wurth electronics inc. field application engineer michael

111
Würth Elektronik eiSos © May/2006 Michael Eckert Welcome! Inductors & EMC-Ferrites Basics Basics - - Parts and Parts and Applications Applications Wurth Electronics Inc. Field Application Engineer Michael Eckert

Upload: others

Post on 07-Feb-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Welcome!Inductors & EMC-Ferrites

Basics Basics -- Parts and Parts and ApplicationsApplications

Wurth Electronics Inc.Field Application Engineer

Michael Eckert

Page 2: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

What is an Inductor ?

technical view:a piece of wire wounded on something

a filter

an energy-storage-part (short-time)

examples:

Page 3: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

What is an EMC-Ferrite ?

Technical view:Frequency dependent filter

Absorber for RF-energy

examples:

EMC Snap-Ferrites EMC-Ferrites forFlatwire

SMD-Ferrites

Page 4: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Magnetic Field Strenght H of some configurations

RIH⋅⋅

=π2

RINH⋅⋅⋅

=π2

lINH ⋅

=

long, straight wire

Toroidal Coil

Long solenoid

(e.g. rod core indcutor)

Page 5: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

• Dosing pump for chemicalsindustry.

Example: Conducted Emission Measurement

Page 6: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

• Power supply V 1.0

PCB

Buck Converter ST L4960/2.5A/fs 85-115KHz

Conducted Emission Measurement

Page 7: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

• Power supply V 1.1

PCB

Schematic

Conducted Emission Measurement

Page 8: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Awareness:

• Select the right parts for yourapplication

• Do not always look on cost

Very easy solution with adramatic result!!!

Choke before Choke after

or

Page 9: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

What is permeability [ur]?

– Permability (µr): describe the capacity of concentration of the magnetic flux in the material.

typical permeabilities [µr] :

- Iron powder / Superflux : 50 ~ 150

- Nickel Zinc : 40 ~ 1500

- Manganese Zinc : 300 ~ 20000

HB r ⋅⋅= μμ0

Magnetic induction in ferrite:

Non-Linear Function ( µr!)

The relative permeability is dependent on frequency……

Page 10: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

||0 μω LR =

|0 μω LjX L =

resistive component(material it self)frequency dependent core losses

„ideell“ (without material) inductive componentfrequency dependent inductive portion

Tanδ = RXL

Loss factor

Frequency dependent Permeability

complex permeability

Page 11: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Measurement of Core Material Properties

Core Material(Fe / MnZn/ NiZn/ …)

Impedance Analyser

RL

XL

Core Material Parameter

XRZ L22 +=

Page 12: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Permeability vs. Temperature

23

700

400- 40%

85

+ 40%Curie-Temperatur

Loses its magentic properties

Page 13: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

How to find the best part for my application ?

Core Material Comparison

Page 14: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

When to use which type of material for filtering ?

=> It depends on frequency-range to filter !

Res

istiv

epa

rtof

Impe

danc

e

Page 15: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

When to use which material for store energy

=> It depends on application frequency for EACH Core-Material !

Indu

ctiv

epa

rtof

Impe

danc

e

Page 16: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

When to use an Inductor ?When to use an EMC-Ferrite ?

=> Application Storage Choke:

Request: lowest possible losses at application frequency

high Q-factor

=> Application as absorber-filter:Request: highest losses possible at application frequency range

low Q/factor

Page 17: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Vergleich Güte Ferrit <=> Induktivität

Inductor vs. EMI-Ferrit:

Frequency [MHz]

Q-F

acto

r

Ferrite

Inductor

Comparison Q-Factor: Ferrite vs. Inductor Q = XLR

Losses

Page 18: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Frequency-Spectrum and suggested Core Materials

Iron-PowderMnZn

NiZn

Suggested CoreMaterials for filtering: Ceramic

Let´s take a closer look...

Page 19: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

150KHz 30MHz 1GHz

Frequency range for EMI tests

Page 20: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Noise SpectrumRadiated Configuration

Conducted Configuration

EUT

150MHz 450MHz

FCC limit lineNoise madeby the device

Overview FCC Tests

Page 21: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

What‘s the main Interference we see on the board level?

Common Mode Interference(asym. Interference)

Differential Mode Interference(sym. Interference)

Page 22: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

How can we find out what interference we have on thePCB‘s?

Take a Snap Ferrite and fix it on the cable(both lines e.g. VCC and GND)

noise reductionor „noise immuntiy increase“

you have Common Mode Interference

if not

you have Differential Mode Interference

Page 23: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Example: Flyback Converter

Appearance of differential noises on the input line of a Flyback Converter

differential interference occurs mainly at lower frequencies

L1

N

PE

Switch (e.g Transistor)

mostly high Cap‘s >100uF; Xc=1/(ωxC)

differential interference

differential interference

Page 24: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Example: Flyback Converter

L1

N

PE

parasitic capacities ; in the lower pF (e.g: VCC layer to GND layer( coupling))

Switch (e.g Transistor)

mostly high Cap‘s >100uF; Xc=1/(ωxC)

common mode interference

common mode interference

common mode interference occurs mainly at higherfrequencies

Appearance of common mode noises on the input line of a Flyback Converter

differential interference

Page 25: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Current Compensated Chokes

Page 26: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Replace a „Snap Ferrit“ by a common choke ?

We can replace ferrite by common mode choke

Both are common mode filters !

First check for the technologie and look the impedance curve

Page 27: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Impedance increase vs. numbers of turnsin

crea

seIm

peda

nce

Fres.-decrease

Page 28: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

N1

N2

Functionality of a common mode choke:

The operational current (diff. mode) is routed by all relevant conductors through the core(e.g. +/- or L/N). That´s why the magnetic fields of these two conductors compensate eachother to zero => no influence on the wanted signalThe disturbance current flows on both wires in the same direction and generates a magneticfield in the toroidal core => the choke is able to filter unwanted noises.

operational current / wanted signal(diff. mode)

disturbance current(common mode)

Sour

cee.g

. 24A

C Su

pply

Load

5V A

C/DC

Con

verte

r

Page 29: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

sectional winding bifilar winding

< advantage? >

Common Mode Choke

Page 30: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Why bifilar / sectional winding ?

sectional winding:• Same number of windings placed opposed on the toroidal core• In addition to the common mode suppression (asym. noises) the high leakage inductance also

allows filtering of differential interferences (sym. noises)

bifilar winding:• Parallel wiring around the core (in most cases we use wires with different colors)• Small leakage inductance and therefore less attenuation of high-frequency

differential noises

Page 31: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

For example: WE-SL2 744227SCommon Mode suppression

Differential Mode suppressionis high!

Sectional winding:

ATTENTION:SECTIONELL WINDING MUST BEUSED ON MAIN-POWER SUPPLY !

Page 32: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Bifilar winding vs. Sectional winding

For example: WE-SL2 744227Common Mode suppression

Differential Mode suppressionis low!

Differential Mode S-Type

interference(Common Mode )

signal (Differential)

Page 33: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Advantage of a Common Mode Choke

Filtering with two inductors or ferrites

Signal before filtering after filtering

Rise-time of the signal is affected,which could cause problems forfast data and signal lines

which occurs from the DC current the filteringperformance is shortened.

because of the pre-magnetization (saturation)

Page 34: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Filtering with a Common Mode Choke

Signal before filtering after filtering

no affect on the signal rise-time, because of magnetic field compensation

no influence of the wanted signal(the two windings are magneticallycoupled)

no pre-magnetization (saturation) occurs from the DC current, because of magnetic coupling

much better performance vs. two separate inductors or ferrites

Advantage of a Common Mode Choke

Page 35: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Filtering the USB 2.0 interface via CMC

Page 36: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

USB 2.0 Filtering via WE-CNSW

measurement point TP2

EMI-filter EMI-filter

90 Ohm @ 100 MHz C.M. 600 Ohm @ 100 MHz C.M. WE-CBF 20 Ohm @ 240 MHz D.M. 40 Ohm @ 240 MHz D.M. 120 Ohm @ 100 MHz

Page 37: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Portfolio of eiSos:

common mode chokes by Würth Elektronik

for 115VAC / 250VAC / max. 20A for signal / data linesUmax. = 42VAC (80VDC) / I up to 5A

THT with sectionalwinding

WE-LF WE-CMB

THT SMD sectional bifilar

common mode Ferrite-Bridges6-hole-

Ferrite bead

WE-SL seriesWE-VB / VB 2

WE-CNSWcommon mode

Chip-bead

WE-SLseries

WE-SL seriesWE-CNSW

WE-VB / VB 2

Page 38: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Common mode chokes in SMD:

WE-CNSWNiZn Z = 67–2200 Ohm @ 100 MHz

NiZn (für L < 100uH)

WE-SL

WE-CMS

for signal / data lines up to Imax = 0,4 A

for signal / data lines up to Imax = 5,6 A

for signal / data lines up to Imax = 5 A

WE-VB2

NiZn L~ 15 uH… ~ 80 uH

for signal / data lines up to Imax = 0,5 A

NiZn Z = 52 Ohm @ 100 MHz

MnZn (für L > 60uH)

L ~ 10 µH ... ~ 47 mH

f (MHz)

10001001010,1

Page 39: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

f (MHz)

10001001010,1

WE-SL3

NiZn L ~ 20 uH… ~ 100 uH

NiZn L ~ 10 µH… ~ 330 µH

WE-SL1

WE-SL2

MnZn (für L < 250uH)

for signal / data lines up to Imax = 0,7 A

for signal / data lines up to Imax = 0,3 A

for signal / data lines up to Imax = 1,6 A

WE-SL5

NiZn L ~ 120 uH… ~ 4,7 mH

for signal / data lines up to Imax = 2,5 A

NiZn (für L > 51uH)

L ~ 25 µH ... ~ 47 mH

Common mode chokes in SMD:

Page 40: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Common mode chokes for THT:

f (MHz)

10001001010,1

WE-LF

MnZn L ~ 1 mH… ~ 47 mH

NiZn L ~ 10 µH… ~ 100 µH

WE-VB

Ferrite bridge(WE-MLS)

for 115 / 230VAC up to Imax = 6 A

for VCC-lines, signal / data lines up to Imax = 1,6A

für VCC-lines, signal / data lines up to Imax = 16 A

WE-CMB for 115 / 230VAC up to Imax = 15 A

MnZn L ~ 150 uH… ~ 39 mH

NiZn Z = 264 – 334 Ohm

Page 41: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Ferritebridge WE-MLS:

With an adequat PCB layout it´s pos-sible to realize up to 5 applicationswith only 1 standard component !

Replacement for 6-Hole Ferrite-Bead Dual common mode choke; 4A

Examples:

Page 42: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Applications with the WE-MLS:

Dual CM choke

Z ~ 170 .. 350 Ω@ 100 MHz

I = 4 ARDC < 2 mΩ

Single CM choke

Z ~ 170 .. 350 Ω@ 100 MHz

I = 8 ARDC < 1 mΩ

Single CM choke

Z ~ 600 .. 900 Ω@ 100 MHz

I = 4 ARDC < 4 mΩ

4 windings

Z ~ 900 .. 1500 Ω@ 100 MHz

I = 4 ARDC < 10 mΩ

Z ~ 170 .. 350 Ω@ 100 MHz

RDC < 1 mΩ

Single winding

I = 16 A

optimal for e.g. filtering in power supplies (U < 60VDC), charger or sensortechnology

Page 43: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

WE-SL

WE-SL 1

WE-SL 2

WE-SL 3

WE-SL 5

WE-CNSW

Size [mm] Impedance [Ω] Current [A]

2.0 x 1.2 x 1.23.2 x 1.6 x 1.9

12.7 x 10.5 x 5,75

9.2 x 6.0 x 5.0

6.5 x 3.6 x 1.65

9.2 x 6.6 x 2.5

10.0 x 8.2 x 6.5

Application

0.28 – 0.40.20 – 0.37

0.20 – 2.70

0.30

0.40 – 1.60

0.50 – 0.70

0.35 – 2.50

130 – 91060 – 400

1100 – 14400

300 – 2000

1250 – 5000

290 – 13000

1000 – 20000

USB 2.0Firewire/ high speed dataline

VCC Power & Datalines

VCC Power & Datalineshigher current ratings

ISDNTelecom Applications

VCC Power Lines

744212xxxNEW

NEW744252/253xxx

NEW744272xxx

PCMCIA cards

Common mode chokes for SMD:

Page 44: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Differential Mode suppression : SMD-Ferrit WE-CBF

Page 45: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Impedance: SMD-Ferrite (Chip Bead)

XL(NiZn)

Advantage of SMD-Ferrites:broadband, frequency-dependent

Absorber for RF-noise in the frequencyrange 10 MHz ... > 1GHz

with very low DC-Resistance(< 0,8 Ohm max. !)

resistive component

inductive component

Page 46: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Which impedance do we need ?

0

10

20

30

40

50

60

Level [dBµV/m]

30M 40M 50M 70M 100M 200M 300M 400M 600M 1G

Frequency [Hz]

Page 47: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Insertion Loss Model

Equivalent circuit of Filter

Equivalent circuitof source

Equivalent circuit of system impedance

)(log20 dBinZZ

ZZZABA

BFA

+++

=Insertion Loss =>

Page 48: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Simulation Model Cap

Simulation Model Fer.

The real world........ !

Equivalent Circuit of Filter-ComponentsEquivalent circuit of source

Equivalentcircuit of load

for Inductor and Capacitor onecan find Simulation-Models

? ?

source

Noisesource

load

Page 49: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Starting Point: Practical figures for ZA / ZB

* Groundplanes : Impedance range 1 ... 2 Ω

* VCC-Distribution: Impedance range 1 ... 2 Ω

* Video-/ Clock-/ Dataline: Impedance range 50 ... 90 Ω

* Long Datalines: Impedance range 90 ... >150 ΩWith this we can make a first decision of a Ferrite-Impedance ZFwhich would suppress noise in our application :

Page 50: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Which Impedance ZF is needed ?

Example 1: required attentuation= 20dB @ 200 MHz VCC-Distribution

180Ω

=> goto Nomogramm:

180 Ω => chosen: 220 Ω

Impedance of the Ferrite

Atte

nuat

ion

[dB

]

Page 51: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Insertion Loss vs. Impedance of Source/ Load (ZA / ZB)

A = -32 dB max.with ZA = ZB = 10 Ω = constant

A = -18 dB max.with ZA = ZB = 50 Ω = constant

A = - 8 dB max.with ZA = ZB = 200 Ω = constant

A = - 3 dB max.with ZA = ZB = 1000 Ω = constant

with ZA = ZB = 5000 Ω =constantno effect in filtering !

SMD-Ferrite ZF = 600 Ohm @ 100 MHz

Frequency (Hz)

Inse

rtio

n Lo

ss(d

B)

Page 52: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Simulation with RF Sim 99 or SWITCHER CAD III

Demostrationa) via equivalent circuit

b) via S-Parameters

)(log20 dBinZZ

ZZZABA

BFA

+++

=Insertion Loss =>

S-parameters are available on our homepage

Page 53: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

SMD-Ferrite listed in LTSpice/SwitcherCADIII

Freeware !Download www.linear.com_

Page 54: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

SMD-Ferrites LTSpice/SwitcherCADIII

You can sort database by :Part.Nr.; RDC; Current ; Impedance @100MHz ormaximum Impedance @ which Frequency

SwCAD III.lnk

Page 55: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Saturation of the ferrite(Impect of DC-bias (magnetize))

To high inrush current(switch on current )

Wrong layout of the filter circuit(noise coupling)

Wrong compination of components(Lsrf = Csrf >> no wideband suppression)

Examples:

Design-In mistakes of Ferrites

Page 56: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Impect of DC-bias (pre-magnetization (saturation)

800Ω@100MHZ (0ADC)

420Ω@100MHZ (1,7ADC)

230Ω@100MHZ (3ADC)

742792515 (3A typ)

Design-In mistakes of Ferrites

Page 57: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Impect of DC-bias (pre-magnetization (saturation)

Page 58: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Ferrite can be destroyed , muss not fail directly.„creeping process“

Io = Uo/ (RDC ferrite +R ESR capacity)

= 12V / (0,15Ω+0,5Ω) = 18A18 time higher current

Destroy the ferrite due over current/inrush current

DCDC RL

Iconst= 500mA

7427907Uo=12V

100uF

RDC 0,15Ω

Design-In mistakes of Ferrites

Page 59: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Design-In mistakes of Ferrites

Destroy the ferrite due switch on current(no current limitation was done by the customer)

Page 60: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Basic Design-Rules of EMC-Filters

Low DC-Resistance; high Absorption forRF-noise; no SRF-Point

Low ESR; „zero“-Ohm-Path to GND for RF-noisestabilzie VCC for Pulse-Currents

Page 61: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Inductance of connection:SMD-types 1 nH ... 5 nHwired 10 nH ... 50 nH !

ESR:SMD-types 20 mΩ ... 300 mΩ

up to 1 Ω(see Datasheet )

Equivalent Circuit: Capacitor

Basic Design-Rules of EMC-Filters

IZI [Ω]

f [MHz]

ωLS

ωCS

1

RS

log

log

Page 62: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Equivalent circuit : Inductor /Ferrite

Parasitic Capacitance:SMD-EMC-Ferrite 5 fF ... 5 pFwinded Inductors 10 pF ... 500 pF !

Losses:Inductors (at SRF ! ) up to 30 kΩSMD-EMC-Ferrite (broadband !) 10 Ω ... 3 kΩ

Basic Design-Rules of EMC-Filters

IZI [Ω]

f [MHz]

ωLpωCp

1

RP

log

log

Page 63: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

1 mm ~ 1nH

1 via ~ 0.5 nH0.5 nH @ 100 MHz = 0.314 Ω

0.5 nH @ 1 GHz = 3.14 Ω !

Zges: ESR+Lr (2nH)+Lvia(0,5nH)

100nF= 0,2Ω+1,2Ω+0,3Ω= 1,7Ω@100MHz

Basic Design-Rules of EMC-Filters

Size: 0603/X7R

Page 64: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

LC-Lowpassfilter Layout Lowpassfilter

Why will this Filter not work properly at RF-Frequencies ?

Ground-Level

Grounding / Layout

Page 65: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Grounding / Layout

Inductive coupling

Capacitive coupling

Bypass fornoise

too long tracks

Contraction for RF

more vias to GND= low impedance

Connection to Case

bad solution optimized

Page 66: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Layout for Ground

IC2a

IGND

The GND-Potential is affectedby current driven throughground-pin of semiconductor !

IGND

IC2a

Separated ways for RF-currentof C2a and semiconductor

More vias = smaller DCR/L

bad good

vias to ground

Page 67: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Impedance vs. Frequency of Capacitors

3/4 parts are needed to,,,,,,,,,,,, !!

Page 68: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Paralleled Capacitors

a:100nF // 100 pF(without Ferrite !)Attention !

Resonant Circuit !!

b:1 x 100nF

c:2 x 100nF paralleledlower Impedance

SRF ~ 20 MHz

Page 69: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Simulation of parallel resonance due to the wrong choiceof Cap‘s (100nF; 1nF; 100pF)

Simulation with RF Sim 99 or SWITCHER CAD III

Correct choice of parallel Cap‘s (100nF; 22nF; 5nF)Attenuation of at least 12dB in the range of 1 MHz to 500MHz

Optimal solution: (100nF; SMD Ferrit)Wideband attenuation of the complete frequency range

Page 70: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Simulation-Modell for EMC-Ferrites and

Model as Parallel-Circuit withconstant Parametern forRp / Lp / Cp

can be used in anySimulationprogram(like P-SPICE or Electronics Workbench, ...) !

Datas: see Book„Trilogy of Inductors“Seite 113ff

Power Inductors

Page 71: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Recommended Filtercircuits

Suggested Circuits

ATTENTION !Self-Resonant-Frequencyof Components !!!

smaller C = higher SRF

If you choose SMD-Ferrite instead of Inductor L = no Resonance with C = broadband filtering

Source Impedance Load Impedance

low

low low

high

high

high

high orunknown

low orunknown

high orunknown

low orunknown

Page 72: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Noise source

Source: USB/Battery

DC-DC-Converter LT13043,3V to 5V

PD Typ M 22uH7447779122

LC-Filter

Pi-Filter

Crystal Oscillators(25MHz and 100MHz)to generate the noisespectrum

f

A

Page 73: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Filter Topologies

50 Ohm Ref. Line

3xC Capacitance Filter

„L“Filter with SMD Ferrite

„L-C“ Filter with SMDFerrite und Capacitor

„PI“ Filter

„T“ Filter

Page 74: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

The „L“ Ferrite –Filter

Page 75: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

The „L“ Ferrite –Filter

Insertion Loss

-40

-35

-30

-25

-20

-15

-10

-5

0

1 10 100 1000

Frequenz in MHz

in d

B

Ferrite-Filter Simulation modell)

Page 76: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Ferrite –Filter: Measurement vs. Simulation

Insertion Loss

-40

-35

-30

-25

-20

-15

-10

-5

0

1 10 100 1000

Frequenz in MHz

in d

B

Ferrite-Filter (Insertion Loss)Ferrite-Filter Simulation modell)

Page 77: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

LC-Filter

L=742 792 093

C=100nF

Page 78: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

LC-Filter

Dämpfung

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 10 100 1000

Frequenz in MHz

in d

BLC-Filter (Simulationsmodell)

Page 79: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

LC-Filter: Measurement vs. Simulation

Dämpfung

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 10 100 1000

Frequenz in MHz

in d

B

LC-Filter (Einfügedämpfung)LC-Filter (Simulationsmodell)

Page 80: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Parallel capacitors

C1= 1nF

C2=10nF

C3=100nF

Page 81: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Parallel capacitors

Dämpfung

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 10 100 1000

Frequenz in MHz

in d

BC-Filter (Simulationsmodell)

Page 82: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

C-Filter: Measurement vs. Simulation

Dämpfung

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 10 100 1000

Frequenz in MHz

in d

B

C-Filter (Einfügedämpfung)C-Filter (Simulationsmodell)

Page 83: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Pi-Filter

C1=1nF

L=742 792 093

C2=100nF

Page 84: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Pi-Filter

Dämpfung

-120

-100

-80

-60

-40

-20

0

1 10 100 1000

Frequenz in MHz

in d

BPi-Filter (Simulationsmodell)

Page 85: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Pi-Filter: Measurement vs. Simulation

Dämpfung

-120

-100

-80

-60

-40

-20

0

1 10 100 1000

Frequenz in MHz

in d

BPi-Filter (Einfügedämpfung)Pi-Filter (Simulationsmodell)

Page 86: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Pi-Filter: Measurement vs. Simulation

Dämpfung

-120

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

B

Pi-Filter (Einfügedämpfung)Pi-Filter (Simulationsmodell)Ref.-Messung (Spectrum Analyzer)PI-Filter (Spectrum Analyzer)

Page 87: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

T-Filter

L1=742 792 040

C=100nF

L2=742 792 092

Page 88: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

T-Filter

Dämpfung

-120

-100

-80

-60

-40

-20

0

1 10 100 1000

Frequenz in MHz

in d

BT-Filter (Simulationsmodell)

Page 89: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

T-Filter: Measurement vs. Simulation

Dämpfung

-120

-100

-80

-60

-40

-20

0

1 10 100 1000

Frequenz in MHz

in d

B

T-Filter (Einfügedämpfung)T-Filter (Simulationsmodell)

Page 90: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Ferrite –Filter: Measurement vs. Simulation

Insertion Loss

-120

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

B

Ferrite-Filter (Insertion Loss)Ferrits-Filter Simulation modell)Ref.-Meas. (Spectrum Analyzer)

Page 91: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Ferrite –Filter: Measurement vs. Simulation

Insertion Loss

-120

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

B

Ferrite-Filter (Insertion Loss)Ferrite-Filter Simulation modell)Ref.-Meas. (Spectrum Analyzer)Ferrite-Filter (Spectrum Analyzer)

Page 92: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

T-Filter: Measurement vs. Simulation

Dämpfung

-120

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

B

T-Filter (Einfügedämpfung)T-Filter (Simulationsmodell)Ref.-Messung (Spectrum Analyzer)T-Filter (Spectrum Analyzer)

Page 93: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

C-Filter: Measurement vs. Simulation

Dämpfung

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

B

C-Filter (Einfügedämpfung)C-Filter (Simulationsmodell)Ref.-Messung (Spectrum Analyzer)

Page 94: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

C-Filter: Measurement vs. Simulation

Dämpfung

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

BC-Filter (Einfügedämpfung)C-Filter (Simulationsmodell)Ref.-Messung (Spectrum Analyzer)C-Filter (Spectrum Analyzer)

Page 95: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

LC-Filter: Measurement vs. Simulation

Dämpfung

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

B

LC-Filter (Einfügedämpfung)LC-Filter (Simulationsmodell)Ref.-Messung (Spectrum Analyzer)

Page 96: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

LC-Filter: Mesaurement vs. Simulation

Dämpfung

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

B

LC-Filter (Einfügedämpfung)LC-Filter (Simulationsmodell)Ref.-Messung (Spectrum Analyzer)LC-Filter (Spectrum Analyzer)

Page 97: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Pi-Filter: Measurement vs. Simulation

Dämpfung

-120

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

B

Pi-Filter (Einfügedämpfung)Pi-Filter (Simulationsmodell)Ref.-Messung (Spectrum Analyzer)

Page 98: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

T-Filter: Measurement vs. Simulation

Dämpfung

-120

-100

-80

-60

-40

-20

0

20

1 10 100 1000

Frequenz in MHz

in d

BT-Filter (Einfügedämpfung)T-Filter (Simulationsmodell)Ref.-Messung (Spectrum Analyzer)

Page 99: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Testboard VCC-decoupling

5,1VDC Trimmer 10K

RL=220Ω

R=470Ω

IC

74LS132

CL=47pF

Filter circuit 1uF; Ferrit; 1uF

Page 100: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

VCC- decoupling via discrete π-Filter

IC VCC

π-Filter: 1uF-742792093-1uF

GND GND

Attenuation

-140

-120

-100

-80

-60

-40

-20

0

1 10 100 1000Frequency [MHz]

dB

Pi-Filter Simulation

Page 101: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Filter Circuit Simulation: VCC- π -Filter

Impedance Characteristic Zmax@100MHz742792093

SwCAD III.lnk

Page 102: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Noise-Spectrum on VCC

no filtering on Vcc(condition: max. Hold)

Page 103: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Simulation VCC decoupling 1uF

IC VCC

C-Filter with 1uF

GND

Attenuation

-140

-120

-100

-80

-60

-40

-20

0

1 10 100 1000Frequency [MHz]

dB

C-Filter

4MHz

50dB

Step 1:1uF Cap.

Page 104: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Attenuation

-140

-120

-100

-80

-60

-40

-20

0

1 10 100 1000Frequency [MHz]

dB

without filteringC-Filter 1uF C-Filter Simulation

IC VCC

C-Filter: 1uF

GND

Step 1:1uF Cap.

4MHz

50dB

Simulation VCC decoupling 1uF

Page 105: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Attenuation

-140

-120

-100

-80

-60

-40

-20

0

1 10 100 1000Frequency [MHz]

dB

LC-Filter-SimulationC-Filter Simulation

Step 2:1uF Cap.& Ferrite IC VCC

LC-Filter: 1uF-742792093

GND

Simulation VCC decoupling 1uF - Ferrite

main attenuationdone by the ferrite

Page 106: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Step 2:1uF Cap.& Ferrite IC VCC

LC-Filter: 1uF-742792093

GND

Attenuation

-140

-120

-100

-80

-60

-40

-20

0

1 10 100 1000Frequency [MHz]

dB

C-Filter 1uF

LC-Filter 1uF_742792093

without filtering

LC-Filter-Simulation

Simulation VCC decoupling 1uF - Ferrite

main attenuationdone by the ferrite

Page 107: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

IC VCC

π-Filter: 1uF-742792093-1uF

GND GND

Attenuation

-140

-120

-100

-80

-60

-40

-20

0

1 10 100 1000Frequency [MHz]

dB

LC-Filter-Simulation

C-Filter Simulation

Pi-Filter-Simulation

Simulation VCC decoupling 1uF - Ferrite

Step 3:1uF//1uF Cap.& Ferrite

additional attenuationfor the lower frequency

Page 108: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

IC VCC

π-Filter: 1uF-742792093-1uF

GND GND

Simulation VCC decoupling 1uF – Ferrite – 1uF

Attenuation

-140

-120

-100

-80

-60

-40

-20

0

1 10 100 1000Frequency [MHz]

dB

C-Filter-SimulationC-Filter 1uF LC-Filter 1uF_742792093 PI-Filter 1uF//1uF_742792093without filteringLC-Filter-SimulationPi-Filter-Simulation

Step 3:1uF//1uF Cap.& Ferrite

additional attenuationfor the lower frequency

Page 109: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

no filtering on Vcc

Final Result

filtering on VccIC VCC

π-Filter: 1uF-742792093-1uF

GND GND

Page 110: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

You want to know more ??

Look at our Book:

Chap.1: Basicskeep it simple, stupid

Chap.2: ComponentsDescriptions, Applications, Simulation Models and many more

Chap.3: Filter-CircuitsDesign, Grounding, Layout, Tipps

Chap.4: ApplicationsCircuit, suggested parts, Layout

Chap.5: Appendicesfrom A to Z

Page 111: Wurth Electronics Inc. Field Application Engineer Michael

Würth Elektronik eiSos © May/2006 Michael Eckert

Online:

www.wewww.we--online.comonline.com