xercise - hong kong university of science and technologymamyan/ma1023/homework.pdf · logx = 1 2...

19
Math1023 Selected Answers to Section 2.5 Exercise 2.5.1 By (1 - x)(1 + x + x 2 + ··· + x n )=1 - x n+1 , we get 1+ x + x 2 + ··· + x n = 1 1 - x - x n+1 1 - x . For any > 0, we have |x| < min{1, } 2 = ) 1 1 - x - (1 + x + x 2 + ··· + x n ) = |x| |1 - x| |x| n |x| n . Therefore 1 1 - x is n-th order dierentiable at 0, with the n-th order approximation 1 + x + x 2 + ··· + x n . Exercise 2.5.2 Similar to Exercise 2.5.1, we have 1 1+ x =1 - x + x 2 - ··· +(-1) n x n +(-1) n+1 x n+1 1+ x . Substituting x by x 2 , we also have 1 1+ x 2 =1 - x 2 + x 4 - ··· +(-1) n x 2n +(-1) n+1 x 2(n+1) 1+ x . For any > 0, we have |x| < min{1, } 2 = ) 1 1+ x - (1 - x + x 2 + ··· +(-1) n x n ) = |x| |1+ x| |x| n |x| n , and |x| < = ) 1 1+ x 2 - (1 - x 2 + x 4 + ··· +(-1) n x 2n ) = |x| 1+ x 2 |x| 2n+1 |x| 2n+1 . Therefore 1 1+ x =1 - x + x 2 + ··· +(-1) n x n + o(x n ), and 1 1+ x 2 =1 - x 2 + x 4 + ··· +(-1) n x 2n + o(x 2n+1 ). Exercise 2.5.3 For n 100, the n-th order approximation of 1 + 2x +3x 2 + ··· + 100x 100 at 0 is 1 + 2x + 3x 2 + ··· + nx n . For n> 100, the n-th order approximation of 1 + 2x +3x 2 + ··· + 100x 100 at 0 is 1 + 2x + 3x 2 + ··· + 100x 100 . 1

Upload: truongdang

Post on 16-Apr-2018

256 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Math1023 Selected Answers to Section 2.5

Exercise 2.5.1By

(1� x)(1 + x+ x

2 + · · ·+ x

n) = 1� x

n+1

,

we get

1 + x+ x

2 + · · ·+ x

n =1

1� x

� x

n+1

1� x

.

For any ✏ > 0, we have

|x| < min{1, ✏}2

=)����

1

1� x

� (1 + x+ x

2 + · · ·+ x

n)

���� =|x|

|1� x| |x|n ✏|x|n.

Therefore1

1� x

is n-th order di↵erentiable at 0, with the n-th order approximation 1 + x +

x

2 + · · ·+ x

n.

Exercise 2.5.2Similar to Exercise 2.5.1, we have

1

1 + x

= 1� x+ x

2 � · · ·+ (�1)nxn + (�1)n+1

x

n+1

1 + x

.

Substituting x by x

2, we also have

1

1 + x

2

= 1� x

2 + x

4 � · · ·+ (�1)nx2n + (�1)n+1

x

2(n+1)

1 + x

.

For any ✏ > 0, we have

|x| < min{1, ✏}2

=)����

1

1 + x

� (1� x+ x

2 + · · ·+ (�1)nxn)

���� =|x|

|1 + x| |x|n ✏|x|n,

and

|x| < ✏ =)����

1

1 + x

2

� (1� x

2 + x

4 + · · ·+ (�1)nx2n)

���� =|x|

1 + x

2

|x|2n+1 ✏|x|2n+1

.

Therefore1

1 + x

= 1� x+ x

2 + · · ·+ (�1)nxn + o(xn),

and1

1 + x

2

= 1� x

2 + x

4 + · · ·+ (�1)nx2n + o(x2n+1).

Exercise 2.5.3For n 100, the n-th order approximation of 1 + 2x+ 3x2 + · · ·+ 100x100 at 0 is 1 + 2x+

3x2 + · · ·+ nx

n.For n > 100, the n-th order approximation of 1 + 2x+ 3x2 + · · ·+ 100x100 at 0 is 1 + 2x+

3x2 + · · ·+ 100x100.

1

Page 2: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.4 (1)

limx!0

sin x� x

x

3

= limx!0

cos x� 1

3x2

= limx!0

� sin x

6x= �1

6.

This implies limx!0

sin x� x+ 1

6

x

3

x

3

= 0, or

sin x = x� 1

6x

3 + o(x3).

Exercise 2.5.4 (2)

limx!0

sin x2 � x

2

x

6

= limx!0

2x cos x2 � 2x

6x5

= limx!0

cos x2 � 1

3x4

= limx!0

�2x sin x2

12x3

= limx!0

�sin x2

6x2

= �1

6.

This implies limx!0

sin x2 � x

2 + 1

6

x

6

x

6

= 0, or

sin x2 = x

2 � 1

6x

6 + o(x6).

Exercise 2.5.4 (4)

limx!0

1

x

5

✓sin x� x+

1

6x

3

◆= lim

x!0

1

5x4

✓cos x� 1 +

1

2x

2

◆= lim

x!0

� sin x+ x

20x3

= limx!0

� cos x+ 1

60x2

= limx!0

� sin x

120x= � 1

120.

This means

sin x = x� 1

6x

3 +1

120x

5 + o(x5).

Exercise 2.5.4 (5)

limx!0

sin x� tan x

x

3

= limx!0

sin x

x

· 1

cos x· cos x� 1

x

2

= 1 · 1 ·✓�1

2

◆= �1

2.

This means

sin x� tan x = �1

2x

3 + o(x3).

Exercise 2.5.4 (6)

limx!0

1

x

3

✓e

x � 1� x� 1

2x

2

◆= lim

x!0

e

x � 1� x

3x2

= limx!0

e

x � 1

6x= lim

x!0

e

x

6=

1

6.

This means

e

x = 1 + x+1

2x

2 +1

6x

3 + o(x3).

2

Page 3: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.4 (8)

limx!1

2 log x+ (x� 1)(x� 3)

(x� 1)3= lim

x!1

2

x

+ 2x� 4

3(x� 1)2= lim

x!1

(x� 1)2

3x(x� 1)2=

1

3.

This means

log x = �1

2(x� 1)(x� 3) +

1

3(x� 1)3 + o((x� 1)3)

=1

2(x� 1)(2� (x� 1)) +

1

3(x� 1)3 + o((x� 1)3)

= (x� 1)� 1

2(x� 1)2 +

1

3(x� 1)3 + o((x� 1)3).

Exercise 2.5.5First we need the function to be continuous. This means a + b + c = 1, and implies

f(x) = a+ bx+ cx

2 for x 1.For x � 1, we have

f(x) = x

4 = (1 + (x� 1))4 = 1 + 4(x� 1) + 6(x� 1)2 + o((x� 1)2).

For x 1, we have

f(x) = a+bx+cx

2 = a+b(1+(x�1))+c(1+(x�1))2 = (a+b+c)+(b+2c)(x�1)+c(x�1)2.

Therefore the function to be second order di↵erentiable at 1 is and only if

a+ b+ c = 1, b+ 2c = 4, c = 6.

The solution is a = 3, b = �8, c = 6.

Exercise 2.5.6The assumption tells us

f(x) = a+ bx+ cx

2 + o(x2).

Then a = f(0) and

3f(x)� 3f(2x) + f(3x) = [3a+ 3bx+ 3cx2 + 3o(x2)]

� [3a+ 3b(2x) + 3c(2x)2 + 3o((2x)2)]

+ [a+ b(3x) + c(3x)2 + o((3x)2)]

= (3a� 3a+ a) + (3b� 6b+ 3b)x+ (3c� 12c+ 9c)x2

+ 3o(x2)� 3o(4x2) + o(9x2)

= a+ o(x2).

Exercise 2.5.7Suppose

f(x) = a

0

+ a

1

x+ a

2

x

2 + · · ·+ a

n

x

n + o(xn).

3

Page 4: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Thenf(�x) = a

0

� a

1

x+ a

2

x

2 + · · ·+ (�1)nan

x

n + o(xn).

By the uniqueness of high order approximation (see Exercise 2.5.8), we find that f(�x) = f(x)(f is even) implies a

1

= a

3

= · · · = a

2k+1

= 0, we also find that f(�x) = �f(x) (f is odd)implies a

0

= a

2

= · · · = a

2k

= 0.

Exercise 2.5.8

If A0

6= 0, then limx!a

P (x)

(x� a)2= A

0

· (+1) = 1. So for limx!a

P (x)

(x� a)2to converge, we

must have A

0

= 0.

If A0

= 1 and A

1

6= 0, then limx!a

P (x)

(x� a)2= lim

x!a

A

1

+ A

2

(x� a)

(x� a)= A

1

·1 = 1. So

for limx!a

P (x)

(x� a)2to converge, we must also have A

1

= 0.

If A0

= A

1

= 0, then limx!a

P (x)

(x� a)2= lim

x!a

A

2

= A

2

. By the assumption, we have

A

2

= 0.Suppose both P (x) = A

0

+A

1

(x�a)+A

2

(x�a)2 and Q(x) = B

0

+B

1

(x�a)+B

2

(x�a)2 arequadratic approximations of f(x) at a, then P (x)�Q(x) = (A

0

�B

0

)+(A1

�B

1

)(x�a)+(A2

B

2

)(x�a)2 is a quadratic approximations of f(x)�f(x) = 0. Therefore limx!a

P (x)�Q(x)

(x� a)2=

0. By what we proved before, we have A

0

� B

0

= A

1

� B

1

= A

2

� B

2

= 0.

Exercise 2.5.9 (1)

(ax)0 = a

x log a,

(ax)00 = a

x(log a)2,

(ax)(n) = a

x(log a)n.

Exercise 2.5.9 (6)

(log(ax+ b))0 = (ax+ b)�1

,

d

n log(ax+ b)

dx

n

= a

n�1(�1)(�2) . . . (�n+ 1)(ax+ b)�n = (�a)n�1(n� 1)!(ax+ b)�n

,

d

n

dx

n

✓log

ax+ b

cx+ d

◆=

d

n

dx

n

(log(ax+ b)� log(cx+ d))

= (�a)n�1(n� 1)!(ax+ b)�n � (�c)n�1(n� 1)!(cx+ d)�n

.

Exercise 2.5.9 (8)

1

(ax+ b)(cx+ d)=

1

ad� bc

✓a

ax+ b

� c

cx+ d

◆,

d

n

dx

n

✓a

ax+ b

◆=

✓x+

b

a

◆�1

!(n)

= (�1)nn!

✓x+

b

a

◆�n�1

=(�1)nn!an+1

(ax+ b)n+1

,

d

n

dx

n

✓1

(ax+ b)(cx+ d)

◆=

(�1)nn!

ad� bc

✓a

n+1

(ax+ b)n+1

� c

n+1

(cx+ d)n+1

◆.

4

Page 5: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.10 (1)

(tan x)0 = sec2 x,

(tan x)00 = 2 secx(sec x tan x) = 2 sec2 x tan x,

(tan x)000 = 2(2 sec2 x tan x) tan x+ 2 sec2 x(sec x tan x)

= 4 sec2 x(sec2 x� 1) + 2 sec3 x tan x

= 4 sec4 x+ 2 sec3 x tan x� 4 sec2 x.

Exercise 2.5.10 (2)

(sec x)0 = secx tan x,

(sec x)00 = (secx tan x) tan x+ secx sec2 x = 2 sec3 x� sec x,

(sec x)000 = 6 sec2 x(sec x tan x)� sec x tan x = 6 sec3 x tan x� sec x tan x.

Exercise 2.5.10 (5)

(arctan x)0 =1

x

2 + 1,

(arctan x)00 =�2x

(x2 + 1)2.

Exercise 2.5.10 (6)

(xx)0 = x

x(log x+ 1),

(xx)00 = x

x(log x+ 1)2 + x

x

1

x

= x

x(log x+ 1)2 + x

x�1

,

(xx)000 = x

x(log x+ 1)3 + x

x2(log x+ 1)1

x

+ x

x�2(x log x+ x� 1)

= x

x(log x+ 1)3 + 3xx�1(log x+ 1) + x

x�3

.

Exercise 2.5.10 (7)

d

dx

✓1 +

1

x

◆x

=

✓1 +

1

x

◆x�1

✓✓1 +

1

x

◆log

✓1 +

1

x

◆� 1

x

2

x

=

✓1 +

1

x

◆x

✓log

✓1 +

1

x

◆� 1

1 + x

=

✓1 +

1

x

◆x

✓log(1 + x)� log x� 1

1 + x

d

2

dx

2

✓1 +

1

x

◆x

=

✓1 +

1

x

◆x

✓log(1 + x)� log x� 1

1 + x

◆2

+

✓1 +

1

x

◆x

✓1

1 + x

� 1

x

� 1

(1 + x)2

=

✓1 +

1

x

◆x

✓(log(1 + x)� log x)2 � 2

log(1 + x)� log x

1 + x

� 1

x(1 + x)

◆.

5

Page 6: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.11 (6)

e

1

2

= e,

(ex2

)0 = 2xex2

, (ex2

)0x=1

= 2e,

(ex2

)00 = 2(1 + 2x2)ex2

, (ex2

)00x=1

= 6e,

(ex2

)000 = 4(3x+ 2x3)ex2

, (ex2

)000x=1

= 20e,

(ex2

)(4) = 4(3 + 12x2 + 4x4)ex2

, (ex2

)(4)x=1

= 4 · 19e,(ex

2

)(5) = 8(15x+ 20x3 + 4x5)ex2

, (ex2

)(5)x=1

= 8 · 39e,(ex

2

)(6) = 8(15 + 90x2 + 60x4 + 8x6)ex2

, (ex2

)(6)x=1

= 8 · 173e.

The 6-th order approximation is

e

x

2

= e+2e(x�1)+e(x�1)2+10

3e(x�1)3+

19

6e(x�1)4+

13

5e(x�1)5+

173

90e(x�1)6+o((x�1)6).

Exercise 2.5.13We can use the usual chain rule twice

(g(f(x)))00 = (g0(f(x))f 0(x))0 = (g0(f(x)))0f 0(x) + g

0(f(x))(f 0(x))0

= g

00(f(x))f 0(x)2 + g

0(f(x))f 00(x).

Exercise 2.5.14 (2)

((x2 + 1) sin x)(n) = (x2 + 1)(sin x)(n) + n(x2 + 1)0(sin x)(n�1) +n(n� 1)

2(x2 + 1)00(sin x)(n�2)

= (x2 + 1)(sin x)(n) + 2nx(sin x)(n�1) + n(n� 1)(sin x)(n�2)

.

For n = 4k, ((x2 + 1) sin x)(n) = (x2 � n

2 + n+ 1) sin x� 2nx cos x.For n = 4k + 1, ((x2 + 1) sin x)(n) = (x2 � n

2 + n+ 1) cosx+ 2nx sin x.For n = 4k + 2, ((x2 + 1) sin x)(n) = �(x2 � n

2 + n+ 1) sin x+ 2nx cos x.For n = 4k + 3, ((x2 + 1) sin x)(n) = �(x2 � n

2 + n+ 1) cosx� 2nx sin x.

Exercise 2.5.15

The formula holds for n = 0. Suppose (xn�1

e

1

x )(n) =(�1)n

x

n+1

e

1

x . Then

(xn

e

1

x )(n+1) = (x · xn�1

e

1

x )(n+1) = x(xn�1

e

1

x )(n+1) + (n+ 1)x0(xn�1

e

1

x )(n)

= x

✓(�1)n

x

n+1

e

1

x

◆0

+ (n+ 1)(�1)n

x

n+1

e

1

x

= x

✓�(�1)n(n+ 1)

x

n+2

e

1

x � (�1)n

x

n+1

1

x

2

e

1

x

◆+ (n+ 1)

(�1)n

x

n+1

e

1

x

= x

✓�(�1)n

x

n+1

1

x

2

e

1

x

◆=

(�1)n+1

x

n+2

e

1

x

.

6

Page 7: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.16We have

(eax sin(bx+ c))0 = e

ax(a sin(bx+ c) + b cos(bx+ c))

=pa

2 + b

2(cos ✓ sin(bx+ c) + sin ✓ cos(bx+ c))

=pa

2 + b

2 sin(bx+ c+ ✓),

This shows that the e↵ect of taking the derivative of eax sin(bx+c) means multiplyingpa

2 + b

2

and adding ✓ to c. Therefore taking the derivative n times means multiplyingpa

2 + b

2

n timesand adding ✓ to c n times. The result is

(eax sin(bx+ c))(n) = (a2 + b

2)n

2

e

ax sin(bx+ c+ n✓).

Similarly, we have

(eax cos(bx+ c))0 = e

ax(a cos(bx+ c)� b sin(bx+ c))

=pa

2 + b

2(cos ✓ cos(bx+ c)� sin ✓ sin(bx+ c))

=pa

2 + b

2 cos(bx+ c+ ✓).

This implies(eax cos(bx+ c))(n) = (a2 + b

2)n

2

e

ax cos(bx+ c+ n✓).

Exercise 2.5.17Since f(x) has second order derivative near x

0

, we have

f(x) = f(x0

) + f

0(x0

)(x� x

0

) +1

2f

00(x0

)(x� x

0

)2 +R(x� x

0

), limh!0

R(h)

h

2

= 0.

Then

f(x0

+ h) = f(x0

) + f

0(x0

)h+1

2f

00(x0

)h2 +R(h),

f(x0

� h) = f(x0

)� f

0(x0

)h+1

2f

00(x0

)h2 +R(�h),

and

limh!0

f(x0

+ h) + f(x0

� h)� 2f(x0

)

h

2

= limh!0

f

00(x0

)h2 +R(h) +R(�h)

h

2

= f

00(x0

) + limh!0

R(h)

h

2

+ limh!0

R(�h)

(�h)2

= f

00(x0

) + 0 + 0 = f

00(x0

).

Exercise 2.5.19 (1)

Suppose limx!0

R(x)

x

5

= 0. Then

limx!0

R(x)

x

3

= limx!0

x

2

R(x)

x

5

= limx!0

x

2 limx!0

R(x)

x

5

= 0 · 0 = 0.

7

Page 8: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.19 (4)

Suppose limx!0

R(x)

x

5

= 0. Then

limx!0

x

3

R(x)

x

8

= limx!0

R(x)

x

5

= 0.

Exercise 2.5.19 (6)

Suppose limx!0

R(x)

x

3

= 0. Then

limx!0

R(x) + x

5

x

3

= limx!0

R(x)

x

3

+ limx!0

x

2 = 0 + 0 = 0.

Exercise 2.5.21By Example 2.5.8, we have

d

n arctan x

dx

n

����x=0

=d

n�1

dx

n�1

����x=0

✓1

1 + x

2

◆=

(0, if n = 2k,

(�1)k(2k)!, if n = 2k + 1.

Then the Taylor expansion of arctanx at 0 is

arctan x =nX

k=0

1

(2k + 1)!

d

2k+1 arctan x

dx

2k+1

����x=0

x

2k+1 + o(x2n+2)

=nX

k=0

(�1)k

2k + 1x

2k+1 + o(x2n+2)

= x� 1

3x

3 +1

5x

5 + · · ·+ (�1)n

2n+ 1x

2n+1 + o(x2n+2).

Exercise 2.5.22We have

1p1� x

2

= (1� x

2)�1

2

= 1 +

��1

2

1!x

2 +

��1

2

� ��3

2

2!x

4 + · · ·+��1

2

� ��3

2

�. . .

��2n�1

2

n!x

2n + o(x2n+1)

= 1� 1

2x

2 +3

8x

4 + · · ·+ (�1)n(2n)!

4n(n!)2x

2n + o(x2n+1).

Then

d

n

dx

n

����x=0

✓1p

1� x

2

◆=

8><

>:

0, if n = 2k � 1,

(�1)k(2k)!

4k(k!)2(2k)! = (�1)k

✓(2k)!

2kk!

◆2

, if n = 2k.

8

Page 9: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

We further get

d

n arcsin x

dx

n

����x=0

=d

n�1

dx

n�1

����x=0

✓1p

1� x

2

◆=

8><

>:

0, if n = 2k,

(�1)k✓(2k)!

2kk!

◆2

, if n = 2k + 1.

The Taylor expansion is then

arcsin x =nX

k=0

(�1)k

(2k + 1)!

✓(2k)!

2kk!

◆2

x

2k+1 + o(x2n+2)

= x� 1

6x

3 +3

40x

5 + · · ·+ (�1)n(2n)!

4n(2n+ 1)(n!)2x

2n+1 + o(x2n+2).

Exercise 2.5.24 (5)

log(1 + 3x+ 2x2) = log(1 + x)(1 + 2x) = log(1 + x) + log(1 + 2x)

= �x+1

2x

2 � 1

3x

3 + · · ·+ (�1)n�1

1

n

x

n + o(xn)

� 2x+1

2(2x)2 � 1

3x

3 + · · ·+ (�1)n�1

1

n

(2x)n + o((2x)n)

= �(1 + 2)x+1 + 22

2x

2 � 1 + 23

3x

3 + · · ·+ (�1)n�1

1 + 2n

n

x

n + o(xn),

(log(1 + 3x+ 2x2))(n)x=0

= (�1)n�1(1 + 2n)(n� 1)!.

Exercise 2.5.24 (9)

sin x cos 2x =1

2(sin 3x� sin x)

=1

2

✓3x� 1

3!(3x)3 + · · ·+ (�1)n

(2n+ 1)!(3x)2n+1 + o(x2n+2)

� 1

2

✓x� 1

3!x

3 + · · ·+ (�1)n

(2n+ 1)!x

2n+1 + o(x2n+2)

= x� 13

6x

3 +121

120x

5 + · · ·+ (�1)n(32n+1 � 1)

2(2n+ 1)!x

2n+1 + o(x2n+2),

(sin x cos 2x)(n)x=0

=(�1)n(32n+1 � 1)n!

2(2n+ 1)!.

Exercise 2.5.25 (1)

x+ 3

x+ 1= 1 +

1

1 + 1

2

(x� 1)

= 2� 1

2(x� 1) +

1

22(x� 1)2 � 1

23(x� 1)3 + · · ·+ (�1)n

1

2n(x� 1)n + o((x� 1)n),

✓x+ 3

x+ 1

◆(n)

x=1

= (�1)nn!

2n.

9

Page 10: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.25 (8)

sin x = sin⇣⇣

x� ⇡

2

⌘+

2

⌘= cos

⇣x� ⇡

2

= 1� 1

2!

⇣x� ⇡

2

⌘2

+1

4!

⇣x� ⇡

2

⌘4

+ · · ·+ (�1)n

(2n)!

⇣x� ⇡

2

⌘2n

+ o

✓⇣x� ⇡

2

⌘2n+1

◆,

(sin x)(2n)x=

2

= (�1)n,

(sin x)(2n+1)

x=

2

= 0.

Exercise 2.5.25 (11)

sin2

x = 1� 2 cos 2x = 1� 2 cos(2(x� ⇡) + 2⇡) = 1� 2 cos 2(x� ⇡)

= �1 +2

2!(x� ⇡)2 � 2

4!(x� ⇡)4 + · · ·+ (�1)n+12

(2n)!(x� ⇡)2n + o((x� ⇡)2n+1),

(sin2

x)(2n)x=⇡

= (�1)n+12,

(sin2

x)(2n+1)

x=⇡

= 0.

Exercise 2.5.27 (3)From the Taylor expansions of log(1 + x) and e

x at 0, we get

(1 + x)x = e

x log(1+x) = e

x

⇣x�x

2

2

+

x

3

3

�x

4

4

+o(x

4

)

= e

x

2�x

3

2

+

x

4

3

�x

5

4

+o(x

5

)

= 1 +

✓x

2 � x

3

2+

x

4

3� x

5

4+ o(x4)

◆+

1

2!

✓x

2 � x

3

2+

x

4

3� x

5

4+ o(x4)

◆2

+1

3!

✓x

2 � x

3

2+

x

4

3� x

5

4+ o(x4)

◆3

+ o

✓x

2 � x

3

2+

x

4

3� x

5

4+ o(x4)

◆3

!

= 1 +

✓x

2 � x

3

2+

x

4

3� x

5

4

◆+

1

2!

✓x

4 � 2x2 · x3

2

◆+ o(x5)

= 1 + x

2 � 1

2x

3 +5

6x

4 � 3

4x

5 + o(x5).

The derivatives of the function f(x) = (1 + x)x at 0 are

f

0(0) = 1! · 0 = 0, f

00(0) = 2! · 1 = 2, f

000(0) = 3! ·✓�1

2

◆= �3,

f

(4)(0) = 4! · 56= 20, f

(5)(0) = 5! ·✓�3

4

◆= �90.

Exercise 2.5.27 (4)

logsin x

x

= log1

x

✓x� x

3

3!+

x

5

5!+ o(x6)

◆= log

✓1� x

2

3!+

x

4

5!+ o(x5)

= �✓x

2

3!� x

4

5!+ o(x5)

◆� 1

2

✓x

2

3!� x

4

5!+ o(x5)

◆2

+ o

✓x

2

3!� x

4

5!+ o(x5)

◆3

!

= �x

2

3!+

x

4

5!� 1

2

✓x

2

3!

◆2

+ o(x5) = �x

2

6� x

4

180+ o(x5).

10

Page 11: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.28 (2)By

sin x� tan x =sin x(cos x� 1)

cos x=

1

cos x(x+ o(x))

✓�1

2x

2 + o(x2)

◆= �

1

2x

3 + o(x3)

cos x

and limx!0

cos x = 1, we get limx!0

sin x� tan x

x

3

= �1

2.

Exercise 2.5.28 (4)We have

1

x

2

� 1

tan2

x

=1

x

2

✓1�

⇣x cos x

sin x

⌘2

=1

x

2

0

BBB@1�

0

BB@

x

✓1� x

2

2+ o(x3)

x� x

3

6+ o(x4)

1

CCA

2

1

CCCA=

1

x

2

0

BB@1�

0

B@1� x

2

2+ o(x3)

1� x

2

6+ o(x3)

1

CA

2

1

CCA

=1

x

2

1�

✓✓1� x

2

2+ o(x3)

◆✓1 +

x

2

6+ o(x3)

◆◆2

!

=1

x

2

1�

✓1� x

2

3+ o(x3)

◆2

!=

1

x

2

✓1�

✓1� 2x2

3+ o(x3)

◆◆

=2

3+ o(x).

Therefore

limx!0

✓1

x

2

� 1

tan2

x

◆=

2

3.

Exercise 2.5.28 (6)We have

1

x

log(cosx+ sin x) =1

x

log(1 + x+ o(x)) =1

x

[(x+ o(x)) + o(x+ o(x))] = 1 + o(1).

Therefore

limx!0

1

x(x+ 1)log(cosx+ sin x) = lim

x!0

1

x

log(cosx+ sin x) = 1,

andlimx!0

(cos x+ sin x)1

x(x+1) = e

lim

x!0

1

x(x+1)

log(cosx+sinx) = e.

Exercise 2.5.28 (8)

limx!1

x

x � x

log x� x+ 1= lim

x!0

(1 + x)1+x � 1� x

log(1 + x)� x

.

11

Page 12: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

We have

(1 + x)1+x � 1� x = e

(1+x) log(1+x) � 1� x = e

(1+x)(x� 1

2

x

2

+o(x

2

)) � 1� x

= e

x+

1

2

x

2

+o(x

2

) � 1� x = 1 +

✓x+

1

2x

2

◆+

1

2!x

2 + o(x2)� 1� x

= x

2 + o(x2),

log(1 + x)� x = �1

2x

2 + o(x2).

Therefore

limx!0

(1 + x)1+x � 1� x

log(1 + x)� x

= limx!0

x

2 + o(x2)

�1

2x

2 + o(x2)= �2.

Exercise 2.5.28 (13)

limx!1

(x� 1) log x

1 + cos ⇡x= lim

x!0

x log(x+ 1)

1 + cos(⇡x+ ⇡)= lim

x!0

x log(x+ 1)

1� cos ⇡x.

We havex log(x+ 1)

1� cos ⇡x=

x(x+ o(x))

1�✓1� (⇡x)2

2+ o(x3)

◆ =1 + o(1)

2

2+ o(x)

.

Therefore

limx!1

(x� 1) log x

1 + cos ⇡x= lim

x!0

x log(x+ 1)

1� cos ⇡x

Exercise 2.5.30 (1)

limx!0

+

x

p

e

�x

q

= 0 · e�0 = 0 · 1 = 0.

Exercise 2.5.30 (2)Let r = p

q

. Then by Exercise 1.6.15 and 0 < e

�1

< 1, we have

limx!+1

x

p

e

�x

q

= limx!+1

x

r

e

�x = limx!+1

x

r(e�1)x = 0.

Exercise 2.5.31 (1)We have (see Example 2.5.12)

tanp

x� x

p =

✓x+

1

3x

3 + o(x4)

◆p

� x

p = x

p

✓1 +

1

3x

2 + o(x3)

◆p

� 1

= x

p

1 + p

✓1

3x

2 + o(x3)

◆+ o

✓1

3x

2 + o(x3)

◆� 1

�= x

p

⇣p

3x

2 + o(x3)⌘,

sinp

x� x

p =

✓x� 1

3x

3 + o(x4)

◆p

� x

p = x

p

✓1� 1

3x

2 + o(x3)

◆p

� 1

= x

p

1 + p

✓�1

3x

2 + o(x3)

◆+ o

✓�1

3x

2 + o(x3)

◆� 1

�= x

p

⇣�p

3x

2 + o(x3)⌘.

12

Page 13: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Therefore

limx!0

+

tanp

x� x

p

sinp

x� x

p

= limx!0

+

x

p

⇣p

3x

2 + o(x3)⌘

x

p

⇣�p

3x

2 + o(x3)⌘ = �1.

Exercise 2.5.31 (2)We have (see Example 2.5.12)

tanp

x� sinp

x =

✓x+

1

3x

3 + o(x4)

◆p

�✓x� 1

3x

3 + o(x4)

◆p

= x

p

✓1 +

1

3x

2 + o(x3)

◆p

�✓1� 1

3x

2 + o(x3)

◆p

= x

p

⇣1 +

p

3x

2 � 1 +p

3x

2 + o(x3)⌘=

2p

3x

p+2(1 + o(x)).

Therefore

limx!0

+

sinp

x� tanp

x

x

q

= limx!0

+

2p

3x

p+2�q(1 + o(x)) =

8><

>:

0, if p+ 2 > q,

2p

3

, if p+ 2 = q,

+1, if p+ 2 < q.

Exercise 2.5.31 (3)

limx!⇡

4

tan x� cot x

4x� ⇡

= limx!⇡

4

sin2

x� cos2 x

(4x� ⇡) sin x cos x= lim

x!⇡

4

� cos 2x

(4x� ⇡) 1p2

1p2

= limx!⇡

2

2 cosx

(⇡ � 2x)= lim

x!0

2 sin x

2x= 1.

Exercise 2.5.31 (4)

a tan bx� b tan ax

a sin bx� b sin ax=

a

�bx+ 1

3

(bx)3 + o(x4)�� b

�ax+ 1

3

(ax)3 + o(x4)�

a

�bx� 1

3

(bx)3 + o(x4)�� b

�ax� 1

3

(ax)3 + o(x4)�

=(ab3 � a

3

b)x3 + o(x4)

�(ab3 � a

3

b)x3 + o(x4)=

ab

3 � a

3

b+ o(x)

�(ab3 � a

3

b) + o(x).

Therefore

limx!0

a tan bx� b tan ax

a sin bx� b sin ax= �1.

Exercise 2.5.32 (1)

limx!1

x

3

✓sin

1

x

� 1

2sin

2

x

◆= lim

x!0

1

2x3

(2 sin x� sin 2x)

= limx!0

1

2x3

✓2x� 2

1

6x

3 � 2x+1

6(2x)3 + o(x3)

=1

2

✓�2

1

6+

1

623◆

=1

2.

13

Page 14: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.32 (2)

x

✓2

x(2 + x)� 1

e

x � 1

◆= x

2

x(2 + x)� 1

x+ x

2

2

+ x

3

6

+ o(x3)

!

=1

1 + x

2

� 1

1 + x

2

+ x

2

6

+ o(x2)

=

1� x

2+

x

2

4+ o(x2)

��1�

✓x

2+

x

2

6

◆+

x

2

4+ o(x2)

=x

2

6+ o(x2)

Therefore

limx!0

1

x

✓2

x(2 + x)� 1

e

x � 1

◆= lim

x!0

1

x

2

✓x

2

6+ o(x2)

◆=

1

6.

Exercise 2.5.32 (3)

1

log(1 + x)�1

x

=1

x� x

2

2

+ o(x2)�1

x

=1

x

✓1

1� x

2

+ o(x)� 1

◆=

1

x

⇣1 +

x

2+ o(x)� 1

⌘=

1

2+o(1).

Therefore limx!0

✓1

log(1 + x)� 1

x

◆=

1

2.

Exercise 2.5.32 (4)We have

x

log(1 + x)=

x

x� x

2

2

+ o(x2)=

1

1� x

2

+ o(x)= 1 +

x

2+ o(x),

x

log(x+p1 + x

2)=

x

log(x+ 1 + 1

2

x

2 + o(x2))=

x

(x+ 1

2

x

2)� 1

2

x

2 + o(x2)=

1

1 + o(x)= 1 + o(x).

Then

limx!0

✓1

log(x+p1 + x

2)� 1

log(1 + x)

◆= lim

x!0

1

x

✓x

log(x+p1 + x

2)� x

log(1 + x)

= limx!0

1

x

⇣�x

2+ o(x)

⌘= �1

2.

Exercise 2.5.33 (1)By Example 2.4.10, we have lim

y!0

+

y log y = 0. This further implies limy!0

+

o(y) log y = 0.Then we get

limx!1

�log x log(1� x) = lim

y!0

+

log(1 + y) log y = limy!0

+

(y + o(y)) log y

= limy!0

+

y log y + limy!0

+

o(y) log y = 0.

14

Page 15: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.33 (2)By Example 2.4.10, we have lim

x!0

+

x log x = 0. By the composition rule, we then get

limx!0

+

x

x � 1

x log x= lim

x!0

+

e

x log x � 1

x log x= lim

y!0

e

y � 1

y

= limy!0

y + o(y)

y

= 1.

Exercise 2.5.33 (3)

limx!0

+

x

x � 1� x log x

x

2(log x)2= lim

x!0

+

e

x log x � 1� x log x

x

2(log x)2= lim

y!0

e

y � 1� y

y

2

=1

2.

Exercise 2.5.33 (4)By Example 2.4.10, we have lim

x!0

+

x log x = limx!0

+

x(log x)2 = 0. Then

x

x

x

= x

e

x log x

= x

1+x log x+o(x log x) = x · xx log x+o(x log x) = xe

x(log x)

2

+o(x(log x)

2

)

= x(1 + x(log x)2 + o(x(log x)2)) == x+ x

2(log x)2 + o(x2(log x)2).

Then

limx!0

+

x

(x

x

) � x

x

2(log x)2= lim

x!0

+

x

2(log x)2 + o(x2(log x)2)

x

2(log x)2= 1.

Exercise 2.5.33 (5)

limx!1

x

log x � 1

(log x)2= lim

x!1

e

(log x)

2 � 1

(log x)2= lim

y!0

+

e

y � 1

y

= 1.

Exercise 2.5.33 (6)Let x = 1 + y. Then x ! 1 means y ! 0, and

x

x = (1+y)1+y = e

(1+y) log(1+y) = e

(1+y)(y� 1

2

y

2

+o(y

2

)) = e

y+

1

2

y

2

+o(y

2

) = 1+

✓y +

1

2y

2

◆+1

2y

2+o(y2).

Then

limx!1

x

x � x

log x� x+ 1= lim

y!0

(1 + y)1+y � 1� y

log(1 + y)� y

= limy!0

y

2 + o(y2)

�1

2

y

2 + o(y2)= �2.

Exercise 2.5.34 (2)

(1 + ax+ cx

2)b � (1 + bx+ dx

2)a

x

2

= x

�2

✓1 + b(ax+ cx

2) +b(b� 1)

2(ax)2 � 1� a(bx+ dx

2)� a(a� 1)

2(bx)2 + o(x2)

=

✓(bc� ad) +

1

2(b(b� 1)a2 + a(a� 1)b2)

◆+ o(1).

Then

limx!0

(1 + ax+ cx

2)b � (1 + bx+ dx

2)a

x

2

= bc� ad+ a

2

b

2 +1

2ab(a+ b).

15

Page 16: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.34 (3)

limx!a

a

x � x

a

x� a

= limx!a

a

x � a

a

x� a

� limx!a

x

a � a

a

x� a

= (ax)0x=a

�(xa)0x=a

= a

a log a�a·aa�1 = a

a(log a�1).

Exercise 2.5.34 (4)For x = ay, we have

limx!0

(a+ x)x � a

x

x

2

= limy!0

a

x

(1 + y)ay � 1

(ay)2= a

�2 limy!0

(1 + y)ay � 1

y

2

.

By(1 + y)ay = e

ay log(1+y) = e

ay(y+o(y)) = e

ay

2

+o(y

2

) = 1 + ay

2 + o(y2),

we get

limx!0

(a+ x)x � a

x

x

2

= a

�2 limy!0

1 + ay

2 + o(y2)� 1

y

2

= a

�2

.

Exercise 2.5.34 (6)We have

log(sin ax) = log(ax+ o(x)) = log x+ log(a+ o(1)).

Note that log(a+ o(1)) converges and is therefore bounded, while limx!0

+ log x = �1. There-fore lim

x!0

+

log(a+o(1))

log x

= 0, and

limx!0

+

log(sin ax)

log(sin bx)= lim

x!0

+

log x+ log(a+ o(1))

log x+ log(b+ o(1))= lim

x!0

+

1 + log(a+o(1))

log x

1 + log(b+o(1))

log x

= 1.

Exercise 2.5.34 (7)We have

log(cos ax) = log(1� 1

2(ax)2 + o(x3)) = �1

2(ax)2 + o(x3).

Then

limx!0

+

log(cos ax)

log(cos bx)= lim

x!0

+

�1

2

(ax)2 + o(x3)

�1

2

(bx)2 + o(x3)=

a

2

b

2

.

Exercise 2.5.34 (8)We have

cos(sin x)� cos x = cos

✓x� 1

6x

3 + o(x4)

◆� cos x

= 1� 1

2!

✓x� 1

6x

3

◆2

+1

4!x

4 � 1 +1

2!x

2 � 1

4!x

4 + o(x4)

=1

6x

4 + o(x4).

Therefore

limx!0

cos(sin x)� cos x

x

4

=1

6.

16

Page 17: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.34 (9)By Exercise 2.5.22, we have

arcsin 2x� 2 arcsin x =

✓2x� 1

6(2x)3

◆� 2

✓x� 1

6x

3

◆+ o(x4) = �x

3 + o(x4).

Therefore

limx!0

arcsin 2x� 2 arcsin x

x

3

= �1.

Exercise 2.5.34 (11)Let y = x� ⇡

6

. Then x ! ⇡

6

means y ! 0, and

1� 2 sin x = 1� 2 cos⇡

6sin y � 2 sin

6cos y

= 1�p3(y + o(y2))� (1 + o(y)) = �

p3y + o(y),

cos 3x = � sin 3y = �3y + o(y2).

Then

limx!⇡

6

1� 2 sin x

cos 3x= lim

y!0

�p3y + o(y)

�3y + o(y2)= � 1p

3.

Exercise 2.5.34 (13)We have lim

x!0

+

x log x = limx!0

+

x(log x)2 = 0. Therefore

x

x

x�1 = e

(e

x log x�1)logx = e

(x log x+o(x log x))logx = e

x(log x)

2

+o(x(log x)

2

)

,

andlimx!0

+

x

x

x�1 = e

lim

x!0

+

(x(log x)

2

+o(x(log x)

2

)) = e

0 = 1.

Exercise 2.5.34 (16)We have

log⇣e

�1(1 + x)1

x

⌘ 1

x

=1

x

✓1

x

log(1 + x)� 1

◆=

1

x

✓1

x

✓x� 1

2x

2 + o(x2)

◆� 1

◆= �1

2+ o(1).

Therefore

limx!0

⇣e

�1(1 + x)1

x

⌘ 1

x

= e

lim

x!0

(� 1

2

+o(1)) =1pe

.

Exercise 2.5.35

We have ✓ =1

log(1 + x)� 1

x

. If we use l’Hospital’s rule, then we get

limx!0

✓1

log(1 + x)� 1

x

◆= lim

x!0

x� log(1 + x)

x log(1 + x)= lim

x!0

1� 1

1+x

log(1 + x) + x

1+x

= limx!0

x

(1 + x) log(1 + x) + x

= limx!0

1

log(1 + x) + 1 + 1=

1

2.

17

Page 18: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

The calculation using the approximation is given by Exercise 2.5.32 (3).In general, if f(x) has second order derivative at x

0

, then

f(x) = f(x0

) + f

0(x0

)(x� x

0

) +f

00(x0

)

2(x� x

0

)2 + o((x� x

0

)2),

f

0(x) = f

0(x0

) + f

00(x0

)(x� x

0

) + o(x� x

0

).

If f 00(x0

) 6= 0, Then the mean value theorem says the following two are equal

f(x)� f(x0

)

x� x

0

= f

0(x0

) +f

00(x0

)

2(x� x

0

) + o(x� x

0

),

f

0(x0

+ ✓(x� x

0

)) = f

0(x0

) + f

00(x0

)✓(x� x

0

) + o(✓(x� x

0

))

= f

0(x0

) + f

00(x0

)✓(x� x

0

) + o(x� x

0

).

If f 00(x0

) 6= 0, then this implies ✓ = 1

2

+ o(1). Then we conclude limx!x

0

✓ = 1

2

.

Exercise 2.5.37 (1)We have

x� (a+ b cos x) sin x = x�✓a+ b� 1

2!bx

2 + o(x3)

◆✓x� 1

3!x

3 + o(x4)

= (1� a+ b)x+

✓1

3!(a+ b)� 1

2!b

◆x

3 + o(x4).

Therefore x� (a+ b cos x) sin x = o(x4) means

1� a+ b = 0,1

3!(a+ b)� 1

2!b = 0.

The solution is a = 2, b = 1.

Exercise 2.5.38 (2)

Taking derivative of sin y = x in x, we get (cos y)y0 = 1. Therefore y

0 =1

cos y.

Taking derivative of (cos y)y0 = 1 in x, we get �(sin y)y02 + (cos y)y00 = 1. Therefore

y

00 =sin y

cos yy

02 =sin y

cos3 y.

Exercise 2.5.38 (3)

Takingd

dx

of the equation, we get 2x

a

2

+ 2yy

0

b

2

= 0. Then y

0 = � b

2

x

a

2

y

.

Takingd

dx

of 2x

a

2

+ 2yy

0

b

2

= 0, we get 21

a

2

+ 2y

02 + yy

00

b

2

= 0. Then

y

00 = �1

y

✓b

2

a

2

� y

02◆

= �1

y

✓b

2

a

2

� b

4

x

2

a

4

y

2

◆=

b

2(b2x2 � a

2

y

2)

a

4

y

3

.

18

Page 19: xercise - Hong Kong University of Science and Technologymamyan/ma1023/homework.pdf · logx = 1 2 (x1)(x3)+ 1 3 (x1)3 +o((x1)3) = 1 2 (x1)(2(x1))+ 1 3 (x1)3 +o((x1)3) =(x1) 1 2 (x1)2

Exercise 2.5.39 (2)

dy

dx

=(a(1� cos t))0

(a(t� sin t))0=

sin t

1� cos t,

d

2

y

dx

2

=d

dx

✓dy

dx

◆=

d

dt

✓dy

dx

dx

dt

=

d

dt

✓sin t

1� cos t

d

dt

(a(t� sin t))

=cos t(1� cos t)� sin t sin t

(1� cos t)2a(1� cos t)= � 1

a(1� cos t)2.

19