wireless assingment

9

Click here to load reader

Upload: k-v-rop

Post on 09-Dec-2015

217 views

Category:

Documents


7 download

DESCRIPTION

Wireless communication assignment for plotting of dB Power (10log10Pr) vs Log Distance (log10d). Also, working on Hata model

TRANSCRIPT

Page 1: Wireless Assingment

Q2. A plot of dB Power (10log10Pr) vs Log Distance (log10d)

%Two-Ray Model %Plotting dB Power vs log distance

clear all; f=9*10^8; c=3*10^8; R=-1; ht=50; hr=2; Gl=1; Gr=[1,.316,.1,.01]; d=1:100000; db=10.*log10(d);

counter=1; figure(1);

lambda = c/f; l=sqrt((ht-hr)^2.+d.^2); r=sqrt((ht+hr)^2.+d.^2); dc=4*ht*hr/lambda; dcrt=dc:1:100000; ang=2.*pi.*(r-l)./lambda; s1=(lambda/(4*pi))^2;

for counter=1:1:4 GR=Gr(counter);

Pr=s1.*(abs((sqrt(Gl))./l)+(R.*(sqrt(GR))./r.*exp((sqrt(-1)).*ang))).^2;

subplot(2,2,counter);

plot(db,10*log10(Pr)-10*log10(Pr(1)));

pd1=1:1:dc; pd2=dc:1:100000;

hold on;

plot(10*log10(pd1),-20*log10(pd1),'r');

plot(10*log10(pd2),-40*log10(pd2),'g'); end hold off

Page 2: Wireless Assingment
Page 3: Wireless Assingment

Q2. Find the median path loss under the Hata model assuming fc = 900 MHz, ht = 20m, hr =

5m and d = 100m for a large urban city, a small urban city, a suburb, and a rural area.

Explain qualitatively the path loss differences for these 4 environments.

Ans: fc = 900 MHz, ht = 20m, hr = 5m d = 100m

𝐿50, π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) = 69.55 + 26.16 log10(𝑓𝑐) βˆ’ 13.82 log10(β„Žπ‘‘π‘’) βˆ’ π‘Ž(β„Žπ‘Ÿπ‘’) + (44.9

βˆ’ 6.55 log10(β„Žπ‘‘π‘’)) log10(𝑑)

i. Large Urban City

π‘Ž(β„Žπ‘Ÿ) = 3.2(log10(11.75β„Žπ‘Ÿ))2 βˆ’ 4.97𝑑𝐡

π‘Ž(β„Žπ‘Ÿ) = 3.2(log10(11.75 Γ— 5))2 βˆ’ 4.97𝑑𝐡

π‘Ž(β„Žπ‘Ÿ) = 6.35𝑑𝐡

𝐿50, π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) = 69.55 + 26.16 log10(9 Γ— 108) βˆ’ 13.82 log10(20) βˆ’ 6.35𝑑𝐡 + (44.9βˆ’ 6.55 log10(20)) log10(100)

𝐿50, π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) = (69.55 + 234.24 βˆ’ 17.98 βˆ’ 6.35 + 72.76)𝑑𝐡

π‘³πŸ“πŸŽ, 𝒖𝒓𝒃𝒂𝒏(𝒅𝑩) = πŸ‘πŸ“πŸ. πŸπŸπ’…π‘©

ii. Small Urban City

π‘Ž(β„Žπ‘Ÿ) = (1.1 log10(9 Γ— 108) βˆ’ 0.7)(5) βˆ’ (1.56 log10(9 Γ— 108) βˆ’ 0.8)𝑑𝐡 π‘Ž(β„Žπ‘Ÿ) = (45.75 βˆ’ 13.17)𝑑𝐡

π‘Ž(β„Žπ‘Ÿ) = 32.58𝑑𝐡

𝐿50, π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) = 69.55 + 26.16 log10(9 Γ— 108) βˆ’ 13.82 log10(20) βˆ’ 32.58𝑑𝐡 + (44.9βˆ’ 6.55 log10(20)) log10(100)

𝐿50, π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) = (69.55 + 234.24 βˆ’ 17.98 βˆ’ 32.58 + 72.76)𝑑𝐡

Page 4: Wireless Assingment

π‘³πŸ“πŸŽ, 𝒖𝒓𝒃𝒂𝒏(𝒅𝑩) = πŸ‘πŸπŸ“. πŸ—πŸ—π’…π‘©

iii. Suburban

𝐿50, π‘ π‘’π‘π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) = 𝐿50, π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) βˆ’ 2 [log10 (𝑓𝑐

28)]

2

βˆ’ 5.4

𝐿50, π‘ π‘’π‘π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) = 325.99𝑑𝐡 βˆ’ 2 [log10 (9 Γ— 108

28)]

2

βˆ’ 5.4

𝐿50, π‘ π‘’π‘π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) = (325.99 βˆ’ 112.71 βˆ’ 5.4)𝑑𝐡

π‘³πŸ“πŸŽ, 𝒔𝒖𝒃𝒖𝒓𝒃𝒂𝒏(𝒅𝑩) = πŸπŸŽπŸ•. πŸ–πŸ•π’…π‘©

iv. Rural

𝐿50, π‘Ÿπ‘’π‘Ÿπ‘Žπ‘™(𝑑𝐡) = 𝐿50, π‘’π‘Ÿπ‘π‘Žπ‘›(𝑑𝐡) βˆ’ 4.78[log10 𝑓𝑐]2 + 18.33 log10 𝑓𝑐 βˆ’ 𝐾

𝐿50, π‘Ÿπ‘’π‘Ÿπ‘Žπ‘™(𝑑𝐡) = 325.99𝑑𝐡 βˆ’ 4.78[log10 𝑓𝑐]2 + 18.33 log10 𝑓𝑐 βˆ’ 𝐾

𝐾 = 35.94

𝐿50, π‘Ÿπ‘’π‘Ÿπ‘Žπ‘™(𝑑𝐡) = 325.99𝑑𝐡 βˆ’ 4.78[log10(9 Γ— 108)]2 + 18.33 log10(9 Γ— 108) βˆ’ 35.94

𝐿50, π‘Ÿπ‘’π‘Ÿπ‘Žπ‘™(𝑑𝐡) = 325.99𝑑𝐡 βˆ’ 383.25 + 164.13 βˆ’ 35.94 π‘³πŸ“πŸŽ, 𝒓𝒖𝒓𝒂𝒍(𝒅𝑩) = πŸ•πŸŽ. πŸ—πŸ‘π’…π‘©

Page 5: Wireless Assingment

Q3: The following table lists a set of empirical path loss measurements.

Distance from Transmitter Pr/Pt

5 m -60 dB

25 m -80 dB

65 m -105 dB

110 m -115 dB

400 m -135 dB

1000 m -150 dB

(a) Find the parameters of a simplified path loss model plus log normal shadowing that

best fit this data.

(b) Find the path loss at 2 Km based on this model.

(c) Find the outage probability at a distance d assuming the received power at d due to

path loss alone is 10 dB above the required power for nonoutage.

Ans:

a). Finding the path loss component 𝜸

𝐹(𝛾, 𝐾) = βˆ‘[π‘€π‘šπ‘’π‘Žπ‘ π‘’π‘Ÿπ‘’π‘‘(𝑑𝑖) βˆ’ π‘€π‘šπ‘œπ‘‘π‘’π‘™(𝑑𝑖)]2

6

𝑖=1

π‘€π‘šπ‘œπ‘‘π‘’π‘™(𝑑𝑖) = 𝐾 βˆ’ 10𝛾 log10 𝑑 𝐹(𝛾, 𝐾) = (βˆ’60 βˆ’ 𝐾 + 10𝛾 log10 5) 2 + (βˆ’80 βˆ’ 𝐾 + 10𝛾 log10 25) 2

+ (βˆ’105 βˆ’ 𝐾 + 10𝛾 log10 65) 2 + (βˆ’115 βˆ’ 𝐾 + 10𝛾 log10 110) 2 + (βˆ’135 βˆ’ 𝐾 + 10𝛾 log10 400) 2 + (βˆ’150 βˆ’ 𝐾 + 10𝛾 log10 1000) 2

𝐹(𝛾, 𝐾) = (βˆ’60 βˆ’ 𝐾 + 6.9897𝛾)2 + (βˆ’80 βˆ’ 𝐾 + 13.9794𝛾)2 + (βˆ’105 βˆ’ 𝐾 + 18.1291𝛾)2

+ (βˆ’115 βˆ’ 𝐾 + 20.4139𝛾)2 + (βˆ’135 βˆ’ 𝐾 + 26.0206𝛾)2 + (βˆ’150 βˆ’ 𝐾 + 30𝛾)2 Section A of the above equation (βˆ’60 βˆ’ 𝐾 + 6.9897𝛾)2

= 3600 + 60𝐾 βˆ’ 419.382𝛾 + 60𝐾 + 𝐾2 βˆ’ 6.9897𝛾𝐾 βˆ’ 419.382𝛾 βˆ’ 6.9897𝛾𝐾+ 48.8559𝛾2

(βˆ’60 βˆ’ 𝐾 + 6.9897𝛾)2 = 3600 + 120𝐾 βˆ’ 838.764𝛾 + 𝐾2 βˆ’ 13.9794𝛾𝐾 + 48.8559𝛾2 Section B

Page 6: Wireless Assingment

(βˆ’80 βˆ’ 𝐾 + 13.9794𝛾)2

= 6400 + 80𝐾 βˆ’ 1118.352𝛾 + 80𝐾 + 𝐾2 βˆ’ 13.9794𝛾𝐾 βˆ’ 1118.352𝛾 βˆ’ 13.9794𝛾𝐾+ 195.4236𝛾2

(βˆ’80 βˆ’ 𝐾 + 13.9794𝛾)2 = 6400 + 160𝐾 βˆ’ 2236.704𝛾 + 𝐾2 βˆ’ 27.9588𝛾𝐾 + 195.4236𝛾2 Section C (βˆ’105 βˆ’ 𝐾 + 18.1291𝛾)2

= 11025 + 105𝐾 βˆ’ 1903.5555𝛾 + 105𝐾 + 𝐾2 βˆ’ 18.1291𝛾𝐾 βˆ’ 1903.5555π›Ύβˆ’ 18.1291𝛾𝐾 + 328.6643𝛾2

(βˆ’105 βˆ’ 𝐾 + 18.1291𝛾)2 = 11025 + 210𝐾 βˆ’ 3807.111𝛾 + 𝐾2 βˆ’ 36.2582𝛾𝐾 + 328.6643𝛾2 Section D (βˆ’115 βˆ’ 𝐾 + 20.4139𝛾)2

= 13225 + 115𝐾 βˆ’ 2347.5985𝛾 + 115𝐾 + 𝐾2 βˆ’ 20.4139𝛾𝐾 βˆ’ 2347.5985π›Ύβˆ’ 20.4139𝛾𝐾 + 416.7273𝛾2

(βˆ’115 βˆ’ 𝐾 + 20.4139𝛾)2 = 13225 + 230𝐾 βˆ’ 4695.197𝛾 + 𝐾2 βˆ’ 40.8278𝛾𝐾 + 416.7273𝛾2 Section E (βˆ’135 βˆ’ 𝐾 + 26.0206𝛾)2

= 18225 + 135𝐾 βˆ’ 3512.781𝛾 + 135𝐾 + 𝐾2 βˆ’ 26.0206𝛾𝐾 βˆ’ 3512.781π›Ύβˆ’ 26.0206𝛾𝐾 + 677.0716𝛾2

(βˆ’135 βˆ’ 𝐾 + 26.0206𝛾)2 = 18225 + 270𝐾 βˆ’ 7025.562𝛾 + 𝐾2 βˆ’ 52.0412𝛾𝐾 + 677.0716𝛾2

Section F

(βˆ’150 βˆ’ 𝐾 + 30𝛾)2 = 22500 + 150𝐾 βˆ’ 4500𝛾 + 150𝐾 + 𝐾2 βˆ’ 30𝛾𝐾 βˆ’ 4500𝛾 βˆ’ 30𝛾𝐾 + 900𝛾2

(βˆ’150 βˆ’ 𝐾 + 30𝛾)2 = 22500 + 300𝐾 βˆ’ 9000𝛾 + 𝐾2 βˆ’ 60𝛾𝐾 + 900𝛾2

Summation 𝐹(𝛾, 𝐾) = 74975 + 1290𝐾 βˆ’ 27603.338𝛾 βˆ’ 231.0654𝛾𝐾 + 6𝐾2 + 2566.7427𝛾2

On Differentiating

πœ•(𝐹(𝛾, 𝐾))

πœ•π›Ύ= 0

Page 7: Wireless Assingment

πœ•(𝐹(𝛾, 𝐾))

πœ•π›Ύ= βˆ’27603.338 βˆ’ 231.0654𝐾 + 5133.4854𝛾 = 0

πœ•(𝐹(𝛾, 𝐾))

πœ•πΎ= 1290 βˆ’ 231.0654𝛾 + 12𝐾 = 0

βˆ’27603.338 βˆ’ 231.0654𝐾 + 5133.4854𝛾 = 0

1290 βˆ’ 231.0654𝛾 + 12𝐾 = 0 On Substitution;

𝜸 = πŸ’. πŸŽπŸ’

𝑲 = βˆ’πŸπŸ—. πŸ•πŸ

(b) Find the path loss at 2 Km based on this model. 𝑑 = 2𝐾𝑀 π‘ƒπ‘Žπ‘‘β„Ž πΏπ‘œπ‘ π‘  = π‘€π‘šπ‘œπ‘‘π‘’π‘™(𝑑𝑖) = 𝐾 βˆ’ 10𝛾 log10 𝑑

= βˆ’29.71 βˆ’ (10 Γ— 4.04) log10 2000

= βˆ’πŸπŸ”πŸ‘. πŸŽπŸ•

(c) Find the outage probability at a distance d assuming the received power at d due

to path loss alone is 10 dB above the required power for nonoutage.

πœŽπœ“π‘‘π΅2 =

1

6βˆ‘[π‘€π‘€π‘’π‘Žπ‘ π‘’π‘Ÿπ‘’π‘‘(𝑑𝑖) βˆ’ π‘€π‘€π‘œπ‘‘π‘’π‘™(𝑑𝑖)]2

6

𝑖=1

πœŽπœ“π‘‘π΅2 =

1

6 (74975 + 1290𝐾 βˆ’ 27603.338𝛾 βˆ’ 231.0654𝛾𝐾 + 6𝐾2 + 2566.7427𝛾2)

πœŽπœ“π‘‘π΅2 =

1

6 (74975 + (1290 Γ— βˆ’29.71) βˆ’ (27603.338 Γ— 4.04) βˆ’ (231.0654 Γ— 4.04

Γ— βˆ’29.71) + 6(βˆ’29.71)2 + 2566.7427(4.04)2)

Page 8: Wireless Assingment

πœŽπœ“π‘‘π΅2 = 9.246

πœŽπœ“π‘‘π΅ = 3.041

𝑝(π‘ƒπ‘Ÿ(𝑑) ≀ π‘ƒπ‘šπ‘–π‘›) = 1 βˆ’ 𝑄 (π‘ƒπ‘šπ‘–π‘› βˆ’ (π‘ƒπ‘šπ‘–π‘› + 10)

πœŽπœ“π‘‘π΅)

𝑝(π‘ƒπ‘Ÿ(𝑑) ≀ π‘ƒπ‘šπ‘–π‘›) = 1 βˆ’ 𝑄 (1 βˆ’ 11

3.041)

= 1 βˆ’ 𝑄 (βˆ’10

3.041)

= 1 βˆ’ 𝑄(βˆ’3.288)

= 3.64 π‘₯10βˆ’4

Page 9: Wireless Assingment

Q4:

1. Data Collection Types and size

The data was collected from 5 different locations under various conditions and was categorized into 3 categories namely;

o Category A – Maximum path loss with hilly terrain and moderate-to-heavy tree densities.

o Category B – Flat terrain with moderate-to-heavy tree densities and hilly terrain with light tree densities.

o Category C – Minimum path loss with flat terrain and light tree densities.

95 cellular base stations were used with each transmitting a continuous wave signal at around 1.9GHz using omnidirectional azimuth pattern and gain of 8.14dBi. The mobile receiver antenna with omnidirectional azimuth pattern and gain of 2.5dBi was mounted at a height of 2m on a test van and Grayson receiver recorded the local mean power.

Distance covered ranged from few meters to 8km and the distance was estimated/calculated with the help of GPS.

2. Key Findings

𝑃𝐿 = 𝐴 + 10𝛾 log10 (𝑑 π‘‘π‘œ) + 𝑠⁄ i. The decibel path loss (A) are approximately 78 dB (free path loss) at 1.9GHz. This therefore

allows use of fixed-intercept approach. ii. Due to less blockage and better ground clearance, almost line of sight condition is

produced meaning the higher base antennas lead to smaller power-law exponent(𝛾). This shows that 𝛾 is strongly dependent on antenna height hb and the terrain category.

iii. Deviation of 𝛾 about its regression fit(βˆ†π›Ύ) has a near-Gaussian distribution over the population of macrocells for each terrain category.

iv. The random variate s tend to be Gaussian within a given macrocell. This confirms that the shadow fading is log-normal.

v. 𝜎 is random from one macrocell to another.

3. Path loss exponent variations are Gaussian

Gaussian functions are widely used in statistics where they describe the normal distributions representing real-valued random variables whose distributions are not known. Usually to model real environment, the path loss and shadowing effects cannot be neglected. The variation in path loss follows a Gaussian distribution simply because once there is a change in the position of the receiver node, there can be variation in the path loss due to variation in the multi-path components. Also, the effects of diffraction, scattering, and reflection might change since by changing the position of the receiver can have an effect on the LOS component. Since the conditions for testing are not fixed and changes with the movement of the receiver in this case, various conditions generate various components of path loss with are not constant. To put this into considerations, Gaussian functions which uses mean distribution is used to get a linear estimate.