1Hraquo 41H 26 2 H 4 laquo 1 H 1 H ^ 4 - 1 H 1 H laquo 4 laquo 1 H 1 H 4 laquo I H I H raquo 4 raquo 1 H I H 27 OATA SCAIEH10H 1 0 bull 4 laquo 1 0 H 10H 6 9 gt 28 2 4laquo10H | 0 K 6 8 4 1 0 H 1 0 H 6 7 2 9 3 4laquotOH I O H 0 6 2 laquo 1 0 H 1 OH C Z ( K ) ) 2 30 4 IOH I O H 0 3 bull 31 5 4 I 0 H IOM 0 4 raquo 4 1 0 H 1 0 H 0 3 laquo 32 6 4 I 0 H 1 0 H 0 2 laquo 4 1 0 H 10H 0 1 bull 33 7 4gt10H IOH 0 0 bull 34 OATA SCAIEV 8 H 0 O 8 H 0 1 8 H 0 2 8 H 0 3 35 2 SHO4 8H0S BH06 OHO7 8H08 36 3 6H09 3H10 37 OATA SAMPLE 8HZER0ETH 38 1 8HFIMST 8HSEC0ND 8HTHIRD 8HF0URTH 39 Z BHFIFTH 8HSIXTH 8HSEVENTH 8HEIQHTH 40 3 8HNINTH 41 OIMENSION B0RHIamp1) bullbull IHraquo7laquo1H1H7IH1Hraquo7laquo1H1Hraquo7-IH 1Hraquo7laquo1H1H7raquo1HIH7-IHIHi 42 OATA B0RH1H71H 43 2 1Hraquo 71H1Hraquo71H 44 NL bull 19 43 NX = 80 16 NY = SO 47 NXP1 = NX bull 1 48 NYPI raquo NY bull 1 SET CONTOUR PLOT LIMITS u XMIN o O Bl XMAX o ZMAX 02 YMIN bull 0 B3 YMAX = ZMAX 84 DX bull (XMAX - XMIN1NX SB OY (YMAX - YMIN1NY 66 NTTY n 39 57 WRITEINTTY20011 50 2001 FORMATbull NPLOT KNS I I MA 59 READ(NTY2002)NPLOTKNS I I MAX 60 2002 FORMAT(31|0gt 61 R E A O ( N I N I M M L L N T L T O T 1 L I M I T 62 R E A O I N I N K I A I l J ) J laquo 1 N I t gt 1 N I 63 R E A O C N I N H I W K P W I J I J l N I U l N ) 64 R E A D ( N I N ) ( ( W S S ( I J ) J = I N gt I = 1N) 65 REAO(NINj((CAPW( J ) J a l L L ) 1 = 1 L L gt 66 R E A D ( N N I ( ( C A P y ( | J l J l M I U l K ) 67 I F ( N T L G T O ) R E A O ( N I N ) ( ( T l T L E S ( I J ) J = 68 3000 CONTINUE 69 READ(NIN)NOPTERRLIMDT 70 I F I N O P L T O ) QO TO S3 71 R E A 0 ( N I N I ( lt P ( 1 J ) J t l N ) I M N I 72 IF(NOPGTO)REAOlt lt I N ) i Z D U M d 1 I 1111 73 IF(N0POT0)KtAD(iilN)(ZDUM(l ) 1=111) 74 IF(NPLOTEOO) 00 TO 30D1 73 IF(NPLOTOTNOP) 00 TO 3000 76 3001 CONTINUE 77 N0PP1 bull NOP I 78 I I bull 0 79 3 CONTINUE 80 NS = KNSI I 81 TP = T laquo NSDT 82 X(l) XrtlN 83 X(2gt o YMIN 84 IFdl EODI CALL FVAL(XFMIN) 85 IFdlOT01 CALL PVAL(XFMINNS) 86 FMAX o FMIN 87 DO 2 l=lNYP1 8U C XII) HORIZONTALLY XI2) VERTICALLY 89 X12J raquo YMIN bull (l-l)laquoDY 90 DO 1 J=1NXP1

349

91 92 93 94 95 96 1 87 2 96 99 100 101 101 102 103 104 I0S I0S 107 10 100 109 110 lit 112 9 113 6 114 1 iS

l i e 9 117 M B 1 19 21 120 201 121 122 22 123 202 124 125 23 126 203 127 128 24 129 204 130 131 25 132 133 26 134 SOS 135 136 27 137 207 138 139 140 141 280 142 143 26 144 149 208 146 147 146 29 149 1S0 1BI 192 390 193 IS4 35 IBS 235 196 107 36 isa IBB 37 1E0 237 161 162 38 163 238 164 163 39 166 239 167 166 40 169 240 170 171 42 172 242 173 174 43 179 243 176 177 44 176 244

XIII = XMIN bull ltJ-1gtDX IF(IIEQO) CALL FVAL (XFIIJ)) IF (llGTO) CALL PVAL (XFCIJ)NS) IFIFIlJ) LTFMINIFMIN raquo FIIJ) IF(F(IJ)GTFMAX)FMAX = F(IJ) CONTINUE CONTINUE DF o (FMAK - FMIN)NL WRITECNOUT 101 )TP (TITLESI J) Jraquo18)T(TlTLES(2J)Jraquol6) 2 NSSAMPLE t N0PP1 ) F0RMAT(I10XCONTOUR PLOT OF TRACECP(KKraquoN)(Z(Kgt)J AS laquo 1 -FUNCTION OF

2 bull tZ(K)ll HORlz [Z(KI12 VERTlaquo9XlaquoTKgtNgtlaquoE114 3 I 1 X 8 A I 0 9 X T I K gt = E 1 1 4 1 I X B A 1 0 9 X laquo N bull laquo I 3 4 bull STEPS A F T E R 100XAraquoMEASUREMENTgt

WRITEINOUT 107)BOTH FORMAT) 10X 81AI 9 X 1 6 1 1 H O ) 0 0 1000 I NYPl DO 9 J M N X P I DO 6 K M NL I F I I F M I N raquo K laquo D F gt G T F ( N Y P I laquo 1 - I J ) ) Q O TO t CONTINUE S L I N E I J I bull S I K ) I F K F l N Y P W l - I J I I E Q F M I N l SLINEltJgt raquo 1Hraquo I F C i n N Y P H l - l J H E Q F M A X ) SU INE(J ) bull 1M0 CONTINUE I F 0 T 7 I Q 0 TO 280 GO T 0 1 2 1 2 2 2 3 2 4 2 9 2 6 2 7 ) I W R I T E C N 0 U 2 0 l s C A L E H l I S L I N E B D R I ) F 0 R M A T ( A 1 0 B 1 A I A I 8 X CONTOUR LEVELS) 0 0 TO 1000 WRITE1NOUT202)SCALEH( I ) SL INE BDRltI) FORMAT(AI0eiAlAl8Xraquo AND SYMBOLS) 00 TO 1000 WRITE(N0UT203)SCALEHltI)SL1NEBDRI1) F0RMAT(A108IA1A18X 16(1 H O ) 00 TO 1000 WRITE(NOUT204)SCALEHI)SLINEBORI1 I FCRMAT(A1081A1A18XSYMB LEVEL RANGE) CO TO 1000 WRITEIN0Ur203)SCALEH(I)SL1NEBDR(I) 00 TO 1000 WRITEltNauT206)SCALEH(lgtSLINEB0RCIgtFMAX rORMAT(AIO6IAlAI8X4H (0)El 14) 00 TO 1000 WRITEINOUT207)SCALEH(I)SLINEBDR(I) FORMAT(A1081A1A18X16(IH-gt) NSKIP = 1 NLEVEL = 9 SO TO 1000 IFCI OT34)00 TO 380 00 TO(282829)NSK1P FLEVEL raquo FMlN bull C2NLEVELraquo1-NSKP)DF WRITE(N0UT206)SCALEHIIISLINEBDS(I)SYHB(NLEVEL)FLEVEL FORMATA1081A1A16X ltA1)E11 4) NSKIP NSKIP CO TO 1000 NSKIP bull 1 NLEVEL raquo NLEVEL - t WR|TEtN0UT207)SCALEH(l)SL1NEBDRUI OO TO 1000 LINE I -34 OS T0(39 3637 38 3940 38 42434449 3b 474844SO91S2)LINE WHITENOUT23S5SCALEHII)SLINEBDRI1gtFMIN F0RMATIA1081AIA1laquoX4H (laquo)Elt4) GO TO 1000 WRITEIN3UT203gtSCALEH(1)SLINE80R(II 00 TO 1000 WRITE(NOUT237)SClaquoLEM(I)SLINEBDR(I) FORMATA1061A1A16XESTIMATION) SO TO 1000 WRITECNOUT23S)SCALEH(I)SL1NEBDRI) FORMATA1081A1A1laquoXERROR CRITERION) OO TO 1000 WRITEINOUT39)SCALEHltIgtSLINEBDRII) FORMATA1081AIA19XCONSTRAINT laquoraquogt 00 TO 1000 WRITE(N0UT240gtSCALEHltI)SLINEBDRlI)ERRLIM FORMATA108IA1AI1SXEl 14) SO TO 1000 WRITENOUT242)SCALEH(1ISLINEBDRII) FORMAT I At 061AlA18XSOURCE INPUT) 00 TO 1000 WRITE1N0UT243)SCALEH(I)SLINEBDRI) FORMAT(AlO6lMA16X COVARIANCE tWJraquogt OO TO 1000 WRITEINOUT244gtSCALEH(1)SLINEBORI) FORMATIAI061A1AI) OO TO 1000 WRITEINOUT245ISCALEHII)SLINEBDRI)CAPWi11)

3S0

1laquo1 245 F0RMATltA10 8 IA1 A1 8X laquo [ laquo E 1 l 4 laquo ] a ) 182 0 0 TO 1000 183 47 URITEltNOUT247)SCALEH(l gtSLINEBORltI 1 164 247 FORMATCAIOSIAIAISX MEASUREMENT) IBS GO TO 1000 1SB 48 WR1TE(N0UT248)SCALEHUgtSL1NEBDRI I ) 187 248 F0RMATCA1081A1A18XlaquoERR0R COVAR CV1 = laquo1 188 00 TO 1000 189 SO WRITEltNOUT2S0)SCALEH(1)SLINEBDRI1JCAPVCll)CAPV(I2) 190 250 F0KMATltA10B1A1AIBXlaquo|laquoFS34XF36raquo]laquogt 191 00 TO 1000 192 51 WRITEltN0UT250)SCALEHU) SL INEBDRUgtCAPVlt2 l ) C A P V ( 2 2 gt 193 GO TO 1000 194 52 WRITE(NOUT203)SCALErll l ) SLINE BDRU ) 199 1000 CONTINUE 19B WR1TE(N0UT107)B0RH 197 WRITE(N0UT253)SCALEV 198 253 FORMAT 9X 11A8 SIXlaquo[ZCKgt]Ibullgt 199 CALL MATOUTP (PNN1HPNOUT10) 200 CALL EMPTV(NOUT) 201 1 1 = 1 1 1 202 1FII I LE UMAX) SO TO 3 203 F(NPLOTEOO) GO TO 3000 204 99 CALL EXIT 209 END

208 SUBROUTINE FVAL (ZTRP) 207 COMMON PROB NMZMAXPCAPVISINO 200 DIMENSION P(1010)C(1010)CAPVlt1010)PSII 11010) 209 DIMENSION Z(I)Wl(1010)W211010) W3lt10 10) 210 NO = 10 211 PI gt 314159266 212 00 12 1 = 1ft 213 DO 11 J=1N 214 II C(IJ) = 6oSltltJ-l)laquoPIZUgtgt 219 12 CONTINUE 216 C FIRST COMPUTE IPSII1 [ClaquoPltK-1K)laquoCT1INVERSE 217 DO 5 A deg l n 218 DO 2 I C raquo I N 219 W K I A IC ) bull 0 220 00 I | 0 gt I N 221 1 M H I A I C I bull W K I A I C ) bull C U A ID )raquoPt 10 ICgt 222 2 CONTINUE 223 00 4 IBraquo1M 224 W2IIAIB) raquo CAPVUAIB) 225 DO 3 |E=1N 22B 3 W2UA IB) = W2(IAIB) WlIIAIE)laquoCCIBIE) 227 4 CONTINUE 228 B CONTINUE 229 CALL INVERSE CMW2PSIII ERR) 230 IF(IERRLTO) OO TO S91 231 C COMPUTATION OF TRCPCZK)ltKKgt1 232 TRP = 0 233 00 10 lAIN 234 TRP o TRP bull PIIAIA) 23B 00 7 ICIM 236 U1PI gt 0 237 DO 6 IDolM 235 6 UIPI = W1PI 239 7 TRP bull TRP -240 10 CONTINUE 241 I SI NO bull 0 242 99 RETURN 243 991 ISINO 3 244 RETURN 245 END

246 SUBROUTINE PVAL (ZTRPNS) 247 C CALCULATES TRACE(PIKKNS)) FOR INS) TIME STEPS ltDTgt BErcND (TIME 24S COMMON PROB NMZMAXPCAPVISINO 249 COMMON PR0B2 AWKPIOTT 250 DIMENSION P11010)CAPVI1010)Alt1010)WKP1C1010)Z(2) 251 DIMENSION CI10I0)PS1I(1010)PKPI11010) 252 DIMENSION W1lt1010)W2(1010)W3(10 10) 253 PI bull 314109266 254 C 258 C FIRST UlTH THE VECTOR OF MEASUREMENT POSITIONS CZ) FIND THE 256 C CORRECTED COVARIANCE MATRIX IW2) FROM THE LAST VALUE OF THE 257 C PREDICTED COVARIANCE MATRIX (P) UN COMMON) AT TIME (TIME) 2S6 C 259 0 0 12 l = 1M 260 DO 11 J J I (J 261 I I C ( I J ) a COSMJ-1 lPIgtZlt t ) ) 262 12 CONTINUE 263 C 264 C NEXT COMPUTE [PSII 1 on CCraquoPCK-1 l laquoCT1 INVERSE 2ES C 266 DO S lAIM

351

267 DO 2 I C raquo 1 N 268 W 1 I A I C ) bull 0 269 DO t 10= 1 N 2 7 0 1 W W I A I C ) raquo W K I A 1 C 1 bull CltI A I D ) raquo P 1 I D 1 C gt 271 2 CONTINUE 272 DO 4 IB1M 273 W2IIAIB) raquo CAPVIIAIB) 274 DO 3 |EdegN 275 3 W2(IAIB) W2(IAIB) bull W1CIAIE)laquoC(IBIE) 276 4 CONTINUE 277 S CONTINUE 276 CALL INVERSE (MW2PSIII ERR) 279 IFIIERRLTO) GO TO 991 260 C 261 C COMPUTE CP(KK)) MATRIX BUT FIND ONLY DIAGONAL ELEMENTS 2B2 C TO BE USED TO INITIATE TRACE CALCULATION 263 C 264 DO ID I AIN 385 PKPIIIAIAgt PltIA1A) 286 00 7 IC=IM 287 WIP1 =0 266 00 6 ID=1M 269 6 U1PI = W1PI laquo UI(IOIA)PSII(IDIC) 290 7 PKPKIAIA) bullgt PKPKIA IA) - W1PIlaquoWI(IC I A) 291 10 CONTINUE 292 C 293 C COMPUTATION OF TR[PIKKNS)] 294 C PREDICT THE COVARIANCE MATRIX AHEAD (N3gt STEPS IN TIME 295 C COMPUTE ONLY THE DIAOONAL ELEMENTS SINCE THE TRACE IS REOUIRED 296 C 297 00 16 K=1NS 298 DO 19 lolN 299 15 P K P K I I ) = A lt l I M P K P M I l ) raquo A C I l gt WKP1 lt I I ) 300 16 CONTINUE 301 TRP o 0 302 DO 17 I a 1N 303 17 TRP = TRP bull PKP1 (1I) 304 ISINQ = 0 305 99 RETURN 306 991 I SING o 3 3D7 RETURN 308 END

309 SUBROUTINE MATOUTP (ANMNAMENOUTND) 310 DIMENSION A(NDND) 311 WRITE1N0UTlOllNAME 312 101 FORMATlt20XA41OH MATRIX IS) 313 DO I I=1N 314 1 WRITEINOUT 102HACI J) Jlaquo1 M) 315 102 F0RMATI20X10E103) 316 RETURN 317 END

318 SUBROUTINE INVERSE (NNAAINVIERROR) 319 C SEE PROGRAM KALMAN FOR THIS ROUTINE 320 END

321 SUBROUTINE DECOMP (NNAULSCALESIPSI ERRORND) 322 C SEE PROGRAM KALMAN FOR THIS ROUTINE 323 END

324 SUBROUTINE SOLVE (NNULBXIPSNO) 325 C SEE PROGRAM KALMAN FOR THIS ROUTINE 326 END

327 326 C 329 SUBROUTINE MPRlV (NN A ULBXRDX IPSOIGI TS IERRORND) SEE PROGRAM KALMAN FOR THIS ROOTINE END

352

1 PROORAM PEIEM (PF1LETAPE2=PFILEHE0UTTAPE3degPE0UT1 2 C SET (NPLOTI TO THE NUMBER OF THE MEASUREMENT FOR WHICH THE CONTOUR 3 C PLOTS ARE DESIRED (1 2) SET IT TO ZERO (0) IF PLOTS 4 0 ARE DESIRED AFTER ALL MEASUREMENTS 5 CALL CREATE (5HPE0UT40000SWTgt S NIN bull 2 7 NOUT bull 3 S NTTY bull SS 9 DIMENSION AttO10gtWKPt(1010)CAPV(1010)Plt1010) 10 DIMENSION CAPWMOtO) 11 DIMENSION WSSdO 10) 12 DIMENSION ZDUMI10) 13 ZMAX bull 10 14 COMMON PROS NMZMAXPCAPV1SIN3 15 C IS DIMENSION F(B1SI)X(21S(19)SLlNE(ei)SVMBI9) 17 DATA S 1H 1HI1H IH21H )H31H 1H41H 1HB 18 2 IH JtHBIH iH71h 1HB1H 1H9IH 19 DATA SVMB (HIIM21H3lH4IH51HS 1H7IHB1H9 bull0 DIMENSION TITLESlt48)iBDR(Bt)SCALEHltai)SCALEVlt111SAMPLE(10) 21 OATA BDR IH4laquoIH)H4laquoIH1H4laquoIH1H4raquoIH1H4raquo1H 22 2 1H4raquo1H 1H4laquo1H11Hlaquo4laquo1M1Mlaquo4raquoIH1Hraquo4laquo1H1Hraquo 23 DATA SCALEH10H l04laquo10H 10H 09 Z4 2 4gt10H 10H 08 raquo4laquo10H 10H 07 bull 25 3 4raquo10H 10H 08 raquo2laquo10H 10H tZtK)J2 26 4 10H 10H OB bull 27 5 4gtI0H 10H 04 bull4raquo10H 10H 03 28 6 4gt10H 10H 02 bull4laquo10H 10H 01 bull 29 7 4laquoI0H IOH 00 bull 30 DATA SCALEV SHOO 8H01 8H02 BHOO 31 2 BH04 8H05 laquoH0laquo 8H07 8H08 32 3 OHO9 3H10 33 DATA SAMPLE 8HZER0ETH 34 I 8HFIRST 8HSECON0 BHTH1RD 8HF0URTH 35 2 8HFIFTH 8HSIXTH 8HSEVENTH 8HEIGHTH 3B 3 8HNINTH

37 DIMENSION BDRHtSII 38 DATA BDRH1H7raquo1HIHraquo7laquo1H1H7raquo1HIH7laquo1HIH7laquo1H 39 2 1Hraquo7raquo1H1Hlaquo7laquo1H1H71H1H7laquo1H1H7laquo1HIH 40 NL raquo 19 41 NK a 80 42 NY o 50 43 NAPI bull NX bull 1 44 NYP1 NY bull 1 49 C SET CONTOUR PLOT LIMITS 48 XMIN O 47 XMAX = ZMAX 48 YMIN bull 0 49 YMAX raquo ZMAX 50 OX = (XMAX - XMIN1NX 51 DY = (YMAX - YMIN1NY 52 NTTY raquo 59 53 WRITE(NTTY2001) 54 2001 FORMATa NPLOTgt 55 READ INTTY2002)NPLOT 56 2032 FORMAT(IIO) 87 READ(N NINMLLNTLTOTlLIMIT 58 REAO(N N1(AUJgtJlaquoINI1-1N) 59 REAO(N NKIWPIIIJ) Jlaquol N)IbullINgt 60 REAO(N N)((WSS(IJ)J=1NgtIlaquo1N) 61 REAO(N NH(CAPW(1Jgt Jdeg1 Li) lraquo1LLgt 62 REAOtN N)((CAPV(IJ)JraquoIM1Iraquo1M) 63 IF(NTLOTO)REA0(NINgt((T|TLESIIJ) JJI8)|a|NTL) 64 3000 CONTINUE 65 RpoundAD(NIN)NOPTERRLIMDT 66 IF(NOPLTO) 06 TO 99 67 READ(NINU(Plt I J ) JMNgt llaquo1N) 68 IFltNOPQTOgtREAD(NINgt(ZOUM(l)1=1Ml 69 IF(N0p3TO)REA0ltNIN)(ZDUM(l) 1=1 Ml 70 IFtNPLOTEQOl 00 TO 3001 71 IF(NPLOTQTNOP) 00 TO 3000 72 3001 CONTINUE 73 N0PP1 raquo N0Plaquo1 74 1 1 = 0 75 3 CONTINUE 7J K M ) bull XMIN 77 X(2) a YMIN 78 IFUIEOO) CALL FVAL (XFMIN) 7S IF(IIOTO) CALL PVAL(XtIFMINgt 80 FMAX = FMIN 81 DO 2 lalNYPI 82 C X(l) HORIZONTALLY Xlt2gt VERTICALLY 83 X(2) a YMIN (1-1gtraquo0Y 84 DO I JlaquoINXP1 85 X(1gt a XMIN bull (J-1UDX 68 IF(IIEQO) CALL FVAL (XFltIJgt) 87 IFIIIOTOI CALL PVAL(X llFUJ)) 98 IF(F(IJ)LTFMIN)FMIN raquo FllJJ 89 IF(F(IJJ0TFMAX1FMAX laquo F(IJgt 90 1 CONTINOE

353

95 100 96 97 96 99 100 101 101 102 103 104 105 100 107 10 109 109 110 1 1 1 1 12 5 1 13 6 114 1 IS 1 16 9 117 118 1 IS 21 120 201 121 122 22 123 202 124 125 23 126 203 127 126 24 129 204 130 131 25 132 133 26 134 206 135 136 2 T

137 207 136 139 140 141 280 142 143 10 144 14a 700 146 147 146 29 149 ISO 151 152 350 153 1S4 35 155 pound35 156 157 36 158 159 17 16Q -37 161 162 38 163 238 164 165 39 166 239 167 168 40 169 240 170 171 42 172 242 173 174 43 17S 243 176 177 44 178 244 179 180 45

CONTINUE DF t IFMAX - FMININL IF II1E00) WRITE CNOUT100) T(TlTLES(IJ)J18gtSAMPLEltN0PP1gt 2 ltTITLESr2J)Jraquo18I FORMATbullI10XC0N13UR PLOT OF TRACEPIKKraquoNgt(Z(K))1 AS raquo 1 FUNCTION OF 2 [ZIKgtJ1 HORIZ CZIK112 VERT9XTIMEEl 1 A 3 l1X8A109XAa iKEASUREMENTl1XeA10gt IF (llGTO) WRITE (N0UT101) T ( TITLES I J I J 18) SAMPLE(N0PP1 ) 2 lt T I T L E S ( 2 J ) J = l 6 gt I I l l

FORMATOI IOX CONTOUR PLOT OF TRACECP(KKN) ( Z ( K ) ) I AS 1 FUNCTION O F 2 bull t Z lt K ) ) 1 HORlZ I Z ( K ) 1 2 VERT9X T I M E El 1 4 3 I I X e A I 0 9 X A 8 M E A S U R E M E N T 1 1 X 8 A 1 0 9 X 4 E L E M E N T 1 2 1 2 laquo ) raquo gt

WR1TEIN0UT107JBDRH FORMAT 10X61A1 9X 16lt 1H3gtgt DO 1000 m N Y P I D9 9 J l NXPI 0 0 5 K raquo l N L I F I I F M I N K O F I G T F ( N Y P I I - I JDOO TO 6 CONTINUE SL1NE(Jgt = SIK) IFC(FINYP1raquo-1J))EO FMIN) SLINE(J) 1H IFIiFINYPIH -I J I I EOFMAXI SLINECJ) 1H0 CONTINUE IPC I QT 7gtG0 TO 280 GO T0I21222324252627)I WRITEiNOUT201ISCALEHII I SLI NEBDRU ) FORMATIAIOetAlAIBX CONTOUR LEVELSI 60 TO 1000 WRITE IN0U1202ISCALEHII ISLINEBDRltI) FORMATIAIOBIAAI8X ANO SVMBOLS) GO TO 1000 WRITE(NOUT203)SCALEH(llSLINeBOR(lI F0RMATIA1081AI Al 6X 161 IH) ) GO TO 1000 WhlTE (N0UT204lSCAIEMI)SLINE60R(I) fGRNAUftlOeiAlA16XlaquoSYMB LEVEL RANOEgt GC TO 1000 WRITpoundltNa120nKCALEHI I I SLI NE BDRlt I ) GO 10 1000 mP 11 El NC1UT206 gt SCALEHtl)SL1NEBDRC t ) FMAX FORMSTAIO01A1A1BX4H (01 E H 4) 00 TO 1000 WRI re N0LlT207)SCALEH( I gt S L I N E B 0 R lt I ) F0liMAT(A1081AlA18X 1611H-U NSKIP raquo I NLEVEL 9 60 TO 1000 IF 11 GT 34)00 TO 350 00 TO(282829)NSKIP FLEVEl = FMlN lt2laquoNLEVELlaquo1-NSKIP)DF WRITE(NOUT20B)9CALEHfI)SLINEBOR(11SYMB(NLEVEL1FLEVEL FORMATA081AlAI8X 1gtA1)E114) NSKIP - NSKIP GO TO 1000 NSKIP = 1 NLEVEL - NLEVEL - 1 WRITFINOUT207)PCALEM( I 1SLINEBOR(Igt GO TO 1000 LINE I - 34 GO T0(3536373839403642434445 364748 44505152)LINE WRITE(N0U1235ISCALEH(I1SLINEBORII)FMIN FORMATAtOeiAlAIex4H 1)El 141 GO TO 1000 URITE1N0UT203)SCALEH(I ISLINEBDR(I) W3 TO 1000 WRI|EIN0UT237)SCALEM(IgtSLINEBDRII) F0KMAT(A061A1A1OXEST I MAT ION) GO TO 1000 WR|TtiN0UT238)5CALEM(lgtSLINEBDRII) FORMATA1081AIAIBXERROR CRITERION) OO TO 1000 WRITEINOUT239ISCALEHII ISLINEBDRII) F 0 I M A T ( A 1 0 B I A I A I 8 X laquo C 6 N S T R A I N T =bull) GO TO 1000 WR1TEINOUT240)SCALEH1I)SLINEBDRC1)ERRLIM FORMAT(AIO81 A)A1 I2XEII4) GO TO 1O00 WRITE(NOUT242)SCALEHltI)SLINEBOR(I) FORMAT(A1081A1A18XSOURCE INPUT) OS TO 1000 WR I TE lt NOUT 243) SCALEH (I I SI I NE BDRlt I ) FORMATAIO81AlAl8XC6vARIANCE [Wlraquogt 00 TO 1000 WRITECNOUT244)SCALEH(I)SLINEBDRI I F0RMATIA1081AIA1) GO TO 1000 WRITENOUT 245ISCALEH I gt SLII-BDR( I gt CAPWC 11)

354

1raquo1 245 F0RMATtA)081A1Al8)traquot raquoE1I4laquoJ) 162 GO TO 1000 1S3 47 WRITEINOUT247I3CALEHIIgt3L1NEB0Rlt1gt 184 247 F0RMATltA10elAlAI0XMEASUREMENTlaquogt IBS 00 TO 100D 1laquo8 48 WRITEINOUT248)SCALEH(I)SLINEBDR11 ) 187 248 F0RMATCA10 81A1A18XERROR C6VAR CV1) 188 00 TO 1000 188 SO WR1TElNOUT2a0gtSCALEHII)3LlNEB0Rtl)CAPV(l1)CAPVII2gt ISO 200 F0RMATCA10 BlAl A1BX[laquoFO34X FB4laquo)bullgt iai oo TO IOOO 192 B1 WRITEINOUT250gtSCALEH(I)SLINE8DR(IgtCAPVI21gtCAPVI22gt IB3 OO TO 1000 104 02 WRlTEINaUT203)SCALEHltIgt9LINEBDRltI) 155 1000 CONTINUE 108 WRITEINOUT1071BDRH 197 WRITEINOUT253)SCALEV 198 293 F0RMATI9XI 1AOOIXtZIKgt11gt 1SB CAIL MATOUTP IPNNIHPNOUT10) 200 CALL EMPTY(NOUT) 201 I I laquo I I bull 1 202 IFltI I IEN) 00 TO 0 203 IFINPLOTEQO) 00 TO 3000 204 99 CALL EXIT 205 END 206 SUBROUTINE FVAL IZTRP) 207 C SEE PROGRAM NEWPT FOR TH1S ROUT INE 208 END

209 SUBROUTINE PVAL (ZI IPI I) 210 C RETURNS (llll)TH ELEMENT OF (PIKraquoIK1)) 211 COMMON PROS NMZMAXPCAPVISINO 212 DIMENSION PI 10 10)Clt1010)CAPVI10 10)PSIIlt1010) 213 DIMENSION Zlt1gtWTlt1010SW2l1010)W3tl610gt 214 ND bull 10 2IB PI bull 314IS926S 213 DO 12 ldeg1Mj 217 DO II JraquoIN SIB II CIIJ) a COSlltJ-tgtlaquoPIraquoZII)gt 215 12 CONTINUE 220 C FIRST COMPUTE tPSI I ) tClaquoPltK-1K)raquoCTJINVERSE 221 00 5 IAgt1M 222 DO 2 I C= I N 223 WH jAIC) bull 0 224 00 I I Da 1N 225 1 H11IAIC) raquo WHIAIO bull OUA IOXPIID IC) 226 2 CONTINUE 227 DO 4 16=1M 228 W2I1AIB) a CAPVIIA IB) 229 DO 3 lE=lN 230 3 W2ltIAIB) a W2(IAIB) bull W1(IAtElaCCIBIE) 231 4 CONTINUE 232 B CONTINUE 233 CALL INVERSE (MW2PSIIIERR) 234 IFCIERRLT0) OO TO 991 235 C CALCULATION OF tP(ZK)IKK)11 I 233 PI I P(1111) 237 OO 7 ICraquo1M 238 W1PI raquo 0 239 00 6 IDraquo1M 240 e U I P I laquo W I P I laquo w H i D i n p s i m o i c ) 241 7 Pll deg Pll bull W1PIgtUIIICII) 242 ISINO a 0 243 99 RETURN 244 991 I SI NO a 3 245 RETURN 24B END 247 SUBROUTINE MATOUTP (ANMHAMENOUTND) 241 DIMENSION A(NDND) 249 WRITEINOUTIOilNAHE 250 101 FORMAT26xA413H MATRIX IS) 251 DO 1 l-lN 252 1 HRlTE(N0UT102XAtlJ)Ja1M) 253 102 FORMAT120X10E103) 254 RETURN pound50 END

256 SUBROUTINE INVERSE (NNAAINVIERROR) 287 C SEE PBOBRAM KALMAN FOR THIS ROUTINE 256 END

355

2Braquo SUBROUTINE DECSHP INN A M SCALES IPS IERRORND) 260 C SEE PROGRAM KALMAN FOR THIS ROUTINE Z01 END

28S SUBROUTINE SOLVE INN UL B X IPS ND) 283 C SEE PROGRAM KALMAN FOR THIS ROUTINE pound04 END

2Bs sect5lt5yiIHbdquo l3 p RyY IH NltjHV-j tA5iHJ r 8gt D I O I T S ERROR ND) BB7 END

rsvanuv i i MC bull n r n u v i n i l m uu ttf r n w n SEE PROGRAM KALMAN FOR THIS ROUTINE

356

1 PROGRAM SIGMAT ltPFILETAPE2=PFILES8UT TAPE3=S0UTgt 2 CALL CHANGE C2HHS) 3 CALL CREATE lt4HS0UT40000SWT) 4 NIN raquo 2 8 NOUT raquo 3 6 DIMENSION SIGZdOl IZdOl ) 7 DIMENSION A(I0 10) P O O 10) CAPVdO 10) WKP1 d O lOlWSSdO 10) 5 DIMENSION CAPWtlO10) ZUUMdO) Tl TLES(48gt 0 ND raquo 10 10 COMMON PROB NMZMAXAPCAPVWKP1WSSISING 11 XNAME = 10HP0SITI0N Z 12 YNAME = I0HS1G(ZKlaquoNgt 13 PNAME = 10HTIME TKraquoN 4 ZMAX 1 0 15 XMIN deg 00 16 XMAX ZMAX 17 NX c 00 10 NXP1 NXraquoI 19 DX e (XMAX-XMIN)ZNX 20 NTTV bull 63 21 WRITE1NTTY1001) 22 1001 FORMATbull NPLT3 NSKIPgt) 23 RCADINTTY1002)NPLTSNSK1P 24 1002 F0RMATlt2I0) 20 READ(NIN)N MLL NTLTO T - L I M I T 26 READir i lN I I l A ( l J ) j i | N l = l N ) 27 R E A D I N I N X W K P I d J ) J M N gt I = 1 N gt 28 R E A D I N I N I U W S S l J ) J = 1 N ) I = 1 N ) 29 R E A O l N I N M I C A P W d J ) J u l LC ) I = 1 L L ) 30 REAON INM(CAPVd J ) J raquo I M gt 1 1 M 1 31 IFINTLGT0 gtREADC NI N M C TI TLES d J) J= 1 8 gt I deg 1 NTL) 32 9 CONT1NUE 33 REAO(NININOPTERRLIMDT 34 I F ( N O P L I O ) GO TO 99 35 R 0 lt N I N M P d J gt J raquo l N ) l raquo 1 N gt 36 f INOr lSTOgtREAoiNINgtlzDUMd l l gt 1 m 37 I F lt N 0 P O I 0 gt R E A 0 ( N I N ) ( Z D U M lt I ) I raquo 1 M ) 38 FHIN bull SIGMA ( 0 ) 39 FMAX = FMIN 40 DO 3 I I O N P L T S 41 PVALUE = t laquo ( I l - l ) laquo D T laquo N S K I P 42 DO 1 I - 1NXP1 43 Z ( l ) XMIN bull lt1 -1 )laquoDX 44 S I U 2 I I ) - S I G M A I Z d gt) 45 I CONTINUE 46 CALL MULTPLT C Z SIGZ I I XNAME YNAME PNAME PVALUE Tl TLES NTL NOUD 47 DO 2 K-lNSKIP 48 2 CALL APATW (APWKPINND) 49 3 CONTINUE 60 11 laquo -1 61 CALL MUL1PLT (ZSIGZI IXNAMEYNAMEPNAMEPVALUETlTLESNTLN0UT1 62 GO TO 6 63 99 CONTINUE 64 RVALUE = (US8I1 IlWKPII 11gtlaOT 66 YNAME = I OHS GMMWSS) 6D PNAMt laquo 10HT1ME TO SS 57 DO 101 ldeg1N 68 DO 100 J = IN 39 100 HIJI i WSSIIJ) 60 101 CONTINUE 61 C ZERO OUT FIRST ELEMENT OF (WSS) 62 Pd I) = 00 63 00 102 lalNXPI 64 Z(l) bull XMIN bull (l-l)aDX 65 SIG^I|) bull SIGMA(Z(I)) 66 102 CONTINUE 67 1 1 = 1 68 CALL MULTPLT (2SIOZI IXNAMEYNAMEPNAMEPVALUETlTLESNTLNOUT) 69 II = -1 70 CALL MULTPLT ltZSIGZ I IXNAMEYNAMEPNAMEPVALUETlTLESNTLNOUT) 71 CALL EXIT 72 END

73 FUNCTION SIGMAIZ) 74 C SEE PROGRAM KALMAN FOR TIHIS ROUTINE 75 END

78 SUBROUTINE APATW (APWNNDI SD DIMENSION A d O 10)Plt 0 lOIWdO 10) 81 DO 2 1=1N B2 DO 1 J=1N 83 I P(IJ) laquo A d l)laquoPdJ)laquoA(JJgt bull W d J ) 64 2 CONTINUE

357

87 SUBROUTINE NULTPLT (XINYINNXNAMEYNAMEPNAMEPVALUE 08 2 TITLESNTLNOUT) 89 DIMENSION XlN(101)YlN(101)X(1010gtYC1010)PARAMI10) 90 DIMENSION TITLESI48) 91 MAXPTS o 101 02 IFINLTO) 00 TO 90 93 NUMPTS = NlaquoMAXPTS 9lt1 NPLTS = N 98 PARAMI Ngt = PVALUE 9G DO 1 1=1MAXPTS 97 II = IN-I(MAXPTS bull I 96 XltI I) = XINI1 I 99 YlI I) = YINII) I oo i com i NUE 101 RETURN 102 90 CONTINUE 103 CALL PARALST IXYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 104 2 TITLES NTLNOUT) 106 CALL PARAPLt (KYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 106 2 TITLESNTLNOUT) 107 RETURN 100 END

109 SUBROUTINE PARALST (XYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 110 2 TITLE-SNTLNOJT) II I DIMENSION X(1010)Y(10IO)PARAM(IO)SYMBOL(10)EQUALS(11)TERMlt11) 112 DIMENSION TITLpoundS(48gt 113 DATA EQUALS 11laquo 10H========== 114 DATA SYMBOL 1H01H11H21H3H41H51H61H71H81N9 1 IS IFINTLEQO) 00 TO 2 116 DO 1 I= 1NTL 117 I WRITEINOUT101)I TITLESIJ)J1laquo) 118 101 FORMAT1IX8A10) 119 2 WRITEINOUT102IPNAMF1PARAMI)1=1NPLTS) 120 102 FORMATbull TABULAR LIST OF PLOTTED PARAMETRIC CURVES 121 2 A1010I1XE103)) 122 NPLTSPI = NPLTS1 123 WRITEINOUT101)IEOUALS(I)1=1NPLTSPI) 121 104 F0RMAT(A10101IXAID)) I 25 WRITE1NOUT 103)(SYMBOLI) 1bull1NPLTS) I2J 103 FORMATIPOSITION Z bull 10SIOiZKA1bullgt bullgt) 127 WRITEINOUT 104)(EQUALSI)=1NPLTSP11 126 DO 6 1=1101 129 TERMI1) = XII) 130 00 4 J = l N P L T S 131 4 T E R M I J laquo l l raquo Y K J - 1 I raquo I 0 1 1 ) 132 5 HRITE1N0UT1 06MTERMIK) K = I NPLTSP1 ) 133 106 FORMAT(tl0310(1XEI03)gt 134 RETURN 136 END

136 SUBROUTINE PARAPLT ltXYNPLTSNUMPTSXNAMEYNAMEPNAMEPARAM 137 2 TITLeSNTLNOUT) 138 DIMENSION XI I 010)Y1010)SI 1010)PARAM10) 139 DIMENSION SYMBOL10) 140 DIMENSION TITLESI48) 141 DIMENSION POINTS101)BUT(6) 142 DIMENSION SSTI1010) 143 DATA SST 101bullIHO 101laquo1H1101bullIH2101bullIH3 1011H4 101raquo1H5 144 2 101IH6 I011H716U1H8161IH9 145 DATA SYMBOL 1HD 1HI 1H2 1h3 1H4 1H5 t-IS 1H7 1H8 1H9 146 DO I 1=1NUMPTS 147 1 SI I) = SSTI) 146 IFINUMPTSLT2100 TO 999 149 C WRITE OUT TITLE CARDS 150 WRITEINOUT6) 161 6 FORMATIH1S 152 DO 3 1=14 153 00 TO (301302302302)I 15D 301 IF(ILENTL) WRITEINOUT2001)YNAME(TITLESilJ)J=18) 155 2001 FORMATI3XA102X8A10) 156 1FIIGTNTL) WRITE1N0UT2002)VNAME 157 2002 FORMATI3XA10I 158 00 TO 3 159 302 1FI1 LENTL)WR1TE(N0UT2003)ITITLESII J) J=l8) 160 2003 FORMATI5X8A10) 161 IFII OTNTL) WRITE1N0UT5) 162 3 CONTINUE 163 URITEIN0UT5I 164 5 FORMAT1H 1 165 C 166 C Rt-ORDER B THE Y AXIS 167 C 166 C SOLVE FOR MAX

358

169 1=1 170 20 CONTINUE 17f JJ=M 172 YMAX-YIM 173 DO 10 J=INUMPTS 171 IFIYIJILEYMAXIGO TO 10 175 YMAX=Y(J) 176 JJ=J 177 10 CONTINUE 170 C INTERCHAN8E 179 YY=Ytl) 160 XX=X(I) 1S1 SS = S U ) 182 YCI)=YtJJ) B3 X(Igt=X(JJ) 184 Sill bull S(JJgt 185 Y(JJ)laquoYY I8G XltJJ)raquoXX 187 S(JJ) = SS 188 1raquo11 189 IFIIEONUMPTS)00 TO 30 190 GO TO 20 191 30 CONTINUE 192 C SOLVE FOR MINMAX OF X AND Y 193 XMlNuXtl) 191 XMAX=XC1) 195 YM1N=Y(1) 196 VMAX=Yltgt 197 00 2 1 bull= 1 NUMPTS 19B IFIXII)LTMINJXMINraquoX(I ) 199 IFIXd gtGTXMAX)XMAXraquoXC1gt 200 IF(Y(IILTYH1N)YMINYU) 201 IFltY(l)OTYMAX)YMAX=YltIgt 202 2 CONTINUE 203 C RESET THE END POINTS 204 CALL ENDPTSIXMINXMAX) 20B CALL ENDPTS(YMINYMAX) 206 C CALCULATE DELX AND DELY 207 DELXMXMAX-XMINV1000 208 DELY=(YKAX-YMINgt500 209 C GENERATE THE PLOT 210 KK=ABS(XMIN) 0ELX1 0 211 IZEROO 212 I F ( ( X M I N L E O O ) A N D C X M A X G E 0 0 ) gt I Z E R 0 = 1 213 IC0UNT=10 214 L1ST=1 215 00 100 1=1 51 2 1 6 XI=I 217 YZ2=YMAX-XIraquoDELY 218 V lti =YZ2raquo0ELY 219 IAA=0 220 IF ICYZ1 G E O 0 ) A N D lt Y Z 2 L E O O gt gt I A A = l 221 00 101 J 1 1 0 1 222 101 POINTSCJgt=lH 223 lF( ICOUMTNE10gteO TO 105 224 DO 106 1 = 1 1 0 1 2 225 106 P O I N T S ( J ) deg l H 226 lOt CONTINUE 227 POINTS( 1 )raquo1H 228 POINTS 21)=IH pound29 POINTSI 411=1H 230 OINTS( 61gt1H 231 gt01NTSI B1)gt1H 232 P O I N T S 1 0 1 ) laquo I H 233 1FCIZEROE01IPOIMTS(KKgt=1H1 234 IFIIAANEIIGO TO 137 235 DO 136 J1101 236 136 POINTSIJIOH-237 137 CONTINUE 238 YLOHaYMAX-KUDELV 239 102 CONTINUE 240 IFIL1STGTNUMPTSIG0 TO 110 241 IFtYltLIST)LTYLOW)QO TO 110 242 K=(X(LIST)-XMIN)DELX10 243 POINTS(K) - S(LIST) 244 LIST=LISTraquo1 245 GO TO 102 246 IIO CONTINUE 247 IFCICOUNTEQ10)00 TO 112 248 ICOUNT=ICOUNTraquot 248 WR1TEIN0UT 1 I I XPOINTS(J) J=1 101) 250 111 FORMATIBXI01A1gt 251 GO TO 100 252 112 CONTINUE 253 YY=YL0W8ELY 254 ICOUNT=1 255 IFlt(YYQT-10E-9)ANDIYYLT1OE-9))YY0O 256 WRITEltNOUT1131YY ltPOINTSIJ)Jraquo1101) 257 113 F0RMATI2XE1142X101A1) poundiS 100 CONTINUE

359

239 00 121 I-16 260 XIraquo1-1 2G1 BUT(I)raquoXMINraquo200raquoDELXraquoX1 262 IFlt(BUngtLT10E-9gtAND CBUTCI ) ST -I OE-9) )BUT( I ) 00 263 121 CONTINUE 264 WRITEtNOUT122)I BUT(J)J=16) 268 122 FORMAT10X6IE10310Xgtgt 266 WRITE(NOUT26o4)XNAME 267 2004 FORMATlt61XA10gt 26B WRITECNOUT3000IPNAME((SYMBOLI)PARAM(I gt gt 1 = 1 NPLTS) 269 3000 FORMAT1IXl8ilaquo=laquo)raquo PARAMETER VALUE 270 2 raquo AND SYMBOLIXl8ltlaquoraquoraquogtraquo SYMB raquoAl0IX18Craquo-laquo) 271 3 10( laquoA1raquo) raquoE114)gt 272 WRITEltN0UT6gt 273 999 CONTINUE 274 RETURN 270 END

276 SUBROUTINE ENOPTS(XMINXMAX) 277 C SEE PROGRAM KALMAN FOR THIS ROUTINE 278 END

360

1 PROGRAM MAXTI ME (PF1LETAPE2=PFILEMOUTTAPE3=M0UTgt 2 CALL CHANGE lt5HMAXT) 3 CALL CREATE I4HMOIJT 1 OOOO SWT) 4 N1N = 2 5 NOUT = 3 6 ND = io 7 DIMENSION A(1010P(1010)CAPVI1010)WKPllt1010)WSSC1010) B 2 CAPWdO 10)CAPNO(1010)1TlME(110)TRPltll6)PPI10 10) 9 3 ZSTC102 10gtTITLES(48gt 10 READNlN)NMLLNTLTOTlLIMIT 11 READltNIN)(ltAI1JgtJ=1Ngt=1Ngt 12 REA0ltNIN)lt(WKP1(IJ)J=1N)1=1Ngt 13 READCNINXCWSSCl J) J=1 N)1=1N) 14 READININUCCAPWCI J) J=1LLgt =1LLgt 15 READCN1N)(CCAPVClJ)J=lM)i=lM) 16 lF(NTLGTO) PEADCNIN)((IITLESCIJ)J =18)I=1NTL) 17 REAOCN1N)NOPTERRLIMDT IB READ(NIN)C(CAPM0CIJgtJ=1N) t = lN) 19 3 CONTINUE 20 READCNIN)NOPTERRLIMiJT 21 I F ( N O P L T O ) GO TO 4 22 READCNINHCPCI J ) J= 1 N ) 1 =1 N) 23 READ(NIN)ltZSTCI2N0P)1=1Mi 24 READCNINKZSTCIlNOP)1=1M) 25 C NOTEOROER OF STORAOE OF OPTIMAL ZK-VF-CTORS IS REVERSED THAT 1 26 C ZKlaquo FOR TRACE INDEX COMES OUT OF KALMAN FIRST BUT 13 STORED 27 C IN ZST(I2NOP) WHEREAS ZK FOR PI 1 INDEX COMES OUT SECOND 28 C AND IS STORED IN ZSTCI1NOP) ALL THIS TO PLOT PUU THEN TRACE I 29 C BUT IS STORED IN ZSTC11NOP) 30 C ALL THIS IN ORDER TO PLOT P11 FIRST THEN TRACE HERE 31 GO TO 3 32 4 CONTINUE 33 DO 50 I 1=12 34 IFI1IEQ1) WR1TECN0UT102) 35 102 F0RMAT(1 CRITERION NUMBER 1 PLOTTED WITH SYMBOL (1) 36 2 MINIMIZE tP(KK+N)]11 WITH RESPECT TO Z(K)laquo 37 3 laquo K T TRPgt 38 IFUIEQ2) WR1TECN0UT103) 39 103 FORMATlaquo CRITERION NUMBER 2 PLOTTED WITH SYMBOL 12) 40 2 MINIMIZE TRACECPCKKNgt] WITH RESPECT TO Z(K) 41 3 laquo K T TRP) 42 NOP = 0 43 CALL ATOB(CAPMOPNNNDgt 44 CALL ATOBCCAPMOPPN NND) 45 T = TO 46 K = 1 47 20 CONTINUE 48 TEST = TR(PPN) 49 IF(TESTGEERRLIM) GO TO 28 50 TIME(K) = T 51 Tnp(K) = TEST 52 WrtlTECNOUT101gtKTTEST 53 101 FORMATCII02E103) 54 IF(TGTTI) GO TO 45 55 1FCKE0110) GO TO 45 56 T = T bull DT 57 K = K + 1 56 CALL ATOB ltPPPNNND) 53 CALL PREDICT (ApWKPlPPN ND) 60 GO TO 20 61 26 CONTINUE 62 IFCKOT1) T = T - OT 63 NOP = NOP bull 1 64 CALL CORRECTCZSTUUNOP)PCAPVPP S1NGNMNDgt 65 GO TO 20 66 45 CONTINUE 67 XI I = 1 I 68 CALL MULTPLT (TIMETRPI IK10HT1ME TKN 1OHTRPIKKraquoN) 89 2 10H CRITERIONXiiTITLESNTLNOUT) 70 50 CONTINUE 71 11 = -1 72 CALL MULTPLT [TIMETRP I IK 1OHTIME TKN 1UHTRPCKKN) 73 2 1PH CRITERION XIITITLESNTL NOUT) 74 CALL EXIT 75 END 7C SUBROUTINE PREDICT (APWPPNND) 77 DIMENSION AC 1010)PC 10 16)WC1010)PPlt1010) 78 C PERFORMS THE ONE-STEP PREDICTION 79 C PP = ltAPA-TRANSPOSE) bull W 80 C WHERE A IS A DIAGONAL STATE TRANSITION MATRIX 81 DO 2 I = 1 N 82 00 1 JMN 83 1 FPUJ) = ACI I H f l l J I U I J J) bull W(I J) 84 2 CONTINUE 85 RETURN 86 END

361

SUBROUTINpound CORREOT(ZPCAPVPPI SI NONHND) DIMENSION P(10 10)Clt1010)CAPV(1010)PS1I(1010)PP( 1 0 10) DIMENSION Z(1)W1(1010)W2[1010)W3(1010) PI = 3 14159266 DO 12 I=1M DO 11 J-1N 0(1 J) - COSKJ-1 )PIraquoZ(Igtgt CONTINUE [CraquoP(K-K)CT]INVERSE 97 DO pound IC=I^N 96 Wl(IAIC) = 0 99 U 1 |D1K 100 1 WK1AIC) = MKIAIC) bull C(I A 1D)laquoPlt1DICgt 101 2 CONTINUE I OS DO 4 1 B= 1 M 103 WZMAIB) = CAPVdA IB) 104 DO 3 IE-1N 105 3 W2(IABgt - W2IIAIB) Wl ( I A E)raquoClt IB IE) 106 4 CONTINUE 107 5 CONTINUE 108 CALL INVERSE (MW2PSI1IERR) 109 IF(IERRLTO) 00 TO 991 110 C COMPUTE FULL ltP(ZK)(KKJ) MATRIX 111 DO 10 IA=1N 112 DO 7 10=1M 113 W3(IACgt = 0 114 DO 6 10=1M 115 6 W3(IAIC) = W3(]A[Cgt bull Wl(IDI A)laquoPSI1(ID IC) 115 7 CONTINUE 117 00 9 IB=1N 1 IB W2(IAIB) = P(IAIB) 119 DO ( IEgt1n 120 euro U2IIAIB) = W2(AIB) - W3ltI A IE)W)(1EIB) 121 PPUAIB) = U2UAIB) 122 S CONTINUE 123 10 CONTINUE 124 ISINS = 0 125 99 RETURN 126 991 I31Ne = 3 127 RETURN 126 END

129 SUBROUTINE ATOB (ABNMND) 130 C SEE PROGRAM KALMAN FOR THIS ROUTINE 131 ENO

132 FUNCTION TR(AN) 133 C SEE PROGRAM KALMAN FOR THIS ROUTINE 134 END

135 SUBROUTINE INVERSE (NNAAINV I ERROR) 136 C SEE PROGRAM KLMAN FOR THIS ROUTINE 137 END

I3S 139 C 140 END

141 SUBROUTINE SOLVE (NNULB X I PS ND) 142 C SEE PROGRAM KALMAN FOR THIS ROUTINE 143 END

141 145 C 146 END

147 SUBROUTINE MULTPLT (XNY[NNNPTSXNAMEYNAMEPNAMEPVALUE 148 2 TITLESNTLNOUT) 149 C SEE PROGRAM S1GMAT FOR THIS ROUTINE 150 END

151 SUBROUTINE PARAPLT(XYNPLTSNUMPTSNEACHXNAMEYNAMEPNAMEPARAM 152 2 TITLESNTLNOUT) 153 0 SEE PROGRAM SIGMAT FOR THIS ROUTINE 154 END 155 SUBROUTINE ENDPTS(XMINXMAX) 156 C SEE PROGRAM KALMAN FOR THIS ROUTINE 157 END

362

1 PROORAM POSTPLT ltTFILETAPE2=TFILEPPOUTTAPE3=PP0UTgt 2 CALL CHANGE C3HPPgt 3 CALL CREATE (5HPP0UT10000SWT) A N I N = 2 B NOUT o 3 6 DIMENSION YNAMEC2)PNAMEC2) 7 DATA YNAME 1OHTRtPKK+N]10HSIG(KKNgt e DATA PNAME IOHTRACELIM IOHSIGMALIM 0 DIMENSION T1MElt110gtXTC110)TITLES(48) la II raquo 1 1 CONTINUE READlt NIN)NMLLNTLTO T1 LI Ml T ERRLIM IF(NLTO) 00 TO 50 1FCNTLGT0)READ(NIN)(CTITLESlt1 JgtJ=18gt 1=1 NTL) READltNIN)NPTS 6 READltNINMTIME(1) I=1 NPTSgt 7 READININHXTCI gt U 1 N P T S gt S WRITEltN0UT101)YNAME(LIM1T) IIPNAMECLI MlT)ERRLIMYNAMEtLIMIT) - 101 F0RMATO1raquo PLOT OF raquoAIOlaquo VERSUS TIME PL0TTE6 WITH SYMBOL 2 laquo ESTIMATION ERROR LIMIT laquoA10laquo = laquoE103 3 laquo TIMEraquoA10gt 00 2 1=1NPTS 2 WRITECN0UT102)TIMElt1)XT(Igt 102 F0RMAT(2E103gt

CALL MULTPLT T IME XT I I NPTS lOHTlMiT TK+N 2 YNAMEltLIMlT) PNAMEltLiMIT) ERRHMTlTLSSNTLNOUT

1 1 = 1 1 + 1 GO TO 1

50 11 = - 1 CALL MULTPLT (TIMEXTI INPTS 1CHTIME TKN 2 YNAMEILIMT)PNAME(LIMIT)ERRLIM TITLESNTLNOUT) CALL EXIT END

SUBROUTlNE PARAPLTtXYNPLTSNUMPTSNEACHXNAMEYMAMEPNAMEPARAM iEE PROGRAM SIGMAT FOR THIS ROUTINE END

40 SUBROUTINE ENDPTS(XMINXMAX) 41 C SEE PROGRAM KALMAN FOR THIS ROUTINE 42 END

363

i PROGRAM POSTFP [PFILETAPE2=PF1LEFPCUTTAPE3=FP0UTgt 2 CALL CHANGE C3HraquoFP) 3 CALL CREATE C5HFPOUT1OOO0SWT) 4 DIMENSION 2(10)X(I 10)FXlt10) 5 COMMON PROB NMZMAXAPCAPVWKPIWSSISINO 6 DIMENSION Alt1010)Plt1010)CAPVC10lO)bKP1ClO10)WS3lt1010) 7 DIMENSION CAFWi1010) 8 DIMENSION TITLESI4agt 9 NIN = 2 10 NOUT = 3 I I NTTY = 59 12 YNAME = 10HCPCKKgt311 13 PNAME = 10HDIMENS NS 14 DZ = 001 15 ZMAX =10 16 1 WRITECNVTY1001) 17 1001 F8RMATlraquotZ(Kgt32=raquogt 18 READCNTTY002)Z(2) 19 1002 FORMATCE103) 20 IF(Z(2)LTO) GO TO 99 21 REWIND NIN 22 1 1 = 1 23 3000 CONTINUE 24 READltNINgtNMLLNTLT0T1LIMIT 2 5 I F ( N L T O ) GO TO 5 0 26 R E A D lt N I N ) lt C A lt I J gt J = l N ) 1 = 1 N 27 R E A 0 C N I N ) C I W K P I C 1 J gt J = 1 N ) l = l Ngt 28 READCNINHIWSSCI J ) J = 1 N gt l = 1 N gt 29 R E A D ( N I N gt ( I C A P W ( l j S J = 1 L L gt l = l L L ) 30 R E A D ( N I N ) ( ( C A P V ( I J ) J = 1 M ) 1 = I M ) 31 I F C N T L 0 T 0 ) R E A 0 lt N 1 N H I T 1 T L E S lt I J ) J raquo 1 8 ) 1=1NTL) 32 READ(NINgtNOPTERRLIMDT 33 READCNINMCP(IJ)J = IN)I=1Ngt 34 DO 5 1=1101 35 Z(1) = (I-1)DZ 3S X(l) = Zltgt 37 CALL FVALCZFXI1)) 38 5 CONTINUE 39 WRITElt NOUT101)Zlt 2)NN 40 101 F0RMATCraquo1laquolaquo PLOT OF [P(KK)]11 FOR CZ(K)]2 = laquoE103 41 2 raquo VERSUS I-0S1710N [ZtK)]l FOR MODEL DIMENSION NS = laquoI2 42 3 raquo PLOTTED WITH SYMBOL (laquo11raquo)raquo 43 4 raquoCZ(K)1 [l=CKKn1laquo) 44 CALL MULTPLT ltXFX I I1011OHtZCK)J 1 45 2 YNAMEPNAMEZC2)TITLESNTLNOUT) 46 II = II bull 1 47 GO TO 3000 48 50 CONTINUE 49 CALL MULTPLT (XFXI II 0110HCZIK)11 50 2 YNAMEPNAMEZC2)TITLESNTLN0UT1 51 30 TO I 52 99 CALL EXIT 53 END

54 SUBROUTINE MULTP-T ltXIN YIN NNPTSXNAME YNAME PNAME PVALUE 55 2 TITLESNTLNOUT) 56 C SEE PROGRAM S1GMAT FOR THIS ROUTINE 57 END 58 SUBROUTINE PARAPLTCXYNPLTS NUMPTS NEACHXNAMEYNAMEPNAMEPARAM 59 C SEE PROGRAM SIGMAT FOR THIS ROUTINE SO END

61 SUBROUTINE ENDPTSCXMINXMAXgt 62 C SEE PROGRAM KALMAN FOR THIS ROUTINE 63 END

64 SUBROUTINE FVAL CZPll 65 C SEE PROGRAM KALMAN FOR THIS ROUTINE 66 END

70 SUBROUTINE DECOMP ltNNAULSCALES I PSI ERRORND) 71 C SEE PROGRAM KALMAN FOR THIS ROUTINE 72 END

73 SUBROUTINE SOLVE CNN ULBXI PSND) 74 C SEE PROGRAM KALMAN FOR THIS ROUTINE 75 END 76 SUBROUTINE IMPRUV ltNNAULBXRDXIPSDIOlTSIERRORNO) 77 C SEE PROGRAM KALMAN FOR THIS ROUTINE 78 END

364

1 PROGRAM POSTSP CPFILETAPE2=PFILESPOUTTAPE3=SPOUT) 2 CALL CHANGL lt3HSP) 3 CALL CREATE (5HSP0UT1O00O SWT) 4 DIMENSION ZltI 0)XIIIOJFX(I 10)PBUMC10101XOUMlt10) 5 COMMON PROB NMZMAXAPCAPVWKP1WSSISINO 6 DlMEMS IOPI A(10 lOJPI 1010gtCAPV(10 101WKPI(10101WSSlt1010) 7 DIMENSION CAPW11010) 8 DIMENSION TITLES(4 1S) S N1N = 2 10 NOUT = 3 11 yNAME = 10HSIGMA2(Z) 12 PNAME = 10HDIMENS NS 13 DZ = 001 1A ZMAX = 1 0 IS 1 CONTINUE IS REWIND NIN 17 1 1 = 1 1laquo 3000 CONTINUE 19 HEAD C Nl M) N M LL NTL TO Tl LI Ml T 20 IF(NLTO) copy6 TO 50 21 READININX ltAdJ)J=1N)l = lNgt 22 REA0(NIN)((WK|1U J I J= I N) U l Ngt 23 READ(NIN)((WSS(I J) J=I N) l= l N) 24 READltMNH(CAPWI1J)J=1LLI U I L L ) 25 READINlNHICAPVdJ)J=1 M)1=1Ml 2S IFfNTLGTOlREAOCNINldTlTLESd J ) J=1Bgt 1 = 1NTL) 27 REAtXNINlNOPTERRLlMDT 28 HEAOCNlNldPDUMd J) J=IN) l = lN) 29 RLADIN1NgtN0PT (ERRLIMDT 30 READ(NINMltPdJ)J=1Ngt I = 1N) 31 READltNIN)(XOUM(I)1=1M) 32 READ(NIN) (XDUMd) 1 = 1M) 33 3 CONTINUE 34 READCNIN)NOPTERRLIMOT 35 IF(NOPLTO) 00 TO 4 36 READ(NINI((PDUMdJ)J=1N)I=1N) 37 READiNINKXDUMdgtl=1Mgt 38 READININMXDUMd ) 1 = 1M) 39 GOTO 3 40 4 CONTINUE 41 DO 5 1=1101 42 I d ) = lt1-1gtraquoD2 43 laquo(ll = Zll) 44 FXd) = SISMAIZd )) 45 5 CONTINUE 46 CALL MULTPLT (XFX I 1101lOHIZ(K)11 47 2 YNAMEPNAMEZlt2gtTITLES NTL NOUT) 48 II = I I + 1 49 00 TO 3000 50 50 CONTINUE 51 WRITEINOUT10IINN 52 101 FORMATraquo1- PLOT OF SI0MAgtraquo2(Z)gt 53 2 VERSUS POSITION Z FOR MODEL DIMENSION NS = laquoI2 51 3 = PLOTTED WITH SYMBOL ltlllaquogtraquogt 55 II = -1 56 CALL MULTPLT (XFX I 1 101lOHCZ(K)31 57 2 YNAMEPNAMEZlt2)TITLESNTLNOUT) 58 CALL EMPTY(NOUT) 59 99 CALL EXIT 60 END 61 FUNCTION SIGMAC2) 62 C SEE PROGRAM SIGMAT FOR THIS ROUTINE 63 END

SUBROUTINE MULTPLT (XINYINNNPTSXNAMEYNAMEPNAMEPVALUE SEE PROGRAM SIGMAT FOR THIS ROUTINE END SUBROUTINE PARAPLTIXYNPLTSNUMPTSNEACHXNAMEYNAMEPNAMEPARAM 2 TITLESNTLNOUT) SEE PROGRAM SIGMAT FOR THIS ROUTINE END

SUBROUTINE ENDPTSIXMINXMAX) SEE PROGRAM KALMAN FOR THIS ROUTINE END

365

REFERENCES

1 Abadie 0 Ed Integer ana Nonlinear Programrning Application of the GRG Algorithm to Optimal Control ProblemsNorth-Holland 1970 pp 191-211

2 Abadie j gt t poundd integer and Nonlinear Prograirming Numerical Exshyperiments with the GRG Method North-Holland 1970 pp 529-536

3 Aoki M Optimization of Stochastic Systems Academic Press 1970

4 Aoki M and J R Huddle Estimation of the State Vector of a Linear Stochastic System with a Constrained Estimator IEEE Trans on Automatic Control Vol AC-12 No 4 1967 pp 432-433

5 Aoki M and M T L i Optimal Discrete-Time Control System with Cast for Observation IEEE Trans on Automatic Control Vol AC-14 No 2 1969 pp 165-175

5 Aoki M and H Toda Parameter Adaptive Resource Al location Problem for a Decentralized Dynamic System IEEE Trans on Automatic Control Vol AC-20 No 2 1975 pp 192-200

6 Arnold L Stochastic Di f ferent ia l Equations Theory and Appl i -cations Wiley 1974

7 Athanc H On the Determination of Optimal Costly Measurement Strategies for Linear Stochastic Systems Automatica Pergamon Press Vol 8 1972 pp 397-412

8 Athans M The Matrix Minimum Pr inc ip le Information a nd Control Vol 11 1968 pp 592-606

9 Athans Ht et aU Suboptima) state Estimation for Continuous-Time Nonlinear Systems from Discrete Noisy Measurements Proc of the 1968 Joint Automatic Control Conference pp 364-377

10 Athans M and P L Falb Optimal Control Mc Graw-Hill 1966 11 Athans M and F C Schweppe Gradient Matrices and Matrix Calcushy

lations Massachusetts Institute of Technology Lincoln Laborashytory Technical Note 1965

366

12 Athans M and F C Schweppe Optimal Waveform Design via Control Theoretic Concepts Information and Control Vol 10 1967 pp 335-377

13 Atre S R and S S Lamba Optimal Estimation in Distribute Processes Using the Innovations Approach IEEE Trans on Automatic Control Vol 17 No 5 1972 pp 710-712

14 Ballinger D G Instruments for Water Quality Conitoring Environmental Science and Technology Vol 6 No 2 1972 pp 130-133

15 Bar-Shalom Y A Cohen and R E Larson Modeling and Optimizashyt ion of an Effluent Pollution Surveillance System Proc of the IEEE Conference on Decision and Control 1974

16 Bar-Shalom Y et al Application of Stochastic Control Theory to Resource Allocation Under Uncertainty IEEE Trans on Automatic Control Vol AC-19 No 1 1974 pp 1-7

17 Bensoussan A Optimization of Sensors Location in a Distributed F i l te r ing Problem Proc of the International Symposium on the S tab i l i t y of Stochastic Dynamical Systems Coventry England 1972 pp 62-84

18 Berg P H and J L McGregor Elementary Partial Di f ferent ia l Equations Preliminary Edition Hoi den-Day 1964

19 Berkovec J W A Method for the Validation of Kalman Filter Models Proc of the 1969 Joint Automatic Control Conference pp 488-493

20 Beveridge G S G and R S Schecter Optimization Theory and Practice McGraw-Hill 1970

21 Breazeale G Jand L E Jones Digital Adaptive Sampling Proc of the 1971 IEEE Conference on Decision and Control pp 381-382

22 Brewer J W Control Systems Analysis Design and Simulation Prentice-Hall 1974

23 Brewer J W and H Hubbard Mathematical Optimization ot the Monitoring and of the Surveillance o Fickian Diffusion (Research Proposal private communication) 1974

367

24 Brewer J W and S F Moore Monitoring An Environmental State Estimation Problem ASME J of Dynamic Systems Measurement and Control 1974 pp 363-365

25 Byrne G D and A C Hindmarsh A Polyalgorithm for the Numerishycal Solution of Ordinary Differential Equations Univ of California Lawrence Livermore Laboratory Report UCRL-75652 974 ( to appear i n ACJA Trans Hath SofolaquoareU

26 Bryson A E Jr and V-C Ho Applied Optimal Contrcl B la isde l l

1969

27 Cooper C- A and N E Nahi An Optimal Stochastic Control Probshylem with Observation Cost Proc of the 1970 Joint Automatic Control Coherence pp 723-728

28 Coppel W- A Stability and Asymptotic Behavior of Dfferential Equations Heath 1965

29 DAppolito J A A Simple Algorithm for Discretizing Linear Stationary Continuous Systems Proc of the IEEE Vol 54 No 12 1966 pp 20102011

30 Denham U F and J L Speyer Optimal Measurement and Velocity Correction Programs for Midcourse Guidance AIAA Journal Vol 2 1964

31 Ueslau A A L A Gould and F C Schweppe Dynamic Estimation of Air Pollution IEEE Trans on Automatic Control Vol AC-19 No 6 1974 pp T04-910

32 Desoer C- A Notes for a Second Course on inear Systems Van Nostrand Reinhold 1970

33 Draper N R and W G Hunter Design and Experiments for Parameshyter Estimation in Multiresponse Situations Biometrikg Vol 53 No 3 and 4 pp 525-533

34 Duff G F and D Naylor Differential Equations of Applied Matheshymatics Wiley 1966

35 Dwyer H A and T J Petersen Tine-Dependent Global Energy Modeling J of Applied Meteraquoroloqy Vol 12 No 1 1973

368

36 Epes A G A Distributed Parameter Model of Mans Impact on the Radiation Properties of the Global Environment MS Thesis Department of Mechanical Engineering Univ of Caifomia Davis 1972

37 Fleming W H Functions of Several Variables Addison-Wesley 1965

38 Forsythe 3 E and C B Moler Computer Solution of Linear Algeshybraic Systems Prentice-Hall 1967

39 Fcss A S Department of Chemical Engineering Univ of Cal i forshynia Berkeley (private communication)

40 Frbberg C E Introduction to numerical Analysis Addison-Wesley

1969

41 Freeman H Discrete-Time Systems Wiley 1965

42 Fr i tsch F H Univ of Cal i fornia Lawrence Livermore Laboratory (private communication)

43 Gear C W Numerical I n i t i a l Value Problems in Ordinary Dif ferenshyt i a l Equations P r e n t i w H a l l 1971

W Gelb A Ed Applied Optimal Estimation MIT Press 1974

45 ijndbole S S Kalman F i l te r ing with No A Priori Information About Noise - White Noise Case Ident i f ica t ion of Covariances IEEE Trans on Automatic Control Vol AC-19 No 5 1974 pp 561-563

46 Goldberg E i (Convenor) Marine Pol lut ion Monitoring Strategies for a National Program U S Department of Commerce (NOAA) 1972

47 Goudreau G L Evaluation of Discrete Methods for the Linear Dynamic Response of Elastic and Viscoelatic Solids PhD Dissertation Department of Civil Eng1ni-raquoring Univ of Calishyfornia Berkeley 1970

48 Gura I A An Algebraic Solution of the State Estimation Problem AIAA Journal Vol 7 No 7 196S pp 124Z-1247

369

49 Gura I A Extension of Linear Estimation Techniques to Nonlinear Problems J of the Astronautical Science^ Vol XV No 4 1968 pp 194-205

50 Uura I A and A B Bierman On Computational Efficiency of Linear F i l ter ing Algorithms Automatica Pergamon Press Vol 7 1971 pp 299-314

51 Gura I A and R H Gerstein Interpretat ion of n-Dimensional Covariance Matrices AIAA Journal Vol 9 No 4 1971 pp 740-742

52 Gura 1 A and L J Hendrikson A Unified Approach to Nonlinear Estimation J of the Astronautical Sciences Vol XVI No 2 1968 pp 58-78

53 Hausman R F J r Function Optimization on a Line Segment by Golden Section Univ of Cali fornia Lawrence Livermore Laborashytory Report UCIO-30002 1971

54 Hausman R F J r Univ of C l i f o rn ia Lawrence Livermore Laborashytory (private communication)

55 Herring K D and J L Helsa Optimum Measurements for Int imat ion IEEE Trans on Automatic Control Vol AC-19 No 3 1974 pp 264-266

56 Hersh R R The Effects of Noise on Measurements Made in a Disshytr ibuted Parameter System MS Theris Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1972

57 Hindmarsh A C GEAR Ordinary Di f ferent ia l Equation System Solver Univ of Cali fornia Lawrence Livermore Laboratory Report UCID-30001 Rev 3 1974

58 Hindmarsh A C Linear Multistep Methods for Ordinary Di f ferent ia l Equations Method Formulations S tab i l i t y and the Methods of Nordsieck and Gear Univ of Cali fornia Lawrence Livermore Laboratory Report UCRL-51186 1972

59 Hisiger R S An Investigation into a Measurement Uncertainty Principle for a Distributed Parameter System Driven by Noise MS Thesis Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1971

370

60 Hsia T C On a Unified Approach to Adaptive Sampling System Design Proc ot the 1972 IEEE Conference on Decision and Conshyt r o l PP- 618-622

61 IBM System360 Scient i f ic Subroutine Package Programmers Manual Version I I I Fourth Edit ion International Business Machines Corporation White Plains New York 1968

62 IEEE Special Issue on Linear-Quadratic-Gaussian Problem IEEE Trans on Automatic Control Vol AC-16 No 6 1971

63 Inglehart S C and C T Leondes On the Computational Advanshytages of Stagewise-Optimal Observers IEEE Trans on Automatic Control Vol AC-19 No 2 1974 pp 147-149

64 Jazwinski A H Adaptive F i l t e r i ng Automatica Pergammon Press Vol 5 1969 pp 475-485

65 Oazwinski A H Stochastic Processes and F i l ter ing Theory Academic Press 1970

66 Kaiman R E A New Approach to Linear F i l ter ing and Prediction Problems Trans of the ASHE J o r Basic Engineering Series D Vol 82 1960 pp 35-45

67 Kaiman R E and R S Bucy New Results in Linear F i l te r ing and Prediction Theory Trans of the ASHE J of Basic Engishyneering Series D Vol 83 1961 pp 95-108

68 Karnopp D C Random Search Techniques for Optimization Problems Automatica Pergamon Press Vol 1 1963 pp 111-121

69 Karnopp 0 and R C Rosenberg Analysis and Simulation of Mul t i -por Systems MIT Press 1968

gt0 Karreiran H F Ed Stochastic Optimizaton and Control In t roshyduction to Stochastic Optimization and Control by S E Dreyfus Wiley 1968 pp 3-23

71 Knuth D E The Art of Computer Programming Volume 2Seminumerishycal Algorithms Addison-Wesley 1969 pp 103-108

377

72 Kokotovif P V and W R Perkins (Convenors) Singular Perturbashytions Order Reduction in Control System Design Proc of a Special Symposium at the 1972 Joint Automatic Control Confershyence (published by the ASHE)

73 Kramer L C and M Athans On Simultaneous Choice of Dynamic Conshytrol and Measurement Strategies for Stochastic Systems Proc of the 1972 Joint Automatic Control Conference pp 176-181

74 Kramer L C and M Athans On the Application of Deterministic Optimization Methods to Stochastic Control Problems IEEE Trans on Automatic Control Vol AC-9 No 1 1974 pp 22-30

75 Kushner H J On the Optimum Timing of Observations for Linear Control Systems with Unknown Initial State1 IEEE Trans on Automatic Control Vol AC-9 No 2 1964 pp 144-150

76 Lange R University of California Lawrence Livermore Laboratory (private communication)

77 Leondes C T and L M Nov-ik Reduced-Order Observers for Linear Discrete-Time Systems IEEE Trans on Automatic Control Vol AC-li No 1 1974 pp 42-46

78 Leondes C T Ed Advances in Control Systems Kalman Filtering Techniques by H W Sorensen Academic Press 1966 pp 219-292

79 Loscutoff W Modal Analysis and Synthesis of Linear Lumper1 -Parameter Systems PhD Dissertation Dept of Mechanical Engineering Univ of California Berkeley 1968

80 Mac Cracken M C ei at Annual Report Department of TransporshytationCI matlc Impact Assessment Program Univ of Califorshynia Lawrence Livermore Laboratory Reports UCRL-51336 UCRL-51336-74 m d UCRL-51336-75

81 Mac Cracken M C at at Initial Application of a Multi-Box Air Pollution Model to the San Francisco Bay Area Pro of the 1972 Joint Automatic Control Conference pp 694-700

372

82 Mac Robert T M Spherical Harmonics Pergamon Press 1967 83 He Cracken D D FORTRAN with Engineering Applications Wiley

1967

84 Mc Cue H K Jr Stabilization of Distant and Local Power System Disturbances by Optimized Field Control PhD Dissertation Dept of Electrical Engineering and Computer Sciences Univ of California Berkeley 1975 (and private communication)

85 Heditch J Stochastic Optimal linear Estimation and Control McGi-aw-HllT 1969

86 Mehra R K Approaches to Adaptive Filtering IEEE Trans on Automatic Control Vol AC-17 No 5 1972 pp 693-698

87 Hehra R K Maximum Likelihood Identification of Aircraft Pashyrameters Proc of the 1970 Joint Automatic Control Confershyence pp 442-444

88 Hehra R K On the Identification of Variances and Adaptive Kalman Filtering Proc of the 1969 Joint Automatic Control Conference pp 494-505

89 Mehra R K On-Line Identification of Linear Dynamic Systems with Applications to Kalman Filtering Proc of the 1970 Joint Automatic Control Conference pp 373-382

90 Meier L Combined Optimal Control and Estimation Proc of the Third Allerton Conference on Circuit and System Theory 1965 pp 109-120

91 Meier L Ill et at Dynamic Programming for Stochastic Control of Discrete Systems IEEE Trans on Automatic Control Vol AC-16 No 6 1971 pp 767-775

92 Meier L Ill et al Optimal Control of Measurement Subsystems IEEE Trans on Automatic Control Vol AC-12 No 5 1967 pp 528-536

93 Heirovitch L Analytical Methods in Vibration MacMillan 1967

373

94 Michelsen M L H B Vak i l and A S Foss State-Space Formushylat ion of Fixed-Bed Reactor Dynamics Industr ial and Engineershy s Chemistry Fundamentals Vol 12 No 3 1973 pp 323-328

95 Moore S F The Application of Linear F i l t e r Theory to the Deshysign and Improvement of Measurement Systems for Aquatic Enshyvironments PhD Dissertation Dept of Civ i l Engineering Univ of Cal i forn ia Davis 1972

96 Murray-Uasso M A The Modal Analysis and Synthesis of Linear Distributed Control Systems PhD Dissertat ion Dept of Electr ical Engineering Massachusetts Ins t i tu te of Technology 1905

97 Nahi N E and I M Weiss Bounding F i l te rs in the Presence of Inexactly Known Parameters Proc of the 1971 IEEE Conference on_Decision and Control pp 154-159

98 NATO jYOC of the AGARD Conference No 68 1970

99 Petersen T 0 A Numerical Study of the Planetary Boundary Layer with an Analysis of Parameter Sens i t iv i ty PhD Dissertat ion Dept of Mechanical Engineering Univ of Cal i forn ia Davis 1975

100 Pl iska S R Optimal Observations for Minimum Variance F i l t e r i ng IEEE Trans on Automatic Control Vol AC-19 No 1 1974 pp 79-80

101 Prado G ObservabilityEstimation and Control of Distributed Parameter Systems PhD Dissertation Dept of Electr ical Engineering Massachusetts Inst i tu te of Technology 1971

102 Preston A and P C Wood Monitoring the Marine Environment Proc of the Royal Society of London B 177 1971 pp 451-462

103 Radcl i f fe C W and W J Comfort Constrained Minimization of a Function of Many Variable Univ of California Lawrence Livermore Laboratory Report UCRL-51577 1974

104 Relquam H A Method for Optimizing Pollutant Emissions -in an Airshed Atmospheric Environment Pergamon Press Vol 5 1971 pp 57-64

374

105 Sage A P Optimum Systems Control Prentice-Hall 1968 106 Sano A and M Terao Measurement Optimization in Optimal Process

Control Automatica Pergamon Press Vol 5 1970 pp 705-714

107 Sauer G J and J L Melsa Stochastic Control with Continuously Variable Observation Costs for a Class of Discrete Nonlinear Systems IEEE Trans on Automatic Control Vol AC-19 No 3 1974 pp 234-239

108 Scharf L L and 0 L Alspach On Stochastic Approximation and an Adaptive Kalman Filter Proc of the 1972 IEEE Conference on Decision and Control pp 253-257

109 Schulz D G and J L Melsa State Functions atid Linear Control Systems Mc Graw-Hill 1967

110 Schweppe F C Radar Frequency Modulations for Accelerating Targets Under a Bandwidth Constraint IEEE Trans on Military Electronics Vol MIL-9 No 1 1965 pp 25-32

111 Schweppe F C and D L Gray Radar Signal Design Subject to Simultaneous Peak and Average Power Constraints IEEE Trans on Information Theory Vol 12 No 1 1966 pp 13-26

12 Seinfeld J H A Textbook on Environmental Monitoring (to be published Circa 1975)

113 Seinfeld J H Optimal Location of Pollutant Monitoring Stations in an Air Shed Atmospheric Environment Pergamon Press Vol 6 1972 pp 847-858

114 Seirfeld J H and W H Chen Estimation of Parameters in Partial Differential Equations from Noisy Experimental Data Chemical Engineering Science Pergamon Press Vol 26 1971 pp 753-766

115 Seinfeld J H and W H Chen Optimal Distribution of Air Pollushytion Sources Atmospheric Environment Pergamon Press Vol 7 1973 pp 87-lt3

116 Seinfeld J H and L Lapidus Computational Aspects of the Optishymal Control of Distributed-Parameter Systems Chemical Engishyneering Science Pergamon Press Vol 23 1968 pp 1461-1483

375

117 Shoemaker H D and G B Lamont Optimal Measurement Control Proc of the IEEE Conference on Information and Control 1971 pp 624-625

118 Sneddon I N Fourier Transforms He Graw-Hil l 1951

119 Soeda T and H Ishihara Application of Kalman F i l te r ing Method and N-Observability Principle to the Prediction of the Atmosshypheric Pollution Levels Tokushima University and Takamatsu Technical College Japan (date unknown)

120 Stone R Univ of California Lawrence Livermore Laboratory (private communication)

121 Takahashi Y M J Rabins and D H Auslander Control and Dyshynamic Systems Addison-Wesley 1970

122 The Analytic Sciences Corp Course Notes mdashA Short Course on Kalman F i l t e r Theory and Application The Analytic Sciences Corporation Reading Mass 1969

123 Timothy L K and B E Bona State Space Analysis An Introducshyt i o n He Graw-Hil l 1968

124 Vak i l H M L Michelsen and A S Foss Fixed-Bed Reactor Conshyt ro l with State Estimation Industrial and Engineering Chemshyis t ry Fundamentals Vol 12 No 3 1973 pp 328-335

125 VandeLinde V D and A Lavi Optimal Observation Policies in Linear Stochastic Systems Proc of the 1968 Joint Automatic Control Conference pp 904-917

126 Wells C H Application of Modern Estimation and Ident i f icat ion Techniques to Chemical Processes American Inst i tu te of Chemshyical Engineers J Vol 17 No 4 1971 pp 966-673

127 Westley G W A Linearly Constrained Nonlinear Programming Algoshyr i thm Oak Ridge National Laboratory Report ORNL-4644 1971

128 Westley G W Oak Ridge National Laboratory Oak Ridge Tenn (private communication)

129 Wilkenson J H Rounding Errors in Algebraic Processes Prentice-Ha l l 1963

376

130 Wlshner R P et at A Comparison of Three Non-Linear F i l t e r s Automatics Pergamon Press Vol 5 1969 pp 487-496

131 Young J W Modal Simpli f ication of a System of B i la tera l ly Coupled Diffusive Elements With Applications to Global Atmospheric Pollutant Transport Problems PhD Dissertat ion Dept of Mechanical Engineering Univ of Cal i forn ia Davis 1974

mr

Page 4: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 5: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 6: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 7: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 8: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 9: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 10: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 11: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 12: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 13: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 14: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 15: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 16: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 17: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 18: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 19: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 20: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 21: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 22: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 23: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 24: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 25: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 26: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 27: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 28: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 29: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 30: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 31: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 32: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 33: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 34: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 35: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 36: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 37: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 38: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 39: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 40: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 41: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 42: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 43: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 44: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 45: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 46: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 47: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 48: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 49: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 50: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 51: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 52: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 53: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 54: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 55: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 56: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 57: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 58: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 59: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 60: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 61: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 62: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 63: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 64: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 65: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 66: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 67: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 68: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 69: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 70: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 71: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 72: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 73: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 74: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 75: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 76: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 77: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 78: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 79: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 80: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 81: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 82: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 83: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 84: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 85: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 86: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 87: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 88: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 89: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 90: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 91: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 92: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 93: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 94: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 95: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 96: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 97: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 98: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 99: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 100: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 101: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 102: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 103: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 104: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 105: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 106: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 107: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 108: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 109: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 110: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 111: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 112: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 113: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 114: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 115: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 116: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 117: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 118: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 119: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 120: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 121: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 122: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 123: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 124: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 125: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 126: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 127: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 128: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 129: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 130: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 131: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 132: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 133: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 134: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 135: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 136: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 137: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 138: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 139: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 140: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 141: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 142: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 143: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 144: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 145: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 146: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 147: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 148: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 149: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 150: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 151: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 152: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 153: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 154: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 155: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 156: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 157: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 158: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 159: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 160: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 161: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 162: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 163: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 164: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 165: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 166: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 167: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 168: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 169: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 170: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 171: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 172: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 173: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 174: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 175: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 176: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 177: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 178: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 179: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 180: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 181: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 182: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 183: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 184: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 185: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 186: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 187: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 188: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 189: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 190: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 191: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 192: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 193: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 194: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 195: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 196: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 197: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 198: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 199: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 200: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 201: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 202: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 203: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 204: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 205: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 206: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 207: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 208: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 209: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 210: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 211: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 212: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 213: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 214: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 215: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 216: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 217: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 218: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 219: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 220: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 221: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 222: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 223: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 224: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 225: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 226: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 227: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 228: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 229: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 230: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 231: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 232: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 233: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 234: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 235: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 236: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 237: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 238: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 239: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 240: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 241: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 242: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 243: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 244: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 245: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 246: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 247: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 248: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 249: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 250: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 251: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 252: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 253: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 254: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 255: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 256: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 257: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 258: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 259: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 260: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 261: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 262: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 263: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 264: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 265: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 266: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 267: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 268: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 269: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 270: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 271: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 272: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 273: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 274: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 275: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 276: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 277: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 278: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 279: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 280: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 281: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 282: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 283: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 284: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 285: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 286: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 287: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 288: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 289: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 290: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 291: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 292: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 293: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 294: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 295: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 296: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 297: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 298: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 299: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 300: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 301: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 302: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 303: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 304: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 305: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 306: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 307: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 308: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 309: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 310: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 311: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 312: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 313: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 314: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 315: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 316: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 317: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 318: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 319: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 320: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 321: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 322: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 323: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 324: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 325: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 326: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 327: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 328: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 329: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 330: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 331: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 332: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 333: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 334: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 335: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 336: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 337: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 338: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 339: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 340: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 341: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 342: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 343: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 344: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 345: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 346: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 347: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 348: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 349: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 350: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 351: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 352: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 353: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 354: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 355: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 356: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 357: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 358: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 359: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 360: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 361: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 362: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 363: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 364: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 365: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 366: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 367: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 368: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 369: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 370: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 371: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 372: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 373: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 374: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 375: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 376: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 377: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 378: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 379: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 380: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 381: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 382: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 383: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 384: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 385: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 386: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 387: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 388: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 389: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 390: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 391: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 392: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 393: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 394: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 395: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 396: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 397: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 398: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 399: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …
Page 400: y TOWARD A MATHEMATICAL THEORY OF ENVIRONMENTAL …