wide-angle micro sensors for vision on a tight budget sanjeev j. koppal ioannis gkioulekas todd...

Download Wide-angle Micro Sensors for Vision on a Tight Budget Sanjeev J. Koppal Ioannis Gkioulekas Todd Zickler Geoffrey L. Barrows Harvard University CentEye,

If you can't read please download the document

Upload: mercy-griffith

Post on 23-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1
  • Wide-angle Micro Sensors for Vision on a Tight Budget Sanjeev J. Koppal Ioannis Gkioulekas Todd Zickler Geoffrey L. Barrows Harvard University CentEye, Inc.
  • Slide 2
  • Vision on mobile embedded platforms Georgiades et al. 2004, Farabet et al. 2009 Smart phonesCameras Embedded systems Robots
  • Slide 3
  • Vision on mobile embedded platforms *AAA battery (Alkaline) 1000mAh and 1.5V Embedded systems * 1 hour
  • Slide 4
  • The next wave of micro platforms Shoham et al. 2007, Wood 2008, Enikov et al. 2009, Lopez et al. 2009 Microrobots Medical devicesRemote sensor nodes
  • Slide 5
  • The next wave of micro platforms *AAA battery (Alkaline) 1000mAh and 1.5V Embedded systems * 1 hour Micro device * 1 hour
  • Slide 6
  • The next wave of micro platforms In addition to efficient hardware and software we need new sources of efficiency
  • Slide 7
  • Our idea: Optics as a new efficiency source Sensor with special optics The sensor does most of the computation optically
  • Slide 8
  • Our micro vision sensor Array of optical elements Single element
  • Slide 9
  • Optical element design Photodetectors Lenslet Refractive slab Template
  • Slide 10
  • Three benefits of our design Optical filtering Wide FOV Flexible design space
  • Slide 11
  • Traditional filtering Image Filter bank Combine filter responses for vision tasks
  • Slide 12
  • Traditional filtering is expensive Image Template Filter response Expensive
  • Slide 13
  • Optical filtering Image Expensive Template Image sensor Scene Free Goodman 1968, Yu and Jutumulia 1998, Nayar et al. 2004, Zomet and Nayar 2006 Filter response
  • Slide 14
  • Three benefits of our design Optical filtering Wide FOV Flexible design space
  • Slide 15
  • Micro devices need a wide FOV
  • Slide 16
  • Narrow FOV increases energy use
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Wide FOV Wide FOV reduces power consumption
  • Slide 21
  • Snells window Grazing ray Refractive slab
  • Slide 22
  • Snells window in imaging Wood 1911, Flickr Water cameraUnderwater photography
  • Slide 23
  • Three benefits of our design Optical filtering Wide FOV Flexible design space
  • Slide 24
  • Design space
  • Slide 25
  • n n R d u 1 2 Medium refractive index Lenslet refractive index Lenslet radius of curvature Template width Template height n 1 n 2 R d u Photodetector array Design space
  • Slide 26
  • d u d u Lensless case in air Mass is negligible Photodetector array
  • Slide 27
  • d u d u Lensless case in air Photodetector array Template
  • Slide 28
  • Angular support Photodetector array
  • Slide 29
  • Foreshortening distortion in angular support Photodetector array
  • Slide 30
  • Plot Angular support vs. Viewing direction Viewing direction Angular support
  • Slide 31
  • Tolerance Angular support Viewing direction User-defined desired support User-defined tolerance
  • Slide 32
  • Effective field of view (eFOV) Viewing direction Near-constant angular support Angular support Our goal: Maximize eFOV in the least mass and volume
  • Slide 33
  • Maximizing eFOV for the lensless case Viewing direction Angular support d u d u Photodetector array
  • Slide 34
  • u Viewing direction Angular support dd Photodetector array Maximizing eFOV for the lensless case
  • Slide 35
  • Viewing direction Near-constant angular support Angular support
  • Slide 36
  • Given user defined parameters (, ) Guess a large template width d Optimize template height u to find best eFOV Scale the design to reduce volume: Printing resolution or Diffraction limit Minimum photodetector width Maximizing eFOV for the lensless case d u
  • Slide 37
  • Angular support for refractive slab Photodetector array Angular support Viewing direction
  • Slide 38
  • Refractive distortion in angular support Angular support Viewing direction Near-constant angular support
  • Slide 39
  • Design with lenslets n 1 n 2 R d u Lenslets increase flexibility of the design n n R d u 1 2 Medium refractive index Lenslet refractive index Lenslet radius of curvature Template width Template height
  • Slide 40
  • Two designs with identical eFOV u< u u High volume High mass u d d
  • Slide 41
  • Rich design space for trade-offs n 1 n 2 R d u n n R d u 1 2 Medium refractive index Lenslet refractive index Lenslet radius of curvature Template width Template height
  • Slide 42
  • n 1 d u Use mass/volume equations for cuboid and spherical cap R,R, n 2 x ab v Angular support Lensless Lenslet Refractive slab Equations for eFOV
  • Slide 43
  • Lookup table for ( ) Mass Volume eFOV Max projection
  • Slide 44
  • Volume Max eFOV visualization of lookup table Mass Maximum eFOV (deg) 01000 0 mg mm 3 5 145 n 1 n 2 R d u
  • Slide 45
  • Slide 46
  • Milli-scale prototypes and applications
  • Slide 47
  • Camera and holders Baffles Prototype Array of elements ~5mm
  • Slide 48
  • Templates SceneSensor measurements Template tracking
  • Slide 49
  • Outdoor scene
  • Slide 50
  • Scene Lensless face detection Baffles
  • Slide 51
  • Scene Lensless face detection Sensor measurements Face detected Templates Center of each subimage gives 8 numbers Linear classifier: Kumar et al. 2009 Pinhole for validation
  • Slide 52
  • Face detection
  • Slide 53
  • Templates for micro sensors Printed templates Limited number of templates Only positive values No normalization Noise in the printing process Learn with tolerance Learn spatio-spectral templates
  • Slide 54
  • Tracking with spectral templates Templates embedded in acrylic Arduino board Imager shield Reverse side LED array Red filter eFOV divided into regions
  • Slide 55
  • Tracking a simple target
  • Slide 56
  • Recap Provided design toolsMilli-scale prototypes Optics for vision on micro devices Wide FOV filtering due to refractive slab
  • Slide 57
  • Future work: fabricating micro vision sensors Nalux 2011, Bruckner et al. 2009
  • Slide 58
  • Thanks IoannisToddGeof Come by our demo tomorrow!
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Programmable templates Speculative directions Exploiting diffraction Goodman 1968, Dudley et al. 2003, Nayar et al. 2006, Steier and Shori 1986 Traditional optical computing Rotating prisms!
  • Slide 63
  • http://robobees.seas.harvard.edu/ Fully autonomous robot insect in 3-5 years Our current optics with 2 templates Our future optics size: 1/4 th the size with 6 templates
  • Slide 64
  • Packing/Mosaicing optics to maximize eFOV Viewing direction Angular support Optical knapsack problem
  • Slide 65
  • Validation of refractive slab effect T Image Template In software In optics 0 deg 45 deg 80 deg T T
  • Slide 66
  • Validation
  • Slide 67
  • Curved sensors Ko et al. 2008, Cossairt et al. 2011, Krishnan and Nayar 2009
  • Slide 68
  • Curved sensors have a mass/volume tradeoff n 1 n 2 R d u Our sensor: compact but heavy Curved sensor Light but large Piecewise continuous templates
  • Slide 69
  • SNR design issues d d>d 1.Lenslets allow larger template for same eFOV 2.Fresnel Vignetting in refractive slab 3.Optically pre-processed images may not need high SNR
  • Slide 70
  • Discontinuity in lookup table Volume Mass Maximum eFOV (deg) 01000 0 mg mm 3 5 145
  • Slide 71
  • Optics win if task is specific Regular optics General processor Our Optics Accelerator Regular optics Accelerator Our Optics Accelerator Regular optics General processor Our Optics (extra) Accelerator Regular optics General processor Further analysis required
  • Slide 72
  • 3D optical designs Template (top view) Pixel d u d u Photodetector array Viewing direction 2d Angular support
  • Slide 73
  • Lenslet in air is inverted
  • Slide 74
  • Vignetting due to aperture
  • Slide 75
  • Slide 76
  • Refractive vignetting Photodetector array Angular support Viewing direction
  • Slide 77
  • Embedded system with optics LED Nearest neighbor matching Optics with skin reflectance filters Face detection with spectral templates Angelopoulou 1999, Osorio and Anderson 2007
  • Slide 78
  • More face detection results
  • Slide 79
  • Longer face detection
  • Slide 80
  • Design parameter ranges are limited n R 2 Lenslet refractive index Lenslet radius of curvature Sensors have reasonable limits 0 10mm These range from 1 2 (most materials) Lenses with reasonable focal lengths < 5 mm d u Template width Template height n 1 Medium refractive index
  • Slide 81
  • Lookup table with masks
  • Slide 82
  • SNR comparisons
  • Slide 83
  • Optimal designs for lensless Snells n 1 n 1 1 n 1 > Increasing refractive index increases FOV But it increases mass
  • Slide 84
  • Differently blurred images Simple planar scene Template Lensless configuration ~0.1mm
  • Slide 85
  • Edge results Input Output by subtracting images
  • Slide 86
  • Our theory is useful The optimal template height u Too closeToo far away
  • Slide 87
  • Outdoor edge results (90 eFOV) Input OutputScene
  • Slide 88
  • Wide FOV edge detection (120 eFOV) Scene Snells window Optical glue
  • Slide 89
  • Snells window Without Snells window With Snells window Scene