wre #349 technical memorandum stormwater runoff and

86
WRE #349 Technical Memorandum STORMWATER RUNOFF AND POLLUTANT MODEL ( SRPM ) MODEL DOCUMENTATION Version 1.3 by Richard Z. Xue, P.E. Resource Assessment Division Water Resource Evaluation Department South Florida Water Management District West Palm Beach, FL 33406 December 1996

Upload: others

Post on 19-May-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

WRE #349Technical Memorandum

STORMWATER RUNOFF ANDPOLLUTANT MODEL

( SRPM )

MODEL DOCUMENTATION

Version 1.3

by

Richard Z. Xue, P.E.

Resource Assessment DivisionWater Resource Evaluation Department

South Florida Water Management DistrictWest Palm Beach, FL 33406

December 1996

Page 2: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 3: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

TABLE OF CONTENTS

1, INTRODUCTION ....................................... 1

2. DESCRIPTION OF SRPM MODEL, ......... ........................... 4

3. MODEL ALGORITHMS ............ ......................... 43.1 Hydrology Simulation .................................... 4

3.1.1 Overland flow ........ . ........ ... .... ............ 53.1.2 Evaporation ..................................... 73.1.3 Infiltration ....... ............ ................... 73.1.4 Flow routing .. ......... ................ ..... 10

3.2 Water Quality Simulation ..... . .. . . .... .. ........... 113.2.1 Buildup .................. ............... ....... 123.2.2 Washoff ...................................... 123.2.3 Phosphorus Transpor in Agricultural Areas ........ .......... 13

4. INPUT DATA DESCRIPTION ........... .... ............... ..... . 154.1 Meteorological Data ........... .. ........ ........... . .. . 154.2 Watershed Data ............... ............................ 154.3 Pollutant Buildup/Washoff Data ................................. 16

5. MODEL OUTPUT ............. ... ..... .......... . .... .... ......... 165,1 Tim e Series Output ..................... ...... .. . . .......... 165.2 Other Simulation Outputs .................................. 16

6. MODEL PACKAGE ....... ................ ........... .. . .. .. . .......... 176,1 Programs and Input/Output Files ................... ............. 176.2 Computer Requirements ............................ ........ 18

ACKNOWLEDGMENTS ............... .. . . . .......... . .......... . . ... . . 19

REFERENCES .................................................. 19

APPENDIX A - SRPM INPUT

Hourly Precipitation Data ....... ................. ......... A- 1Hourly Pan Evaporation Data ........... . ............. .. ......... A-2Watershed Data and Pollutant Buildup/Washoff Data .................. A-3

...... ~... ..... ...... _.._._. .. it

Page 4: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 5: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPEND]X B - FORTRAN PROGRAMS

Program to Convert Daily to Hourly Evaporation DataMain Program of the SRPM Model ............ ................. .

APPENDIX C -.. SRPM OUTPUT

Hourly Runoff and Pollutant ConcentrationsDaily Runoff and Pollutant ConcentrationsMonthly Runoff and Pollutant ConcentrationsAnnual Runoff and Pollutant ConcentrationsHourly Mass Balance Data ............Geometric and Hydraulic Data ..........

B-1B-2

C-1C-2C-3C-4C-5C-6

IST' OF TFABLES

Table 1. Components of SRPM Model] Package .............................. 17

.. . . . . . . , , . .. . . . . . . . . . .

Page 6: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 7: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

i~~~{Jrq ~ ~ ~ ~ ~ai flQ(., rnq/nhj %7I(.' -,,.rk,/O''rr~t"'""

1. ]NTRODUCTION

Stormwater runoff and the associated pollutant loads have gained great attention in

urban planning and design. Evaluation of alternative scenarios in urban development is needed

to assess the environmental impacts on existing watersheds due to changes in land use. A

watershed model is needed for this evaluation and can be used as a tool to predict future water

quality impacts on receiving water and to assess urban stormwater management alternatives

(Greene and Cruise, 1995). Watershed managers and planners need such a tool to estimate the

relative water quality impact of subbasin discharges on downstream locations, which in turn

helps to select appropriate watershed-wide stormwater management control alternatives

(Shamsi, 1996).

Modeling the quantity and quality of stormwater runoff is difficult due to variation of

such factors as land use, human activities, and meteorological conditions (Easter and James,

1994). A few existing watershed models are available to simulate stormwater runoff and its

pollutant loads for different applications. The U.S. EPA (1992) defined three classes of

watershed-scale models: (1) simple methods; (2) mid-.range models; and (3) detailed models.

Simple methods apply simplistic, statistical, and/or empirical equations to simulate annual

averages of runoff and pollutant loads, These methods require historical monitoring data and

their applications are usually limited to the areas for which the models were developed and to

similar watersheds (U.S. EPA, 1992). Mid-range models describe the relationship of pollutant

loadings to hydrologic and erosion processes on a monthly or seasonal basis. These models

consider neither adsorption, degradation and transformation processes of pollutants, nor

pollutant transport within and from the watershed (U.S. EPA, 1992). They can be applied for

relative comparison analysis for watershed planning decisions. Detailed models simulate the

physical hydrologic and pollutant transport and transformation processes in watershed areas

at a small time step to account for effects of storm events, such as Areal Nonpoint Source

U _ 1 ?I

Page 8: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 9: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Watershed Environment Response Simulation (ANSWERS) (Beasley and Huggins, 1981), Distributed

Routing Rainfall Runoff Model - Quality (DR3M-QUAL) (Alley and Smith, 1982), Hydrological

Simulation Program - ORTRAllN (ESPF') (U.S. EPA, 1993), Storage, Treatment, Overflow, Runoff

Model (STORM) (U.S. Army Corps of Engineers, 1977), Storm Water Management Model (SWMM)

(Huber et al., 1987), and Simulation for Water Resources in Rural Basins (SWRRB) (Arnold et al.,

1989). Among these detailed models, ANSWERS and SWRRB were developed for agricultural areas;

DR3M- QUALM, STORM, and SWMM were designed for urban areas; ESPF, on the other hand, can

be applied to most complex watershed areas.

The HSPF model simulates hydrolysis, oxidation, photolysis, biodegradation, volatilization,

and sorption processes to describe pollutant generation, transformation and transport from

watersheds to, and within, receiving water bodies (U.S. EPA, 1993). 'l'hree distinct categories such

as pervious lands, impervious lands, and stream channels are considered in HSPF. The model

requires extensive input data, and highly trained personnel and team efforts, so that it is not

suitable for the kind of evaluations being considered here.

DR3M-QUAL, supported by the U.S. Geologic Survey, and STORM, developed by the U.S,

Army Corps of Engineers, are the detailed urban watershed models. Both models were designed

to simulate limited pollutants, which do not meet the requirement of this study to allow users

to define water quality constituents to be simulated. On the other hand, the SWMM model

developed by the U.S. EPA (Huber et al., 1987) does allow users to specify up to ten pollutants

of interest for simulation. However, SWMM also requires extensive input, data and modeling

effort.

As a part of the Alaa Ana/lsi ardaodelig a o/ Urz &falor /der Trenlen/ Systems /or

/feler (udalFy (0'mpIA ce - Psse roproject, a Stormwater Runoff and Eollutant Model (SRPM)

was developed to simulate urban watershed runoff and the associated pollutant loads. The SRPM

model is a simplified version of SWMM, requires minimum input data, and is easier to be

6+Gr 1;177 1 _ICYnrr Aa, -P,,-n-i_,. D.-lh,, M O, F- (,o WDY . ), .,,,- ., ,.h,/.-

Page 10: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 11: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

,Inmri r 4-rln arin Rniteren r - nrvrM snerv rn eren;irr t rr

developed for a user-friendly interface with pre- and post- processors. SRPM was designed to

link with a stand alone Best Management Practices Assessment Model (BMPAM) (Xue, 1996) and

to integrate with a geographic information system (GIS) platform. Most hydrology and water

quality simulation algorithms used in SRPM were adapted from the SWMM model. A reservoir flow

routing method (Linsley and Franzini, 1964) was used in SRPM to speed up simulation time,

instead of using the Newton-Raphson technique, to solve a nonlinear equation for hydrology

simulation in SWMM (Nix, 1994). The SRPM model can run under either PC DOS or UNIX

erivirornmenits and provides reasonable simulation results with limited input data.

The objectives of the project" A"2l And/yshkar'dJ/odehg l o///br Slormwate erra eatet

slers for atl'er Quadily Cozymplance - Phase 7d are: (1) to quantify the probabilities with

which category of source and treatment system type will exceed applicable water quality

standards as a function of season; and (2) to identify changes in design, operation, or

maintenance parameters for each category that will reduce the frequency of occurrence of

exceedences to acceptable levels as a function of season. In order to meet these objectives,

three sub-projects were proposed: (1) correction and analysis of the SFWMD Stormrwater

Discharge Permit Database; (2) evaluation of performances of existing stormwater treatment

systems; and (3) identification of changes in design, operation, or maintenance parameters to

improve stormwater treatment systems.

Modeling tools will be used in the second sub-project to evaluate the performance of

existing stormwater treatment systems and to provide necessary information for the following

sub-project. The third sub-project will use statistical analysis results and apply calibrated and

verified watershed model and BMP model in selected stormwater treatment facilities to identify

the changes in design, operation, or maintenance parameters for improving pollutant removal

efficiencies of selected storm water treatment facilities. Recommendations and suggestions based

on simulation results will be developed for future stormwater discharge monitoring programs

for the Regulation Department.

~V..........~.... n....r~ r n II , nnn~, II..~. r n..........l~l.'~_fe

/ '7

Page 12: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 13: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

With the BMP model developed for this project., SRPM can also be used by the Planning

Department staff in watershed analysis to assess runoff and water quality impacts on receiving

water bodies or downstream watersheds. The model with a GIS interface is a powerful tool to

compare various stormwater management alternatives that occur as a result of new development

of land uses and/or changes of human activities in a watershed or basin of interest.

2. DESCRIPTION OF SRPM MODEL

SRPM is a basin-scale hydrologic and water quality model which simulates storm-related

surface runoff and the associated pollutant loads in a catchment or watershed. It was developed

for urban watershed analysis, but can also be applied to other areas such as agricultural areas.

The model was written in FORTRAN and can run under both PC DOS and UNIX operating systems.

SRPM is a continuous simulation model with an hourly time step. It can be used for a

single storm event simulation or a long term (such as 10 years) continuous simulation. The

outputs of simulated runoff, pollutant loads and concentrations are in standard time series ASCII

formats that can be directly read by the BMPAM model described above.

An integrated C1S stormwater modeling tool was proposed to fulfill the stormwater

modeling project. Due to the further development of linking SRPM and SRMPM with CIS, pre- and

post-processors as well as channel/stream flow routines will be developed in the integrated GIS

platform.

3. MODEL ALGORITHMS

3.1 Hydrology Simulation

The SRPM model allows users to simulate up to ten (10) sub-catchments in each

~p~i~n ~.P.TYnrmWH~r ~P~nn~lAn~.~n~~7n~ ~nn'P~.-~~7B~M ~Mn~p/ nnr~,~rfl~~n

Page 14: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 15: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

application run. Each sub-catchment represents a different land use type or percentage of

pervious and impervious areas. The algorithm used in hydrologic simulation is similar to that

used in the RUNOFF block in a U.S. EPA supported watershed model, the Storm Water

Management Model (SWMM) (Huber et al., 1987). A sub-catchment is treated as a nonlinear

reservoir with consideration of the processes of precipitation, evaporation, infiltration,

depression, storage and surface runoff. Outflow (i.e. surface runoff) occurs only when water

depth in the hypothetical reservoir exceeds the reservoir capacity which is defined by the

maximum depression storage (Nix, 1994).

1. Ireraand f/a/r

The rational method, Soil Conservation Service (SCS) curve number method, and

Manning's equation are three most widely used methods of simulating stormwater runoff volumle

and peak discharges from watersheds. The rational method is an approximate deterministic

model which uses a ratio of runoff to rainfall (runoff coefficient), rainfall intensity, and drainage

basin area to estimate the peak flows in a watershed. This method does not consider temporary

storage of runoff nor temporal and spatial variation of rainfall (Pilgrim and Cordery. 1993).

With Ihe SCS curve number method, no runoff occurs until rainfall exceeds a specified

initial abstraction, This method estimates runoff by utilizing a relationship between rainfall and

a curve number. The curve number represents the soil type, land use coverage, hydrologic

condition, and management practices of the land surface. The SCS curve number method does

not provide accurate simulation results for small storm events, especially when runoff is less

than 0.5 inch (Rawls et al., 1993).

Manning's equation is used for the hydrologic simulation in SRPM. The equation

calculates overland flow velocity by using the parameters of hydraulic radius, slope, and the

Manning roughness constant, The Manning roughness constant represents the land surface

Vewoi~i~nr~/p~ IP,,nn~~n~ Pn~r~n/ ~n~p/ - .~RP~~dnn~/ n~~~,~nP~~Rf~7n

Page 16: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 17: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

.Worenrlror Prnnaf And P0/rnAnt U/nn'a/ .- .PPY 6nl t rnrmnbrb Vren 7.

condition and the land use type of a specific sub-catchment. The hydraulic radius is the ratio

of the cross-sectional area of flow to the length of the wetted perimeter. The Manning's

equation is defined for English units (ULindeburg, 1992) as:

v= 1.49 R2/3S1/2

where v = flow velocity (ft/s)

n = Manning roughness constant

R = hydraulic radius (ft)

S = slope of overland flow (ft/ft)

Because the depth of water flow is very small in overland flow from watersheds, the wetted

perimeter can be approximated by the width of overland flow (Nix, 1994). Thus,

R=A/W= [W(d-d,) ] /w=d-d, (2)

where A, = cross-sectional area of flow (ft2)W = width of overland flow (ft)

d = depth of water on the watershed (ft)

d = depth of maximum depression storage (ft)

The Manning's equation can be rewritten as:

Q=AC W(d-dP) *1.49 (d-dp) 2/3's/2=W* I 9 (d-d) 5/3S12 (3

where Q is runoff flow rate from a catchment (ft/s).

Page 18: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 19: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Observed pan evaporation records are used for the calculation of water depletion by the

process of evaporation in watersheds. Actual evaporation is calculated based on the pan

evaporation values by applying an evaporation coefficient. SRPM allows users to provide monthly

evaporation coefficients to account for seasonal variations of the evaporation in a watershed.

The calculated evaporation is subtracted from precipitation and/or the water stored in the

watershed prior to calculating infiltration.

Horton M.isd

A three-parameter empirical infiltration model, the Horton Model, has been widely used

to calculate the infiltration capacity into soil. The Horton model expresses that the infiltration

capacity is equal to the maximum infiltration rate at the beginning of a storm event and then

is reduced to a low constant rate as the soil becomes saturated (Rawls et al., 1993):

f,-f.+ (fe-fJ) e-" (4)

where t = time from beginning of storm (sec)

t, = time at the end of simulation step (sec)

f -= infiltration capacity into soil at t= t, (ft/s)

f, = minimum or ultimative infiltration rate (ft./s)

fo = maximum or initial infiltration rate (ft/s)

a = decay coefficient (1/sec)

The infiltration capacity calculated by Equation (4) is often less than the actual

infiltration capacity because typical values for infiltration parameters are often greater than

F/ ... 7?/"n, n II, rr/

/

Page 20: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 21: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

J/nr.... f,

typical rainfall intensities. The integrated form of Horton's equation (Huber et al., 1987) was

selected in SRPM to solve this problem:

tp

F( t) = f dt=f,,,,+ ff (1-e - ) (5)0

where P(tp) is cumulative infiltration at t = tp (ft).

The regeneration or recovery of infiltration capacity during dry weather is calculated for

continuous simulation by the following equation (lluber et al., 1987):

fp=fo- (fo-f) e-d(-tw) (6)

where ad = decay coefficient for the regeneration curve (1/sec)

t, = hypothetical projected time at which f,=f. on the recovery curve

(sec)

Due to the difficulty of determining the projected time t,, Equation (6) can not be used directly.

However, a combined equation was developed by Huber et al. (1987):

tv=, t,+A ---l in [1-e" (1-e~t" ) ] (7)

where tp, - new value of tL for next time step (sec)

tpr = value of tp at beginning of regeneration (sec)

At = time step (sec)

Thus, the integrated form of Horton's equation can still be used by applying the calculated tp,

for the consideration of regeneration of infiltration. For the continuous simulation, tp, will be

substituted for t,, and tp2 will be substituted for tp,, etc. (Hluber et al., 1987).

Page 22: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 23: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Green-Ampt . odel

A more approximate physical theory utilizing Darcy's law, the Green-Arnpt Model, was

selected as another option for infiltration simulation in SRPM. The original model was developed

for infiltration into a homogeneous soil with excess water at the surface at all time (Rawls et

al., 1993). Mein and Larson (1973) modified the model for application of steady rainfall. The

Mein-Larson formulation for infiltration rate for steady rainfall is a two-stage model (Huber et

al., 1987):

For F'< F:

f -/ and

F- forR> KF R M (8)-1

For F > F,:

/- and

f,=K (1+ F*ID) (9)F

where f = infiltration rate (ft/s)

f, = infiltration capacity (ft/s)

R = rainfall intensity (ft/s)

F = cumulative infiltration volume for a storm event (ft)

F, = cumulative infiltration volume required to cause surface saturation (ft)

S - average capillary suction at the wetting front (ft)

IMD = initial moisture deficit for the storm event (ft/fl)

X, = saturated hydraulic conductivity of soil (ft/s)

flairinn /.?t'/rm or /ar P-11 er~ sf nj/ }/ten//-OW - CVII ~r I /] Jrl}TQ 1/alie

Page 24: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 25: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

S 4 I/H' roub47

Based on the principle of mass conservation, the difference between the inflow and

outflow is equal to the rate of storage of water in a reservoir; that is,

dS-i(t) -Q(t) (10)dt

where S = storage volume of water (ft3)

1(t) = inflow rate (ft3/s)Q(t) = outflow rate (ft3/s)

Equation (10) is an ordinary differential equation that is not easily solvable. A simple hydrologic

method of routing was presented by Chow (1959) and by Linsley and Franzini (1964):

-I- (11)At

a-s 1- 11+I,2 _- 1+02 (12)At 2 2

where AS = change in storage of water during routing period (ft)

S2 - storage in the reservoir at the end of routing period (ft")

S, = storage in the reservoir at the beginning of routing period (f3)

At = routing period (see)

I = average inflow during routing period (ft3/s)

11 = instantaneous inflow at the beginning of routing period (ft3/s)

I2 = instantaneous inflow at the end of routing period (ft3/s)

0 - average outflow during routing period (ft3/s)

/-,-,,, 11q

Page 26: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 27: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

yrnrmywrPr nnjrr Ann me!Bl nrant ye - wruT 8 nM, OIrr~ran/n iire-n m

01 = instantaneous outflow at the beginning of routing period (ft3/s)

O0 = instantaneous outflow at the end of routing period (ft3/s)

Equation (12) can be rewritten as the following equation after grouping the unknowns and

knowns on the each side of the equation:

O42 t+s2~4 (X1+12) A t+ (S,-4 OA t) (13)

The variables on the right side of Equation (13) are known for a given time step while the

two unknowns O2 and S2 on the left side of the equation can be solved after the relationship

between 02 and S2 is determined. In a reservoir or a storage system, the geometric dimensions

of the reservoir and the outflow structure rating data are usually given, Therefore, the

relationship of 02 with Sa, each of which is a function of storage depth, can be determined

(Huber et al., 1987). This reservoir routing method was applied in the storage/treatment

simulation routines of the SWMM model and is also used in SRPM for the simulation of flow

routing.

3.2 Water Quality Simulation

Water quality simulation in watershed areas is difficult due to the different physical and

chenical processes governing the fate and transport of pollutants, the effects of rainfall and

watershed characteristics, and the land use practices (llaster and James, 1994). Both regression

equcations and deterministic models have been used for the simulation of pollutant loads. For

SRPM, a deterministic model that includes build-up and washoff components was selected for

the simulation of stormwater pollutant loads. The SRPM model can simulate up to nine water

quality constituents: (1) biological oxygen demand (BOD); (2) total suspended solids (1'SS); (3)

total nitrogen (TN); (4) total phosphorus (TP); (5) zinc (Zn); (6) pesticide; (7) tracer; (8) lead

(Pb); and (9) copper (Cu).

r , r rn rr I rrr rr ~nnrii, rrn I I'lT-. - 7

Page 28: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 29: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

SYnr, r/r /;nnff nnn Pnih;/sn/ J~r/a - ?PPJ nnn'nl ,Onrmnn nn

.21 Buildup

The concept of "Buildup" was first used to model the accumulation of dust and dirt and

associated pollutants on urban street surfaces in 1969 (ASCE and WEF, 1992). Thereafter, the

buildup concept (as well as the washoff concept) has been included in several watershed models

such as SWMM, HSPF, STORM, USGS, and SLAMM. Buildup is defined as the pollutant accumulation

during the dry-weather periods between storms. The buildup process is affected by atmosphere

deposition, wind erosion, street cleaning, or other human activities. An exponential equation

(Huber et al., 1987) used in the SWMM model was selected for the simulation of the buildup of

water quality constituents in SRPM:

PblJadp pInltt (1-e - " t) (14)

where Puidu = amount of pollutant accumulation (lbs)

Plmit = maximum value of pollutant buildup (Ibs)a = pollutant buildup rate (1/sec)

t = time (see)

During the continuous simulation, buildup will not occur during the wet-weather time steps

unless runoff is less than 0.0005 in/hr (Huber et al., 1987).

3122 faso//

Washoff is defined as the pollutant removal process associated with runoff during the

wet-weather periods of storm events. Similar to the exponential buildup equation, the

exponential washoff equation describes the relationship between the initial amount and the

cumulative amount washed off during storm events:

k)Pro;7n ~.7

Page 30: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 31: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

f,.A..-9 f9

washoff in tial (1e-kt) (15)

where P.shoff = cumulative amount of pollutant which is washed off at time t (lbs)

Pinuit = initial amount of pollutant on surface at t = 0 (lbs)

k = coefficient (1/see)

Since the amount of pollutant remaining in a watershed (PAJ is equal to the difference

between the initial amount and the cumulative washoff amount of pollutant. Equation (15) can

be rewritten as:

Preman = in ti l a Pwasahoff- Pini tial e -ke (16)

Because the coefficient Ais a function of runoff rate and particle size, it is very difficult

to use a single value to represent the pollutant removal mechanism in the real world. By using

the average power of runoff over the simulation time step, a modified washoff equation can be

derived to overcome this problem (Huber et al., 1987):

((17)Premain (t+A t) Premain (t) e (17)

where 13 = washoff coefficient

At = simulation time step (sec)

r(t) = runoff rate at time t (in/hr)

r(t At) = runoff rate at time t+At (in/hr)

n = washoff power factor

Equation (17) is used in SRPM for the simulation of water quality washoff.

23 Pliosphaors Trarspor/ A Ardncu// reas

In order to better describe phosphorus transport mechanisms in agricultural activities,

Page 32: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 33: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

a phosphorus movement mechanism used in FHANTM was selected in phosphorus simulation with

agricultural areas in SRPM (Tremwel, 1992) :

Pland ( tA t ) =Pland (t) -Pland ( t) A( C I in+ Irtunorf) (19)

where Paner = mass of phosphorus contained in surface water (kg/ha)

P,d = mass of phosphorus contained in surface land (kg/ha)

Prain = phosphorus concentration contained in rainfall (mg/L)

a = effectiveness of rain in removing phosphorus from P,,, (1/cm)

3 = effectiveness of runoff in removing phosphorus from Pund (1/cm)

Irain = rainfall intensity (cm/!hr)

Irunorr = runoff intensity (cm/hr)

C = converting factor (0.254)

At = time step (hour)

t = time (hour)

Phosphorus deposition comes from two sources: land and air. In general, animal wastes,

fertilizers, or other nutrients introduced by human activities are considered to be land

phosphorus deposition, whereas phosphorus in raindrops is considered air deposition. Equation

(18) states that phosphorus mass in surface water Pwager will cumulate with addition of

phosphorus mass from raindrops Prain and solubilized portion of phosphorus on surface land.

The unsolubilized portions of phosphorus will remain on surface land until next the rainfall or

runoff occurs (Equation (19)). Daily phosphorus mass created by animal wastes or fertilizers

is added to the phosphorus mass on surface land P],nd each day (Tremwel, 1992). Equations (18)

and (19) were used for phosphorus simulation in agricultural areas. For other water quality

constituents, the buildup and washoff equations were still applied for pollutant load calculations.

O'nrmurlatr 17nnaff nd Pnlo,,rd / -dd - CPPM 1/ad} /AnnmeSninn lbrc inn I.9

Page 34: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 35: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

4. INPUT DATA DESCRIPTION

4.1 Meteorological Data

Observed hourly precipitation and hourly pan evaporation records are required for SRPM.

Input data formats from these records are illustrated in Appendix A. Units for precipitation

and evaporation input data are inches. If the observed hourly pan evaporation data are not

available, the daily pan evaporation data can be converted to the hourly evaporation data by

using a stand- alone FORTRAN program developed in HSPF model (U.S. EPA, 1993). The source

code of the conversion program is provided in the model package (Appendix B).

4.2 Watershed Data

The SRPM model can simulate up to ten (10) subcatchments for each simulation run. The

physical characteristics of each subeatchment should be provided to represent each individual

basin within a simulated watershed. The required basin characteristic data includes surface

area (acres), average width (feet) of overland flow, slope (feet/feet), and infiltration parameters

related to soil type of the subcatchment. The infiltration parameters used in the model are the

maximum infiltration rate (mm/hour), minimum infiltration rate (mm/hour), decay parameter

(1/min), and infiltration regeneration ratio. Infiltration tests are usually required for obtaining

these parameters at sites of interest. Users may find these parameters of different soil types

in -doadbool o//y'doga/ay (Rawls et al., 1993) as a starting point of simulation runs. The

infiltration parameters may be estimated through calibration. The format of the input

watershed data is provided in Appendix A.

Three monthly variation parameters in the model for evaporation coefficient, Manning's

roughness, and depression depth (inches) account for the seasonal changes of watershed

characteristics. Monthly Manning's roughness and depression depth data can be specified for

Vardon /.?nrrr a+ f r i,r.:,!! ,,,.f :,ll,~_ ,-,lU .I _ 4YA3,U 11,l f T.,rrr~enlfnn

Page 36: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 37: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

l/rn.,4n,, 1 '2

each subcatchment. However, monthly evaporation coefficients can be only specified in the

entire simulation area due to the assumed small changes of evaporation rates between each

subcatchment.

4.3 Pollutant Buildup/Washoff Data

As described above, the generalized pollutant buildup and washoff equations are used for

the water quality simulation in SRPM. Monthly values of the maximum buildlup value (lbs-ac-

day), buildup rate (1/day), washoff coefficient (I/inch), and washoff exponent are the input data

for the water quality simulation. Both pollutant buildup and washoff input parameters are often

used as the model calibration parameters. The input format of the pollutant build up and

washoff data is shown in Appendix A.

5. MODEL OUTPUT

5.1 Time Series Output

Four time-series output files are generated from SRPM: hourly, daily, monthly and annual

simulation results. All output files provide runoff (in) and pollutant concentrations (Appendix

C). The output files are in ASCII time-series format which is easy to use for further data

analysis and graphical display and can be directly linked into a CIS platform,

5.2 Other Simulation Outputs

Besides time-series simulation results, the model also provides an hourly time step mass

balance file. The mass balance file is created for checking the water budget in a time step or

at the end of the simulation period. It consists of eight components: (1) PREC - amount of

rainfall; (2) INFI - water infiltrated into groundwater; (3) EVAP - water loss due to evaporation;

~Dnl~ ~~I n~~ rr~~~(, /-~

Page 38: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 39: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

(4) RUNO - runoff from watershed; (5) WREM - water remaining in watershed at the end of

simulation time; (6) CUMI - cumulative water amount of precipitation; (7) CUMO - cumulative

water loss, including infiltration, evaporation, and runoff; and (8) ERRO - percentage error of

cumulative rainfall versus cumulative water loss (Appendix C).

Another simulation output is the geometric and hydraulic data used for the simulation

of hydrologic flow routing. At each simulation run, the model will generate one geometric and

hydraulic data file for each subcatchment. The format of the output file is provided in Appendix

C. Huber et al (1987) described more information about the reservoir hydrologic routing method

and the parameters used for the method.

6. MODEL PACKAGE

6.1 Programs and Input/Output Files

FORTRAN programs, input files, and output files which come with the SRPM model package

are shown in Table 1.

Table 1. Components of SRPM Model Package

Component File Name Description

srpml_3.f FORTRAN source code of main program, Version

Programns 1.3

srpm executable file of the SRPM model

convert.f FORTRAN source code for converting daily to

hourly evaporation data

convert executable file of the conversion program

a'rvn 1-7~ar~cluPJ~ rP~n~sn~ Pnl~r~7n~ Abn~7'p/ - .S~'~PP~6~G6~n% I'D~~r~L~d~Lm~

Page 40: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 41: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

.)fn2 JaT7-Jtf rT r/ i Inn ! --aIR nt Ptfl - I-M A nf rrP r rPtT _TI. .l.'

precipi.inp hourly precipitation data (in)

Input F'iles evapora.hor hourly pan evaporation data (in)

watershe.inp watershed and pollutant buildup/washoff data

srpminhrc.out hourly runoff (in) and pollutant concentrations

(mg/l)

srpmday.out daily runoff (in) and pollutant concentrationsOutput Files (mgi)

srpmmon.out monthly runoff (in) and pollutant

concentrations (mg/])

srpm_ann.out annual runoff (in) and pollutant concentrations

(mg/1)

massbala.out hourly water budget balance data (in)

waLflw1,dat geometric and hydraulic data for subcatchment1"

1

watflw9.dat

watfllO.dat geometric and hydraulic data for subcatchment

9

geometric and hydraulic data for subcatchment

10

6.2 Computer Requirements

The programs that come with SRPM were written in standard FORTRAN language. A

workstation which has a FORTRAN compiler that is compatible with the operating system is

needed. The model was developed and tested under the UN1X operating system on a SUN SPARC

~___.~..~~__ ~I...~~~~.~.~ n. ~r..l~.. I II.. .r. r nnn~, II. .~.I n./

Page 42: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 43: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

workstation.

The minimrnum configuration for a PC is an 80386 IBM compatible with a math coprocessor.

A FORTRAN compiler for the PC is needed to compile SRPM, Two megabytes of memory or greater

are required. The free hard disk space required depends on the simulation period. A minimum

of 15 Mb is recommended for a 3-year simulation.

ACKNOWLEDGMENTS

The writer gratefully acknowledges the comments of Douglas Shaw, Tim Bechtel and Garth

Redfield on an earlier version of this documentation. Appreciation is also extended to Ginger

Brooks, Zhenquan Chen, Steve Lin, Todd Tisdale and Joyce Zhang for their comments for this

documentation. In addition, the author would like to thank other District staff for their helpful

suggestions to improve the model.

REFERENCES

Alley, W. M. and Smith, P. E. (1982). "Distributed routing rainfall-runoff model - version 11",

Oer 4le report dd2-341 U.S. Geological Survey, Reston, Va.

Arnold, J. G., Williams, J. R., Nicks, A. D. and Sammons, N. B. (1989). "'IF4'ff a ,as?; sca/e

si slai moo'de/or soil and rater resources managem.etd. Texas A&M Press.

ASCE and WEF. (1992). /Pesln arid cons/z cbio 0/ urban storm/ a/er management sysems.

ASCE Manuals and Reports of Engineering Practice No.77 and WEF Manual of Practice fD-

20. American Society of Civil Engineers, New York, N.Y.

1/nr ;in T _4Ynr~r>-'- ar,n,~ rl~/n dlizl L~~~~,,,,~

Page 44: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 45: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

-.' -7-7yT #7 nF r 3r? flitsr777 prItyPt -9P Yfy ;r Jnn YrFrrLnnn ,.,-,-./17 7

Beasley, D. B. and Huggins, L. F. (1981). "ANSWER user's manual". EPA 9095/9-d2-001 U.S.

Environmental Protection Agency. Region V, Chicago, 11.

Chow V. T. (1959). pen-chasneiydrau/ks McGraw-Hill Book Company, Inc. New York,

N.Y.

Greene, R. G, and Cruise, J. F. (1995). "Urban watershed modeling using geographic information

system". J falerfesour P7/ arnd p1, 121(4), 318-325.

Haster, T. W. and James, W. P. (1994). "Predicting sediment yield in storm-water runoff from

urban areas." J. IFaer esour. /'in adldgmt, 120(5), 630-650.

Huber, W. C., Heaney, J. P., Nix, S. J., Dickinson, R. E., and Polmann, D. J. (1987). "Storm

water management model - User's manual". A 6d// Z-8V-lO9a U.S. Environmental

Protection Agency. CincinnaLi, 01),

lindeburg, M. R. (1992). Ord erngeeri7g reerece manual Professional Publications, Inc.

Belmont, Ca.

Linsley, R. K. and Franzini, J. B. (1964). "Water-resources engineering". McGraw-Hill Book

Company. New York, N.Y.

Mein, R. G. and Larson, C. L. (1973). "Modeling infiltration during a steady rain". t/er

kesour: les, 9, 384-393.

Nix, S. J. (1994). /1ar Astor rma/ermodelbg anddsaiu//as. Lewis Publishers, Boca Raton,

Fl.

n, n nnniii rrn /'' ,.-, -z,

Page 46: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 47: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

FAi.... ,.-.fIQ

Pilgrim, D. and Cordery., . (1993). "Flood runoff". //&andloo of hydrol/og D. R.

Maidment, ed., McCraw-Hill, Inc. New York, N.Y., 9.1-9.40.

Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and Shirmohammadi, A. (1993). "Infiltration and

soil water movemrent", Yc/dbooa o/Aydrololf D. R. Maidment, ed., McGraw-Hill, Inc.

New York, N.Y., 5,1-5,51.

Shamsi, U. M. (1996). "Storm-water management implementation through modeling and CIS,

.A faterlesour /Y a ndmt. 122(2), 114-127.

Trernwel, T. K. (1992). "//d hydrol/o d aid /rl/ /rnsport model - I//AiT Ph.D.

dissertation, University of Florida, Gainesville, Fl.

U.S. Army Corps of Engineers. (1977). ' Storage, treatment, overflow, runoff model, STORM,

user's manual". Ce ere/'Cd CoputerProgram 72J-SB-1762a Hydrologic Engineering

Center, U.S. Army Corps of Engineers, Davis, Ca.

U.S. EPA. (1992). "Compendium of watershed-scale models for TMDL development". FPAd /I-

/-92-902 U.S. Environmental Protection Agency. Washington, D.C.

U.S. EPA. (1993). "llydrological simulation program - - FORTRAN: user's manual for release

10". APA/0at/'-93/7 V U.S. Environmental Protection Agency. Washington, D.C.

Xue, R. Z. (1996). "Best management practices assessment model - BMPAM model

documentation, version 1.1". South Florida Water Management District. West Palm Beach,

Fl.

~nnr/ I,, ~, I n,,..,,,~,,;,,

Page 48: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 49: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX A

SRPM INPUT

Page 50: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX A-i

Hourly Precipitation Data

Page 51: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Dec 13 16:32

WET 1991 7 12 7 0WET 1991 7 12 8 0WET 1991 7 12 9 0WET 1991 7 12 10 0WET 1991 7 12 11 0WET 1991 7 12 12 0WET 1991 7 12 13 0WET 1991 7 12 14 0WET 1991 7 12 15 0WET 1991 7 12 16 0WET 1991 7 12 17 0WET 1991 7 12 18 0WET 1991 7 12 19 0WET 1991 7 12 20 0WET 1991 7 12 21 0WET 1991 7 12 22 0WET 1991 7 12 23 0WET 1991 7 12 24 0WET 1991 7 13 1 0WET 1991 7 13 2 0WET 1991 7 13 3 0WET 1991 7 13 4 0WET 1991 7 13 5 0WET 1991 7 13 6 0WET 1991 7 13 7 0WET 1991 7 13 8 0WET 1991 7 13 9 0WET 1991 7 13 10 0WET 1991 7 13 11 0WET 1991 7 13 12 0WET 1991 7 13 13 0WET 1991 7 13 14 0WET 1991 7 13 15 0WET 1991 7 13 16 0WET 1991 7 13 17 0WET 1991 7 13 18 0WET 1991 7 13 19 0WET 1991 7 13 20 0WET 1991 7 13 21 0WET 1991 7 13 22 0WET 1991 7 13 23 0WET 1991 7 13 24 0WET 1991 7 14 1 0WET 1991 7 14 2 0WET 1991 7 14 3 0WET 1991 7 14 4 0WET 1991 7 14 5 0WET 1991 7 14 6 0WET 1991 7 14 7 0WET 1991 7 14 8 0WET 1991 7 14 9 0WET 1991 7 14 10 0WET 1991 7 14 11 0WET 1991 7 14 12 0WET 1991 7 14 13 0WET 1991 7 14 14 0WET 1991 7 14 15 0WET 1991 7 14 16 0WET 1991 7 14 17 0WET 1991 7 14 18 0WET 1991 7 14 19 0WET 1991 7 14 20 0WET 1991 7 14 21 0

WET 1991 7 14 22 0WET 1991 7 14 23 0

precipi.inp

0.0000000000.0000000000.00000000.0000000000.0000000000.1100000000.0500000000.0000000000.3900000000.2200000000.1400000000.0100000000.0000000000.0100000000.0000000000_0000000000.000000000

DD000000000

0.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.000000D000.0100000001.3100000000.410000000

0.2300000000.1300000000.000000000

0.0100000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.n000000000.0000000000.0000000000.0000000000.0000000000.000000000.0000000000.0000000000.00000000

0.0400000000.460000000

0.0300000000.0100000000.0000000000.0000000000.1100000000.0500000000.0000000000,0000000000.0000000000.0000000000.0000000000.0000000000.000000000

Page 52: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX A-2

Hourly Pan Evaporation Data

Page 53: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Dec 13 16:33

EVA 1991 5 1 1 0EVA 1991 5 1 2 0EVA 1991 5 1 3 0EVA 1991 5 1 4 0EVA 1991 5 1 5 0EVA 1991 5 1 6 0EVA 2991 5 i 7 0EVA 1991 5 1 B 0EVA 1991 5 1 9 0EVA 1991 5 1 10 0EVA 1991 5 1 11 0

EVA 1991 5 1 12 0EVA 1991 5 1 13 0EVA 1991 5 1 24 0EVA 1991 5 1 15 0EVA 1991 5 1 16 0EVA 1991 5 1 17 0EVA 1991 5 1 18 0EVA 1991 5 1 19 0EVA 1991 5 1 20 0EVA 1991 5 1 21 0EVA 1991 5 1 22 0EVA 1991 5 1 23 0EVA 1991 5 1 24 0EVA 1991 5 2 1 0EVA 1991 5 2 2 0EVA 1991 5 2 3 0EVA 1991 5 2 4 0EVA 1991 5 2 5 0EVA 1991 5 2 6 oEVA 1991 5 2 7 0EVA 1991 5 2 8 0EVA 1991 5 2 9 0EVA 1991 5 2 10 0EVA 1991 5 2 11 0EVA 1991 5 2 12 0EVA 1991 5 2 13 0

EVA 1991 5 2 14 0EVA 1991 5 2 15 0EVA 1991 5 2 16 0EVA 1991 5 2 17 0EVA 1991 5 2 18 0EVA 1991 5 2 19 0EVA 1991 5 2 20 0EVA 1991 5 2 21 0EVA 1991 5 2 22 0EVA 1991 5 2 23 0EVA 1991' 5 2 24 0EVA 1991 5 3 1 0EVA 1991 5 3 2 0EVA 1991 5 3 3 0EVA 1991 5 3 4 0EVA 1991 5 3 5 0EVA 1991 5 3 6 0EVA 1991 5 3 7 0EVA 1991 5 3 8 0EVA 1991 5 3 9 0EVA 1991 5 3 10 0EVA 1991 5 3 11 0EVA 1991 5 3 12 0EVA 1991 5 3 13 0EVA 1991 5 3 14 0EVA 1991 5 3 15 0EVA 1991 5 3 16 0EVA 1991 5 3 17 0EVA 1991 5 3 18 0EVA 1991 5 3 19 0EVA 1991 5 3 20 0EVA 1991 5 3 21 0EVA 1991 5 3 22 0EVA 1991 5 3 23 0

evapora.hor

0.0000000000.0000000000.0000000000.0000000000.0000000000.0026947900.0075326080.0123704270.0158608500.0158608500.015860850

0.0158608500.015860850

0.0158608500.0158608500.0123704260.0075326080.0026947890.0000000000.0000000000.0000000000.0000000000.0000000000.00000000000.0000000000.0000000000.000000000.0000000000.0000000000.0027432480.0075632400.0123832340.0158316030.0158316030.0158316030.0158316030-0158316030.015831603o 0358316030.0123832340.0075632400.0027432480.000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0027907870.0075932530.0123957200.0158027930.0156027930.0158027930.0158027930.0158027930.0158027930.0158027930.0123957210.007593255

0.0027907870.0000000000

0.0000000000.0000000000.0000000000.000000000

Page 54: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX A-3

Watershed Data and Pollutant Buildup/Washoff Data

Page 55: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Dec 13 15:20

Subcatchment #Land Ose TypeArea (acres)Width (ft)slope (ft/ft)Max nft. Rate (mm/h)Min Inf. Rate (mm/h)Decay Param. (1/min)Infil. Regen. RatioHortn-1/Green-Ampt-2Capill. SUctioh (ft)Moi. Deficit (ft/ft)Sat Hyd. Cond.(ft/h)P Added (kg/ha/day)P in S. Water-kg/haP on Top Soil-kg/ha

Phosphorus Co9ff. PCRAI

watershe.i np

Input Data for SRPM - Version 1.31 2 3 4

COMME15.32817.0.0012.00.50.9

0.01

10.700.26

0.00380.1200.0010.00

N-mg/L EFFPRAIN-L/cm EFFPRUNO-1/cm0.1 0.0700 0,1200

Evaporation Coeff.

Manning's roughness1st subcatchment

J F M A M.70 .70 .70 .75 .90

J F M A M015 _020 .020 .013 .025

J J.95 .95

J J.015 .020

A S 0.95 75 .75

A S 0.010 .005 .010

Depression depth J F1st subcatchment-in .01 .01

M A M J J A $ 0.01 .01 .01 ,010 .01 .020 .001 .010

Maximum BuildupBOD5 (lb/ac-day)TSSTNTPZNPESTTRACPBCD

Buildup Coeff. (1/day) JS0D5 .10TSS 1.0

TN .20TP .10ZN .10PEST .10TRAC 1.0PB .10CU .10

Washoff CoefficlentBOD5 (I/in)TSSTNTPZNPESTTRACPB

Washoff ExponentBOD5TSSTNTPZNPESTTRACPSCU

N.75

N 0,010 .020

Page 56: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX B

FORTRAN PROGRAMS

Page 57: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX B-1

Program to Convert Daily to Hourly Evaporation Data

Page 58: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Dec 13 15:29 convert.f

C This program is intended to convert daily evaporation data (In) to theC hourly format for the SWRPLM model input by using a HSPF subroutlne.C File: 'convertdaily hourly.f' (01/25/95).C

REAL DRD, JDAY,RDIST(24),ALATINTEGER YEAR, MON, DAY, IOPEN (1, FILE='evapora.inp')OPEN (2, FILE='evapora.hor')

JDAY = 90.0* 2*3.14159/360 - 0.0174582

ALAT = 27.5ALAT - ALAT * 0.0174582

5 READ (1, 20, END = 1000) YEAR, MON, DAY, DRD20 FORMAT (6X, 14,1X,2(2,1X), 3X,F13.0)30 FORMAT (1X,A3,2X,I4,1X,4(I2,1X),F13.9)

IF (JDAY .GE. 365 ) JDAY = 0.0JDAY = JDAY + 1.0

CALL RAD (ALAT,JDAY,DRD,RDIST)

00 I -1, 24WRITE (2, 30) 'EVA', YEAR, MON, DAY, I, 0, RDIST(1)

ENDDOGOTO 5

1000 CLOSE (1)

CLOSE (2)STOPEND

SUBROUTINE RAD (ALAT, JDAY, DRD, RDXsT)C COMPUTES HSP QUALITY HOURLY RADIATION DISTRIBUTION GIV;ENC LATITUDE, ALAT(IN RADIANS), JDAY(JULIAN DAY OF YEAR) ANDC DAILY RADIATION.c ARGOMENTS

REAL ALAT,DRD,JDAY,RDIST(24)REAL PHI,AD,SS,CS,X2,DELT,SUNR, SUNS,DTR2,DTR4,CRAD,SL,T TSEREAL TR2,TR4,RKINTEGER 1KPHI=ALAT

AD= 0.40928*COS(0.0172141*(172.-JDAY))SS* SIN(PHI)*SIN(AD)CS-COS (PHI)*COS (AD)X2=-SS/CSDELT=7.6394*(1.5708-ATAN(X2/SQRT(1.-X2**2))}SUNR-I2--DELT/2.SUNS-12.+DELT/2.

C DEVELOP HOURLY DISTRIBUTION GIVEN SUNRISE, SUNSET AND LENGTH

C OF DAY (DELT)DTR2- DELT/2.DTR4- DELT/4.CRAD- .ES666667/DTR2SL- CRAD/DTR4TRISE- SUNRTR2- TRISE+DTR4TR3- TR2+DTR2TR4- TR3+DTR4

DO 100 IK=1,24RK=REAL (IK)IF(RK.LE.TRISE) GO TO 90

IF(RK.LE.TR2) GO TO 80IF(RE.LE.TR3) GO TO 70

IF(RK.LE.TP4) GO TO 60RD1ST (IK)=0.0GO TO 65

60 CONTINUERDIST(IK)=(CRAD-(RK-TR3)*SL) *DRD

65 CONTINUEGO TO 75

70 CONTINUERDIST (IK}=CRAD*DRD

75 CONTINUEGO TO 85

80 CONTINUERDIST(IK)=(RK-TRISE) *SL*DRD

85 CONTINUEGO TO 95

90 CONTINUE

Page 59: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

convert.Dec 13 15:29

RDAST(IK)i--095 cONTINUE100 CONTINUE

RETURNEND

Page 60: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX B-2

Main Program of the SRPM Model

Page 61: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

y ai1

ilR

VM

N

k

w

W

-GyI

FM

C - -

F BI

_ o

ra« - :mowz

i

s

:z

}

k

o

N s F N

rl

w

MI

.a

0-FI17

nF y

w

u

C C Fi.e r

r.

li i hl+Y F P Fts

Page 62: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Vol M -oilK K K "

r r:rr rtirr r r

wy! - :a

q,son

Fr E E Fr"1-E"E

E

acv

ry

B

m Mot -

r, e" egg, i. e, r r, h r r

ay

1i

Sj

EnnaSold 1

F

I,

h

J .

P0.

yy'A

fitf5 h. h L I L l LEI

4WHO

w

t

1 4

it r R , (3

Wyi

ri4ssi'a si="

Page 63: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

W

F F

rv L

L

jobjub Ph MI"k; V. Y

NOW?,

xcWa

rW,

aw

a

S

J

.aE

u

U -

Gl iF RRPPF+ u

w

..

' yMYU, M1w o

U C'I :I ' 'UIUI

V CiGi f Ge fa faW W W

$ r a i $ $ ra 3 era r r iR r. 7k s _ Y s s s -

S .a "

low 1

N

G V U V C U , _ u V

I

0

- M

4 ^a

W PI hl L}

94499

Amp

E m ,;ylh t H o

illy'! FIh Nhh 11 4 Et -t u L.

_ 94n ....M 1

u u u u

Page 64: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

- 23

hA v

5 {yam ., y G r

G

;y5 0 bit _

gall

{

o W4'u-Y n 5 u

l"t s'0

t:

milli

FK R a o

rs w

M

t I b a a t}

I".

t dNl It n Scl it L',

.z

a

gr9 .

y

L^

h c

I

4

Ego

00,19, u u n u u n 1I

C

8

c - 9C

., W yl F F

"P U f4 Yi Im a m m m m m m m m m vl

w wwaawKaawwww

I^h. h h. W h h h h i h^

:'ter r a se >

QF QQFa;QfldQQ

:55mS55555

Q[QgsaE pQaQ_ SQd

1 1 1 1 1 4 Ih KKI K ih .

s ;ss W WW

K K' K K K d K K K K ' 4

Spar u L

do, 40 401,

I 4 4. I . I F1^ 4 W 4 I lu

Page 65: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Ft

F

b.,

1r

S

i

y 4

. i

dmaot ,wr www}}w na

Z7 Z7

m mdmmmadddd

:1 z I- z W,

Kw wnr.IA A AIC 41 1111 GI 11 11 1'

WI WI b91 I I I ml Fo I sp. j(

K K ti .s K is u .s' tl' G {I {I {I { K {I { KI KI K KI K S4T

ryar w aalA1 Ara a it Ep Fwsw. iWwW ri i4 Krs 'a Ala + xddx+ , 9

FiSi38 iv& a =waW . .. . . . $

r

h.

a

a

y ar

FF FFi H'3F +' ' '

rfc'cc 4ic ¢...---- -- - r

F

MrARMmlSaf i.

------------

v F

rl I l l M qqI Id t K i K 4 K 4

[. In Lark Wla a i

wccw aWt

I Pfir, :**:.v --------------

8

Page 66: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

5 .

s

U

A

a

MI E pP1b _: FI ;I _ R

4.0

u .]

.}yam

F

r F w

a

y'aR dF 4!Yd 4Y

W' H 3

w E

s

tin

R

h .o

1V9; p N

[dWa n"

RS

pi

F

x

raWW

y

nh=

r y

0

.a

y

R

W to uu

Page 67: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

U

a d°

e

eL

W

e u pa

r G 4

M

w

4

GGq

2 2 = ,

w L a K

_ J J v

i W YI

F

k c

W

wL'

c o

all 41 V -

-- 5a

HIM

v+ R Ly. 0. I p

02

55

F M1 h

P f +

rjl IG K K

94

77f

A

F

e-

w - u-'

W w ; 4

W $ F w

sib i

4 qty

KUNY

OEM,

A"

v

x .yi=

I y w+

-12 18

wi ri hi

F W

ESSM

k wm w'F

P a Ejj41 Eggs

Hu; c

Page 68: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

W

igiR0AA

F i

L. L

d a'Fa5' a a'Fd' a'Ea a'8

w w Y w

a

bF F o

[ La y

Filli4 .. [[

,p[ fn Y

., f5 .ps. , P[ F w wl rl r B fi p[

y

SUN

E

i

y

i u

C - C I

r' $ gg

i

U +

+ cz

g F p s u 4 ti w

is".5 NAZI

o -

4 1 {ll ' 1' Q! w

4.

YE ENO .7q n CIS

Epp ,

u

C

W -

MINI

C -

w ~

sl s'3.s l4

i

Page 69: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

+ WW

iYYN I

C!

+ F

+

:d

M

u' [9

_ A

W

I

p

I rl I 11 n

H

I FI

v#Vly til

- n ppM,,

F 15

w

119

W

i

r C' -

W

1

ri

z:

8 +

h +

z. +

h

l=1

K '.

W F

N

{

w h W WI "I CI ' I

~'

w I i

I

FC

ki

Jd Id

t5 p Fi _ a

tit f+ .a

u OI "1 44I G a4 0

Sc li Li' {1..,, II n R II li

ESE

d

R s .¢

2IN

HIS

A d

Y

yM

4

Nila

I II II 4

ryR

i'sdy

XI

' m fll

d

Page 70: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

7

ti v i w

n 'd 'il W0.

K ,'ry. 4 R Fi

o c-

v5 np5F1 K ~ f Q

w

}

a Vau r.y pp+F.

s 5 u -x A

R

J ;

F

R

Q a:

a

i

! s fi K

L G

G

h R

!+ h R

rL 4

a day o

e

aW - t

Page 71: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX C

SRPM OUTPUT

Page 72: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX C-I

Hourly Runoff and Pollutant Concentrations

Page 73: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

4 4 G r"I Q, I'- r-1 .-JI r, t- L) w N kr 117 C C C O C C C C C C VL t) 1-I ,--1 C, 4 Cr] { r-I ra, r' Lrl G [SI I'- u- t-- 0 ul 't, U U C C1 4 d C C. C, Ifl U3 r1 0, m 4 4

nn , nlL, r- &--I tin LO f- m1--1 un no nn c. ooooC =r~ rw roC4 G a G rl CL, CO t- ul 4' r "1 N rw rG m m m d n a a o n U C, C: C: G Cr 4

1-- C, {, C] 4 G G n G n .- , C, 1 {, r, t, 4 d 4 d a 4 4 G CJ Fj i n n r> z-, n a0 CC aodoa P GC}O {, C:>C>C:OOO4QOQ L 400

_ .L. u O O O d 7 {] Q C, C, C] O [ U O O O 4 O O CD L} 4 U L} C C, C, C, CP CP

C, 0 0 t"- 4 C, 4 rw 1p 219 en o,' r+ '-I 1[5 F, ,F) C, {, {, C3 6 C> C, 4 4'+ tN ry, 1J'} G C Cn n n IV N IN CV Cl q' I'-. m m F.6 I'm s5 G n rp G n C G G m m .-- mct. ct

4 6 c n -11 In N CO m 0) H 6h r, 4 a G 4 d 4 c c d b 4 a' .-- I 3C, 0 0c U rv, N b' m m r"- t-- C, 1 , r- 1y: Y, C Cl C) Ca Cl C, U p G ,-i lfl 10 01 Liz ra G

C, C, C: N 1--I r r- V1 M L- M N g, M ij '7 C, G G Q S; ;1 C} G M Lp M N SO 4 44 4 G G , 1 ST, Qf5 .- I tr rl [1] VI fV G rw a d c a c a c c G d O rw 7 4 LY C C

{, 17 C: tftl 1i1 r-Imnm I+l 'b'rrl IV G O C, O QG GGG Coo GdaGor-I r-I

G{,n, Cn r- r-Ir-Im[ OLn Ir N:Gns I" GGa Gll , ry r,44n{}n, r',M LfI0 d, r' ulr- .cv-lcdc m aanodd v, LY, r'i 0) tb 00OonG 1L', I C, O, r-i 1f: >. , t- CC, ry LtS Ca Ca ti cGGUC, C>OC3 ^I rl fv rU {, t) r> rl 'C m m r'. Vl -v hl N N 5 n ra C, 6 S? G G G a G c c 4 dr, r ', C> C> 0 t C, r) rti 4 d d d 4 G d 4 4 d a G G 4 4 { C, C !j 00

= acG C, n 1? C, 04 C? O C: 1 CO C,1 10 C, C,4 C, C3 C, r, 1 4 GG

m G r e:' Cl C3 0 Cl C <i It C] c c 4 4 4 4 4 4 a c d U C C3 C, C3 C. C, C, 4

c d 4 .-- 1 Qv C M rM M [+ rT lL] ,-JI rl C, r <: C, C, C, Cy a n 1 6 I+M M rr1 C CV C rl f"1 m +r Lf U IT t4 ++1 [ o li, a G G a o a a G d d VI m r, S15 C Cc o G C LC, 1 - 4 0, 1 4 I'D 10 l-- CO ,--: ul C C. Ca C, C C G O C, C, O -- 1 &1 N r"I G r

o a a a r-r y, m m N CV .--1 q r C3 C, 0 0 4 47, C; G a a a a G m oC>< t Ca Ca X44400 oGCOGaG GaaGGO oGt~ L] ,G CSOr C, C: C:: GOC, C}C, 1? 1a b1' C C1, 44a4Ua OC C, C, C, C: C,

GG oGaaGnatwnc, Cy 1.,«p431?C, r C,445 CGnp aoo oa

rJ" - - ,Catil--imlLndrw z%; Qw oad doac G40LO 1a cr r' 44

nn Cr, ncam CC t- LDC u'1--1or 0) 4u t f 0C, CaoC at- tr ^I In t- o{,do oammf a, N-t I r"1 [ 4, {n L043 nC OC}C+nno nN.w 411 *+aa

W 1D , {: (fl U) 1G: rw f"f d m r-. m fw d 4 4 c a 4 G 4 d 4 4 rl r+] N [V Cl C7fioo on. ul 01 'Z mLO ul r, fv lH--I r_ _,C: C 0C, 000000 CP rG LP c;,

" U rj t, U d d c 1--1 m G G 4 6 a G G m G d G 6 n G a d G c m 4 4 4 C5

~aG n Grnn1 C, e:. CO C::G 4C>r: C:n 00 C, rr n nG[J

U 4 a d m +$ +J ri rt In 'r M rl -t C, C) 0 43 n n n G a n a 1--1 N m d 4[ C C C3 CYJ 1p 1Y 1p +fr QI a--I NM1 r-1 r-I ll? G 4 a a a d d d c 4 4 l LYI 1--I VI C Crr7 r-, 4 « . In C, H r- 1H fV tea' IN u5 r- t U Ca c, C7 G G U 0 LO H O, r'1 T 00

f Woo GGrrCE, a, IJ r l IN In M L? ID LD Cl C, O 4 GnrrGNr", ra, rnFla 4 4 a 4 N d r- G V"1 'N M [-- ,f7 r) N G n a G d G n 6 G n d c m a d a c

C, I] CJ C, C. 1--1 ,-y N rl 1--I O {? 4 O O L- O 4 O O 4 4 C 1 1' 1J 1' G O Q C:4 U a 4 4 4 d G a G G a a n G G G a G G a a d a G d c 4 d 4 C c

P _ _E4 r, r, ys 1L3 Co rv ra 1--1 v r, , <_, 4 C? 0 C, rD C, 0 "i3 {, ul rY N C n- 4 4 a +S N rri r+5 -t [-- F.O 1'- H1 'f -a CS, C, C, n 1 C,] rw3 n G a G -. 4 a a M [+ c n

-, C: F, f1 Ou C,.7 r- r 4 N th m r3 m a 4 6 4 c c a 4 4 u r W L O 0C, r5 Wl, 0, 00 1yy tr rw O, t? C:, C 0 C, C C, 0 0 0 Ln r-a C, Ln t- 01?

[ G d G Ir: ry rw !-3 lb fw r.- Lrl +'-t V 1[} C, p C, c, ? ra G G G G f'3 +] rH N M c cH Q C: C, C, Cs 1j5 t- t7' d5 7 rV 4 H m 4 4 O 4 d O 4 4 c7 c --I 7 W r- C,

= V U C <T' rQ5 r:w, ra Q, [ " ,i, rri G G O G G c G a 4 c 4 c n G G d U

',coF

?C ^lC r-41t r-1 sir rrGC GGG GGGad 14 C; 1 44Fri r r n .-- I m m ul C, C) r In r- 4 1i l c C 4 Cb 4 c c V C C Lfl W M O', O C, rDgddoala asaW Fp 1p I--m.-100 CO LD wn C, 00 C c c . r"1N t*,aCf

, 1 rl r , Iy a m m r L'I M N rw rH G O a d G d d 4 4 c d 4 c c 4 4 4[ilaoOaG a n 441 {, 00 C,:_, 0 C, U Cl Cl U G C, 0 C:, 0300 e::, 7, 0 4G" C, d c m c 4 a d c a d c O G a n C. G n n C] 17 d G a G a G a d d d

~oaG GaaGGn CP0 C, 000 . C; C, C., C: C, 41? C", 17 C, rJ ran qGG

Q:

G G 4 ,--I 1 m LO rl + q' W' Ifl ,--I d1 b] [] C !> C C:, CJ {} Ci C> Cy ,-I rl 4, f"1 N C, GC2= 4 4 4 b' rV Vl in G M Q, Q, r': I a +_ O G G O G c a n [ S rw M 4 G 4

0 fv rw v'q' W'-11t: rl c-c c ca 4Ca c5C 0C: Wsr a t-4, C34Q G G c G Q, I

U c +7' * r r-l 41 [+ LN[7 kL3 N pt CD G G [, a a D 4 G 3 G j c O 3 a C 6 a 4 4 1 G 4 G

.T. U 4 N [ y, p, 4 4 4 eJ C C C}C31>1a 13If, 1i C 1a OC 1} C, O C, r> C3 C, 9 C, n 1: Cf4

Lti d d m d fti 4 a c 4 a 4 G 4 G c c a d d a c c a Ct b e C:S C C {, 0

fi r, q'ul lyar CUC U, rv r', +r ,ti rv ire ul lr3 f- tr., Cn C'3 rl rv r- a'Ifl tt: r- COCC,

C} 0, Ch r5, to trrn o-, m Qy Q, Q, Qy G d c 4 G 4 4 4 a C3 Cy O O C3 C:, CS O C, O, aw ,mod ,-I -4 -4 -4ct [;7 rv ra[v C,7 1,I N N CV N N N N N N N N NN

"Lit Lf1 Li u] u1 V1 L(1 Ul J1 V, Lf, Lrl lf'I LC, V, ul u1 ul O ul ul u, Lf) Lf1 v7 1!: 11l Lr) lfl u1 U-) 111

'--I "-- .-- 1 '--I '--I ,--I '--I r .- I '-- '--I ,-- '-- '-'I 1""1 .-- I .-- I .- ,-.I .+1 . rl N fy I r. .W rlUS tn to Q, Cr 11 7, Cf, 0, O+ Cr, 010, 0, 0' fn 0l rr rn M M M Q, Ql M M Q, M M M M MM

M ~a !, fT Q1 Q1 Q, Q, Qt 4 41 m G Q, Q} M 4 IT tf, Ch t}, d, L* CS1 f7, L, Ch C'n , L ,

-- : - ry 2 - - .--1 -4

Ln c I- mI7,C -f~n-r In xvamc rwr',tI Lr11Dt.-CO , 0, {, rwm -rLrou1 Lfl Lf1 If1 LO Lr5 Lfl Lo In Lf1 1,[, H3 43 L[, 4 LO LG Li, lp '-P r- r-- S r r'- [,-

['-y W-r r-r-r t ':r '* ':V at;tbr -4' -r -rb s r a -~- -r -ra

Page 74: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX C-2

Daily Runoff and Pollutant Concentrations

Page 75: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

C {'? C m m m m d p 4 4 0 0 C G m O m C G m a G m m C] G7

GGdGp , 47 C3 CCCC oo mGGpGppCpapmG

C, 0 Li l, wa C rv w 4n G C ty q C> O, C+ C? C? 6 C C? C? OD C, Wp M C, ry r- 4L., '4 U M m r N G 4a G G p p G G G rri a 48

Ca rvmm--IG4n rrl Lfl r)0-t DC, 66 C, Cr Cy CaGmC]m mrG Wa s N W C, 4 C, N C, r C, C) C, O 4 C, O ,D

d G G p .- I 0 C, ,--I C C Ca ,-h G G m G rK G 6 G¢ G G a 6 G CC C m G G G Q n g C, t_, C1 C+ U 1] p p O O O G n n n 4 C7 C?

G47 C 0 D CGmC amGGGC CC C, 0 C,{-00 CC p

C, h -r ti4 Ifl C r7 tr} ,n o o [-- M m L- 4 n r ; r C, C7 n n U !-- 47 Q,aLO yprr5nr-D, tl, wi Ca Gr-},n rwGrK CmmGGG m aaNCmviadG T, C4 r, rY C, uS C, C:, Ch C C C G c C Jr C.,G 4i, tG C-1 aT c r-4n m G o d p .w « N 4 n 4 C, C7 C3 n C, Y-

0 4 47 C, W m N rl O, +3, C 4D G m m G d m G m m ryC m r-' G m m e) N [ 4n 6 f l C> N C, V ., C, C, C, r_ C l. C, 7 1 C7

m n N C, C, C, N ,f, w} C, ty Lk, C n U U m G m m G C m m m C th

C Q, li l G 4D G N ,D ' ,(, C, W N wJ r r , {h i, C, o C, G F} C Cfj C ,DEN v'CW GNr--w-rd rr, G[ Np4pp Q4G ppp Mp4flf4 {l7 4 ,--1 4 1D r'1 ul r, t, s m m m m ra G m m m d m o ri Ca w5

GG-ypy, 0 -- 10 v'00 CS C, Crv C, Cm C] u UCC, 13 w7mmo orlaGwppnw i-nC, CC,-C,4C, e:30C. z?00CPO C, i] C? Ch m G G m G G G G d G G G m G G G d G m a G G

C, m G m a m G G G G p p p C C, Q C, 0 C, n p 0 0 p G p 6

C Ln S] ,D rj ra , 4 ,D C m r,1 kr C C C G C C C C C C C;; Co rU st G m a CV C~ o -t ,7 m C, r- [v C, ,L, ri Ca C, C, C, r, 0 "o LDr., N x r} ,-s U ,y, M Vl M m -- t m m o p N G G G G G 6 m M G ,.On rr - C,-.r C, ,--e0 0"w3c cmrvm CcS C2, C± C, 0 C, 0 LD0 0 D C- ry G n n"1 n C3 n -4 r: C, C, n -4 p Fj n e, n C, n i, Q CDG {} r'i C3 rj rh } G m m m m m m G m m m G m G G G U m m mL G U C C G O G G G G C, , ti, i i C, n S7 r C, n rr G G G G G

9 0, U5 LJ 'aT C, '4T ,--I M G m

Z, C V1 an d v7 G M rrl N C,U rS rwthowa oL-Id , rnG

- G G m m H G m n a G p

M G S7 C, 0 0 C. 0 0 C3 G 0L7,

U

o .y'aor-iornNC Llor t_, .-- I C] C] S7, C r r+ +f r-I mG-y rnGnr t- mIII a'C,

X 7 0 r+l C, ! l N LYI L GE71 G m G G rrl p 15 N C, 11 1.m -W t7 9 C> t , t? , C, tat '+ Ca

.s.N- Grn rV C, I C, 4c7 Y-h- Nr1

m +Y r G M C, G G (V 4D 6

n pmcz; 0 'D C,r- QL7 C, O, C, 00 a,0

E+ m ,D N G G G r- 4n a, -4 G

i , [ qr, pr , ry V 1 rl U U

u.CIS Lh En V', U 4D G f ] 4D b' 49 G["r p Nr, Co r}fv r- w7 tr C>- U N m m H m 4l} r'r, 4P rr, p

m G- G n t] n .--1 C, C, .-- I C, J C,

' vl m O m G G a G G 6 n tiCjU o n,7 O U C, rD CS C, C C,!b

r"'Y 4D G G G + , G G G G G G m ,L G Nf Y U M W:'C, (1] G U O G U C] LJ ,I> F} OW VY LO ,-- 0 -r C, C: C C3 O C, O N 0 rrlG 6 r-- m G 4D d G G G 6 6 m N m f'Srl , 5 C, tS 1', 3) e] C3 r 0 r} C, r, C3 C, ^'.- { C 47 r,} 17, n p p Cj SJ G G G G G G

+}GC GG cc r}Ca cS CC ^, C, r:3 C,

C4 rrl 47 nfV rpnn GGaNG{4

0 M ,--I U G m C G C m m C 0 C? th

m ,-A {-- G G [-- G G G G G G G w] C ,Dvl tr ,--i c r_, r", C, ca c c3 C? C, i , 0 C, .-- I

f4 .--I p n C 1V C, 1 C C3 C, 177 r, C} n «

c, cmch ccC _ C?C., C, L7OG

-a 0,2 m Ur 200 O C>C7 npp Cy L

- - - - - - - - - - - -1-- - .- 0 Ln p (PP p p p G p G G m m -W N rl m 6 C G G G G G G m h CJ Nr.0 rq Cqp t) CCC, C C, 00LD- M0 co 00 C, ti, C, 8 n C, Grr, P N',lf'I 4D N G C ,--' m m C m C U m m m f-7

G ,D rW G CC G G CG m m m m m 4D

m (*] ,n G G O, C G G C G, G m m G ,sI-i U rv rw wJ r? G, C to C? r} C, r G

OU M C, C, N 047 r, n O n G7 -1 p 4nN 4p G G G {V m m G m m m C G G ,L,,-1 C, r3 F} Ca ,--I C Ci 0 C} O 0 O C, C, G47 Ca ,? C, n C, 17 C, O 47 S? 1? C', 4 p d

t) C? G C? U u h m Ca G C3 C] r=, O C, C,

4

o m ?411 p-r O Lr ra C, ,-I o" 6G C, C: rC r, C,4 ptootrYy m N H G G U ' N h (ri G ,M ll'] fS, - d 6 G a G G m G m a G rJ" C, [Y VI 0 C. C, ,-1 C, lit G 4r r-I +f rv Ca O, C C m 00 G r-i S } lf1

- G -7' I^ a ri G P 447 R, LD p Sn 14,7 Lo C7 C, Y- p p ,? C, n G d u G rr,rj C] 4[, ? m C, W1 ,9 N m m 04 M ,-I G m -- C m m G m G r=l Ch C3 Ifl

C, 976 O CS 7GC, COwi C, OO C, ti OC-nO

QC,00 C. Cr}om mmC mmGCac C}b Cv C, O C0 00 C,

fLrl4or-'r, ho rvr;r n1n 17 1 wrv1 Lrl1 r' omo( . . r rl ,ti rh rh r1 N N f4 N C4 N N f4 N M rl r-I

. 47 47 4D C, ,D ti, f: w5 >d r5 ,L, \D wJ w5 ',b w:, Y-

V-1 - ,--i - - .- I - - r-ILl Cn P. m m 6, O m 0, 0, m 0, m a, m m 0, a, a, m m m m C m mr+ 0, Ch 01 L~ 0) 0, 0, C^ m th m m m m m m O 0 th M Cn C, 01 Cl Ch

f " , -4 -4 .- I rl -4 .w .- 1 -4 -4 .- I

V1 ,D t-- C4 D, o rY K u l ,L, r-, m C ,--i ra r 4 Lr s r- m Ch C, ra C',1-K Ur 6n L11 4r} Ln LJ-I Lr, Ln 4f, '-C+ ti, LD o ts 4D D w7 ,.[; L( r-- r-

0.Q

Page 76: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX C-3

Monthly Runoff and Pollutant Concentrations

Page 77: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

[v C,4 M C?&I- vNa IN C, br u7 D 4X d 0) do w LrNt-- P r, 7' OO CO Lr1 m r-I m m c w a M rn a yY I a, N

" ,--, ,--, N rl N a G M 0 n LP d CO C., N a U C] rl 4, w M InC, C, ? C, r3 C, r., C3 b G c c wN o rJ d d O d d d C, d 4

waG cacaGO anCd C3baocaaoaac4l0

ri a

LZti rv '-I O 0 ti In ,--I In Ln o Lr) Cs, , rt t- CA t- C+ " N a,[- rt y, u'1m , t-- rY W m r- mw r-1 ammN,-+6Y

Nrv , srmc ter- uYNC C-4 -r In Lf, Cfi 0Pd"O LD In IN,- [ r1 r,4]{k>v' fi rtimm ayamr+Y rFa u N-aY rw

ti ti rW '-1 r-1 G G r, ul C, LO d Cli C, N m r5 m -1 40 rY Ind C, COdG c Gaonr7 wa C>dddd 1 9dd Cd

-,t m Cp CD C, C: C, C, CacoaaaG Goaooca-4OL

7

N,

r-- , , , , , , ,m 1+-, r'Y [x -- 1 4 rv Cy m r m a a; r, r-1 L r, r- c ra rv

amrw ln-Nqn[--u1 "t-- wo m0Y Cc 'D Ul rw sr ,-i 0h LOLU u1 r- r- u, a aY Ini M I--'ri ww ,--r Lp -: r1) N L[, [V t~ wN Ln t-un LD -4 r, tD r- r- w bm a, N m IfY a r1 Ln ,--1 r Y b, r. rwo r 4 Lf'' a -1 C, 0 CO CD 00 -1 v' Cb 0 rl r' ry a, r m ,D Vr W P

rl u, ramwa avafV [gym 41ir r'^

CD (V Gn Lr] ' 4NUl ,-+a

wwa4na, nrylt- ,t- [v 070,cvC,0,aT y ud t- 65(E U}ul ,--I m rw r-1 ry Ln m a '-h N . r, r IN Ir1 w, a, n r-

a

0

(l, N "a .-- I 01 0 -1 di r as Lr1 o In r m r, m r- Co r- C- -. rl Q}r, ra Kr vY m m f, 1, rw, m rr, fV r'Y CU LO ,4 C, rr, tN Cr,rw CJ - v'r'1=m r- Ln rwG Noy, n m c- aa Lawnrw.4 -I 1-- [-- NY C, CO Co Ifi rn ,--I aj rD CL, w O, r-Y r"Y c., Lr, I- O1 N

- -1 ,--1 N . rM o a r+ Ill C, ,p r1 IX, d N C, C, d , -t ,D ri Ill4 caaaaaoo¢awnc {347n1xnn a anc

waannnrd r1d0 n 0dC, Cl,0Cr_ -,d 0C, r7r-rm

, ,[st N wr n b, a ,rY r m Ln G 4n r- a, ."1 rn C-. m r-. 24 N mt- N "l' Lf, Fj t- t- ,TY Oh f^'1 r^1 r- r-1 rY W w r- C C, rk, ri .-- I C,N G -It r', n m [-- Ill (V r N 0 -h Ln 14Y CO « Cr, n LQ LIP 0 N^I rti r- r r-Y a m m LfY r'1 ,ti m m G w a, rr, fry G Ln r- In r^a

" +-I ^I N .-- I r d d m u) r s ,.0 C? LU {'J N U L rl ^ 9 4' w m ull11 G G a G G C, 171 1} 1 1} r1 r-, rr n n 17 G a

<? C, r d d d d C, d d d d C, d d C, C, C, C, d C, O G C,

aa, M yM ,'^ a n -a Cr, rY Ln M .-- I ,--I ri SO -"I rn m m ry, a +J, w Nca r- m r- ru G ,-+ -1 rn u w m m (N m ra r C) w rv b

r ry100 a p, 00 if) Ln ulNr wri ["1 uID t- V, 1- 0, ct va .w r rf, In ri Ln r1 .-- 1 01 fJ I- i4 C [-- L(1 [K: m a, 1r,or- a+raG --1 m m-,r rw , Ln rwa c ,n u-1m rnmr- oC. ul [v ur) 0 ^1m C, ui'D0 r, H mC . [v rat .- 1 tv

CO a G a G a G G n G a G a G a a Cl

""

a' ['W N sue N C, N rl QY w W ,U i0' +r U~ r- LL, N 4 N + H rY .--1UQ mrrl n d rY 'fi LO ,te r- ao C, m N0] OY Cr, . Cr+d c

F-I n ' a r-1 r, r-1 c N br r - [- m 1* r.- m CV m -I In ,-1 ~1 m r- o af[: 11 N rl "T C, C] 11 w m w N m 1 Ln w 1 15 ,L, C 11, d LrI t-{1 +* a ,n -,r --N n Lo N o p m 'YD 0, t- tV Y M rr1 G \n -1r G+ N rl H +l a N m rW r-4 N +i, r rl ll'Y ,--I La rf f-l O'Y 4, r^] w r

l a a N a G a a a r+ G r+i .N ,w a G a a G a a a N a a

[,lw -

U m N a rW N b' m m U] 'rr L is CUNNrs, r: rr, n n 0, km 0, i, E*mu} -r m 0) 0 Ill " r1 N 60

[.a a". v, rwNm G rYm rr, r-.G ww arrY-4, C* rl Nmmrv+ u* a' q' Ck' f"i C, ^I rn t- [k3 {'] Lr5 N '1! W N [7Y N Lt, r w T t- r"1

,f -1'af Lr1 nr-l-arnt- CC 4i1 r1 In q, O, {rn GV 40 cP br CVw r? w m m a G N m a w fr, r+l w f-1 (+-, N +'Y r-I m , a b, rl

r-.r-wrk CaG rV U r+Y NG waGLp-tr--"-tm rw Lnwm" Cv I, ,f, cr m N 0' U, UY m Ch rv

- ,-1 , N LV f"i M

q, r1 '-1 ul W ul d ul I-- 0, .--1 r1 t- O? r- c, -r lV 7r- N b, lJ'Y mar' r- m m m N r" + en m w ,--1 a m a, N ,--1 On

*+O rv 4 .-- 1 th m DC0 t- ulN0[*1 C, sr U)l D 0) O O, 04 LLr L,7 (WUl ^ ,--1 r- r- r"1 G m m y, l1'Y rr, r+l m m G w a m m G lnl r at NE4 -- { r4 N t, r-i C, C, f"} V 1 C ,C C5 W Ct) N Cs 0 C; D Ill

oGG ,r ,p4C,44C,.-199Cr=,dd C,9IP1 GG

C3 iY i7 U U r -, G a U G a a G a G G a a G a CJ L d dulQ

4 NtiNCr- r 60 aim wr ,ten r- L, .Lr r- LU -h ".t .p [v 0 n N 1-- t- 0, t- r 10 Lr1 ,C rY d CO 1- .-- 1 C, 't r, r"[

w r-1 +J' o ri ,"1 H w N r- m m G [- f In +j' m w r w Uht" tr w I- m U r1 *P -1 r r- w m m ,--1 r- CD r r- N Lr1 q' t- ul

G: ttr In p ul H L? r1 w v' a CO V' r"Y r n r", t- u7 N 7' CO In r - 4nr ,n Ca :N .- am ul r oo Lr. Ln Lr1 rtirno rtiNmrfmo

."1 [V C, d d d d C3 d .- i d s Lf, rv G 4+ 4 .--1 a ."I a N

O

, w -macs r N , fV r1 -i' Ln. uY [- m a c r"r r,1 r-1 N m +r LYY

+"1 , , .- 1 ,-w w . IN fV IN IN fN tV N IN £V N N C* M rrY rv-: r, r-YN C, OY a Q, a. a, a a, m m m a m m m m m O, 84 d1 0, 0, LT Cr,

4, O, 0Y 0, O, & O1 0, 6Y C, 41 0, 0, 0, 0, O, q, 4, q, a a a" r"I C,

rv r'1 v Ifs t- 00 irr u, r 2 0' d ,--1 N rl ' ' Ln47 .4 . ."1 r+ -1 rl rm1 r-1 -1 M N N N N N N

M w

p P;

Page 78: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX C4

Annual Runoff and Pollutant Concentrations

Page 79: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Cc -4i17 rv[n rn «y

r-I tr rr-iono

a u tiLr rv

a, ryv--I r-I

a c a

n :, C,

[V CV CONa a'rn m Q,

N r v'-r r^ m

LCiN lC" 7'

r Go ryLn N vu rn ryti'1' rl .-- I

rl

a C3 C7i

u1 [w b'LIl LT1 H

v o a

a a o

C4 CU r'ia C-' rqa w a

' f4 [--N r+y N

bU

LLrly [J- r*} s fw

C4 r r--t 17, v

C.{ C, cp C,

Cw

[v Cur tryw to t--

(N r- 7,. ti w o

r'l LJ N -," f'1 O S"

ILF

_ I11 N '4'C) n,yr r ry

- a a o

M 47 CDCAF

ulQ ri Npwrhrym Lfi a sr" I OJ eV

" r- Oi L,p

r r Nra

padrNriW o, o, m

cri a m

l H C\ i"YtW{Yy

Page 80: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX C-5S

Hourly Mass Balance Data

Page 81: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

n C) 0 0, Cn ch m m a a m a %n r j C C> (N q ' 1 7 C, ,-I fr, n M m m m m m m m[L t- t- t- r- r t- r- r r r- r-. M M N --:r r+i rl ¢, ,PI Lp C-' ,J', d G d d G U C Ctl C}

p; m m Mm M CO CO Cc MW C'G ra C, O[}+aw Lrl u-f ri r. bra ch O, O+ C, 4, 4, 4. L, a,LO r r- r r r-. r- S4 r- i4 f-- co i-p iv C ,4 m 41 rv v' a, co -:p

C0C Cq C, r, cb Ca cc o mt rnm +«rN quoNa, r~ r r r.r r rc, O C, C O c,

. . . . . . . . . . . . . . . . . . .

C7 CJ C, Q O C, C, C m G G M G m r A O .r r'- G C N n d G G G CJ C, C7I I I I I r"l rf r, rV ra N M rl I I I t

n m tma.m mm a, a, ma, EN4,a, a, 4, a, al 4, 4, O, 0, mmr mr-imwr- r--im mmora rw ru rl nl rv rv rw

"Vw wt-t-0, rr W W ,P rr N N +rq N r-4 rr4.] w{+ wCr v3 D 'D w w w w w w ,n s7, r- 0 r- G} f-3 tiP m %V W rr, a+ N N r iv N N ni N

r-r-r-r-r-t-r t- r- r r ,acrymr o~7mrlnrtiGir-r r- - r r r- t- t-Ln v7 4r5 4'1 4n l!'1 !7 Ill In LT' Lr W rv tr r- W c, rl rv [v r1 r 1 r"+ rrl rl r1 r, rr1

,- '-I r-I r-I '-I M ,--I M r-I r", n1 .- fV N CV rV N N to rri [ , r", ,w, r^ rte, rn rvl rn rn rr

U G G G G G a G n G o 4, G ;, n n G G n 4, G G 6 G G G n G G dC> C Cp 0 C, e1 U Y} U U G a a O d d G G d G G d U G U CU U U O'2' C3

Gn p C n c, C Cry O C, O 00 ID U O C c, 0 0 0 00000, 0'DIJ VI lil ll'l N ,l'1 lf1 lJ', Ln Ln kn 0 Gil Ln n n Ln Ul G S5 G 6 6 G G G d G G

r- r- r- t- r r- r- r rr- r- mmmmmra nr r r- r- nr r rr r t-t-r Lrl Li Ln L I Uf LCI L! yl} Lf rV rW N f", rl rl f l r'+ ri r" r'l rl r1 rti frl rrl r 1 1 1

,-+ " - , , N M M rw r", m ri rl m m m m rv, r r"l rl r-[ r", rl rl r, r-l

Ca U G d d G d C, d G G rfi m a, m t] m m VY r" n r- d o d G G a G GW n 4, C 4 C: C, C n C , 43 0 -, W N w ' m 0, W N 0 C, C, 0 ,> C, C' = C.

G d G d G n 4 n C, C, -)" [V .-- I C. T1 rl 4, Ln tV r L!] G 4 P a d a GC U C] C. G G G a G d r'n l.fl d 1D M M C~ Lrl ' m G m G G U U 4 G

0 C+ CrG cU C+c3 rJ cM mrw MLrl ru d, rwur C5 00 C, r., r-,CCd Gd6nn 4, ti, CCC CCr, 41 01t-Lf, 4-1'fl iv n Cnq nG O4a

_+ C+ CT C} i] C3 U C'} G O G G G G N G G a G a d G U G U C? L U L] r3 i1

r-h' W

MC4 .7 n G G a G d G G G G G d rH G M U} .a ""i r '7+ i!} m m a G a d G U d a

+d 4 <' C? C, C., tv C7 C, c- U G '4f' N Ln fn P m m r- i 05 m r- C+ C, CJ g C, C, C7 C>Lp I G G n G n n n n C C n -.r [V [,7 r v' 00 .--I ,.P r1 tiO ? n n _n G a G

ay L U G d d G G G G a a G .m +J, rN Fn Ck rV to N m m d G a G U U G CyCl C: ter, U C, 0)sr rv .- I ryr .f:mr"l 0 0 CCC>C, ,?Crj) G G n a n n G G G 41 n n n n G g 6 6 n d G G G G G d G

n ?nc- - ?C C, C, C. Or, 0 U C, 00 C 6 CC, 0 n C, C LD Z n;?nC;.

v7

4LGC C+6 GC, r ccacw mwc c d G.. ccUC3 C, C+. C ..'I O P n n C r, C C, 0 C, tD OC rl If t-C,0CCC Cn C CC 40 n C, CnM ;i d a a G G G G G 6 G n rl N Ln r7 n n n q- n n¢ G G G a G G d G dG7-I Lp C, q C, C, C] C] U C} O O C- r-I m r r-I O m C7 C7 C7 4 4 CI O C7 ct) CJ C, CJ n C7Cl: 0 C n 0 C C. C C, C, C, 0 N C O C, r:7 C+ C, C C, 0 G C. C 0 0 C C C, C C

GG oGGGn Gnncn CC 9c, r.,nn 444a GP oGaaoa

U C C> C, C, r-, C+ 0 C, 0 U C Ca G d U G G G G C? G C] CJ c.: + C, 0 O O C,M

FdJ

HG rv ccGCCCCCGa, ,n .- , rMm.wNmmGmrrNC oGd oaoFrrnn ti,< - - C, C, 3Ca v'r c U) m0, r-, . rl D mrv 00 C, 0 C, C, 0'

M , o G O o O O M G n 4 '-., 4 rl Ln %Cj 4, -JI q' g, f_4 C, C, IC, n C n a n G a nCr7 I--1 n CJ C, C, a Cj U Cy c c G ,-+ G m m r- r Ln V'1 +i, M f -, U G U U U C- C)

1npC, n 0 cD C, C+C+U W W r- 7- r- V-r- r t- t- r- r0 «0 0«0 0. L Ca G G d G C, O n a G G Q [] G G G G G n a a G G O n G G G a d

q oGann cp nCC, ti= r, c, C C, C C C, C, O C C, C C Cam, n , G nn

L]Q [, a G G n d

M! G G 6

G G m G G a o n n [', n C, [S C, C, n n p []

111 C+ C, Cz u c c c o c c o G a a G o d G o o d G G G G d d U C C]!r; R;nnCO r, n CC CC.c 0C+CJ CU C, 00 OOC C C C C, o CC Co

n W G c G a G G G G G d d G n n 4 w G v} G 4n G o G d a G G a d G Gr C, ti O G t C+ ca ca Ca G rv m a o n m r,-f ,ti o C b G+ C+ C C+ O O C, C+ G

N G n i3 rj C, c, o C C C, C .- I W r C, C, 0 0 C, C. C, C C, C C c, C n C n 4

r C+ rJ C, V G C] CS G G G C G G d d G G d d G G Cy C] G C] L'3 C ti Gy t, O O

U G G a d G a G a G G d G G G G G G n a G n a G d G G G d n m

U) ,n r -m , CV rrV Ill ur r4 Mm W Nr'I ."+. Nm Lrlw r-- mm oM

,,.]7 '-I rl rI M M ,--i M -y '-I ,--I n rv rv rv rv r-I rl

F {y} m m m m m m m m m m m m m m m m m a, m o d o G G G G G d G GQy Y ,-I . , , .- I '-[ .--I ,-y rl '-I r+ rl ,--I M r-, r M N '-I ,--I ra rv ru rw rw rv ry rv rv ra rv

Q v, YI I'l Lr, Ln ri, lJ', IJ Ln [+, Fn Ln 0 I!1 6r %n 0 0 Ln Ln Ln Ln ur vl v1 Ln u1 vl Lrl v1

r N -- i -- i rl r1 M ,--M rl ,-+ M M M M rM rl rl rl rl ,--i rl N M 'H -1 M - rl4^ a, 4, 41 a, a+ 0, 0s C, m L" Ol C, tr 05 L7, G, 0, Ch a' a, a, M a, Cn 4, a+ Q+ Chrn m m m a+ a, n, a+ a, a, a, a, 4, a, 4, a, a, 4, 4, a, a, a, 4T, a, m m m m a, m mr M ^I N r1 - I M wl +W ,"4 W .- "I w - r"4 ,.4 4 4 r-, M rl N .-- I , rl r1 .-- I l r

a, P: 1#: P, P; C4 P. w W IL w 0w ir: Ci w fr. x w CL a. a; R; 9 P; P; Pt 9 0. M M

m (i a P; .; . . R . . P, . g P. . rti . g . ie F l.r. . Q.

A W W L! w w w w w w w w w W w Lu r,., w W w w w Px W W W

Page 82: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

APPENDIX C-6

Geometric and Hydraulic Data

Page 83: WRE #349 Technical Memorandum STORMWATER RUNOFF AND

Dec 9 16:10 vat flwl.dat 1

Geometric and hydraulle Data - Storage FacilityDepth Area Vol-V2 overflow Pac-0 AVG 02T AVCO2T+V2

FT FT2 FT3 CFS CF FT3 FT30.00E+00 0.67E+06 0.00E+00 0.00E+00 0-00E+00 0.00E+00 0.00E+000.28E-03 0.67E+06 0. 19E+03 0.0E+00 0-00E+00 0.00E+00 0.19E+030.56E-03 0.67E+06 0.37E+03 0.00E+0 0.00E+00 0.00E+00 0.37E+030-83E-03 0,67E+06 0.56E+03 0.00E+00 0.00E+00 0,00E400 0.56E+030.12Et00 0.67E+06 0.7BE+05 0.27E+01 0.00E+00 0.49E+04 0,.2E+050,23E+00 0.67E+06 0.15E+06 0.87E+01 0.00E+00 0.16E+05 0.17E+060.35E+00 0.67E+06 0.23E+06 0.17E+02 0.00E+00 0.31E+05 0.26E+060.46E+00 0.67E+06 0.31E+06 0.27E+02 0.00E+00 0.49E+05 0.36E+060,58E+00 0.67E+06 0.39E+06 0.40E+02 0.00E+00 0.72E+05 0.46E+060.69E+00 D,67E+06 0,46E+06 0.54E+02 O.00E+00 0.97E+05 0.56E+060,81E+00 0.67E+06 0.54E+06 0.70E+02 0.00E+00 0.13E+06 0.67E+060.92E+00 0.67E+06 0,62E+06 0.87E+02 0.00E+00 0.16E+06 0.77E+060.10E+01 0.67E+06 0.69E+06 0.11E+03 0.00E+00 0.19E+06 0.88E+060.12E+01 0.67E+06 0.77E+06 0.13E+03 0.00E+00 0.23E+06 0.10E+070.13E+01 D0.67E06 0.5+06 0,15E+03 0.00E+00 0.27E+06 0.11E+070.14E+01 0.67E+05 0.92E+06 0.17E+03 0.00E+00 0.31E+06 0.12E+070.15E+01 0.67E+'06 0.10E+07 0.20E+03 0.00E+00 0.35E+06 0.14E+070.16E+01 0.67E+06 0.11E+07 0.22E403 0.00E+00 0.40E+06 0.15E+070.17E+01 0.67E+06 0.12E+07 0.25E+03 0.00E+00 0.45E+06 0.16E+070.18E+01 0.67E+06 0.12E+07 0.28E+03 0.00E+00 0-50E+06 0.17E+070.20E+01 0.67E+06 0.13E+07 0,31E+03 0.00E+00 0.55E+06 0.19E+070.21E+01 0.67E+06 0.14E+07 0.34E+03 D;00E+00 0.61E406 0.20E+070.22E+01 0.67E+06 0.15E+07 0.37E+03 0.00E+00 0.66E+06 0,21E+070.23E+01 0.67E+06 0.15E+07 0.40E+03 0.00E+00 0.72E+06 0.23E+070.24E+01 0.67E+06 0.16E+07 0.44E+03 0.0DE+00 0.78E+06 0.24E+070.25E+01 0.67E+06 0.17E+07 0.47E+03 0.00E+00 0.85E+06 0.25E+070.27E+01 0.67E+06 0.18E+07 0.51E+03 0.00E+00 0,91E+06 0.27E+070.28E+01 0.67E+06 0.18E+07 0.54E+03 0.00E+00 0.98E+06 0,28E+070,29E+01 0,67E+06 0.19E+07 0.58E+03 0.00E+00 0.10E+07 0.30E+070.30E+01 0.67E+06 0.20E+07 0.62E+03 0.00E+00 0.11E+07 0.31E+07

Page 84: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 85: WRE #349 Technical Memorandum STORMWATER RUNOFF AND
Page 86: WRE #349 Technical Memorandum STORMWATER RUNOFF AND