wop particles of the standard model

60
VU lecture – World of Particles Thomas Gajdosik, FI & VU World of Particles Th P ti l Z Thomas Gajdosik Vilnius Universitetas, Teorinės Fizikos Katedra The Particle Zoo Symmetries The Standard Model

Upload: tomas-dembovskij

Post on 16-Apr-2017

224 views

Category:

Documents


0 download

TRANSCRIPT

VU lecture – World of Particles Thomas Gajdosik, FI & VU

World of Particleso d o a t c es

Th P ti l Z Thomas Gajdosik

Vilnius Universitetas, Teorinės Fizikos Katedra

The Particle Zoo Symmetries The Standard Model

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model:Particles of the Standard Model: Fermions

1. reminder about the particles• from the historical introduction

2. the ordering principle• example: electron and neutrinoexample: electron and neutrino

3. the systematics• extending the ordering to all fermions• extending the ordering to all fermions• counting the degrees of freedom

4 i4. overview

VU lecture – World of Particles Thomas Gajdosik, FI & VU

th l te- the electrone-

ThomsonThomsonThomsonThomson

1897

VU lecture – World of Particles Thomas Gajdosik, FI & VU

the positron (anti-matter)e+ p ( )

e-

γ

discovery

γp

nnµ

π

AndersonAndersonprediction π

DiracDirac

1897

1900-1924

1914 19321937

1947

VU lecture – World of Particles Thomas Gajdosik, FI & VU

the neutrinoν

e-

γγp

nFermiFermiPauliPauli

ππ

e+

1897

1900-1924

1914 19321937

1947

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Reminder:Are symmetries perfect?

P violation - but maybe a CP symmetry?y y y

νν νright-handed left-handed left-handed

• there is no left-handed anti-neutrino, but there is a left-handedneutrino (and only a such-handed!)

right handedanti-neutrino

left-handedanti-neutrino

left-handedneutrino

neutrino (and only a such handed!)• obviously, this violates C-symmetry (symmetrie between matter and anti-matter)

• BUT: the combined symmetry transformation CP (exchangey y ( gmatter/anti-matter plus mirroring) works:

ν νCPCPνright-handedanti-neutrino

νleft-handed

neutrino

CPCP↔↔

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Ordering principle g p pdiscreet symmetries

• Parity P• Parity P– left handed or right handed

eL eR

• Charge Conjugation C– particle or antiparticle

νν_

particle or antiparticle

• Charge Q or Flavour 0 -1 ⅔ -⅓– possible values:

• Generationν e u d

– first – second – third e µ τ

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

cle

eR-νe eL

-

Par

tie e+e+ _

tipar

ticle eReL νe

Ant

VU lecture – World of Particles Thomas Gajdosik, FI & VU

the protonp p

e-

γγ

RutherfordRutherford

1897

1900-1924

1914

VU lecture – World of Particles Thomas Gajdosik, FI & VU

the neutronn the neutron

e-

γChadwickChadwick

γp

1897

1900-1924

1914 1932

VU lecture – World of Particles Thomas Gajdosik, FI & VU

partons / parton modelp p

e-

γRichard Feynman1969 γ

pn

1969

ππ

e+

νν

1900-1924

1897 1914 19471932

1937 1955

1947

1969

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

cle

eR-νe eL

- uL dL uR dR

Par

tie e+e+ _

tipar

ticle eReL νe

Ant

VU lecture – World of Particles Thomas Gajdosik, FI & VU

the pionπ the pion

e-

γ

π

prediction discoveryγ

pnn

µPowellPowellYukawaYukawa PowellPowellYukawaYukawa

1897

1900-1924

1914

1932

1937 1947

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

cle

eR-νe eL

- uL dL uR dR

Par

tie e+e+ u

_ _d u

_ _d

tipar

ticle eReL uL dL uR dR

Ant

VU lecture – World of Particles Thomas Gajdosik, FI & VU

the muonµ the muon

e-

γ

µWho ordered that one? γ

pnn

k h b

Hess

spark chamber

• Hess• Anderson,

Neddermeyer

1897

1900-1924

1914

1932

1937 • Street, Stevenson

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νe eL

- uL dL uR dR

µR-µL

-

Par

tie e+e+ u

_ _d u

_ _d

µR+µL

+

tipar

ticle eReL uL dL uR dR

Ant

VU lecture – World of Particles Thomas Gajdosik, FI & VU

RochesterΛΛ

strange particlese-

γ

KKRochester,Butler,...

ΣΣ γp

n

ΣΣ

ππ

e+

νν

1897

1900-1924

1914 1932

1937

1947 1947-...

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νe eL

- uL dL uR dR

µR-µL

-

Par

ti sL sR

e e+e+ u_ _

d u_ _

d

µR+µL

+

tipar

ticle

_sL

_sR

eReL uL dL uR dR

Ant

VU lecture – World of Particles Thomas Gajdosik, FI & VU

antineutrino reactors:_ν

e-

γ

Clyde Cowan, Frederick Reines

γp

nnµ

ππ

e+

νν

1897

1900-1924

1914 1932

1937

1956

1955

1947

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νe eL

- uL dL uR dR

µR-νµ µL

-

Par

ti sL sR

e e+e+ _u_ _

d u_ _

d

µR+µL

+

tipar

ticle

νµ__

sL

_sR

eReL νeuL dL uR dR

Ant

VU lecture – World of Particles Thomas Gajdosik, FI & VU

charm quark: J/Ψc q

e-

γγp

nnµ

πBurt Richter (SLAC), Samuel Ting (BNL) π

e+

Samuel Ting (BNL)1974

νν

1900-1924

1897 1914 19471932

1937 1955

1947

1969

1974

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νe eL

- uL dL uR dR

µR-νµ µL

-

Par

ti cL sL cR sR

e e+e+ _u_ _

d u_ _

d

µR+µL

+

tipar

ticle

νµ_

cL_ _

sL cR_ _

sR

eReL νeuL dL uR dR

Ant

VU lecture – World of Particles Thomas Gajdosik, FI & VU

tau lepton: ττ p

e-

γMartin Perl (SLAC LBL) γ

pn

(SLAC-LBL)1975

ππ

e+

νν

19751900-1924

1897 1914 19471932

1937 1955

1947

1969

1974

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νe eL

- uL dL uR dR

µR-νµ µL

-

Par

ti cL sL cR sR

τR-τL

-

e e+e+ _u_ _

d u_ _

d

µR+µL

+

tipar

ticle

νµ_

cL_ _

sL cR_ _

sR

eReL νeuL dL uR dR

Ant

τR+τL

+

VU lecture – World of Particles Thomas Gajdosik, FI & VU

bottom quarkb q

e-

γγp

nnµ

ππ

e+

νE288 (Fermilab)1977

ν

19751900-1924

1897 1914 19471932

1937 1955

1947

1969

1974 1977

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νe eL

- uL dL uR dR

µR-νµ µL

-

Par

ti cL sL cR sR

τR-τL

- bL bR

e e+e+ _u_ _

d u_ _

d

µR+µL

+

tipar

ticle

νµ_

cL_ _

sL cR_ _

sR

eReL νeuL dL uR dR

Ant

τR+τL

+_bL

_bR

VU lecture – World of Particles Thomas Gajdosik, FI & VU

top quarktCDF D0p q

e-

γ

CDF, D0 (Fermilab)1995 γ

pnn

µππ

e+

νν

19751900-1924

1897 1914 19471932

1937 1955

19951947

19831969

1974 1977

1979

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νe eL

- uL dL uR dR

µR-νµ µL

-

Par

ti cL sL cR sR

τR-τL

- tL bL tR bR

e e+e+ _u_ _

d u_ _

d

µR+µL

+

tipar

ticle

νµ_

cL_ _

sL cR_ _

sR

eReL νeuL dL uR dR

Ant

τR+τL

+ tL

_ _bL tR

_ _bR

VU lecture – World of Particles Thomas Gajdosik, FI & VU

tau neutrino: ντντ

e-

γ

DONUT (Fermilab)2000 γ

pn

2000

ππ

e+

νν

19751900-1924

1897 1914 19471932

1937 1955

19951947

19831969

1974 1977

20001979

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νe eL

- uL dL uR dR

µR-νµ µL

-

Par

ti cL sL cR sR

τR-ντ τL

- tL bL tR bR

e e+e+ _u_ _

d u_ _

d

µR+µL

+

tipar

ticle

νµ_

cL_ _

sL cR_ _

sR

eReL νeuL dL uR dR

Ant

τR+τL

+ ντ_

tL

_ _bL tR

_ _bR

VU lecture – World of Particles Thomas Gajdosik, FI & VU

neutrino oscillations: νe ↔ νµ↔ ντνx

• solve the “solar neutrino puzzle”

µ

solve the solar neutrino puzzleneutrinos have a tiny mass

there exist also right-handed neutrinos

• but they have:

no charge, no hypercharge, and no color

no interaction except the mass termno interaction, except the mass-term

their existence does not change the Standard Model!

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: Fermions

RightLeft

--cle

eR-νeReL

- uL dL uR dRνe

µR-νµRµL

-

Par

ti cL sL cR sR

τR-ντRτL

- tL bL tR bR

νµ

ντ

e e+e+_u_ _

d u_ _

d_

µR+µL

+

tipar

ticle

νµR_

cL_ _

sL cR_ _

sR

eReLνeR uL dL uR dR

νµ_νe

Ant

τR+τL

+ντR_

tL

_ _bL tR

_ _bRντ

_

VU lecture – World of Particles Thomas Gajdosik, FI & VU

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model:Particles of the Standard Model: Gauge Bosons

1. Gauge Theory (wop-sm2.pdf)

2. screening in QED2. screening in QED• Vacuum polarization• running coupling constantrunning coupling constant

3. anti-screening in QCD• asymptotic freedom• asymptotic freedom• confinement

4 i t b4. massive vector bosons

VU lecture – World of Particles Thomas Gajdosik, FI & VU

screeningscreening• the effective charge of an electrong

in dielectric media is reduced by dielectric molecules surrounding the charge

• the same happens in the vacuum: ppif one looks at the charge with sufficient energy to see virtual electron-positron pairs:

Vacuum polarization!Vacuum polarization!

VU lecture – World of Particles Thomas Gajdosik, FI & VU

screeningscreening• the energy dependence of the gy p

effective charge in the vacuumdue to Vacuum polarizationis described by the

running coupling:running coupling:

VU lecture – World of Particles Thomas Gajdosik, FI & VU

anti screeninganti-screening• the self couplings in QCDp g

have the opposite effect for the color charges:

• the closer one looks, the weaker the charges seem to gbecome:

asymptotic freedom!asymptotic freedom!

VU lecture – World of Particles Thomas Gajdosik, FI & VU

anti screeninganti-screening• but that also means:

th l th• the lower the energy becomes, the strongerthe charges seem to be!the charges seem to be!

• when we try to separate color charges, we havecolor charges, we have no problems at high energies colliders

• but at low energies, the force is strong enough, g , g g ,that the potential (= force * distance) can createa quark-antiquark pair, that restores color neutrality

color confinement!

VU lecture – World of Particles Thomas Gajdosik, FI & VU

color confinementcolor confinement• low energy states have to be color neutralgy

we can only observe color neutral particles

• the strong force hides inside the nucleons

the nuclear force is more like a• the nuclear force is more like a van der Waals force:

– mediated by mesons (quark – antiquark pairs)

• Baryons and Mesons are color singletsBaryons and Mesons are color singlets

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model:

first hint for

massive vector bosons• first hint for

neutral currents: G llGargamelle Bubble chamber,1973

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model:

W and Z bosons

massive vector bosons• W- and Z-bosons

detected in 1983b UA1 d UA2by UA1 and UA2

W+W- event in Aleph (LEP)

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: W- and Z-bosons

precision studies by LEP:by LEP:

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model: W- and Z-bosons

precision studies by LEP:

VU lecture – World of Particles Thomas Gajdosik, FI & VU

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Particles of the Standard Model:Particles of the Standard Model: Higgs Boson

1. Why a Higgs Boson?2. The Higgs mechanism2. The Higgs mechanism

• … again formulas … …

3 Systematics:3. Systematics:• counting the degrees of freedom

4 E i t l id4. Experimental evidence• how it is seen• exclusion / hints

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Why a Higgs Boson ?• The Standard Model is a chiral theory

it is described with massless fermion fieldsit is described with massless fermion fields• Gauge Symmetry enforces

massless vector bosonsmassless vector bosons• But we have

i f i l t d k• massive fermions: leptons and quarks• massive vector bosons: W± and Z0

• Solution: the Higgs mechanism

VU lecture – World of Particles Thomas Gajdosik, FI & VU

The Higgs mechanism

• Ingredients:• a scalar field • continuous symmetries = gauge symmetries• vacuum

• Result:• the symmetry is spontaneously brokeny y y• the scalar field develops a vacuum expectation

value (vev)• other fields can acquire masses due to the vev

VU lecture – World of Particles Thomas Gajdosik, FI & VU

symmetry breakingy y g

example: chess

• the rules of chess are in principle• the rules of chess are in principleabsolutely symmetric for both players

• i.e. the rules how the pieces move arethe same for black and whitethe same for black and white

but:

• symmetry is broken at the beginning• symmetry is broken at the beginning,due to the initial setup of the pieces

• therefore, e.g. a bishop never canchange the color of the field it ischange the color of the field it isstanding on

VU lecture – World of Particles Thomas Gajdosik, FI & VU

symmetry breaking

In the standard model, the particle‘s masses are an effect of symmetry breaking:

y y gthe origin of mass

• originally, all particles are massless • but there is an additional interaction with the so-called Higgs-field• if there were no Higgs-field, the interaction would have no effect• however due to a spontaneous symmetry breaking the whole universe• however, due to a spontaneous symmetry breaking, the whole universe is filled with a non-zero Higgs-field

• the interaction with this omni-present field produces what we know as mass of particles

energy hot universe(shortly after big bang)

particles are massless

Higgs-field0

cold universe(condensed into anasymmetric state)

particles get a mass

spontaneous symmetry breaking

gg

VU lecture – World of Particles Thomas Gajdosik, FI & VU

VU lecture – World of Particles Thomas Gajdosik, FI & VU

degrees of freedom:degrees of freedom: (only SU(2) x U(1) bosons)

massive theorymassless theory

1 complex scalar 4 1 real scalar field 11 pdoublet 4

4 massless gauge 8

1 (Higgs) 1

1 massless gauge 24 g gboson (B, Wi) 8

0 massiv gauge 0

1 g gboson (photon) 2

3 massiv gauge 90 g gbosons 0

12

3 g gbosons (W±,Z0) 9

1212 12

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Production at LEP:Production at LEP: Higgs production cross section :Higgs-strahlung:

Higgs fusion:Higgs-fusion:

VU lecture – World of Particles Thomas Gajdosik, FI & VU

Production at LEP:Production at LEP: Higgs branching ratio :Higgs branching ratio :

seen in the decay to:

• bottom quarks

b-tagged jets

• tau leptons

reconstructed τ

IF the m > 161 GeVIF the mH > 161 GeV• W-pair

• Z-boson pair

VU lecture – World of Particles Thomas Gajdosik, FI & VU

exclusion by LEP I & II:exclusion by LEP I & II:

comparison between an

expected (calculated)

distribution and the

measured distribution of

events

← measured mass distribution

VU lecture – World of Particles Thomas Gajdosik, FI & VU

exclusion by LEP I & II:exclusion by LEP I & II: statistically better

evaluated by a likelihood ratio Q:

comparison between the

distribution, depending

on a “test mass” and theon a test mass and the

measured distribution of

events

VU lecture – World of Particles Thomas Gajdosik, FI & VU

exclusion by LEP I & II:exclusion by LEP I & II: then one compares the likelihood oflikelihood of signal+background, measured in confidence levels CLs+b with thelevels CLs+b, with the likelihood of only backgroundand defines the signal as

CL CL / CLCLs = CLs+b / CLb

exclusion of the signal is given if g

CLs < 0.05

LEP excludes a 114.4 GeV Higgs boson at 95% CL

VU lecture – World of Particles Thomas Gajdosik, FI & VU

exclusion by Tevatron:exclusion by Tevatron:

VU lecture – World of Particles Thomas Gajdosik, FI & VU

hints:hints:electroweak

precision measurementsprecision measurements

precise measurements ll th i ithallow the comparison with

precise calculations:

but all loop calculations depend on the masses of the particles in the loop!the particles in the loop!

sensitivity to particles,th t ld t t bthat could not yet beproduced!

VU lecture – World of Particles Thomas Gajdosik, FI & VU

hints:hints:blueband-plot:

• giving the most probable value for the mass of thethe mass of the Higgs boson from electro-weak precision measurements:

• the most probable value is already excluded by direct non-observation.

VU lecture – World of Particles Thomas Gajdosik, FI & VU