where is the spin of the nucleon hidden?dvcs bethe-heitler (bh) γ + hermes, jlab: dvcs-bh...

60
Where is the Spin of the Nucleon hidden? E.C. Aschenauer DESY-ZEUTHEN E.C. Aschenauer 2003 CTEQ Summer School Lecture II 1

Upload: others

Post on 27-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Where is the Spin of the Nucleon hidden?

    E.C. Aschenauer

    DESY-ZEUTHEN

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 1

  • The Spin Structure of the Nucleon

    Naive Parton Model:��� � � �� � � �

    � � ��� � �

    � �� � �� �

    BUT

    1988 EMC measured:�� = 0.123 � 0.013 � 0.019

    � � Spin Puzzle

    F � from HERA tells:Gluons are important !

    � � sea quarks �����

    � � ��

    �� �

    ��

    � ��� �� ��� ! "# $ ! "# $

    % � %&

    � '( � ' � '( � ') * +

    Full description of J & Jneeds

    orbital angular momentum

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 2

  • The Spin Structure of the Nucleon

    Naive Parton Model:��� � � �� � � �

    � � ��� � �

    � �� � �� �

    BUT

    1988 EMC measured:�� = 0.123 � 0.013 � 0.019

    � � Spin Puzzle

    F � from HERA tells:Gluons are important !

    � � sea quarks �����

    � � ��

    Full description of J� & J �

    needsorbital angular momentum�

    � ��

    �� ��� � � ��� �

    ! "# $

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 2

  • The Hunt for% �

    Study of hard exclusive processes leads toa new class of PDFs

    Generalised Parton Distributions�� � �� � � �� � � ��

    � possible access toorbital angular momentum

    � � � ��

    � � �� � � �� � �� � � � ��

    exclusive processes: all products of a reaction are detected� � missing energy ( �� ) and missing Mass ( ��� ) = 0

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 3

  • GPDs Introductionquantum numbers of final state � select different GPDs

    ∆2

    P +∆P - 2

    x - ξ ξx +

    γ∗ γ

    GPD

    0+

    P - ∆2

    P + ∆2

    π , π

    x - ξ ξx +

    γ∗

    GPD

    q 0ρ , Φ , ωq

    P + ∆2

    P - ∆2

    x - ξ ξx +

    GPD

    γ∗

    DVCS: pseudo-scalar mesons vector mesons�� � �� � � �� � � �� � �� � � �� �� � ��

    What does GPDs characterize?unpolarized polarized�� � � � � � � � �� � � � � � � conserve nucleon helicity�� � � � � � � � �� � � � � � � flip nucleon helicity

    �, �, � defined on the light cone

    �: longitudinal momentum fraction �: momentum transfer ( � � � � )

    : exchanged longitudinal momentum fraction (

    � � ��� � �� � ��� � � )E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 4

  • GPDs Introduction II

    � Link to DIS:

    P

    Im

    Forward DVCS

    x

    2

    DIS ∆, ξ −−> 0

    ∆2

    P +∆P - 2

    x - ξ ξx +

    γ∗ γ

    GPD

    γ∗

    standard PDFsand

    do NOT appear in DISNew Info !

    Study GPDswith spin observablessingle spin azimuthal asymmetriesazimuthal asymmetriesvia cross sections

    qqx = ξ

    Distribution q(x)Antiquarkξ = 0

    Quark Distribution q(x)

    H ( x , , t=0)ξu

    P P’

    qq

    Distribution Function

    Distribution Function

    Distribution Function

    P P’

    qq q

    q q

    x−ξ +ξ +1-1 0

    q

    P P’

    q q

    GPDGPD GPD

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 5

  • GPDs Introduction II

    � Link to DIS:

    P

    Im

    Forward DVCS

    x

    2

    DIS ∆, ξ −−> 0

    ∆2

    P +∆P - 2

    x - ξ ξx +

    γ∗ γ

    GPD

    γ∗

    � standard PDFs� � � � � and � � �� ��� � � � � � � � � � � ���

    � � ��� � � � � � � � � � ��� ���

    do NOT appear in DISNew Info !

    Study GPDswith spin observablessingle spin azimuthal asymmetriesazimuthal asymmetriesvia cross sections

    qqx = ξ

    Distribution q(x)Antiquarkξ = 0

    Quark Distribution q(x)

    H ( x , , t=0)ξu

    P P’

    qq

    Distribution Function

    Distribution Function

    Distribution Function

    P P’

    qq q

    q q

    x−ξ +ξ +1-1 0

    q

    P P’

    q q

    GPDGPD GPD

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 5

  • GPDs Introduction II

    � Link to DIS:

    P

    Im

    Forward DVCS

    x

    2

    DIS ∆, ξ −−> 0

    ∆2

    P +∆P - 2

    x - ξ ξx +

    γ∗ γ

    GPD

    γ∗

    � standard PDFs� � � � � and � � �� ��� � � � � � � � � � � ���

    � � ��� � � � � � � � � � ��� ���

    � � �� do NOT appear in DIS� � New Info !

    Study GPDswith spin observablessingle spin azimuthal asymmetriesazimuthal asymmetriesvia cross sections

    qqx = ξ

    Distribution q(x)Antiquarkξ = 0

    Quark Distribution q(x)

    H ( x , , t=0)ξu

    P P’

    qq

    Distribution Function

    Distribution Function

    Distribution Function

    P P’

    qq q

    q q

    x−ξ +ξ +1-1 0

    q

    P P’

    q q

    GPDGPD GPD

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 5

  • GPDs Introduction II

    � Link to DIS:

    P

    Im

    Forward DVCS

    x

    2

    DIS ∆, ξ −−> 0

    ∆2

    P +∆P - 2

    x - ξ ξx +

    γ∗ γ

    GPD

    γ∗

    � standard PDFs� � � � � and � � �� ��� � � � � � � � � � � ���

    � � ��� � � � � � � � � � ��� ���

    � � �� do NOT appear in DIS� � New Info !

    � Study GPDs

    with spin observablessingle spin azimuthal asymmetriesazimuthal asymmetriesvia cross sections

    qqx = ξ

    Distribution q(x)Antiquarkξ = 0

    Quark Distribution q(x)

    H ( x , , t=0)ξu

    P P’

    qq

    Distribution Function

    Distribution Function

    Distribution Function

    P P’

    qq q

    q q

    x−ξ +ξ +1-1 0

    q

    P P’

    q q

    GPDGPD GPD

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 5

  • GPDs Introduction II

    � Link to DIS:

    P

    Im

    Forward DVCS

    x

    2

    DIS ∆, ξ −−> 0

    ∆2

    P +∆P - 2

    x - ξ ξx +

    γ∗ γ

    GPD

    γ∗

    � standard PDFs� � � � � and � � �� ��� � � � � � � � � � � ���

    � � ��� � � � � � � � � � ��� ���

    � � �� do NOT appear in DIS� � New Info !

    � Study GPDs

    � with spin observablessingle spin azimuthal asymmetries

    azimuthal asymmetriesvia cross sections

    qqx = ξ

    Distribution q(x)Antiquarkξ = 0

    Quark Distribution q(x)

    H ( x , , t=0)ξu

    P P’

    qq

    Distribution Function

    Distribution Function

    Distribution Function

    P P’

    qq q

    q q

    x−ξ +ξ +1-1 0

    q

    P P’

    q q

    GPDGPD GPD

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 5

  • GPDs Introduction II

    � Link to DIS:

    P

    Im

    Forward DVCS

    x

    2

    DIS ∆, ξ −−> 0

    ∆2

    P +∆P - 2

    x - ξ ξx +

    γ∗ γ

    GPD

    γ∗

    � standard PDFs� � � � � and � � �� ��� � � � � � � � � � � ���

    � � ��� � � � � � � � � � ��� ���

    � � �� do NOT appear in DIS� � New Info !

    � Study GPDs

    � with spin observablessingle spin azimuthal asymmetries

    � azimuthal asymmetries

    via cross sections

    qqx = ξ

    Distribution q(x)Antiquarkξ = 0

    Quark Distribution q(x)

    H ( x , , t=0)ξu

    P P’

    qq

    Distribution Function

    Distribution Function

    Distribution Function

    P P’

    qq q

    q q

    x−ξ +ξ +1-1 0

    q

    P P’

    q q

    GPDGPD GPD

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 5

  • GPDs Introduction II

    � Link to DIS:

    P

    Im

    Forward DVCS

    x

    2

    DIS ∆, ξ −−> 0

    ∆2

    P +∆P - 2

    x - ξ ξx +

    γ∗ γ

    GPD

    γ∗

    � standard PDFs� � � � � and � � �� ��� � � � � � � � � � � ���

    � � ��� � � � � � � � � � ��� ���

    � � �� do NOT appear in DIS� � New Info !

    � Study GPDs

    � with spin observablessingle spin azimuthal asymmetries

    � azimuthal asymmetries

    � via cross sections

    qqx = ξ

    Distribution q(x)Antiquarkξ = 0

    Quark Distribution q(x)

    H ( x , , t=0)ξu

    P P’

    qq

    Distribution Function

    Distribution Function

    Distribution Function

    P P’

    qq q

    q q

    x−ξ +ξ +1-1 0

    q

    P P’

    q q

    GPDGPD GPD

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 5

  • DVCS � � ���� �

    e’e

    γ

    p + ∆

    γ∗

    p

    ee’

    γγ∗

    p ∆p +

    DVCS Bethe-Heitler (BH)

    ��� � �� � � ��� �� �

    +

    � � � ��� � � � ���� � � �

    HERMES, JLAB:DVCS-BH interference:

    � � use BH as a vehicle to study DVCSH1, ZEUS:measure DVCS cross section directly

    HERMES / JLAB kinematics:BH cross section larger than DVCS

    10 2

    10 3

    10 4

    10 5

    10 6

    -10 0 10 20

    10 2

    10 3

    10 4

    10 5

    10 6

    -10 0 10 20

    10 2

    10 3

    10 4

    10 5

    10 6

    -10 0 10 20

    10 2

    10 3

    10 4

    10 5

    10 6

    -10 0 10 20

    Θγγ*, deg

    x = 0.1

    Q2 = 2 GeV2

    Θγγ*, deg

    x = 0.3

    Q2 = 2 GeV2

    DVCSBH

    Θγγ*, deg

    x = 0.1

    Q2 = 5 GeV2

    Θγγ*, deg

    x = 0.3

    Q2 = 5 GeV2

    d σ

    / d

    pe

    dΩ

    e d

    Ωγ (

    pb

    / G

    eV s

    r2)

    [Korotkov, Nowak, hep-ph/0108077]

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 6

  • DVCS azimuthal asymmetries

    ��� � � � � �� �� � + � � � � � �� � � � � �� � isolate BH-DVCS interference term � � non-zero azimuthal asymmetries

    � imaginary part � beam helicity asymmetry:��� �� � ���� � � � �� � � � � � ��

    � � � � � � �� � � � � � �

    � asymmetry measured by HERMES and JLAB

    � real part � beam charge asymmetry:��� � � � ��� � � ��� � � �� ��

    � �� � � � � � � � � � � � �

    � asymmetry measured by HERMES

    � no polarized target needed

    k

    k’

    q

    φθγ∗

    PγP

    : azimuthal angle between

    lepton scattering plane

    and the � � � - plane

    (Detected)(Not Detected)

    (Detected)(Not Detected)

    GPDX

    eγ∗

    γe’

    p

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 7

  • DVCS at HERMES

    (Not Detected)

    (Detected)(Detected)

    GPDX

    eγ∗

    γe’

    p

    � � Exclusivity has to be ensured bymissing mass: M

    �� � � � � � ��� � � � ��Energy resolution in exclusive region:� � � �� � �� 0.8 GeV

    �� �� � � �� � �

    0

    1000

    2000

    3000

    4000

    5000

    6000

    -5 0 5 10 15 20 25 30 35 40 45Mx

    2 ( GeV2 )

    Co

    un

    ts

    0

    200

    400

    600

    800

    1000

    1200

    -4 -2 0 2 4 6 8Mx

    2 ( GeV2 )C

    ou

    nts

    Improve Exclusivity: detect recoil proton � planned for 2005/2006 data taking

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 8

  • DVCS beam charge asymmetry (BCA)

    ��� � � � ��� � sensitive to �� � � �� �� � � �� � �

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    -3 -2 -1 0 1 2 3

    Φ (rad)

    AC

    HERMES PRELIMINARY

    P1 + P2 cos Φ

    P1 = -0.05 ± 0.03 (stat.) ± 0.03 (sys.)

    P2 = 0.11 ± 0.04 (stat.) ± 0.03 (sys.) -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    -1 0 1 2 3 4 5 6

    M x [GeV]

    AC

    co

    s φ

    e± p → e±γ X

    HERMES PRELIMINARY

    AC cos φ |M < 1.7 GeV = 0.11 ± 0.04 (stat) ± 0.03 (sys)x

    -1.5

    M � � 1.7 GeV

    ��� � � ���� � � � � ��� � �

    ��� � � � � ��� � �

    � azimuthal asymmetry appears at

    �� ��

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 9

  • DVCS single beam-spin asymmetry (BSA)

    ��� � � � ���� � � � sensitive to

    � � � � � � �� � � � � �

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    -3 -2 -1 0 1 2 3

    φ (rad)

    AL

    U

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0 50 100 150 200 250 300 350φ, deg

    A

    HERMES CLAS

    -1.5

    M � � 1.7 GeV

    96/97: [PRL87 (2001), 182001] [PRL87 (2001), 182002]� � ��� ��� � � � � � �� � � � � � � � � � ��

    �� � � � � � � � � � � � � � � � � ��

    at

    ��� � � ��� � � , ��� � � � � � GeV

    ,

    ��� � � � �� � GeV

    at � � ��� � � � �� � �, �� � � � � � � GeV

    ,

    � � � �� � � �� � � GeV

    GPD-calculation: [Kivel et al. Phys. Rev. D 63 (2001), 114014]E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 10

  • Much more data!

    ��� � � � ���� � � � sensitive to

    � � � � � � �� � � � � �

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    -3 -2 -1 0 1 2 3

    φ (rad)

    AL

    U

    HERMES 2000 (refined)PREL.e→ + p → e+ γ X (Mx< 1.7 GeV)

    P1 + P2 sin φ + P3 sin 2φ

    = 0.18 GeV2, = 0.12, = 2.5 GeV2

    P1 = -0.04 ± 0.02 (stat)P2 = -0.18 ± 0.03 (stat)P3 = 0.00 ± 0.03 (stat)

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    -1 0 1 2 3 4 5 6

    Mx (GeV)

    AL

    U s

    in

    φ

    e→ + p → e+ γ X

    HERMES 2000(refined analysis)

    PRELIMINARY

    ALU sin φ M < 1.7 GeV = -0.18 ± 0.03 (stat) ± 0.03 (sys)x

    = 0.18 GeV2, = 0.12, = 2.5 GeV2

    � all azimuthal asymmetries (BCA & BSA) appear at

    � � �

    � enough statistics to study kinematic dependencies of GPDs

    � DVCS data on polarized proton / deuterium target � � access to

    � � � ��

    � DVCS data on nuclear targets (D,

    He, Ne, Kr)� � coherent scattering on a nucleus ?!E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 11

  • Exclusive PS meson production e p e

    n ��

    � cross section: � � � � � � ����� � � �

    � � has an interference between pole and non-pole amplitudes:�� � � � - FF

    � � � � ���

    � � large single spin asymmetry expected for transverse polarized H-target

    γ*L p → π+ n, π+ ∆0

    -0.5

    -0.3-0.1

    π+ n

    -0.5-0.35-0.2

    π+ ∆0

    xB

    SPIN

    ASY

    MM

    ET

    RY

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

    [ K. Goeke et al., hep-ph/0106012 ]

    0+

    P - ∆2

    P + ∆2

    π , π

    x - ξ ξx +

    γ∗

    GPD

    Lets see what the data say !

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 12

  • How to extract exclusive ��

    � Production mechanismen: ��� � � �

    ��� � �� �

    not detected

    no exclusive production at a proton targetTrick: exclusive

    π+

    Normalisationregion

    Missing Mass [GeV]

    Cou

    nts

    Cou

    nts

    π-

    0

    200

    400

    600

    800

    1000

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Exclusive MCArbitrary Norm.

    Data

    Fit to data

    Missing Mass [GeV] N

    π+ -

    Nπ-

    0

    100

    200

    300

    400

    0 0.5 1 1.5 2 2.5 3 3.5 4

    clear peak at missing massProblematic: difference in relative contribution of resonant and

    non-resonant channels to , yield

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 13

  • How to extract exclusive ��

    � Production mechanismen: ��� � � �

    ��� � �� �

    not detected

    � no exclusive � � production at a proton target

    Trick: exclusive

    π+

    Normalisationregion

    Missing Mass [GeV]

    Cou

    nts

    Cou

    nts

    π-

    0

    200

    400

    600

    800

    1000

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Exclusive MCArbitrary Norm.

    Data

    Fit to data

    Missing Mass [GeV] N

    π+ -

    Nπ-

    0

    100

    200

    300

    400

    0 0.5 1 1.5 2 2.5 3 3.5 4

    clear peak at missing massProblematic: difference in relative contribution of resonant and

    non-resonant channels to , yield

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 13

  • How to extract exclusive ��

    � Production mechanismen: ��� � � �

    ��� � �� �

    not detected

    � no exclusive � � production at a proton target

    � � Trick: exclusive � � � � � � � � � � � � � π+

    Normalisationregion

    Missing Mass [GeV]

    Cou

    nts

    Cou

    nts

    π-

    0

    200

    400

    600

    800

    1000

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Exclusive MCArbitrary Norm.

    Data

    Fit to data

    Missing Mass [GeV] N

    π+ -

    Nπ-

    0

    100

    200

    300

    400

    0 0.5 1 1.5 2 2.5 3 3.5 4

    clear peak at missing massProblematic: difference in relative contribution of resonant and

    non-resonant channels to , yield

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 13

  • How to extract exclusive ��

    � Production mechanismen: ��� � � �

    ��� � �� �

    not detected

    � no exclusive � � production at a proton target

    � � Trick: exclusive � � � � � � � � � � � � � π+

    Normalisationregion

    Missing Mass [GeV]

    Cou

    nts

    Cou

    nts

    π-

    0

    200

    400

    600

    800

    1000

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Exclusive MCArbitrary Norm.

    Data

    Fit to data

    Missing Mass [GeV] N

    π+ -

    Nπ-

    0

    100

    200

    300

    400

    0 0.5 1 1.5 2 2.5 3 3.5 4

    clear peak at missing mass� � �

    Problematic: difference in relative contribution of resonant andnon-resonant channels to , yield

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 13

  • How to extract exclusive ��

    � Production mechanismen: ��� � � �

    ��� � �� �

    not detected

    � no exclusive � � production at a proton target

    � � Trick: exclusive � � � � � � � � � � � � � π+

    Normalisationregion

    Missing Mass [GeV]

    Cou

    nts

    Cou

    nts

    π-

    0

    200

    400

    600

    800

    1000

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Exclusive MCArbitrary Norm.

    Data

    Fit to data

    Missing Mass [GeV] N

    π+ -

    Nπ-

    0

    100

    200

    300

    400

    0 0.5 1 1.5 2 2.5 3 3.5 4

    clear peak at missing mass� � �� Problematic: difference in relative contribution of resonant andnon-resonant channels to �

    , � � yieldE.C. Aschenauer 2003 CTEQ Summer School – Lecture II 13

  • Exclusive ��

    target - SSA

    � until 2001 no data with transverse polarized proton target available� � use longitudinal polarized proton target

    x

    y

    z φ

    ~phad

    ~S⊥

    ~S

    ~k

    ~k′

    ~q

    uli

    transverse component to

    cross section:

    unpolarized polarizedbeam target

    suppressed bybut

    HERMES: 0.17

    Target Spin Asymmetry:

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 14

  • Exclusive ��

    target - SSA

    � until 2001 no data with transverse polarized proton target available� � use longitudinal polarized proton target

    x

    y

    z φ

    ~phad

    ~S⊥

    ~S

    ~k

    ~k′

    ~q

    uli

    � � transverse component to � �

    cross section:

    unpolarized polarizedbeam target

    suppressed bybut

    HERMES: 0.17

    Target Spin Asymmetry:

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 14

  • Exclusive ��

    target - SSA

    � until 2001 no data with transverse polarized proton target available� � use longitudinal polarized proton target

    x

    y

    z φ

    ~phad

    ~S⊥

    ~S

    ~k

    ~k′

    ~q

    uli

    � � transverse component to � �

    � cross section:

    � � � ��� � � � ��� � � � � � � � � � �� � � � �

    unpolarized polarizedbeam target

    suppressed bybut

    HERMES: 0.17

    Target Spin Asymmetry:

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 14

  • Exclusive ��

    target - SSA

    � until 2001 no data with transverse polarized proton target available� � use longitudinal polarized proton target

    x

    y

    z φ

    ~phad

    ~S⊥

    ~S

    ~k

    ~k′

    ~q

    uli

    � � transverse component to � �

    � cross section:

    � � � ��� � � � ��� � � � � � � � � � �� � � � �

    unpolarized polarizedbeam target

    � � � suppressed by � � � � � �

    but

    � � � ���

    HERMES:

    ��� � � 0.17

    Target Spin Asymmetry:

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 14

  • Exclusive ��

    target - SSA

    � until 2001 no data with transverse polarized proton target available� � use longitudinal polarized proton target

    x

    y

    z φ

    ~phad

    ~S⊥

    ~S

    ~k

    ~k′

    ~q

    uli

    � � transverse component to � �

    � cross section:

    � � � ��� � � � ��� � � � � � � � � � �� � � � �

    unpolarized polarizedbeam target

    � � � suppressed by � � � � � �

    but

    � � � ���

    HERMES:

    ��� � � 0.17

    � Target Spin Asymmetry:

    ��� � � � ��

    � ��� � �� � � � � � � � �

    � � � � � � � � � ��

    � ��� � �� � � � � � � � �

    � � � � � � � � � � � �� �� � �� � � � ��� � �

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 14

  • Exclusive ��

    target - SSA-Results

    MX [GeV]

    AU

    L

    sin

    φ

    -0.5

    -0.25

    0

    0.25

    0 1 2

    φ [rad]

    A(φ

    )

    -3 -2 -1 0 1 2 3-0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    � Asymmetry appears at

    �� = Nucleon mass

    � � � � �� � � � � �� � � �� � � �� at � � � � � � � � � ��� � � � � � � � � �� � � � � � � �

    � more data needed � � transverse polarized target to study

    � � � � �

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 15

  • Exclusive VM-production � � ���� �� �

    0

    200

    400

    600

    800

    Eve

    nts

    γ*p ρ0p4 < W < 5 GeV

    -2 0 2 4 6 8 10 12 0

    200

    400

    600

    800

    ∆E [GeV]

    5 < W < 6 GeV� � � � � �

    � �

    � Recoiling proton is notdetected

    � good determination ofexclusive channelusing

    ��

    � DIS-‘background‘well described by Monte Carlo

    � deduce longitudinalcross section fromdecay angular distributions �

    � � �

    �� � � � �

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 16

  • Exclusive ��� for ��

    -Production

    101

    10-1

    100

    W [GeV]

    σ L(γ

    * p

    ρ0 p

    ) [µ

    b] = 2.3 GeV2

    HERMES

    E665

    101

    = 4.0 GeV2

    γ* + p → ρ0L + p

    10

    10 2

    10 3

    10 102

    Q2 = 5.6 GeV2

    10

    10 2

    10 3

    10 102

    dσL/d

    t(t=

    t min

    ) (n

    b/G

    eV2 )

    Q2 = 9 GeV2

    10-1

    1

    10

    10 2

    10 102

    Q2 = 27 GeV2

    W (GeV)

    [ K. Goeke et al., hep-ph/0106012 ]

    GPD calculations: � quark exchange mechanism dominates

    � � �� � p �� p) at low W �

    � 2-gluon exchange mechanism dominates

    � � �� � p �� p) at high W � and in � � �� � p � �p)E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 17

  • Deep Inelastic Scattering Cross Section

    Cross Section:

    � � �� � �� � � �� � �

    � � � �� ��� � � �� �� �� �� � � �� �� �

    leptonic hadronic

    ��� � purely electromagnetic � � calculable in QED

    = � �� � �� � ! � " # $% $ &

    � �� � ! � "

    # ')( � * � +,

    � � � � � �� ! � " #�

    �.-0/ � � � � �/ �- � � � � � � ! � " "

    (for spin 1) + quadrupole terms

    �1 � 1 � 132 154 �

    6 � , 687 � , 7 9 : Un- / Polarized Structure Functions

    BUTQuarks are relativistic, have intrinsic

    ;8< , masses and correlations

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 18

  • DIS and SIDIS Cross Section

    ��� 9 ��� �� � � �< � �� � � ��� � � � � ��

    �� � � ��� 7�� �

    � �

    � � � � � � � � ��� ��� � � � � � � � ��� �� � � � � � � � � �� � ��

    ��� � � ��� � � �

    � � � � �

    � �< � � � � � � ��� ��� � < � � � � � � ��� ��� ��� < � � � � � � � � � �� ��� ��� < � � � � <

    � � �< � �� � � � � ��� ��� � � < � � � �� � � � � � ��� ��� � �� < � � <

    � non zero Single Spin Azimuthal Asymmetries�� ���

    Beam Target polarization Mulders and Tangermann (NP B 461 (1996) 197)E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 19

  • Twist-2 Quark DF & FF

    Distribution Functions (DF) Fragmentation Functions (FF)

    =

    =

    =

    f1

    h1T

    g1L g1T=

    f1T =

    h1 =

    h1T =h1L =

    =

    =1L

    1

    G

    =H1T

    =1TG

    D

    D1T

    1H

    =

    =

    H1L= H1T =

    survive integrationThe others are sensitive to intrinsic in the nucleon& in the fragmentation process

    : Sivers DF : std. unpol FF: transversity : Collins FF

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 20

  • Twist-2 Quark DF & FF

    Distribution Functions (DF) Fragmentation Functions (FF)

    =

    =

    =

    f1

    h1T

    g1L g1T=

    f1T =

    h1 =

    h1T =h1L =

    =

    =1L

    1

    G

    =H1T

    =1TG

    D

    D1T

    1H

    =

    =

    H1L= H1T =

    � survive

    ;�� integration

    � The others are sensitive to intrinsic �;� � in the nucleon

    & in the fragmentation process

    : Sivers DF : std. unpol FF: transversity : Collins FF

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 20

  • Twist-2 Quark DF & FF

    Distribution Functions (DF) Fragmentation Functions (FF)

    =

    =

    =

    f1

    h1T

    g1L g1T=

    f1T =

    h1 =

    h1T =h1L =

    =

    =1L

    1

    G

    =H1T

    =1TG

    D

    D1T

    1H

    =

    =

    H1L= H1T =

    � survive

    ;�� integration

    � The others are sensitive to intrinsic �;� � in the nucleon

    & in the fragmentation process

    � � ���< : Sivers DF � �: std. unpol FF

    � �< : transversity � � �: Collins FFE.C. Aschenauer 2003 CTEQ Summer School – Lecture II 20

  • ... surviving

    ��� integration

    1f =q

    g =1 -q

    1h = -q

    Unpolarizedquarks and nucleons

    vector charge:

    � � � � ��� � � � � � ��

    � �� �� ��� � � � � �� � � � �

    q(x): spin averagedwell known

    H1, ZEUS

    Longitudinally polarizedquarks and nucleons

    axial charge:

    � � � � ��� � � � � � � ��� � � �� �� � � � � � � �� � � � �

    q(x): helicity differenceknown

    SMC, HERMES,COMPASS, RHIC

    Transversely polarizedquarks and nucleons

    tensor charge :

    � � � � ����� �� � � � � � ��� � � �� �� � � � � � � �� � � � �

    q(x): helicity flipunmeasured

    SMC, HERMES,COMPASS, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 21

  • Characteristics of Transversity

    � Non-relativistic quarks:

    � � � � � � � � � � �

    � � � probes relativistic nature of quarks

    � Angular momentum conservation� Transversity has no gluon component� different � � evolution than � � � � �

    � � and �� contribute with opposite sign to � � � � �� predominantly sensitive to valence quark polarization

    � Bounds:� � � � � � � ��� � � � �

    � Soffer bound: � � � � � � ��� �� �� � � � � � � � � ��

    Transversity distribution CHIRAL ODDNo Access in Inclusive DIS !!!

    L

    R

    R

    L

    NEED another chiral-odd object!

    semi-inclusive DIS Collins FF

    RL

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 22

  • Characteristics of Transversity

    � Non-relativistic quarks:

    � � � � � � � � � � �

    � � � probes relativistic nature of quarks

    � Angular momentum conservation� Transversity has no gluon component� different � � evolution than � � � � �

    � � and �� contribute with opposite sign to � � � � �� predominantly sensitive to valence quark polarization

    � Bounds:� � � � � � � ��� � � � �

    � Soffer bound: � � � � � � ��� �� �� � � � � � � � � ��

    � Transversity distribution CHIRAL ODD

    � No Access in Inclusive DIS !!!

    L

    R

    R

    L

    NEED another chiral-odd object!

    semi-inclusive DIS Collins FF

    RL

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 22

  • Characteristics of Transversity

    � Non-relativistic quarks:

    � � � � � � � � � � �

    � � � probes relativistic nature of quarks

    � Angular momentum conservation� Transversity has no gluon component� different � � evolution than � � � � �

    � � and �� contribute with opposite sign to � � � � �� predominantly sensitive to valence quark polarization

    � Bounds:� � � � � � � ��� � � � �

    � Soffer bound: � � � � � � ��� �� �� � � � � � � � � ��

    � Transversity distribution CHIRAL ODD

    � No Access in Inclusive DIS !!!

    L

    R

    R

    L

    NEED another chiral-odd object!

    semi-inclusive DIS Collins FF

    RL

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 22

  • Characteristics of Transversity

    � Non-relativistic quarks:

    � � � � � � � � � � �

    � � � probes relativistic nature of quarks

    � Angular momentum conservation� Transversity has no gluon component� different � � evolution than � � � � �

    � � and �� contribute with opposite sign to � � � � �� predominantly sensitive to valence quark polarization

    � Bounds:� � � � � � � ��� � � � �

    � Soffer bound: � � � � � � ��� �� �� � � � � � � � � ��

    � Transversity distribution CHIRAL ODD

    � No Access in Inclusive DIS !!!

    L

    R

    R

    L

    NEED another chiral-odd object!

    � semi-inclusive DIS � ��� Collins FF

    RL

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 22

  • How can one measure Transversity

    Single spin azimuthal asymmetries with a transverse polarized target� � � � ���

    x

    y

    z

    φS

    φ

    ~phad

    ~S⊥

    ~k

    ~k′

    ~q

    uli

    � � � � �� Collins angle� � � � � � �

    � � �� � � � � � � � �

    � �

    chiral-odd chiral-oddDF FF

    � ��� ��� � ����� � � � � �! � "� � � � � � ��� �# � �# " �

    � � � ��� � � $�

    � %'& (*) + �-, �. (*/ +

    � $ �� & () + � .(*/ +

    Can only measure

    �10 �32 �54 6 �87 9;: �3< �6 �87 9;: � < � from e =e > collider experiments, like BelleE.C. Aschenauer 2003 CTEQ Summer School – Lecture II 23

  • First glimpse on Transversity?!HERMES:

    � until 2001 no data with transverse polarized proton target available� � like for exclusive pion production� � use longitudinal polarized proton and deuterium target

    ��� � � � � � ��� � 4 � � � � � � � � �� � � � � � � � � �

    �� transverse componentof target spin w.r.t. virtual photon:� � � ��� ��� � � �2� � �� ��� ��

    � � ��� � !� � �#" " 4 � � $ %'& � � � � � � � $ % & � � � � (x

    y

    z φ

    ~phad

    ~S⊥

    ~S

    ~k

    ~k′

    ~q

    uli

    � � transverse component to )

    � � ��� � !� � � �#" " � � 97 * 9 +, 9 2 - .0/ � � �123 4 6 � 9 : �3< � � � 97 * 9 +, 9 2 - . � � � � � � �� �65 �1 23 4

    sub-leading transversity4 Collins FForder

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 24

  • ResultsPROTON DEUTERON

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0 π-π

    A(φ

    )

    φ

    π+P1 + P2 sin(φ)

    P1 = 0.004 ± 0.003P2 = 0.020 ± 0.004

    0 π-π

    A(φ

    )

    φ

    π-

    P1 = 0.003 ± 0.004P2 = -0.001 ± 0.005

    0 π-π

    A(φ

    )

    φ

    π0

    P1 = -0.001 ± 0.005P2 = 0.019 ± 0.007

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    -3.14 -1.57 0 1.57 3.14

    -0.04

    -0.02

    0

    0.02

    0.04

    -3.14 -1.57 0 1.57 3.14

    -0.04

    -0.02

    0

    0.02

    0.04

    -3.14 -1.57 0 1.57 3.14

    -0.04

    -0.02

    0

    0.02

    0.04

    -3.14 -1.57 0 1.57 3.14

    -0.02

    0

    0.02

    0.04

    e d→

    → e π+ X

    P1 * sin φP1 * sin φ + P2 * sin 2φP1 = 0.012 ± 0.002P2 = 0.004 ± 0.002

    A(φ

    )

    -0.02

    0

    0.02

    0.04

    e d→

    → e π0 X

    P1 = 0.021 ± 0.005P2 = 0.009 ± 0.005

    A(φ

    )

    -0.02

    0

    0.02

    0.04

    e d→

    → e π- X

    P1 = 0.006 ± 0.003P2 = 0.001 ± 0.003

    A(φ

    )

    -0.02

    0

    0.02

    0.04

    -0.04

    e d→

    → e K+ X

    P1 = 0.013 ± 0.006P2 = -0.005 ± 0.006

    A(φ

    )

    -π -π/2 0 π/2 π

    φ

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 25

  • � � � � ��

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    0 0.1 0.2 0.3

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    0 0.25 0.5 0.75 1

    AU

    L

    sin

    φA

    UL

    sin

    φe p

    → → e π+ X

    e d→

    → e π+ XA

    UL

    sin

    φ

    e d→

    → e π0 Xe p

    → → e π0 X

    AU

    L

    sin

    φ

    e d→

    → e π- Xe p

    → → e π- X

    x

    AU

    L

    sin

    φ

    e d→

    → e K+ X

    P⊥ (GeV) z0.2 0.3 0.4 0.5 0.6 0.7

    Original predictions by Collins:

    � Proton TargetLarger for � = , � �than for � >

    ( �-quark dominance )

    � Rise with x ��

    (valence quark dominance)� Grow with � � , peak around 1 GeV

    (

    � �� �� �� �� = � � with ��� �1 GeV)� First SSA for Kaons

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 26

  • What does theory tell?

    -0.02

    0

    0.02

    0.04

    0.06

    0 0.1 0.2 0.3

    -0.02

    0

    0.02

    0.04

    0.06

    0 0.1 0.2 0.3

    -0.02

    0

    0.02

    0.04

    0.06

    0 0.1 0.2 0.3

    -0.02

    0

    0.02

    0.04

    0.06

    0 0.1 0.2 0.3

    AU

    L

    sin

    φ

    e d→

    → e π+ X

    χQSM

    QdQ

    pQCDA

    UL

    sin

    φ

    e d→

    → e π0 X

    χQSM

    QdQ

    pQCD

    AU

    L

    sin

    φ

    e d→

    → e π- X

    χQSM

    QdQ

    pQCD

    x

    AU

    L

    sin

    φ

    e d→

    → e K+ X

    χQSM

    QdQ

    pQCD

    � - �calculated in: �QSM, QdQ, pQCD models

    � sub-leading order terms� 0

    � Collins FF� � �:

    �QSM:� � 6 � :��� :� � � � � � � � � � � �

    QdQ, pQCD: ’Collins guess’

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 27

  • Challenges in Interpretation

    Problem:

    �have neglected the Sivers - DF� � ��� � !� � � � �� 7 *�

    + ,� 2 � � 9 :( �32 �54 � :�3< �

    longitudinally polarized target

    Sivers and Collins effect indistinguishable

    Transversely polarized target needed

    becomes dominant

    Sivers and Collins distinguishable

    moment moment

    x

    y

    z

    φS

    φ

    ~phad

    ~S⊥

    ~k

    ~k′

    ~q

    uli

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 28

  • Challenges in Interpretation

    Problem:

    �have neglected the Sivers - DF� � ��� � !� � � � �� 7 *�

    + ,� 2 � � 9 :( �32 �54 � :�3< �

    longitudinally polarized target

    � Sivers and Collins effect indistinguishable

    Transversely polarized target needed

    becomes dominant

    Sivers and Collins distinguishable

    moment moment

    x

    y

    z

    φS

    φ

    ~phad

    ~S⊥

    ~k

    ~k′

    ~q

    uli

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 28

  • Challenges in Interpretation

    Problem:

    �have neglected the Sivers - DF� � ��� � !� � � � �� 7 *�

    + ,� 2 � � 9 :( �32 �54 � :�3< �

    longitudinally polarized target

    � Sivers and Collins effect indistinguishable

    Transversely polarized target needed

    � �� ��� � � � becomes dominant

    � Sivers and Collins distinguishable� ��� � � � ��� ��� � � moment �� ��� � ��� � ��� � � moment� � ��� � � > � !� ( � � �� 7 *�

    + ,� 2 � � 9 :( �2 � 4 � :�3< � � � ��� � � = � !� ( � � �� 7 *�

    + ,� 2 � 9 :( �2 � 4 6 � 9 : � < �

    x

    y

    z

    φS

    φ

    ~phad

    ~S⊥

    ~k

    ~k′

    ~q

    uli

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 28

  • Results from SMC

    -20

    -10

    0

    10

    20

    all (h++ h−)

    h+ (π+)h− (π−)

    a)

    prot deut

    AN

    (%

    )

    SMC P

    relimin

    ary

    -20

    -10

    0

    10

    20

    h+: pT > 0.1 GeV/c

    h+: pT > 0.5 GeV/c

    b)

    prot deut

    AN

    (%

    )

    SMC P

    relimin

    ary

    -20

    -10

    0

    10

    20

    h−: pT > 0.1 GeV/c

    h−: pT > 0.5 GeV/c

    c)

    prot deut

    AN

    (%

    )

    SMC P

    relimin

    ary

    Data with transversely polarized target

    �� � � � � � � $ % & � ��� � � � ���

    � � � �� ( � � � ��

    �$ % & � ��� � �� � ��� � � � ��� � � �� � ��� � � � ��� � � �

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -180 -120 -60 0 60 120 180

    φC

    AN

    SMC Preliminar

    y

    h+ (π+)

    Need more data � � COMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 29

  • Summary� Orbital Angular Momentum ���

    GPDs: new avenue to study the structure of the nucleon

    exclusive reactions are experimentaly establishedmany different processes can and have been studied

    BUT: not yet enough data to

    deduce kinematic dependences of GPDsdetermine GPDs as accurate as standard PDFs

    The transverse spin structure of the nucleon

    nothing definite known till now

    data from longitudinally polarized targets suggest

    BUT: Collins versus Sievers

    need data with transversely polarised targetsCOMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

  • Summary� Orbital Angular Momentum ���

    � GPDs: new avenue to study the structure of the nucleon

    exclusive reactions are experimentaly establishedmany different processes can and have been studied

    BUT: not yet enough data to

    deduce kinematic dependences of GPDsdetermine GPDs as accurate as standard PDFs

    The transverse spin structure of the nucleon

    nothing definite known till now

    data from longitudinally polarized targets suggest

    BUT: Collins versus Sievers

    need data with transversely polarised targetsCOMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

  • Summary� Orbital Angular Momentum ���

    � GPDs: new avenue to study the structure of the nucleon

    � exclusive reactions are experimentaly established

    � � many different processes can and have been studiedBUT: not yet enough data to

    deduce kinematic dependences of GPDsdetermine GPDs as accurate as standard PDFs

    The transverse spin structure of the nucleon

    nothing definite known till now

    data from longitudinally polarized targets suggest

    BUT: Collins versus Sievers

    need data with transversely polarised targetsCOMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

  • Summary� Orbital Angular Momentum ���

    � GPDs: new avenue to study the structure of the nucleon

    � exclusive reactions are experimentaly established

    � � many different processes can and have been studiedBUT: not yet enough data to

    � deduce kinematic dependences of GPDs

    determine GPDs as accurate as standard PDFs

    The transverse spin structure of the nucleon

    nothing definite known till now

    data from longitudinally polarized targets suggest

    BUT: Collins versus Sievers

    need data with transversely polarised targetsCOMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

  • Summary� Orbital Angular Momentum ���

    � GPDs: new avenue to study the structure of the nucleon

    � exclusive reactions are experimentaly established

    � � many different processes can and have been studiedBUT: not yet enough data to

    � deduce kinematic dependences of GPDs

    � determine GPDs as accurate as standard PDFs

    The transverse spin structure of the nucleon

    nothing definite known till now

    data from longitudinally polarized targets suggest

    BUT: Collins versus Sievers

    need data with transversely polarised targetsCOMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

  • Summary� Orbital Angular Momentum ���

    � GPDs: new avenue to study the structure of the nucleon

    � exclusive reactions are experimentaly established

    � � many different processes can and have been studiedBUT: not yet enough data to

    � deduce kinematic dependences of GPDs

    � determine GPDs as accurate as standard PDFs

    � The transverse spin structure of the nucleon

    nothing definite known till now

    data from longitudinally polarized targets suggest

    BUT: Collins versus Sievers

    need data with transversely polarised targetsCOMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

  • Summary� Orbital Angular Momentum ���

    � GPDs: new avenue to study the structure of the nucleon

    � exclusive reactions are experimentaly established

    � � many different processes can and have been studiedBUT: not yet enough data to

    � deduce kinematic dependences of GPDs

    � determine GPDs as accurate as standard PDFs

    � The transverse spin structure of the nucleon

    � nothing definite known till now

    data from longitudinally polarized targets suggest

    BUT: Collins versus Sievers

    need data with transversely polarised targetsCOMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

  • Summary� Orbital Angular Momentum ���

    � GPDs: new avenue to study the structure of the nucleon

    � exclusive reactions are experimentaly established

    � � many different processes can and have been studiedBUT: not yet enough data to

    � deduce kinematic dependences of GPDs

    � determine GPDs as accurate as standard PDFs

    � The transverse spin structure of the nucleon

    � nothing definite known till now

    � data from longitudinally polarized targets suggest

    � � � � � �����

    � � �BUT: Collins versus Sievers

    need data with transversely polarised targetsCOMPASS, HERMES, RHIC

    E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

  • Summary� Orbital Angular Momentum ���

    � GPDs: new avenue to study the structure of the nucleon

    � exclusive reactions are experimentaly established

    � � many different processes can and have been studiedBUT: not yet enough data to

    � deduce kinematic dependences of GPDs

    � determine GPDs as accurate as standard PDFs

    � The transverse spin structure of the nucleon

    � nothing definite known till now

    � data from longitudinally polarized targets suggest

    � � � � � �����

    � � �BUT: Collins versus Sievers

    � need data with transversely polarised targets

    � � COMPASS, HERMES, RHICE.C. Aschenauer 2003 CTEQ Summer School – Lecture II 30

    The Spin Structure of the NucleonThe Hunt for $displaystyle mathbf {L_q}$GPDs IntroductionGPDs Introduction IIDVCS $ep ightarrow e^{prime } gamma p$DVCS azimuthal asymmetriesDVCS at HERMESDVCS beam charge asymmetry (BCA)

    DVCS single beam-spin asymmetry (BSA)Much more data!Exclusive PS meson production e p $ightarrow $ e$^prime $ n $pi ^+$How to extract exclusive $pi ^+$Exclusive $pi ^+$ target - SSAExclusive $pi ^+$ target - SSA-ResultsExclusive VM-production $e p ightarrow e^{prime } ho ^0/phi p$Exclusive $displaystyle mathbf {sigma _L}$ for $displaystyle mathbf {ho ^0}$-ProductionDeep Inelastic Scattering Cross SectionDIS and SIDIS Cross SectionTwist-2 Quark DF & FF{}... surviving $k_�ot $ integrationCharacteristics of TransversityHow can one measure TransversityFirst glimpse on Transversity?!Results$A^{sin phi }_{UL}$What does theory tell?Challenges in InterpretationResults from SMCSummary