wind%diesel%201 · 2017-07-12 · generator.thisincreasedamountof generaonreversesthepowerflow...

90
Wind Diesel 201 Rich Stromberg/Josh Cra; Alaska Energy Authority IGRC Wind Power Conference Mar 2015

Upload: others

Post on 06-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Diesel  201  Rich  Stromberg/Josh  Cra;  Alaska  Energy  Authority  

IGRC  Wind  Power  Conference  -­‐  Mar  2015  

Page 2: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Intended  Audience  §  People  who  stayed  awake  through  Wind  Diesel  101  

§  UKlity  managers,  staff  seeking  greater  technical  knowledge  

§  Design/engineering  firms    

§  Project  developers  

§  Component  suppliers  

§  Neophytes  interested  in  learning  more  about  wind  energy  

2

Page 3: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wake  Losses  §  The  space  behind  a  wind  turbine  that  is  marked  by  decreased  wind  power  capacity  due  to  the  fact  that  the  turbine  itself  consumes  some  of  the  energy  in  turning  the  rotor.  The  wind  behind  the  turbine,  in  its  wake,  is  less  effecKve  at  generaKng  energy  for  a  certain  distance  in  the  downwind  direcKon  due  to  turbulence  created  by  the  upwind  machine.  Thus,  when  siKng  a  wind  farm,  it  is  important  to  space  turbines  as  to  minimize  the  impact  each  has  on  the  others’  power  producKon  capacity,  taking  into  account  addiKonal  costs  for  laying  of  electrical  cable  and  other  infrastructure  required  when  machines  are  spaced  further  apart.  (hXp://www.windustry.org/resources/wake-­‐losses)  

 

3

Page 4: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Horns  Rev  offshore  wind  farm  -­‐  Denmark  Horns  Rev  1  owned  by  VaXenfall.  Photographer  ChrisKan  Steiness  

4

Page 5: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wake  effect      

Sandia  Labs/  SWiFT  Facility  

5

Page 6: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Graphical  representaKon  of  wind  turbine  wakes  §  hXp://www.nvidia.com  

hXp://www.eps.ee.kth.se/windpower/images/wakesim.jpg  

 

 

 

 

 

 

 

 

 

 

 

 

hXp://www.windpowerengineering.com/construcKon/simulaKon/seeing-­‐the-­‐unseeable-­‐in-­‐a-­‐rotor-­‐wake/  

 

 

 

6

Page 7: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wake  and  the  Park  Effect  §  Ideally,  we  would  space  turbines  as  far  apart  as  possible  in  the    prevailing  wind  direcKon.  But  land  use  and  the  cost  of  connecKng  wind  turbines  to  the  electrical  grid  would  indicate  spacing  them  closer  together.    

§  As  a  rule  of  thumb,  turbines  in  wind  parks  are  usually  spaced  somewhere  between  5  and  9  rotor  diameters  apart  in  the  prevailing  wind  direcKon,  and  between  3  and  5  diameters  apart  in  the  direcKon  perpendicular  to  the  prevailing  winds.  

§  Typical  park  losses  for  properly  spaced  turbines    are  ~  5%.  

7

Page 8: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Seasonal  changes  in  wind  resources  § One  year  of  quality  wind  data  is  the  minimum  required  to  assess  the  local  wind  resource.  

§ MulKple  years  give  a  beXer  representaKon  of  variaKon  and  the  potenKal  resource.  

§  Secondary  load  systems  can  be  beXer  designed  with  mulKple  years  of  data.  

§ Move  forward  with  a  project  design,  but  leave  the  met  tower  up  to  improve  project  confidence.  

8

Page 9: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

AWS  Truepower  Wind  Speed  Anomaly  Map  Q3  2013                            vs.                                Q4  2014  

   

9

Page 10: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Turbulence  

10

§  Turbulence  induces  addiKonal  mechanical  and  vibraKon  loads  on  wind  turbines.  

§  IEC61400-­‐1  ediKon  3  defines  the  representaKve  turbulence  intensity  as  the  mean  +  1.28  Kmes  standard  deviaKon  of  random  ten-­‐min  measurements.  (The  calculaKon  has  changed  from  ediKon  2,  so  it  is  important  to  understand  which  formula  is  used.)  Load  cases  are  defined  by  the  reference  turbulence  intensity  Iref  which  is  equal  to  the  mean  turbulence  intensity  at  15  m/s.  

Page 11: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Turbulence  •  The  site  turbulence  intensity  (TI)  must  be  less  than  the  turbine  design  TI  in  

the  higher  operating  range  of  the  wind  turbine  (from  60%  of  rated  power  wind  speed  up  through  the  cut-­‐out  velocity).    

11

Page 12: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

IEC  Wind  Turbine  Class  §  It  is  criKcal  to  know  what  the  expected  maximum  wind  speeds  are  at  your  turbine  site.  

§  Some  turbines  are  designed  for  surviving  high  winds  while  others  are  designed  to  capture  the  most  energy    in  calmer  regimes.  

§  Ensure  that  your  turbine  can  survive  the  environment  while  producing  the  most  energy  possible.  

§  Max  average  wind  speed  values  were  dropped  in  Ed.  3.  Now  the  limit  is  20%  of  Vref.  

12

Page 13: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

IEC  Wind  Turbine  Class  §  The  flow  inclinaKon  must  not  exceed  ±  8  degree  for  any  wind  direcKon.  

§  The  site  average  verKcal  wind  shear  at  hub  height  must  neither  be  negaKve  nor  too  steep.  IEC  61400-­‐1  express  these  condiKons  as  0<a<0.2,  where  a  is  the  exponent  of  a  power  law  approximaKon  near  hub  height.  

13

Page 14: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

   

14

Page 15: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  shear  and  surface  roughness  §  In  general,  the  more  pronounced  the  roughness  of  the  earth's  surface,  the  more  the  wind  will  be  slowed  down.  

§  In  the  wind  industry,  people  usually  refer  to  roughness  classes  or  roughness  lengths,  when  they  evaluate  wind  condiKons  in  a  landscape.  A  high  roughness  class  of  3  to  4  refers  to  landscapes  with  many  trees  and  buildings,  while  a  sea  surface  is  in  roughness  class  0.    

§  Concrete  runways  in  airports  are  in  roughness  class  0.5.  

15

Page 16: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  shear  and  roughness  §  Roughness  and  wind  shear  are  directly  correlated.  

§  This  graph  shows  how  wind  speeds  vary  in  roughness  class  2  (agricultural  land  with  some  houses  and  sheltering  hedgerows  with  some  500  m  intervals),  if  we  assume  that  the  wind  is  blowing  at  10  m/s  at  a  height  of  100  meters.    

16

Page 17: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  shear  –  Logarithmic  formula  §  The  wind  speed  at  a  certain  height  above  ground  level  is:    

   v  =  v    ref    ln(z/z0    )/ln(z    ref    /z0    )    

v  =  wind  speed  at  height  z  above  ground  level.    

v    ref    =  reference  speed,  i.e.  a  wind  speed  we  already  know  at  height  z    ref  .  ln(...)  is  the  natural  logarithm  funcKon.    

z  =  height  above  ground  level  for  the  desired  velocity,  v.  

z0  =  roughness  length  in  the  current  wind  direcKon.    z    ref    =  reference  height,  i.e.  the  height  where  we  know  the  exact  wind  speed  v    ref  .    

17

Page 18: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Roughness  Class  and  Length  

Rough-­‐  ness  Class   Roughness  Length  m  Energy  Index  (per  cent)   Landscape  Type  

0     0.0002     100     Water  surface    

0.5     0.0024     73    Completely  open  terrain  with  a  smooth  surface,  e.g.concrete  runways  in  airports,  mowed  grass,  etc.    

1     0.03     52    Open  agricultural  area  without  fences  and  hedgerows  and  very  scattered  buildings.  Only  softly  rounded  hills    

1.5     0.055     45    Agricultural  land  with  some  houses  and  8  metre  tall  sheltering  hedgerows  with  a  distance  of  approx.  1250  metres    

2     0.1     39    Agricultural  land  with  some  houses  and  8  metre  tall  sheltering  hedgerows  with  a  distance  of  approx.  500  metres    

2.5     0.2     31    Agricultural  land  with  many  houses,  shrubs  and  plants,  or  8  metre  tall  sheltering  hedgerows  with  a  distance  of  approx.  250  metres    

3     0.4     24    Villages,  small  towns,  agricultural  land  with  many  or  tall  sheltering  hedgerows,  forests  and  very  rough  and  uneven  terrain    

3.5     0.8     18     Larger  cities  with  tall  buildings    

4     1.6     13     Very  large  cities  with  tall  buildings  and  skycrapers  

For  example,  assume  we  know  that  the  wind  is  blowing  at  7.7  m/s  at  20  m  height.  We  wish  to  know  the  wind  speed  at  60  m  height.  If  the  roughness  length  is  0.1  m,  then    

 v  ref  =  7.7    

 z  =  60    

 z0  =  0.1    

 z  ref  =  20    

 

Therefore:  

 v  =  7.7  ln(60/0.1)  /  ln(20/0.1)  =    

9.2966  m/s  

18

Page 19: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  shear  –  Power  law  §  The  power  law  exponent  is  α.  For  fairly  flat  terrain,  it  is  common  to  use  the  one-­‐seventh  power  law,  where  α  =  1/7.    

§  1/7  power  law  for  height  adjustments  

 for  a  known  wind  speed  V1  at  height  H1,  you  can  calculate  V2  at  height  H2:  

 V2=V1*(h2/h1)(1/7)  

§  For  example:  9.008=7.7*(60/20)(1/7)    

Terrain  DescripOon  Power  law  exponent,  α  

Smooth,  hard  ground,  lake  or  ocean        0.10  

Short  grass  on  unKlled  ground        0.14  

Level  country  with  foot-­‐high  grass,  occasional  tree      0.16  

Tall  row  crops,  hedges,  a  few  trees        0.20  

Many  trees  and  occasional  buildings      0.22  –  0.24  

Wooded  country  –  small  towns  and  suburbs      0.28  –  0.30  

Urban  areas  with  tall  buildings        0.4  

 

19

Page 20: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

So,  with  wind  shear  you  can  predict  the  wind  speed  at  higher  elevaOons…sort  of.  

§  EsKmaKng  performance  for  a  turbine  with  a  40-­‐meter  hub  height  off  of  20m  and  30m  anemometers  has  lower  risk  than  esKmaKng  the  performance  of  a  turbine  with  a  hub  height  of  70  or  80  meters.  

§ Wind  shear  formulas  esKmate  annual  averages  –    not  diurnal  paXerns.  

20

Page 21: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Delta  Wind  Farm  Diurnal  PaTern      

21

Page 22: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

West  TX  A&M  Diurnal  PaTern      

22

Page 23: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Drivers  of  winds  at  different  heights  §  Lower  level  winds  are  driven  by  solar  heaKng  of  the  Earth’s  surface,  so  winds  increase  throughout  the  day  and  subside  at  night.  

§ Higher-­‐level  winds  are  dominated  by  stably  straKfied  flows  that  sink  down  at  night  into  the  rotor  swept  area,  but  get  pushed  higher  during  the  day  as  solar-­‐induced  turbulence  picks  up.  

§  Knowing  the  true  diurnal  paTern  at  your  hub  height  is  criOcal  when  designing  secondary  load  systems  on  medium  and  high  penetraOon  wind-­‐diesel  systems.    

23

Page 24: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

30m  data  extrapolated  to  75m  

24

Page 25: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

75m  data  

25

Page 26: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

30m  data  extrapolated  to  75m  

26

Page 27: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

75m  data  

27

Page 28: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

30m  data  extrapolated  to  75m  

28

Page 29: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

75m  data  

29

Page 30: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

30m  data  extrapolated  to  75m  

30

Page 31: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

75m  data  Big  change  in  secondary  load  consideraOons  

31

Page 32: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  §  The  higher  you  are  above  the  top  of  the  upwind  obstacle,  the  less  wind  shade.  The  wind  shade,  however,  may  extend  to  up  to  five  10  Kmes  the  height  of  the  obstacle  at  a  certain  distance.    

§  If  the  obstacle  is  taller  than  half  the  hub  height,  the  results  are  more  uncertain,  because  the  detailed  geometry  of  the  obstacle,  (e.g.  differing  slopes  of  the  roof  on  buildings,  different  species  of  bushes/trees)  will  affect  the  result.  

32

Page 33: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Emmonak  Wind  Turbine  Site  

33

Page 34: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  Calculator  hTp://www.moOva.fi/myllarin_tuulivoima/windpower%20web/en/tour/wres/shelter/index.htm  

34

Page 35: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  Calculator  hTp://www.moOva.fi/myllarin_tuulivoima/windpower%20web/en/tour/wres/shelter/index.htm  

35

Page 36: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Cape  Stebbins  

36

Page 37: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  Calculator  hTp://www.moOva.fi/myllarin_tuulivoima/windpower%20web/en/tour/wres/shelter/index.htm  

37

Page 38: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  Calculator  hTp://www.moOva.fi/myllarin_tuulivoima/windpower%20web/en/tour/wres/shelter/index.htm  

§     

38

Page 39: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  Calculator  –  37m  Turbine  hTp://www.moOva.fi/myllarin_tuulivoima/windpower%20web/en/tour/wres/shelter/index.htm  

   

Don’t  forget  to  consider  rotor  diameter.  

39

Page 40: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  Calculator  –  50m  Turbine  hTp://www.moOva.fi/myllarin_tuulivoima/windpower%20web/en/tour/wres/shelter/index.htm  

40

Page 41: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  Calculator  –  75m  Turbine  hTp://www.moOva.fi/myllarin_tuulivoima/windpower%20web/en/tour/wres/shelter/index.htm  

41

Page 42: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Cape  Stebbins  Preferred  Turbine  Site  

42

Page 43: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Wind  Shade  Calculator  –  50m  Turbine  hTp://www.moOva.fi/myllarin_tuulivoima/windpower%20web/en/tour/wres/shelter/index.htm  

43

Page 44: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Icing  –  hoar  frost  § Hoar  frost  forms  in  calm  or  very  low  wind  periods  when  a  volume  of  air  cools  below  the  point  where  it  can  hold  the  moisture.  The  frost  nucleates  on  surfaces  such  as  tree  branches,  anemometers  and  wind  turbines.  The  crystals  are  light,  fluffy.  

44

Page 45: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Hoar  frost  

45

Page 46: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Hoar  frost  

46

It  only  takes  a  little  wind  to  knock  off  hoar  frost  and  let  anemometers  resume  spinning.  

Page 47: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

How  do  we  treat  hoar  frost  signals  in  our  wind  resource  analysis?  

§  Take  no  acKon.  Leave  the  data  points  in  place.  They  accurately  represent  what  the  wind  is  doing.  Do  not  delete.  Do  not  synthesize.  

47

Page 48: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Stall-­‐regulated  turbine  icing  

Turbine  output  in  kW(right  axis  on  graph)  

Both  std  met  tower  anemometers  and  heated  turbine  anemometers  track  well  

Turbine  output  lags  even  after  std  anemometers  have  deiced  

Page 49: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Stall-­‐regulated  turbine  power  curve  

Page 50: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Icing  –  heavy  rime  ice  

§  Rime  is  a  rough  white  ice  deposit  which  forms  on  surfaces  exposed  to  the  wind.  It  is  formed  by  super-­‐cooled  water  droplets  of  fog  freezing  on  contact  with  a  surface  as  it  dri;s  past.  Rime  ice  can  grow  to  become  quite  heavy.  

50

Page 51: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Heavy  rime  ice  –  stall  regulated  wind  turbine  

51

   

Heavy  rime  ice  prevents  proper  lift.  

Page 52: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Heavy  rime  ice  –  pitch  regulated  wind  turbine  

52

Page 53: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

How  do  we  treat  rime  ice  signals  in  our  wind  resource  analysis?  

§  Take  no  acKon.  Leave  the  data  points  in  place.  They  accurately  represent  what  the  wind  turbine  is  likely  to  do  and  we  can’t  disKnguish  between  hoar  frost  and  rime  ice.  Do  not  delete.  Do  not  synthesize.  Forecast  error  will  be  slight,  but  conservaKve.  

53

Page 54: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Voltage  Rise  in  Distributed  GeneraOon  (DG)  Systems    

“ConnecKons  of  distributed  generaKon  (DG)  in  distribuKon  networks  are  increasing.  These  connecKons  of  distributed  generaKon  cause  voltage  rise  in  the  distribuKon  network.”  -­‐  hXp://seit.unsw.adfa.edu.au/staff/sites/hrp/papers/mhp11a-­‐c.pdf  Analysis  of  Voltage  Rise  Effect  on  DistribuKon  Network  with  Distributed  GeneraKon  M.  A.  Mahmud,    M.  J.  Hossain,    H.  R.  Pota    

“Since  the  modern  distribuKon  systems  are  designed  to  accept  bulk  power  from  the  transmission  network  and  to  distribute  it  to  customers,  the  flow  of  both  real  and  reacKve  power  is  always  from  the  higher  to  lower  voltage  levels.  However,  with  significant  penetraKon  of  distributed  generaKon,  the  power  flows  may  become  reversed  and  the  distribuKon  network  is  no  longer  a  passive  circuit  supplying  loads  but  an  acKve  system  with  power  flows  and  voltages  determined  by  the  generaKon  as  well  as  load.”  

“ConnecKons  of  distributed  generaKon  in  distribuKon  systems  are  suscepKble  to  voltage  rise.  Moreover,  the  impact  of  losing  a  single  or  a  few  distributed  generaKon  following  a  remote  fault  may  not  be  significant  issue,  but  the  connecKon  or  disconnecKon  of  a  large  penetraKon  of  distributed  generaKon  may  become  problemaKc  which  may  lead  to  sudden  appearance  of  hidden  loads  and  affect  the  voltage  profile  of  low  voltage  distribuKon  network.”  

54

Page 55: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

DG  Voltage  Rise  Example  Analysis  of  Voltage  Rise  Effect  on  DistribuKon  Network  with  Distributed  GeneraKon  M.  A.  Mahmud,    M.  J.  Hossain,    H.  R.  Pota  

In  this  case,  240  KW  generator  15km  away  from  the  primary  distribuKon  system  is  replaced  by  a  1  MW  generator.  This  increased  amount  of    generaKon  reverses  the  power  flow  through  the  line,  from  the  generator  towards  the  DistribuKon  System  (DS).    

 

The  voltage  profile  of  DS  with  1  MW  of  distributed  generaKon  is  shown  in  Fig.  7.  From  Fig.  7,  it  is  seen  that  the  voltage  in  some  parts  of  the  system  rises  above  the  permiXed  +6%  voltage  limit.  Note  that  <3%  is  preferred.  

55

Page 56: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

DG  Voltage  Rise  Factors  Analysis  of  Voltage  Rise  Effect  on  DistribuOon  Network  with  Distributed  GeneraOon  M.  A.  Mahmud,    M.  J.  Hossain,    H.  R.  Pota  

The  level  of  DG  generaKon  that  can  be  connected  to  the  distribuKon  system  depends  on  the  following  factors:  

§  voltage  at  the  primary  DS  

§  voltage  level  of  the  receiving  end  

§  size  of  the  conductors  as  well  distance  from  the  primary  DS  

§  load  demand  on  the  system  

§  other  generaKon  on  the  system  

56

Page 57: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

DG  Voltage  Rise  MiOgaOon  Analysis  of  Voltage  Rise  Effect  on  DistribuOon  Network  with  Distributed  GeneraOon  M.  A.  Mahmud,    M.  J.  Hossain,    H.  R.  Pota  

The  voltage  rise  on  DS  can  be  miKgated  through  the  following  approaches:  

§  Resistance  reducKon  (increase  conductor  size  or  energize  to  higher  voltage)  

§  ReacKve  power  compensaKon  (switched  capacitor  or  DVAR)    

§  Coordinated  voltage  control    

§ GeneraKon  curtailment    

57

Page 58: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

DG  Voltage  Rise  –  Other  Reading  “A  Case  Study  of  a  Voltage  Rise  Problem  Due  to  a  Large  Amount  of  Distributed  GeneraKon  on  a  Weak  DistribuKon  Network”  –  Sami  Repo,  et  al.  hXp://labplan.ufsc.br/congressos/PowerTech/papers/51.pdf    

“The  integraKon  of  relaKvely  large  capacity  of  wind  power  into  a  weak  distribuKon  network  may  cause  a  voltage  rise  problem  during  low  demand  periods.”  

“A  review  on  voltage  control  methods  for  acKve  distribuKon  networks”  –  Tengku  Hashim,  et  al  hXp://pe.org.pl/arKcles/2012/6/71.pdf    

“The  convenKonal  distribuKon  networks  are  designed  based  on  the  assumpKon  of  unidirecKonal  power  flow.  With  the  increasing  connecKon  of  DG,  the  network  has  become  more  dynamic  with  bidirecKonal  power  flow  and  it[sic]  known  as  acKve  distribuKon  networks  (ADN).”  

“With  the  increasing  number  of  DG  penetraKon,  the  issue  of  voltage  level  in  distribuKon  systems  has  become  important.  Increasing  the  number  of  connected  generators  will  result  in  voltage  rise  above  its  permissible  level.”  

 

 

58

Page 59: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

DG  Voltage  Rise  –  Other  Reading  “IntegraKon  of  Distributed  GeneraKon  in  Low  Voltage  Networks:  Power  Quality  and  Economics”  –  KonstanKnos  Angelopoulos  hXp://www.esru.strath.ac.uk/Documents/MSc_2004/angelopoulos.pdf    

“It  is  possible  to  esKmate  the  effect  of  a  generator  by  using  the  standard  voltage  drop  equaKons  with  reverse  power  flow.  The  voltage  drop  along  a  feeder  due  to  a  load  is  approximately  equal  to:  

Vdrop  =  IRR+IXX  

Where:  

Vdrop=  voltage  drop  along  the  feeder  

R  =  line  resistance,  ohms  

X  =  line  reactance,  ohms  

IR  =  line  current  due  to  real  power  flow,  amps  (negaKve  for  a  generator  injecKng  power)  

IX  =  line  current  due  to  reacKve  power  flow,  amps  (negaKve  for  a  capacitor)  

 

59

Page 60: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

DG  Voltage  Rise  Analysis  on  Alaska  WD  Systems  

§  Power  flow  analysis  can  be  costly  and  take  Kme,  but  is  needed  in  come  cases.  

§ UVIG  DG  toolkit  is  a  quick  method  to  determine  if  more  detailed  PF  analysis  is  needed.  hXp://www.uwig.org/distwind/default.htm    

§ A  simple  voltage  drop/rise  calculaKon  can  be  done  in  two  minutes.  

60

Page 61: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Voltage  Rise  –  Kotzebue  Example  

61

Page 62: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Single phase VD = (2 * L * R * I) / 1000 ftDistance  in  miles 4Equivalent  feet 21,120Resistance  in  Ohms/1,000  feet  from  chart  at  right 0.1265 2/0  QuailLoad  in  amps  is  based  on  total  power  and  line  voltageMax  power  (Watts)  from  all  wind  turbines 1,100,000

Voltage  rating  of  transmission  line 12470Single  phase  amps  from  wind  turbine 88.21Convert  to  3-­‐phase  (Div  by  sqrt  of  3)  gives  load  in  amps  from  turbine 50.93Using  above  bold  formula,  voltage  drop/rise  is  -­‐-­‐-­‐-­‐-­‐-­‐> 272.14Percentage  of  voltage  drop/rise 2.18%

3-phase VD = SPVD * (1.732/2) Drop between any 2 phases3-­‐phase  voltage  drop/rise  is-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐> 235.68Percentage  of  voltage  drop/rise 1.89%

Voltage  Rise  –  Kotzebue  Example  

<3%  is  desired  

Before  adding  two  EWT  900kW  turbines.  

62

Page 63: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Voltage  Rise  –  Kotzebue  Example  Single phase VD = (2 * L * R * I) / 1000 ftDistance  in  miles 4Equivalent  feet 21,120Resistance  in  Ohms/1,000  feet  from  chart  at  right 0.1265 2/0  QuailLoad  in  amps  is  based  on  total  power  and  line  voltageMax  power  (Watts)  from  all  wind  turbines 2,900,000

Voltage  rating  of  transmission  line 12470Single  phase  amps  from  wind  turbine 232.56Convert  to  3-­‐phase  (Div  by  sqrt  of  3)  gives  load  in  amps  from  turbine 134.27Using  above  bold  formula,  voltage  drop/rise  is  -­‐-­‐-­‐-­‐-­‐-­‐> 717.46Percentage  of  voltage  drop/rise 5.75%

3-phase VD = SPVD * (1.732/2) Drop between any 2 phases3-­‐phase  voltage  drop/rise  is-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐> 621.34Percentage  of  voltage  drop/rise 4.98%

0.622596<3%  is  desired  

Voltage  can  rise  as  wind  power  increases  on  distributed  generation  microgrids.  

A;er  adding  two  EWT  900kW  turbines.  

63

Page 64: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Voltage  Rise  at  KEA  A;er  2013  Energize  to  25kV  

Goal  achieved  

Single phase VD = (2 * L * R * I) / 1000 ftDistance  in  miles 4Equivalent  feet 21,120Resistance  in  Ohms/1,000  feet  from  chart  at  right 0.1265 2/0  QuailLoad  in  amps  is  based  on  total  power  and  line  voltageMax  power  (Watts)  from  all  wind  turbines 2,900,000

Voltage  rating  of  transmission  line 25000Single  phase  amps  from  wind  turbine 116.00Convert  to  3-­‐phase  (Div  by  sqrt  of  3)  gives  load  in  amps  from  turbine 66.97Using  above  bold  formula,  voltage  drop/rise  is  -­‐-­‐-­‐-­‐-­‐-­‐> 357.87Percentage  of  voltage  drop/rise 1.43%

3-phase VD = SPVD * (1.732/2) Drop between any 2 phases3-­‐phase  voltage  drop/rise  is-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐> 309.92Percentage  of  voltage  drop/rise 1.24%

0.622596

64

Page 65: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

InducOon  Generators  vs.  Inverter  Systems  

§  An  inducKon  (asynchronous)  generator  must  have  its  magneKc  field  maintained  through  the  same  mechanism  as  an  inducKon  motor.  It  must  exchange  energy  with  a  capacitor  or  with  a  synchronous  generator  that  can  be  adjusted  to  “act  as  a  capacitor.”  In  order  to  funcKon  as  a  generator,  an  inducKon  generator  requires  an  external  source  of  reacKve  volt-­‐amperes  (VARs).  This  is  typically  supplied  by  the  diesel  gensets.  Power  factor  drops  as  the  WTG  produces  more  energy.  

§  Inverter-­‐based  WTG  controllers  create  a  wall  from  the  microgrid  where  VARs  are  produced  by  the  inverter  using  power  from  the  wind  turbine  once  it  has  spun-­‐up.  The  microgrid  only  sees  clean  power.  

65

Page 66: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Generator  Sizing  and  Spinning  Reserve  §  Being  able  to  step  up  or  down  to  the  appropriate  size  diesel  genset  as  wind  producKon  moves  up  and  down  can  minimize  fuel  efficiency  hit.  

§  Larger  diesel  genset  may  sKll  be  needed  for  VARs  support  or  spinning  reserve.  

§  Sufficient  spinning  reserve  (diesel,  baXery,  etc.)  must  be  maintained  to  handle  sudden  drops  in  wind  output.  50%  of  current  wind  energy  may  be  needed.  

§ Diesel  generators  will  see  a  greater  number  of  starts/stops  when  wind  energy  is  introduced  –  some  efficiency  loss.  

66

Page 67: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Generator  Sizing  and  Spinning  Reserve  Engine  Make/Model                                                          

Serial  #Min  Load  %

Rated  Capacity  (kW)    (kVA)

Average  Load  on  Genset

Average  Load  on  Genset  w/  Wind

Det  diesel  60 363

Cummins  KTA  19G4 499

MTU  12V2000 700

Heat  Recovery  Loop:    None  currently,  but  possibility  for  water  treatament  plant  and  the  school.

46% 38%

33% 27%

Application/Grant  #

Diesel  GensetsNoorvik  Wind  Farm

Comments:    Manual  switchgear  in  Noorvik  would  need  to  be  upgraded  and  possibly  new  feeders.  

64% 52%30%

30%

30%

67

Page 68: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

What  if  the  wind  doesn’t  drop  off  suddenly,  but  keeps  gejng  stronger?  

68

Page 69: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

What  if  the  wind  doesn’t  drop  off  suddenly,  but  keeps  gejng  stronger?  

69

Page 70: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

What  if  the  wind  doesn’t  drop  off  suddenly,  but  keeps  gejng  stronger?  

§  If  all  turbines  are  set  to  trip  off  at  exactly  25  m/s,  Unalakleet  could  lose  600kW  of  power  generaKon  in  a  few  seconds.  

§  Which  diesels  are  online  and  how  quickly  can  they  make  up  for  the  600kW?  

§  Staggering  wind  turbine  cut-­‐out  speeds  can  minimize  the  power  loss  steps  to  100  or  200kW.  

§  Single  wind  turbines  make  this  harder  to  accomplish  unless  they  have  variable  pitch  blades  plus  controls  that  allow  for  reducing  energy  output  as  the  turbine  gets  close  to  the  cutout  speed.  

§  Smart  systems  control  logic  will  bring  addiKonal  spinning  reserve  online  when  wind  turbines  get  close  to  cut-­‐out  speed.  

70

Page 71: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

12-­‐month  Unalakleet  met  tower  study  showed  no  incidents  of  hijng  cut-­‐out  speed  

However,  UVEC  has  seen  instances  where  wind  turbines  cut  out  at  25  m/s  and  the  diesel  gensets  trip  offline.  

71

Page 72: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Another  problem  with  strong  winds  §  A  small  community  with  small  load  in  a  class  7  wind  regime.  

§  Average  load  is  29kW.  Average  wind  penetraKon  is  81%.  

§  One  65kW  wind  turbine  installed  –  stall-­‐regulated,  basic  controller.  

§  Turning  on  the  wind  turbine  at  15-­‐25m/s  first  causes  an  in  rush  of  current  into  the  wind  turbine’s  inducKon  generator.  Then,  the  turbine  pushes  65kW  of  power  back  onto  the  local  grid.  

§  If  diesel  genset  and  secondary  loads  can’t  respond  fast  enough,  high  voltage  or  frequency  will  trip  off  the  diesel  genset  and  village  loses  power.      

 

SoluKons:    

A  single  smaller  turbine.  

MulKple  smaller  turbines  with  automated  switchgear  that  turns  on  one  turbine  at  a  Kme.  

Develop  a  smart  wind  turbine  controller  that  starts  the  turbine  with  a  long  ramp  rate  to  max  power.    

72

Page 73: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Other  wind  turbine  features  to  consider  in  your  system  

§  So;  start  

§ Dynamic  braking  

§ Variable-­‐pitch  blades  

§  Tilt-­‐up  towers  vs.  monopole  towers  vs.  la}ce  towers  

73

Page 74: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Secondary  load  consideraKons  

74

Page 75: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Secondary  load  consideraKons  

75

Page 76: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Secondary  load  consideraOons  §  Is  there  a  heat  recovery  loop  on  the  exisKng  diesel  system?  

§ How  much  energy  (mmBTUs)  currently  goes  into  the  HR  loop  and  at  what  rate  throughout  the  year?  

§ How  much  energy  is  pulled  off  the  HR  loop  by  value  loads  and  non-­‐value  loads?  At  what  rate  throughout  the  year?  

76

Page 77: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Secondary  load  consideraOons  §  Does  the  “dead  zone”  where  wind  picks  up  and  diesels  throXle  back  reduce  the  energy  in  the  HR  loop  below  the  value  load  demand?  If  this  happens  fairly  o;en,  consider  placing  an  electric  boiler  on  the  HR  loop  before  any  other  secondary  load  opKons.  

§  If  the  energy  loss  in  the  HR  loop  rarely  or  never  drops  below  the  value  load  demand,  an  electric  boiler  on  the  HR  loop  buys  you  no  economic  benefit  for  your  excess  electricity.  You  should  consider  value  electric  heat  loads  elsewhere  in  the  community  (school,  village  office,  water  treatment,  washeteria,  wastewater  system,  residenKal).  

§  Don’t  overlook  the  opportunity  for  dispatchable  electric  loads  like  pumping  water.  

77

Page 78: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Secondary  load  consideraOons  § At  what  rate  do  your  thermal  loads  “consume”  heat  (mmBTUs)?  

§ Will  your  wind  turbines  produce  excess  energy  at  a  rate  faster  than  can  be  absorbed  by  your  secondary  thermal  loads?  

§  If  so,  you  will  either  need  to  curtail  wind  turbines  and  lose  economic  benefit,  send  excess  power  to  an  open  air  dump  load  (no  value)  or  add  electric  boilers/heaters  to  value  loads  elsewhere  in  your  community.  

78

Page 79: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

§  Even  though  the  health  clinic  uses  almost  2X  the  amount  of  annual  excess  energy  produced  by  the  wind  turbines,  it  is  not  large  enough  to  handle  all  the  excess  energy  in  the  system.  

79

Secondary  load  consideraKons  

Community  building/load Connected  to  HR  Loop?

Current  annual  heating  oil  consumption*

Thermal  mass  -­‐  Equiv.  gals.  of  storage

MMBTU  Equiv

kWh  Equiv

Average  kW

Design  Day  Heat  

Public  Works-­‐HEMF Y 19,216 2,652 743,163 84.84 Suspect  boiler  setpoint  set  above  level  to    gain  benefit  from  HR  loop.  Estimate  20%  of  total  is  unmet.Sewer  Plant Y 13,695 1,890 529,639 60.46 Estimate  20%  of  total  load  is  unmetSchool N 116,800 16,118 4,517,240 515.67 1840000PSO N 6,348 876 245,502 28.03 100000 <BTU/HrHealth  clinic N 14,219 1,962 549,925 62.78 224000 <BTU/HrWater  plant N 11,426 1,577 441,904 50.45 180000 <BTU/HrFire  Station N 16,758 2,313 648,126 73.99 264000 <BTU/HrPower  plant Y 1,625 224 62,847 7.17 Estimate  20%  of  total  load  is  unmet

0 0 0.000 0 0.00

Totals 200,087 27,612 7,738,346 883.37 331,107 <<Excess  kWh  from  HOMER

Page 80: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

OperaOons  and  Maintenance  1.  Power  generaKon  and  distribuKon  systems  that  are  not  

properly  maintained  eventually  stop  generaKng  and  distribuKng  power.  

2.  A  poorly  maintained  petroleum-­‐based  energy  system  makes  a  poor  foundaKon  for  a  wind  energy  system.  

3.  Wind  energy  systems  must  be  well  maintained  in  order  to  save  you  money.  

4.  UKliKes  that  focus  on  operaKons,  maintenance  and  training  have  successful  wind-­‐hybrid  energy  systems.  

80

Page 81: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

O&M  key  components  §  SCADA  system  

§  System/error  logs  

§  PM  checklists  (daily/weekly/monthly/quarterly/annual)  

§  Spare  parts  (storage  space)  

§  TroubleshooKng  methods  

§  Decision  trees  

§  Staffing  

§  Training  

81

Page 82: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

O&M  strategy  §  Focus  on  preventaKve  maintenance  

§  Address  outliers  

§  Reduce  sources  of  variaKon  across  your  systems  

§  Have  wriXen  procedures  

§  Train  to  your  procedures  

§ When  methods  improve,  update  procedures  

§  Take  Kme  for  thorough  root-­‐cause  analysis  and  tesKng  of  soluKons  

§  The  beXer  your  data,  the  beXer  your  data-­‐driven  decisions  

82

Page 83: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Use  data  to  idenKfy  areas  of  focus  

83

Page 84: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Use  data  to  idenKfy  areas  of  focus  

84

Page 85: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Use  data  to  idenKfy  areas  of  focus  

85

Page 86: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Use  data  to  idenKfy  areas  of  focus  

86

Page 87: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Use  data  to  idenKfy  areas  of  focus  

87

Page 88: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Use  data  to  idenKfy  areas  of  focus  

88

Page 89: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

Conclusions  § Much  of  the  needed  design  acKvity  on  Alaska  wind  energy  systems  deals  with  integraKng  wind  power  with  the  exisKng  power  plant,  distribuKon  system  and  community  heat  loads.  

§ Detailed  understanding  of  how  your  wind  turbines  will  interact  with  your  exisKng  or  planned  power  generaKon  and  distribuKon  is  key  to  a  successful  project  that  will  last  decades.  

§ A  long  term  commitment  to  staffing,  training  and  O&M  will  ensure  you  get  the  most  benefit  from  your  energy  system.  

89

Page 90: Wind%Diesel%201 · 2017-07-12 · generator.Thisincreasedamountof generaonreversesthepowerflow throughtheline,fromthegenerator towardstheDistribuonSystem(DS). % ThevoltageprofileofDSwith1MW

CongratulaOons!  You’ve  survived  Wind-­‐Diesel  101  and  201!  

 

More  quesKons?  

Rich  Stromberg,  Wind  Program  Manager  Tel.  (907)  771-­‐3053  

E-­‐mail:  [email protected]  

Josh  Cra;,  Asst.  Project  Manager  -­‐  RPSU  

Tel.  (907)  771-­‐3043  E-­‐mail:  jcra;@aidea.org  

 90