working with photonics standards - cadence · pdf fileworking with photonics standards october...

54
1 Working with Photonics Standards October 19, 2016 Jeffery Maki | Distinguished Engineer II

Upload: dinhxuyen

Post on 06-Mar-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

1

Working with Photonics StandardsOctober 19, 2016

Jeffery Maki | Distinguished Engineer II

2

My Optics-Related SDO ParticipationForm-Factor MSA/Consortium QSFP-DD MSA www.qsfp-dd.com (Founding Member, Promotor Member) OSFP MSA in formation COBO cobo.azurewebsites.net (Founding Member, Steering Member, Vice-President, DCN Working Group Chairman) SNIA SFF Technology Affiliate http://www.snia.org/sff (Membership in Process) µQSFP MSA www.microqsfp.com (Founding Member, Promotor Member) CDFP MSA www.cdfp-msa.org (Founding Member, Promotor Member) CFP MSA www.cfp-msa.org (System OEM Reviewer)

Physical-Layer Specification MSA/Consortium and Alliance 4-Wavelength WDM MSA www.4wdm-msa.org (Founding Member, Promotor Member, MSA Chairman) 100G-CWDM4 MSA www.cwdm4-msa.org (Adopter Member) 100G-CLR4 Alliance www.clr4-alliance.org (Member) – Did define an optical specification but 100G-CWDM4 is prevalent 100G-PSM4 MSA www.psm4-msa.com (Member) SWDM Alliance www.swdm.org (Founding Member) 25G Ethernet Consortium 25gethernet.org (Adopter Member)

Standards Development Organization/Alliance IEEE 802.3 www.ieee802.org/3/ (Voter) / Ethernet Alliance www.ethernetalliance.org (Alt. Voter) OIF www.oiforum.com (Technical Voter) ITU-T www.itu.int (Sector Member)

3

Pluggable Optic

Electrical interface

Optical interface

Software management interfaceEMI compliance

Optical cording

Optical connector

4

Abstract

Industry normative form factors lower the barrier (risk) for adoption of innovative optical technologies. These standards foster innovation yet pose challenges of compliance to electrical interface, software interface, mechanical, thermal, and EMI specifications. The presentation includes review of the sources of these specifications and current challenges in the industry.

5

• Optics-Related Industry Bodies

• IEEE 802.3 Ethernet Standard

• Optical-Specification MSAs

• Implementation – Form Factors

• Electrical Interface

• Software Interface

• EMI Compliance

Agenda

6

Optics-Related Industry Bodies

7

Standards, Multi-Source Agreements (MSAs)/Consortium, and Alliances

• Standards bodies define signaling according to the requirements of certain applications

• Comprehensive

• Typically become the sole solution for an application space, especially at the logic layer, the bits on the line

• Multi-source agreement (MSA) groups and consortiums define form factors for physical implementations and/or signaling specifications when not covered by standards bodies

• Alliances quantify application spaces and promote certain solutions

• Typical to call all these organizations standards development organizations (SDOs)

8

Multi-Source Agreement (MSA) Groups/Consortiums

• Form-Factor MSA Groups define

• Host/module connectors

• Pin out

• Module dimensions

• Dissipated power profiles

• Software interface

• Some can be used according to multiple standards (e.g., IEEE, ITU-T, FC, Infiniband)

• Optical-Specification MSA Groups define

• Transmitter and receiver specifications

• Link budgets and supported media

9

Optics-Related Industry Bodies

• IEEE 802.3 Standards Body http://www.ieee802.org/

• Defines Ethernet signaling in general

• Does not define form factors

• Defines specifications to be met regardless of form factor, sometimes the MDI

• See also Ethernet Alliance http://www.ethernetalliance.org/

• T11 Technical Committee http://www.t11.org/

• Defines Fibre Channel (FC) interfaces for information storage and retrieval

• See also Fibre Channel Industry Association (FCIA) http://www.fibrechannel.org

• Infiniband Trade Association (IBTA) http://www.infinibandta.org/

• Defines an input/output architecture used to interconnect servers, communications-infrastructure equipment, storage, and embedded systems

• Defines signaling and form factors

• Example: CXP

10

Optics-Related Industry Bodies – Cont.

• ITU-T Study Group 15http://www.itu.int/ITU-T/studygroups/com15/index.asp

• International Telecommunications Union (ITU) is a United Nations specialized agency for information and communication technologies with ITU-T being for telecommunication standardization

• Defines signaling for optical networking

• For example, defines signaling for optical transport networks (OTN)

• Framing of various client payload types (e.g., SONET/SDH, Ethernet)

• Forward Error Correction for OTN client optics

• Optical Internetworking Forum (OIF) http://www.oiforum.com/

• Defines implementation agreements (IAs)

• Few IAs are comprehensive MSAs

11

Optics-Related Industry Bodies – Cont.

• SNIA SFF Technology Affiliate http://www.snia.org/sff(Previously known as the SFF Committee)

• Defines electrical interfaces• Example: SFP+ high speed serial electrical interface (SFI)

• Defines certain MSAs for pluggable optics• Example: XFP, SFP+, QSFP+, QSFP28

• Defines software management interfaces (memory maps) for pluggable optics

• CFP MSA http://www.cfp-msa.org/

• Defined the form factors CFP, CFP2, CFP4, and CFP8

• Defines MDIO software interface for CFP MSA modules and in cooperation with the OIF for use with Coherent for line side DWDM (e.g., OIF-MSA-100GLH-EM that support 100G PM-QPSK Coherent)

12

IEEE 802.3 Ethernet Standard

13

The Ethernet Standard

Prevailing VersionIEEE 802.3™-2015

4,017 pagesCopyright prohibits placement on a server

Available for free athttp://standards.ieee.org/about/get/802/802.3.html

14

10G IEEE 802.3 Ethernet Standard PMD

PMD Support

10G

3.125G Media Lanes10G Media Lanes

WAN PHY LAN PHY

Backplane(At least 1 m)

10GBASE-KX4(Clause 71)

-none-10GBASE-KR

(Clause 72)

Copper Cable Assembly(At least 15 m)

10GBASE-CX4(Clause 54)

-none- -none-

MMF(At least 220 m of OM3)

-none- -none-10GBASE-LRM

(Clause 68)

MMF(At least 300 m of OM3)

10GBASE-LX4(Clause 53)

10GBASE-SW

(Clause 52.5)

10GBASE-SR

(Clause 52.5)

SMF(At least 10 km)

10GBASE-LX4

(Clause 53)

10GBASE-LW(Clause 52.6)

10GBASE-LR(Clause 52.6)

SMF(At least 40 km)

-none-10GBASE-EW(Clause 52.7)

10GBASE-ER(Clause 52.7)

SMF(At least 80 km)

-none-10GBASE-ZW(Defacto-Std.)

10GBASE-ZR(Defacto-Std.)

15

40G & 100G Ethernet Standard PMD

PMD Support40G 100G

10G Media Lanes 10G Media Lanes 25G Media Lanes

Backplane 40GBASE-KR4(Clause 84)

-none-100GBASE-KR4/KP4

(Clause 93/94)

Copper Cable Assembly 40GBASE-CR4(Clause 85)

100GBASE-CR10(Clause 85)

100GBASE-CR4(Clause 92)

MMF 40GBASE-SR4(Clause 86)

100GBASE-SR10(Clause 86)

100GBASE-SR4

(Clause 95)

SMF(At least 500 meters)

-none- -none- -none-

SMF(At least 2 km) 4

0G

Lane 40GBASE-FR

(Clause 89)-none- -none-

SMF(At least 10 km)

40GBASE-LR4(Clause 87)

-none-100GBASE-LR4

(Clause 88)

SMF(At least 40 km)

40GBASE-ER4

(Clause 87)-none-

100GBASE-ER4(Clause 88)

SMF(At least 80 km)

-none- -none- -none-

16

100GBASE-R over Duplex SMF

• Clause 88

• 100GBASE-LR4

• 100GBASE-ER4

17

100GBASE-LR4/ER4 PMDs

18

Wavelengths for 100GBASE-LR4/ER4

• 4 optically multiplex wavelengths on the 800-GHz DWDM grid following ITU-T G.694.1(Note that this grid is known in the industry as LAN-WDM.)

19

100GBASE-LR4/ER4 Reaches

Support for 30 km to 40 km is an Engineered Link that requires further scrutiny of the fiber.

20

Required & Optional Clauses for 100GBASE-LR4/ER4

21

Ethernet Projects in ProgressP802.3bs, P802.3cc, and P802.3cd Ethernet

Reach Media 25G 50G NG 100GE 200GE 400GE

CR(3 m/5 m)

Copper P802.3by25GBASE-CR25GBASE-CR-S(25G NRZ)

P802.3cd50GBASE-CR(50G PAM-4)

P802.3cd100GBASE-CR2(2x50G PAM-4)

P802.3cd200GBASE-CR4(4x50G PAM-4)

-no objective-

SR(100 m)

MMF P802.3by25GBASE-SR(25G NRZ)

P802.3cd50GBASE-SR(50G PAM-4)

P802.3cd100GBASE-SR2(2x50G PAM-4)

P802.3cd200GBASE-SR4(4x50G PAM-4)

P802.3bs400GBASE-SR16(16x25G NRZ)

DR(500 m)

SMF -no objective- -no objective- P802.3cd100GBASE-DR(1x100G PAM-4)

P802.3bs200GBASE-DR4(4x50G PAM-4)

P802.3bs400GBASE-DR4(4x100G PAM-4)

FR(2 km)

Duplex SMF -no objective- P802.3cd50GBASE-FR(50G PAM-4)

-no objective- P802.3bs200GBASE-FR4(4x50G PAM-4 CWDM)

P802.3bs400GBASE-FR8(8x50G PAM-4 LAN-WDM)

LR(10 km)

Duplex SMF P802.3cc25GBASE-LR(25G NRZ)

P802.3cd50GBASE-LR(50G PAM-4)

-no objective- P802.3bs200GBASE-LR4(4x50G PAM-4 LAN-WDM)

P802.3bs400GBASE-LR8(8x50G PAM-4 LAN-WDM)

ER(40 km)

Duplex SMF P802.3cc25GBASE-ER(25G NRZ)

-no objective- -no objective- -no objective- -no objective-

22

Optical-Specification MSAs

23

100G-PSM4 MSA

• 100GE: 4x25G-λ Parallel Single Mode PMD

• 100G-PSM4500 m reach on parallel SMF with KR4 FEC

• 40G-PSM4 is a defacto standard

• Not defined in an industry normative way; no MSA or consortium defined it

• Different specifications can be found but a prevalent specification has a 1.2 km reach

www.psm4-msa.com

24

100G-CWDM4 MSA

• 100GE: 4x25G-λ Duplex SMF PMD

• 100G-CWDM4CWDM4 for 2 km reach on duplex SMF with KR4 FEC

www.cwdm4-msa.org

25

4-Wavelength WDM (4WDM) MSA

• 100GE: 4x25G-λ Duplex SMF PMDs

• 100G-WDM4-10CWDM4 for 10 km reach on duplex SMF with KR4 FEC

• 100G-WDM4-20LWDM4 for 20 km reach on duplex SMF with KR4 FEC(100GBASE-LR4 with enhanced TX specs)

• 100G-WDM4-40LWDM4 for 40 km reach on duplex SMF with KR4 FEC(Uses APD receiver and new TX specs different from existing 100GBASE-ER4)

www.4wdm-msa.org

26

Implementation –Form Factors

27

Font-Panel Pluggable Form Factors

16x25G8x50G

8x50G 4x100G

CFP

8

OSF

P5

6

QSF

P5

6-D

DCFP

CFP

2

CFP

4

QSF

P2

8

CDFP Style-3

16x25G

32

82 41.5 21.7 40 22.6 18.4

µQ

SFP

28

13.418.4

QSF

P1

12

18.413.4

QSF

P5

6

18.4

µQ

SFP

56

4x50G

CXP

12x10G12x12.5G24

13.4

µQ

SFP

28

13.4

SFP

56

2x25G 4x25G50G 10x10G 10x10G4x25G

4x10G

R

R – Roadmap (Speculation)Artwork is illustrative only, not definitive of the form factor

Width: 13.4

SFP

+

40

0G

20

0G

10

0G

50

G

40

G

25

G

10

G

Elect.Lanes:

13.4

SFP

28

25G

QSF

P+

18.4

QSF

P2

8

18.4 13.4 mm

µQ

SFP

11

2

R

8x25G

QSF

P2

8-D

D

18.4

100G

13.4

10G

SFP

11

2

R

OSF

P2

8

22.6

28

Capacity versus Electrical Lane Rate

ElectricalLane Rate

100G

50G

25G

Line Card Capacity (Tb/s)

3.2 to 3.6 6.4 to 7.2 12.8 to 14.4 25.6 to 28.8

SFP

28- DD

QSF

P2

8 Single 100GE Port

QSF

P2

8-D

D Dual 100GE PortsSingle 200GE Port

QSF

P5

6 Dual 100GE PortsSingle 200GE Port

QSF

P5

6-D

D Quad 100GE PortsDual 200GE PortsSingle 400GE Port

QSF

P1

12 Quad 100GE Ports

Dual 200GE PortsSingle 400GE Port

QSF

P1

12

-DD Eight 100GE Ports

Quad 200GE PortsDual 400GE Port

n x 25G-lanes

n x 50G-lanes

n x 100G-lanes

n x 50G-lanes

n x 100G-lanes

n x 100G-lanes

COBO

CFP

8

100GE Ports400GE Ports

Quad 100GE PortsDual 200GE PortsSingle 400GE Port

OSF

P

Optical Lanes

Optical Lanes

Optical Lanes

29

Form-Factor SeriesElect.LaneRate

ApplicationsSFPSeries

µQSFP Series QSFP Series OSFP series CFP8 Series

10G 10GE SFP+

4x10GE, 40GE QSFP+(4x10G)

4x40GE CFP8(16x10G)

25G 25GE SFP28

50GE µQSFP28(2x25G) QSFP28(2x25G)

4x25GE, 2x50GE, 100GE µQSFP28(4x25G) QSFP28(4x25G)

8x25GE, 4x50GE, 2x100GE, 200GE QSFP28-DD(8x25G) OSFP28(8x25G)

16x25GE, 8x50GE, 4x100GE, 2x200GE, 400GE CFP8(16x25G)

50G 50GE SFP56

4x50GE, 2x100GE, 200GE µQSFP56(4x50G) QSFP56(4x50G)

4x100GE, 2x200GE, 400GE QSFP56-DD(8x50G) OSFP28(8x50G) CFP8(8x50G)

8x100GE, 4x200GE, 2x400GE CFP8(16x50G)

100G 100GE SFP112

4x100GE, 2x200GE, 400GE µQSFP112(4x100G) QSFP112(4x100G)

4x400GE, 1.6TE CFP8(16x100G)

30

10G Pluggable Optics

Description` Port TypeOpticalMedia

Lane(s)

Electrical Interface Form Factors

(Connectors)10G Lane(s)

MMF300 m, OM3400 m, OM4

10GBASE-SR 10G XFI, SFI XFP(LC), SFP+(LC)

4 x 10GBASE-SR 10G XLPPI QSFP+(MPO)

SMF10 km

10GBASE-LR 10G XFI, SFI XFP(LC), SFP+(LC)

4 x 10GBASE-LR 10G XLPPI QSFP+(MPO)

SMF40 km

10GBASE-ER 10G XFI, SFI XFP(LC), SFP+(LC)

SMF80 km

“10GBASE-ZR” 10G XFI, SFI XFP(LC), SFP+(LC)

Note that SC or LC refers actually to SC or LC duplex connector, respectively.

31

40G Pluggable Optics

Description Port TypeOpticalMedia

Lane(s)

Electrical Interface Form Factors

(Connectors)10G Lanes

25G Lanes

MMF100 m, OM3

40GBASE-SR4 4x10G XLPPI QSFP(MPO)

SMF1.2 km

40G-PSM4(defacto std.)

4x10G XLPPI QSFP(MPO)

SMF2 km

40GBASE-FR 40G XLAUI CFP(SC,LC)

SMF10 km

40GBASE-LR4 4x10GXLPPI QSFP(LC)

XLAUI CFP(SC,LC)

SMF40 km

40GBASE-ER4 4x10G XLPPI QSFP(LC)

32

100G Pluggable Optics

Description Port TypeOpticalMedia Lanes

Electrical InterfaceForm Factors(Connectors)

10G Lanes 25G Lanes

MMF100 m, OM3

100GBASE-SR10 10x10G

CPPI CXP(MPO), CFP2(MPO)

CAUI-10 CFP(MPO)

CAUI-4 None (Needs Reverse Gear Box)

MMF100 m, OM4

100GBASE-SR4 4x25GCAUI-4

w/KR4 FECCFP4(MPO), QSFP28(MPO)

SMF500 m

100G-PSM4 4x25GCAUI-4

w/KR4 FECQSFP28(MPO)

SMF2 km

100G-CWDM4 4x25GCAUI-4

w/KR4 FECQSFP28(MPO)

33

100G Pluggable Optics – Cont.

Description Port TypeOpticalMedia Lanes

Electrical InterfaceForm Factors(Connectors)

10G Lanes 25G Lanes

SMF10 km

100GBASE-LR4 4x25GCAUI-10 CFP(SC,LC) w/gear box

CAUI-4 CFP2(LC), CFP4(LC), QSFP28(LC)

WDM4-10 4x25GCAUI-4

w/KR4 FECQSFP28(LC)

SMF20 km

WDM4-20 4x25GCAUI-4

w/KR4 FECQSFP28(LC)

SMF40 km

100GBASE-ER4 4x25GCAU-10 CFP(SC,LC) w/gear box

CAUI-4 CFP2(LC)

WDM4-40 4x25GCAUI-4

w/KR4 FECQSFP28(LC)

34

Electrical Interface

35

IEEE CAUI-4 C2M

• Electrical interface4 x 25G NRZ

• BER better than10-15

36

OIF Common Electrical I/O (CEI)

• Common Electrical I/O (CEI) - Electrical and Jitter Interoperability agreements for 6G+ bps, 11G+ bps and 25G+ bps I/O

• Clause 13 CEI-28G-VSR Very Short Reach Interface

• Support serial baud rates (fb) within the range from 19.6 Gsym/s to 28.1 Gsym/s as specified for the device using NRZ coding. Note that implementation of specific protocols will define the operating baud rate without affecting CEI compliance.

• Capable of driving up to a minimum of 100 mm of host PCB trace plus one connector and a minimum of 50 mm of module PCB trace

• Capable of achieving Bit Error Ratio of 10-15 or better per lane

• Support AC-coupled operation.

• Support multi-lanes (1 to n).

• Support hot plug.

• Defines compliance test methodology including compliance boards.

http://www.oiforum.com/wp-content/uploads/OIF_CEI_03.1.pdf

37

CAUI-4 Chip to Module (OIF CEI-28G-VSR)

• Devised to be a symmetric interface

• No Tx equalization specified (e.g., no Tx emphasis)

• All equalization specified for the Rx

• No Tx equalization good for lowest power modules

• Lack of “visibility” of the CTLE implementation in a module was to be addressed by the use of autonomous self-adaption within the module

• Mandatory use failed to be defined in the OIF IA and IEEE 802.3 standard

• Is a defined option (barely)

38

CAUI-4 Module Input Specifications

39

Key Portion of CAUI-4 C2M Specification

• 83E.3.4.1.1 Module stressed input test procedure

• The module CAUI-4 receiver under test shall meet the BER requirement as described in 83E.1.1 using three Recommended_CTLE_value values for both the high loss test and low loss test:a) The CTLE setting used to meet eye width and eye height requirements

b) The value 1 dB higher if present in Table 83E–2

c) The value 1 dB lower if present in Table 83E–2

• Modules may optionally elect not to use the Recommended_CTLE_value.

40

Normative Reference CTLE Curves

41

Module Stressed Input Test Setup

42

Test Points TP1a and TP1

• Host output test

• Module input test

43

Ethernet Compliance for CAUI-4 C2M

44

Ethernet Compliance for CAUI-4 C2M – Cont.

45

Software Interface

46

IEEE 802.3 Register for CAUI-4 Management

47

QSFP28 MSA Form Factor

• QSFP+ 4X 28 Gb/s Pluggable Transceiver Solution (QSFP28)See SFF-8665.PDF (ftp://ftp.seagate.com/sff/SFF-8665.PDF)

• SFF-8636 Management Interface for Cabled EnvironmentsSee SFF-8636.PDF (ftp://ftp.seagate.com/sff/SFF-8636.PDF)

48

SFF-8636 Sec. 6.3.24 Options

• Variable transceiver Tx input EQ and Rx output Emphasis have been added, defined as the EQ and Emphasis capability designed into the transceiver in support of TP1a and TP4, respectively as defined in IEE802.3 Clause 86. Transceiver support of programmable EQ and Emphasis is found in Byte 193 bits 1 to 3 and shown below in Table 6-22. The default host control mechanism is "Fixed Position Programmable", found in Page 03h, Bytes 234-237 and documented in Table 6-32, Table 6-34 and Table 6-35. If a transceiver supports "Adaptive EQ", defined as transceiver automatic internal control of EQ position setting (without host intervention), it can be so identified in Byte 193 bit 3. Adaptive EQ algorithms and periodicity are implementation specific. Control of "Adaptive EQ" is done using Upper Page 03h Byte 241 bits 3-0 (per channel controls).

• The magnitude of Tx input EQ and Rx output Emphasis supported by the transceiver is identified in Page 03h Byte 224. This applies to either Fixed Position Programmable or Adaptive EQ modes.

49

SFF-8636 Capability for Equalization & Emphasis

50

Module Input Equalization

• No default

• Host mustprogram valuebetween 1 to 9 dB

51

Module Output Emphasis

• No default

• Host mustprogram

• CAUI-4uses 0 dB

52

EMI Compliance

53

Optical Module Qualification for Radiated Emission

• Optical vendors typically require one optical module to meet class B with 6-10 dB margin

• Juniper requires testing a fully loaded chassis to meet class A with ample margin

• Effect of scaling many optical transceivers must be considered

54

Thank you