x-ray diffraction for powder samples

26
1 X-ray Diffraction for powder sample Rigaku Corporation Application laboratory Keigo Nagao Today’s topics (AM) z Features of Rigaku TTRAXz Basics of powder XRD ¾ Feature of XRD ¾ Evaluation item z Texture analysis for bulk sample ¾ Measurement and Process z SAXS for nano-size sample ¾ Principle and Optics ¾ Application

Upload: aidah-amir

Post on 21-Dec-2015

261 views

Category:

Documents


11 download

DESCRIPTION

science materials

TRANSCRIPT

  • 1X-ray Diffractionfor powder sample

    Rigaku CorporationApplication laboratory

    Keigo Nagao

    Todays topics (AM)z Features of Rigaku TTRAXz Basics of powder XRD Feature of XRD Evaluation item

    z Texture analysis for bulk sampleMeasurement and Process

    z SAXS for nano-size sample Principle and Optics Application

  • 2Rigaku TTRAX

    Horizontal goniometerHigh power X-ray sourceParallel beam methodIn-Plane axis

    X-ray source

    Detector

    Sample holder

    2

    2

    In-Plane measurement

    (2/scan)

    Feature of TTRAX

    In case the sample isnt set to horizontal.

    Hard-to-pack sample

    Semi-liquid sample

    Thin layer sample

    Feature of TTRAX

  • 3In Horizontal goniometer

    Independent on sample condition

    Hard-to-pack sample

    Semi-liquid sample

    Thin layer sample

    Feature of TTRAX

    High power X-ray source

    Sealed-off X-ray tube23kW

    Rotating anode X-ray tube1018kW

    Be window

    Target

    Coolingwater

    Feature of TTRAX

  • 4Geometry for powder samplez Focusing method Parallel Beam

    Detector

    Sample

    DSSS

    RSX-ray source

    Sample

    Detector

    X-ray source

    Parallel slit analyzerMulti layer

    Miller

    DS

    Parallel beamFocusing method

    mediumStrongIntensity

    Umbrella effect1. Flat sample2. Umbrella effect3. Adsorption effect4. Eccentric error

    Systematic error

    Feature of TTRAX

    Cross Beam OpticsRigaku patented technology

    BB and PB geometries are simultaneously mounted, aligned, and selectable.

    X-ray sourceBB selection slit

    Multilayer mirror

    Sample

    Focusing geometry (BB)

    Sample

    Parallel beam geometry (PB)

    PB selection slit

    Feature of TTRAX

  • 55 6 7 8 9 10 11 12 13 142(deg)

    6 7 8 9 10 11 12 13 142(deg)

    Measurement of rough sample surfaceFocusing method Parallel beam

    Sample : Zeolite

    Hold of peak shape, peak position and FWHM

    Rough

    Flat

    Feature of TTRAX

    Free from Eccentric error (Parallel beam)

    Datum surfaceEccentric surface

    X-ray source

    2

    2

    0 orderdetector

    Receiving slit : open

    Parallel slit analyzer

    2-X

    2

    Feature of TTRAX

  • 6Braggs condition of diffractionz The conditions for a reflected ( diffracted ) beam are given

    by the relation

    d

    2dsin = n

    dInterplanar spacing X-ray wavelengthBragg angle n1,2,3

    2dsin =

    Braggs equation

    Basics of XRD Interaction of substance and X-ray :1

    0.1

    1

    10

    100

    1000

    0 5 10

    2 (deg.)

    Inte

    nsity

    ( a.

    u. )

    X-ray diffuse scattering

    X-ray SampleScattering angle

    ( 2 = 0~10 deg. )

    Interaction of substance and X-ray :2

    Basics of XRD

  • 7Reflection and interferenceTwo beams reflected on the surface and the interface interfere each other.

    10-4

    10-3

    10-2

    10-1

    100

    Refle

    ctiv

    ity

    6543210

    2/ (degree)

    d

    reflection

    reflectionrefraction

    refraction

    Interaction of substance and X-ray :3

    X-ray reflectivity profile

    Basics of XRD

    Integrated Int.of amorphous

    Integrated Int.of crystal

    : Quantitative analysis

    Integrated Int.of amorphous

    Integrated Int.of crystal

    : Quantitative analysis

    Evaluation item in powder sample

    Angle2

    Inte

    nsity

    z more than 2=5degPeak positions

    d values : Phase IdentificationLattice constant

    d shift : Residual stressSolid solution

    Peak positionsd values : Phase Identification

    Lattice constantd shift : Residual stress

    Solid solution

    Intensity vs. OrientationPreferred orientationFiber structurePole figure

    Intensity vs. OrientationPreferred orientationFiber structurePole figureFWHM

    Crystal qualityCrystallite sizeLattice strain

    FWHMCrystal qualityCrystallite sizeLattice strain

    Crystallinity

    Basics of XRD

  • 8Phase Identification in X-ray diffractionz The powder diffraction pattern is characteristic of the substancez The diffraction pattern indicates the state of chemical combination

    2 ( deg. )

    Inte

    nsity

    ( co

    unts

    )

    Rutile(Cosmetic etc)

    Anatase(Photocatalyst etc)

    TiO2

    Basics of XRD

    Quantitative analysis(RIR method)The concentration of each phase is calculated by integrated intensity and RIR value

    ResultRutile: 71.6wt%Anatase: 28.4wt%

    PreparationRutile:Anatase=3:1

    Polymorphs of TiO2Rutile (RIR:3.40)Anatase (RIR:3.30)Brookite

    Basics of XRD

  • 9Crystallite size

    There is one or multiple crystalline in one particle.

    Crystallite sizeParticlesize

    Polycrystal

    Small angle X-ray scattering The width of

    diffracted lineScherrer methodHall method

    Basics of XRD

    x10^3

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    (CPS

    )

    Molybdenum - MoI

    40 50 60 70 802(deg)

    58.0 58.1 58.2 58.3 58.4 58.5 58.6 58.7 58.8 58.9 59.0 59.1 59.2 59.3

    900100

    Mo

    Crystallite size -Mo-

    100

    900

    Debye ring

    The width of diffracted line broaden in crystallite size less than 100nm(1000)

    Inte

    nsity

    (cps

    )

    Basics of XRD

  • 10

    Crystallinity

    40-1995> (CH2)x - N-ParaffinI

    10 15 20 25 30 35 40 452(deg)

    Plastic wrap

    Crystallinity .

    Basics of XRD

    23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 402(deg)

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    Inte

    nsity

    (CP

    S)

    Change of lattice constantMonitoring the change of lattice constant in real time

    in situ measurement

    Al2O3

    2dsin=

    25900

    25.5825.56

    35.1635.12

    Basics of XRD

  • 11

    d1 d2 d3 d4

    Compressive stress d1 > d2 > d3 > d4

    d1 d2 d3 d4

    Tensile stress d1 < d2

  • 12

    Calculation of stress value

    (stress value)

    Kstress constant)

    Material-specific valueEyoungs modulus, poisson ratio,0diffraction angle in stress free condition

    sin22

    K

    21-E cos0

    180

    Slope of sin2 diagram

    sin2

    2

    sin2

    2tension

    compresstension

    compress

    00

    N

    N

    NN

    XG

    SC

    N

    N N NXG

    SC

    plus psiminus psiIso-inclination method(Fixed Psi)

    Basics of XRD

    Measurement of residual stressz Iron plate

    Before rubbing

    After rubbing

    Basics of XRD

    Sample

  • 13

    Texture evaluation and pole figure analysis

    for bulk sample

    Texture and substance

    Nonoriented samplebrick, concrete, (powder)

    Single crystalsilicon waferdiamondquartz

    Oriented samplealuminium foiliron plateplastic bottle

    Texture evaluation

  • 14

    What is oriented sample?

    The condition that a lattice plane faces to the same direction

    Approximate equivalent to single crystal

    (Epitaxial film)

    Uni-axial orientation

    fiber orientation

    Metal orientation

    (rolled sample)

    Texture evaluation

    2D image and 2-I diffraction pattern

    nonoriented oriented

    I

    2

    I

    2

    2D image

    Diffraction pattern

    Texture evaluation

  • 15

    What is the purpose of texture?Which plane is faced to Rolling direction and Normal direction?

    X

    YZ

    X

    Y

    Z

    a

    bc

    Texture evaluation

    Spherical projection method and Stereographic projection method

    3D is described with 2D

    Spherical projection method Stereographic projection method

    Stereographic projection figure

    Texture evaluation

  • 16

    Pole figureRDRolling direction

    TD

    NDNormal direction

    Transverse direction

    X

    YZTD

    Texture evaluation

    Sample behaviorin Reflection method and Transmission method

    Reflection method

    Sample is moved centering around purple line

    Transmission method

    rotation

    rotation

    Beta rotation at each alpha angleAlpha:5deg step(ex.15208590deg)Beta: 5deg step(ex.05355360deg/ angle)

    Texture evaluation

  • 17

    Orientation analysis :step1

    RD20 90

    62

    The angle between RD and each pole is estimated with Wulff net.

    Pole figure of (111) in rolled Cu-Zn(70-30)

    Wulff net.

    Texture evaluation

    9035

    Orientation analysis :step2

    The angle between ND and each pole is estimated with Polar net.

    Polar net

    Texture evaluation

  • 18

    Orientation analysis :step3

    (h2k2l2)(h1k1l1)

    24.143.156.8

    036.953.1

    210

    033.648.2

    211

    39.275.0

    18.450.871.5

    26.663.490

    210

    19.561.990

    3054.773.290

    35.365.9

    211

    35.390

    06090

    110

    070.5109.5

    54.7111

    4590

    110

    090

    100111100

    Angle between plane in (h1k1l1) and (h2k2l2) of cubic crystal

    ND

    RD

    Texture evaluation

    Rotate standard (110) projection of cubic crystal 35degree clockwise.RD is [112]This texture is (110)[112]. (hkl)[uvw]=h*u+k*v+l*w=0

    Angle between plane of cubic

    111110=35.590

    111211=19.561.990

    ND

    RD

    Orientation analysis :step4

    ND RD

    Texture evaluation

  • 19

    Rotate 35degree

    Process by stereographic objection figure

    Standard (110)objection of cubic crystal

    RD[112]

    [112]

    Texture evaluation

    Small angle X-ray scatteringfor nano-size sample

  • 20

    Purpose of SAXS

    z Particle size estimation (X-ray scattering)

    z Phase identification (X-ray diffraction)

    Small Angle X-ray Scattering

    Particle sizethe distribution

    molecularstructure

    Small angle X-ray scattering

    0.1

    1

    10

    100

    1000

    0 1 2 3 4 5

    2 (deg.)

    Inte

    nsity

    ( a.

    u. )

    0.1

    1

    10

    100

    1000

    0 5 10

    2 (deg.)

    Inte

    nsity

    ( a.

    u. )

    Principle of SAXS

    X-ray SampleScattering angle

    ( 2 = 0~10 deg. )

    Scattering Diffraction 2dsin=n

    Small angle X-ray scattering

  • 21

    0.1

    1

    10

    100

    1000

    0 2 4 6 8 10

    2 (deg.)

    Inte

    nsity

    ( a.

    u. )

    Particle informationz Particle size and particle distribution

    Slope of SAXS profile : Average size

    Shape of SAXS profile: Breadth of distribution

    Small angle X-ray scattering

    Phase informationz Long-period structure

    0.1

    1

    10

    100

    1000

    0 1 2 3 4 5

    2 (deg.)

    Inte

    nsity

    ( a.

    u. )

    1

    1/31/2

    Peak position of SAXS: Structure and Interval

    Small angle X-ray scattering

  • 22

    Instrument for SAXS

    NANO-Viewer

    TTRAX III

    Ultima

    Small angle X-ray scattering

    Point focus opticsz NANO-Viewer ( 2D-SAXS System )

    2D image

    3slits optics

    X-ray source

    1st slit 2nd slit 3rd slit

    Sample

    2D detector

    Semiconductor 2D detector Pilatus100k

    Small angle X-ray scattering

  • 23

    NANO-Solverz Automatic particle size & distribution estimation !

    0 2 4 6 8 102 (deg.)

    Inte

    nsity

    ( a.

    u. )

    SAXS profile

    sizedistribution

    Dis

    tribu

    tion

    ( a.u

    . )

    Particle / Pore size ( nm )0 5 10

    Closely particle sphere cylinder Core/shell

    Small angle X-ray scattering

    Relations of size and profilesz Size : 3nm z Size : 60nm

    0 2 4 6 8 102 (deg.)

    Inte

    nsity

    (a.u

    .)

    0 2 4 6 8 102 (deg.)

    Inte

    nsity

    (a.u

    .)

    Normalized dispersion : 10 %

    Small angle X-ray scattering

  • 24

    Relations of dispersion and profiles

    z Dispersion : 10 % z Dispersion : 90 %

    0 2 4 6 8 102 (deg.)

    Inte

    nsity

    (a.u

    .)

    0 2 4 6 8 102 (deg.)

    Inte

    nsity

    (a.u

    .)

    Average diameter : 3 nm

    Small angle X-ray scattering

    Applications of SAXS

    Particle size estimation( transmission mode )

    Small angle X-ray scattering

  • 25

    SAXS profiles and size distribution

    z Au nanoparticles

    Inte

    nsity

    (CPS

    )

    No.1No.2No.3

    0 2 4 6 82 (deg.)

    101

    102

    103

    104

    105

    1000 2 4 6 8 10

    No.1No.2No.3

    Particle size ( nm )

    Dis

    tribu

    tion(

    a.u

    .)

    Small angle X-ray scattering

    Comparison of TEM image

    Particle size ( nm )0 2 4 6 8 10

    No.1No.2No.3

    Dis

    tribu

    tion(

    a.u

    .)

    No.1 No.2 No.3TEM image

    SAXS

    Small angle X-ray scattering

  • 26

    Nano size of porous silicazMesoporous silica

    0 1 2 3 4 52 (deg.)

    Inte

    nsity

    (a.u

    .)

    0 1 2 3 4 52 (deg.)

    Inte

    nsity

    (a.u

    .)

    Small angle X-ray scattering