what is computer networking

65
Q.1:- What is computer networking? ANS: - Users and network administrators often have different views of their networks. Often, users share printers and some servers form a workgroup, which usually means they are in the same geographic location and are on the same LAN. A community of interest has less of a connotation of being in a local area, and should be thought of as a set of arbitrarily located users who share a set of servers, and possibly also communicate via peer-to-peer technologies. Network administrators see networks from both physical and logical perspectives. The physical perspective involves geographic locations, physical cabling, and the network elements (e.g., routers, bridges and application layer gateways that interconnect the physical media. Logical networks, called, in the TCP/IP architecture, subnets, map onto one or more physical media. For example, a common practice in a campus of buildings is to make a set of LAN cables in each building appear to be a common subnet, using virtual LAN (VLAN) technology.

Upload: pankaj-kumar

Post on 11-Nov-2014

2.152 views

Category:

Technology


5 download

DESCRIPTION

 

TRANSCRIPT

Page 1: What is computer networking

Q.1:- What is computer networking?

ANS: - Users and network administrators often have different views of their networks. Often, users share printers and some servers form a workgroup, which usually means they are in the same geographic location and are on the same LAN. A community of interest has less of a connotation of being in a local area, and should be thought of as a set of arbitrarily located users who share a set of servers, and possibly also communicate via peer-to-peer technologies.

Network administrators see networks from both physical and logical perspectives. The physical perspective involves geographic locations, physical cabling, and the network elements (e.g., routers, bridges and application layer gateways that interconnect the physical media. Logical networks, called, in the TCP/IP architecture, subnets, map onto one or more physical media. For example, a common practice in a campus of buildings is to make a set of LAN cables in each building appear to be a common subnet, using virtual LAN (VLAN) technology.

Both users and administrators will be aware, to varying extents, of the trust and scope characteristics of a network. Again using TCP/IP architectural terminology, an intranet is a community of interest under private administration usually by an enterprise, and is only accessible by authorized users (e.g. employees). Intranets do not have to be connected to the Internet, but generally have a limited connection. An extranet is an extension of an intranet that allows secure communications to users outside of the intranet (e.g. business partners, customers).

Informally, the Internet is the set of users, enterprises,and content providers that are interconnected by Internet Service

Page 2: What is computer networking

Providers (ISP). From an engineering standpoint, the Internet is the set of subnets, and aggregates of subnets, which share the registered IP address space and exchange information about the reachability of those IP addresses using the Border Gateway Protocol. Typically, the human-readable names of servers are translated to IP addresses, transparently to users, via the directory function of the Domain Name System (DNS).

Over the Internet, there can be business-to-business (B2B), business-to-consumer (B2C) and consumer-to-consumer (C2C) communications. Especially when money or sensitive information is exchanged, the communications are apt to be secured by some form of communications security mechanism. Intranets and extranets can be securely superimposed onto the Internet, without any access by general Internet users, using secure Virtual Private Network (VPN) technology.

When used for gaming one computer will have to be the server while the others play through it.

History

Before the advent of computer networks that were based upon some type of telecommunications system, communication between calculation machines and early computers was performed by human users by carrying instructions between them. Many of the social behavior seen in today's Internet was demonstrably present in nineteenth-century telegraph networks, and arguably in even earlier networks using visual signals.

Page 3: What is computer networking

In September 1940 George Stibitz used a teletype machine to send instructions for a problem set from his Model K at Dartmouth College in New Hampshire to his Complex Number Calculator in New York and received results back by the same means. Linking output systems like teletypes to computers was an interest at the Advanced Research Projects Agency (ARPA) when, in 1962, J.C.R. Licklider was hired and developed a working group he called the "Intergalactic Network", a precursor to the ARPANet.

In 1964, researchers at Dartmouth developed the Dartmouth Time Sharing System for distributed users of large computer systems. The same year, at MIT, a research group supported by General Electric and Bell Labs used a computer (DEC's PDP-8) to route and manage telephone connections.

Throughout the 1960s Leonard Kleinrock, Paul Baran and Donald Davies independently conceptualized and developed network systems which used datagrams or packets that could be used in a packet switched network between computer systems.

1965 Thomas Merrill and Lawrence G. Roberts created the first wide area network(WAN).

The first widely used PSTN switch that used true computer control was the Western Electric 1ESS switch, introduced in 1965.

In 1969 the University of California at Los Angeles, SRI (in Stanford), University of California at Santa Barbara, and the University of Utah were connected as the beginning of the ARPANet network using 50 kbit/s circuits. Commercial services using X.25, an alternative architecture to the TCP/IP suite, were deployed in 1972.

Page 4: What is computer networking

Computer networks, and the technologies needed to connect and communicate through and between them, continue to drive computer hardware, software, and peripherals industries. This expansion is mirrored by growth in the numbers and types of users of networks from the researcher to the home user.

Today, computer networks are the core of modern communication. For example, all modern aspects of the Public Switched Telephone Network (PSTN) are computer-controlled, and telephony increasingly runs over the Internet Protocol, although not necessarily the public Internet. The scope of communication has increased significantly in the past decade and this boom in communications would not have been possible without the progressively advancing computer network.

Networking methods

Networking is a complex part of computing that makes up most of the IT Industry. Without networks, almost all communication in the world would cease to happen. It is because of networking that telephones, televisions, the internet, etc. work.

One way to categorize computer networks is by their geographic scope, although many real-world networks interconnect Local Area Networks (LAN) via Wide Area Networks (WAN)and wireless networks[WWAN]. These three (broad) types are:

Local area network (LAN)

A local area network is a network that spans a relatively small space and provides services to a small number of people.

Page 5: What is computer networking

A peer-to-peer or client-server method of networking may be used. A peer-to-peer network is where each client shares their resources with other workstations in the network. Examples of peer-to-peer networks are: Small office networks where resource use is minimal and a home network. A client-server network is where every client is connected to the server and each other. Client-server networks use servers in different capacities. These can be classified into two types:

1. Single-service servers 2. print server,

where the server performs one task such as file server, ; while other servers can not only perform in the capacity of file servers and print servers, but they also conduct calculations and use these to provide information to clients (Web/Intranet Server). Computers may be connected in many different ways, including Ethernet cables, Wireless networks, or other types of wires such as power lines or phone lines.

The ITU-T G.hn standard is an example of a technology that provides high-speed (up to 1 Gbit/s) local area networking over existing home wiring (power lines, phone lines and coaxial cables).

Wide area network (WAN)

A wide area network is a network where a wide variety of resources are deployed across a large domestic area or internationally. An example of this is a multinational business that uses a WAN to interconnect their offices in different countries. The largest and best example of a WAN is the Internet, which is a network composed of many smaller networks. The Internet is considered the largest network in

Page 6: What is computer networking

the world.. The PSTN (Public Switched Telephone Network) also is an extremely large network that is converging to use Internet technologies, although not necessarily through the public Internet.

A Wide Area Network involves communication through the use of a wide range of different technologies. These technologies include Point-to-Point WANs such as Point-to-Point Protocol (PPP) and High-Level Data Link Control (HDLC), Frame Relay, ATM (Asynchronous Transfer Mode) and Sonet (Synchronous Optical Network). The difference between the WAN technologies is based on the switching capabilities they perform and the speed at which sending and receiving bits of information (data) occur.

Metropolitan Area Network (MAN)

A metropolitan network is a network that is too large for even the largest of LAN's but is not on the scale of a WAN. It also integrates two or more LAN networks over a specific geographical area ( usually a city ) so as to increase the network and the flow of communications. The LAN's in question would usually be connected via "backbone" lines.

Wireless networks (WLAN, WWAN)

A wireless network is basically the same as a LAN or a WAN but there are no wires between hosts and servers. The data is transferred over sets of radio transceivers. These types of networks are beneficial when it is too costly or inconvenient to run the necessary cables. For more information, see Wireless LAN and Wireless wide area network. The media access protocols for LANs come from the IEEE.

The most common IEEE 802.11 WLANs cover, depending on antennas, ranges from hundreds of meters to a few

Page 7: What is computer networking

kilometers. For larger areas, either communications satellites of various types, cellular radio, or wireless local loop (IEEE 802.16) all have advantages and disadvantages. Depending on the type of mobility needed, the relevant standards may come from the IETF or the ITU.

Network topology

The network topology defines the way in which computers, printers, and other devices are connected, physically and logically. A network topology describes the layout of the wire and devices as well as the paths used by data transmissions.

Network topology has two types:

Physical logical

Commonly used topologies include:

Bus Star Tree (hierarchical) Linear Ring Mesh

o partially connected o fully connected (sometimes known as fully

redundant)

The network topologies mentioned above are only a general representation of the kinds of topologies used in computer network and are considered basic topologies.

Page 8: What is computer networking

Q.2:- Describe client server computing.

ANS: - To truly understand how much of the Internet operates, including the Web, it is important to understand the concept of client/server computing. The client/server model is a form of distributed computing where one program (the client) communicates with another program (the server) for the purpose of exchanging information.

The client's responsibility is usually to: 1. Handle the user interface. 2. Translate the user's request into the desired protocol. 3. Send the request to the server. 4. Wait for the server's response. 5. Translate the response into "human-readable" results. 6. Present the results to the user.

The server's functions include:

1. Listen for a client's query. 2. Process that query. 3. Return the results back to the client.

A typical client/server interaction goes like this:

1. The user runs client software to create a query. 2. The client connects to the server. 3. The client sends the query to the server. 4. The server analyzes the query. 5. The server computes the results of the query. 6. The server sends the results to the client. 7. The client presents the results to the user. 8. Repeat as necessary.

Page 9: What is computer networking

A typical client/server interaction

This client/server interaction is a lot like going to a French restaurant. At the restaurant, you (the user) are presented with a menu of choices by the waiter (the client). After making your selections, the waiter takes note of your choices, translates them into French, and presents them to the French chef (the server) in the kitchen. After the chef prepares your meal, the waiter returns with your diner (the results). Hopefully, the waiter returns with the items you selected, but not always; sometimes things get "lost in the translation."

Flexible user interface development is the most obvious advantage of client/server computing. It is possible to create an interface that is independent of the server hosting the data. Therefore, the user interface of a client/server application can be written on a Macintosh and the server can be written on a mainframe. Clients could be also written for DOS- or UNIX-based computers. This allows information to be stored in a central server and disseminated to different types of remote computers. Since the user interface is the responsibility of the client, the server has more computing resources to spend on analyzing queries and disseminating information. This is another major advantage of client/server computing; it tends to use the strengths of divergent

Page 10: What is computer networking

computing platforms to create more powerful applications. Although its computing and storage capabilities are dwarfed by those of the mainframe, there is no reason why a Macintosh could not be used as a server for less demanding applications.

In short, client/server computing provides a mechanism for disparate computers to cooperate on a single computing task.

Description

Client-server describes the relationship between two computer programs in which one program, the client program, makes a service request to another, the server program. Standard networked functions such as email exchange, web access and database access, are based on the client-server model. For example, a web browser is a client program at the user computer that may access information at any web server in the world. To check your bank account from your computer, a web browser client program in your computer forwards your request to a web server program at the bank. That program may in turn forward the request to its own database client program that sends a request to a database server at another bank computer to retrieve your account balance. The balance is returned to the bank database client, which in turn serves it back to the web browser client in your personal computer, which displays the information for you.

The client-server model has become one of the central ideas of network computing. Most business applications being written today use the client-server model. So do the Internet's main application protocols, such as HTTP, SMTP, Telnet, DNS, etc. In marketing, the term has been used to distinguish distributed computing by smaller dispersed

Page 11: What is computer networking

computers from the "monolithic" centralized computing of mainframe computers. But this distinction has largely disappeared as mainframes and their applications have also turned to the client-server model and become part of network computing.

Each instance of the client software can send data requests to one or more connected servers. In turn, the servers can accept these requests, process them, and return the requested information to the client. Although this concept can be applied for a variety of reasons to many different kinds of applications, the architecture remains fundamentally the same.

The most basic type of client-server architecture employs only two types of hosts: clients and servers. This type of architecture is sometimes referred to as two-tier. It allows devices to share files and resources. The two tier architecture means that the client acts as one tier and application in combination with server acts as another tier.

These days, clients are most often web browsers, although that has not always been the case. Servers typically include web servers, database servers and mail servers. Online gaming is usually client-server too. In the specific case of MMORPG, the servers are typically operated by the company selling the game; for other games one of the players will act as the host by setting his game in server mode.

The interaction between client and server is often described using sequence diagrams. Sequence diagrams are standardized in the Unified Modeling Language.

When both the client- and server-software are running on the same computer, this is called a single seat setup.

Page 12: What is computer networking

Specific types of clients include web browsers, email clients, and online chat clients.

Specific types of servers include web servers, ftp servers, application servers, database servers, mail servers, file servers, print servers, and terminal servers. Most web services are also types of servers.

Comparison to Peer-to-Peer architecture

Another type of network architecture is known as peer-to-peer, because each host or instance of the program can simultaneously act as both a client and a server, and because each has equivalent responsibilities and status. Peer-to-peer architectures are often abbreviated using the acronym P2P.

Both client-server and P2P architectures are in wide usage today. You can find more details in Comparison of Centralized (Client-Server) and Decentralized (Peer-to-Peer) Networking. both client server and a2dp will work on windows and Linux.

Comparison to Client-Queue-Client architecture

While classic Client-Server architecture requires one of the communication endpoints to act as a server, which is much harder to implement] Client-Queue-Client allows all endpoints to be simple clients, while the server consists of some external software, which also acts as passive queue (one software instance passes its query to another instance to queue, e.g. database, and then this other instance pulls it from database, makes a response, passes it to database etc.). This architecture allows greatly simplified software implementation. Peer-to-Peer architecture was originally based on Client-Queue-Client concept.

Page 13: What is computer networking

Advantages

In most cases, a client-server architecture enables the roles and responsibilities of a computing system to be distributed among several independent computers that are known to each other only through a network. This creates an additional advantage to this architecture: greater ease of maintenance. For example, it is possible to replace, repair, upgrade, or even relocate a server while its clients remain both unaware and unaffected by that change. This independence from change is also referred to as encapsulation.

All the data is stored on the servers, which generally have far greater security controls than most clients. Servers can better control access and resources, to guarantee that only those clients with the appropriate permissions may access and change data.

Since data storage is centralized, updates to that data are far easier to administer than what would be possible under a P2P paradigm. Under a P2P architecture, data updates may need to be distributed and applied to each "peer" in the network, which is both time-consuming and error-prone, as there can be thousands or even millions of peers.

Many mature client-server technologies are already available which were designed to ensure security, 'friendliness' of the user interface, and ease of use.

It functions with multiple different clients of different capabilities.

Reduces the total cost of ownership. Increases Productivity End User Productivity Developer Productivity

Disadvantages

Page 14: What is computer networking

Traffic congestion on the network has been an issue since the inception of the client-server paradigm. As the number of simultaneous client requests to a given server increases, the server can become severely overloaded. Contrast that to a P2P network, where its bandwidth actually increases as more nodes are added, since the P2P network's overall bandwidth can be roughly computed as the sum of the bandwidths of every node in that network.

The client-server paradigm lacks the robustness of a good P2P network. Under client-server, should a critical server fail, clients’ requests cannot be fulfilled. In P2P networks, resources are usually distributed among many nodes. Even if one or more nodes depart and abandon a downloading file, for example, the remaining nodes should still have the data needed to complete the download .

Q.3. What is the internet? Is the search engine is very useful to internet?

ANS: - The Internet is a global network of interconnected computers, enabling users to share information along multiple channels. Typically, a computer that connects to the Internet can access information from a vast array of available servers and other computers by moving information from them to the computer's local memory. The same connection allows that computer to send information to servers on the network; that information is in turn accessed and potentially modified by a variety of other interconnected computers. A majority of widely accessible information on the Internet consists of inter-linked hypertext documents and other resources of the World Wide Web (WWW). Computer

Page 15: What is computer networking

users typically manage sent and received information with web browsers; other software for users' interface with computer networks includes specialized programs for electronic mail, online chat, file transfer and file sharing.

The movement of information in the Internet is achieved via a system of interconnected computer networks that share data by packet switching using the standardized Internet Protocol Suite (TCP/IP). It is a "network of networks" that consists of millions of private and public, academic, business, and government networks of local to global scope that are linked by copper wires, fiber-optic cables, wireless connections, and other technologies.

The terms Internet and World Wide Web are often used in every-day speech without much distinction. However, the Internet and the World Wide Web are not one and the same. The Internet is a global data communications system. It is a hardware and software infrastructure that provides connectivity between computers. In contrast, the Web is one of the services communicated via the Internet. It is a collection of interconnected documents and other resources, linked by hyperlinks and URLs.[1]

The term internet is written both with capital and without capital, and is used both with and without the definite article.

Page 16: What is computer networking

Growth

Graph of internet users per 100 inhabitants between 1997 and 2007 by International Telecommunication Union

Although the basic applications and guidelines that make the Internet possible had existed for almost two decades, the network did not gain a public face until the 1990s. On 6 August 1991, CERN, a pan European organisation for particle research, publicized the new World Wide Web project. The Web was invented by English scientist Tim Berners-Lee in 1989.

An early popular web browser was ViolaWWW, patterned after HyperCard and built using the X Window System. It was eventually replaced in popularity by the Mosaic web browser. In 1993, the National Center for Supercomputing Applications at the University of Illinois released version 1.0 of Mosaic, and by late 1994 there was growing public interest in the previously academic, technical Internet. By 1996 usage of the word Internet had become commonplace,

Page 17: What is computer networking

and consequently, so had its use as a synecdoche in reference to the World Wide Web.

Meanwhile, over the course of the decade, the Internet successfully accommodated the majority of previously existing public computer networks (although some networks, such as FidoNet, have remained separate). During the 1990s, it was estimated that the Internet grew by 100% per year, with a brief period of explosive growth in 1996 and 1997.[5] This growth is often attributed to the lack of central administration, which allows organic growth of the network, as well as the non-proprietary open nature of the Internet protocols, which encourages vendor interoperability and prevents any one company from exerting too much control over the network. [6]

Using various statistics, AMD estimated the population of internet users to be 1.5 billion as of January 2009.[7]

Today's Internet

The My Opera Community server rack. From the top, user file storage (content of files.myopera.com), "bigma" (the master MySQL database server), and two IBM blade centers

Page 18: What is computer networking

containing multi-purpose machines (Apache front ends, Apache back ends, slave MySQL database servers, load balancers, file servers, cache servers and sync masters)

Aside from the complex physical connections that make up its infrastructure, the Internet is facilitated by bi- or multi-lateral commercial contracts (e.g., peering agreements), and by technical specifications or protocols that describe how to exchange data over the network. Indeed, the Internet is defined by its interconnections and routing policies.

By December 31, 2008, 1.574 billion people were using the Internet according to Internet World Statistics

Internet protocols

The complex communications infrastructure of the Internet consists of its hardware components and a system of software layers that control various aspects of the architecture. While the hardware can often be used to support other software systems, it is the design and the rigorous standardization process of the software architecture that characterizes the Internet.

The responsibility for the architectural design of the Internet software systems has been delegated to the Internet Engineering Task Force (IETF). The IETF conducts standard-setting work groups, open to any individual, about the various aspects of Internet architecture. Resulting discussions and final standards are published in Requests for Comments (RFCs), freely available on the IETF web site.

The principal methods of networking that enable the Internet are contained in a series of RFCs that constitute the Internet Standards. These standards describe a system known as the Internet Protocol Suite. This is a model architecture that

Page 19: What is computer networking

divides methods into a layered system of protocols (RFC 1122, RFC 1123). The layers correspond to the environment or scope in which their services operate. At the top is the space (Application Layer) of the software application, e.g., a web browser application, and just below it is the Transport Layer which connects applications on different hosts via the network (e.g., client-server model). The underlying network consists of two layers: the Internet Layer which enables computers to connect to one-another via intermediate (transit) networks and thus is the layer that establishes internetworking and the Internet, and lastly, at the bottom, is a software layer that provides connectivity between hosts on the same local link (therefor called Link Layer), e.g., a local area network (LAN) or a dial-up connection. This model is also known as the TCP/IP model of networking. While other models have been developed, such as the Open Systems Interconnection (OSI) model, they are not compatible in the details of description, nor implementation.

The most prominent component of the Internet model is the Internet Protocol (IP) which provides addressing systems for computers on the Internet and facilitates the internetworking of networks. IP Version 4 (IPv4) is the initial version used on the first generation of the today's Internet and is still in dominant use. It was designed to address up to ~4.3 billion (109) Internet hosts. However, the explosive growth of the Internet has led to IPv4 address exhaustion. A new protocol version, IPv6, was developed which provides vastly larger addressing capabilities and more efficient routing of data traffic. IPv6 is currently in commercial deployment phase around the world.

IPv6 is not interoperable with IPv4. It essentially establishes a "parallel" version of the Internet not accessible with IPv4 software. This means software upgrades are necessary for

Page 20: What is computer networking

every networking device that needs to communicate on the IPv6 Internet. Most modern computer operating systems are already converted to operate with both versions of the Internet Protocol. Network infrastructures, however, are still lagging in this development.

Internet structure

There have been many analyses of the Internet and its structure. For example, it has been determined that both the Internet IP routing structure and hypertext links of the World Wide Web are examples of scale-free networks.

Similar to the way the commercial Internet providers connect via Internet exchange points, research networks tend to interconnect into large subnetworks such as the following:

GEANT GLORIAD The Internet2 Network (formally known as the Abilene

Network) JANET (the UK's national research and education

network)

These in turn are built around relatively smaller networks. See also the list of academic computer network organizations.

Computer network diagrams often represent the Internet using a cloud symbol from which network communications pass in and out.

E-mail

The concept of sending electronic text messages between parties in a way analogous to mailing letters or memos predates the creation of the Internet. Even today it can be

Page 21: What is computer networking

important to distinguish between Internet and internal e-mail systems. Internet e-mail may travel and be stored unencrypted on many other networks and machines out of both the sender's and the recipient's control. During this time it is quite possible for the content to be read and even tampered with by third parties, if anyone considers it important enough. Purely internal or intranet mail systems, where the information never leaves the corporate or organization's network, are much more secure, although in any organization there will be IT and other personnel whose job may involve monitoring, and occasionally accessing, the e-mail of other employees not addressed to them. Today you can send pictures and attach files on e-mail. Most e-mail servers today also feature the ability to send e-mail to multiple e-mail addresses.

The World Wide Web

Graphic representation of a minute fraction of the WWW, demonstrating hyperlinks

Many people use the terms Internet and World Wide Web (or just the Web) interchangeably, but, as discussed above, the two terms are not synonymous.

Page 22: What is computer networking

The World Wide Web is a huge set of interlinked documents, images and other resources, linked by hyperlinks and URLs. These hyperlinks and URLs allow the web servers and other machines that store originals, and cached copies of, these resources to deliver them as required using HTTP (Hypertext Transfer Protocol). HTTP is only one of the communication protocols used on the Internet.

Web services also use HTTP to allow software systems to communicate in order to share and exchange business logic and data.

Software products that can access the resources of the Web are correctly termed user agents. In normal use, web browsers, such as Internet Explorer, Firefox and Apple Safari, access web pages and allow users to navigate from one to another via hyperlinks. Web documents may contain almost any combination of computer data including graphics, sounds, text, video, multimedia and interactive content including games, office applications and scientific demonstrations.

Through keyword-driven Internet research using search engines like Yahoo! and Google, millions of people worldwide have easy, instant access to a vast and diverse amount of online information. Compared to encyclopedias and traditional libraries, the World Wide Web has enabled a sudden and extreme decentralization of information and data.

Using the Web, it is also easier than ever before for individuals and organizations to publish ideas and information to an extremely large audience. Anyone can find ways to publish a web page, a blog or build a website for very little initial cost. Publishing and maintaining large, professional websites full of attractive, diverse and up-to-

Page 23: What is computer networking

date information is still a difficult and expensive proposition, however.

Many individuals and some companies and groups use "web logs" or blogs, which are largely used as easily updatable online diaries. Some commercial organizations encourage staff to fill them with advice on their areas of specialization in the hope that visitors will be impressed by the expert knowledge and free information, and be attracted to the corporation as a result. One example of this practice is Microsoft, whose product developers publish their personal blogs in order to pique the public's interest in their work.

Collections of personal web pages published by large service providers remain popular, and have become increasingly sophisticated. Whereas operations such as Angelfire and GeoCities have existed since the early days of the Web, newer offerings from, for example, Facebook and My Space currently have large followings. These operations often brand themselves as social network services rather than simply as web page hosts.

Advertising on popular web pages can be lucrative, and e-commerce or the sale of products and services directly via the Web continues to grow.

In the early days, web pages were usually created as sets of complete and isolated HTML text files stored on a web server. More recently, websites are more often created using content management or wiki software with, initially, very little content. Contributors to these systems, who may be paid staff, members of a club or other organisation or members of the public, fill underlying databases with content using editing pages designed for that purpose, while casual visitors view and read this content in its final HTML form. There may or may not be editorial, approval and security systems built

Page 24: What is computer networking

into the process of taking newly entered content and making it available to the target visitors.

Remote access

The Internet allows computer users to connect to other computers and information stores easily, wherever they may be across the world. They may do this with or without the use of security, authentication and encryption technologies, depending on the requirements.

This is encouraging new ways of working from home, collaboration and information sharing in many industries. An accountant sitting at home can audit the books of a company based in another country, on a server situated in a third country that is remotely maintained by IT specialists in a fourth. These accounts could have been created by home-working bookkeepers, in other remote locations, based on information e-mailed to them from offices all over the world. Some of these things were possible before the widespread use of the Internet, but the cost of private leased lines would have made many of them infeasible in practice.

An office worker away from his desk, perhaps on the other side of the world on a business trip or a holiday, can open a remote desktop session into his normal office PC using a secure Virtual Private Network (VPN) connection via the Internet. This gives the worker complete access to all of his or her normal files and data, including e-mail and other applications, while away from the office.

This concept is also referred to by some network security people as the Virtual Private Nightmare, because it extends the secure perimeter of a corporate network into its employees' homes.

Page 25: What is computer networking

Collaboration

The low cost and nearly instantaneous sharing of ideas, knowledge, and skills has made collaborative work dramatically easier. Not only can a group cheaply communicate and share ideas, but the wide reach of the Internet allows such groups to easily form in the first place. An example of this is the free software movement, which has produced Linux, Mozilla Firefox, OpenOffice.org etc.

Internet "chat", whether in the form of IRC chat rooms or channels, or via instant messaging systems, allow colleagues to stay in touch in a very convenient way when working at their computers during the day. Messages can be exchanged even more quickly and conveniently than via e-mail. Extensions to these systems may allow files to be exchanged, "whiteboard" drawings to be shared or voice and video contact between team members.

Version control systems allow collaborating teams to work on shared sets of documents without either accidentally overwriting each other's work or having members wait until they get "sent" documents to be able to make their contributions.

Business and project teams can share calendars as well as documents and other information. Such collaboration occurs in a wide variety of areas including scientific research, software development, conference planning, political activism and creative writing.

File sharing

A computer file can be e-mailed to customers, colleagues and friends as an attachment. It can be uploaded to a website or FTP server for easy download by others. It can be

Page 26: What is computer networking

put into a "shared location" or onto a file server for instant use by colleagues. The load of bulk downloads to many users can be eased by the use of "mirror" servers or peer-to-peer networks.

In any of these cases, access to the file may be controlled by user authentication, the transit of the file over the Internet may be obscured by encryption, and money may change hands for access to the file. The price can be paid by the remote charging of funds from, for example, a credit card whose details are also passed—hopefully fully encrypted—across the Internet. The origin and authenticity of the file received may be checked by digital signatures or by MD5 or other message digests.

These simple features of the Internet, over a worldwide basis, are changing the production, sale, and distribution of anything that can be reduced to a computer file for transmission. This includes all manner of print publications, software products, news, music, film, video, photography, graphics and the other arts. This in turn has caused seismic shifts in each of the existing industries that previously controlled the production and distribution of these products.

Streaming media

Many existing radio and television broadcasters provide Internet "feeds" of their live audio and video streams (for example, the BBC). They may also allow time-shift viewing or listening such as Preview, Classic Clips and Listen Again features. These providers have been joined by a range of pure Internet "broadcasters" who never had on-air licenses. This means that an Internet-connected device, such as a computer or something more specific, can be used to access on-line media in much the same way as was previously possible only with a television or radio receiver. The range of

Page 27: What is computer networking

material is much wider, from pornography to highly specialized, technical webcasts. Podcasting is a variation on this theme, where—usually audio—material is downloaded and played back on a computer or shifted to a portable media player to be listened to on the move. These techniques using simple equipment allow anybody, with little censorship or licensing control, to broadcast audio-visual material on a worldwide basis.

Webcams can be seen as an even lower-budget extension of this phenomenon. While some webcams can give full-frame-rate video, the picture is usually either small or updates slowly. Internet users can watch animals around an African waterhole, ships in the Panama Canal, traffic at a local roundabout or monitor their own premises, live and in real time. Video chat rooms and video conferencing are also popular with many uses being found for personal webcams, with and without two-way sound.

YouTube was founded on 15 February 2005 and is now the leading website for free streaming video with a vast number of users. It uses a flash-based web player to stream and show the video files. Users are able to watch videos without signing up; however, if they do sign up, they are able to upload an unlimited amount of videos and build their own personal profile. YouTube claims that its users watch hundreds of millions, and upload hundreds of thousands, of videos daily.

Internet Telephony (VoIP)

VoIP stands for Voice-over-Internet Protocol, referring to the protocol that underlies all Internet communication. The idea began in the early 1990s with walkie-talkie-like voice applications for personal computers. In recent years many VoIP systems have become as easy to use and as

Page 28: What is computer networking

convenient as a normal telephone. The benefit is that, as the Internet carries the voice traffic, VoIP can be free or cost much less than a traditional telephone call, especially over long distances and especially for those with always-on Internet connections such as cable or ADSL.

VoIP is maturing into a competitive alternative to traditional telephone service. Interoperability between different providers has improved and the ability to call or receive a call from a traditional telephone is available. Simple, inexpensive VoIP network adapters are available that eliminate the need for a personal computer.

Voice quality can still vary from call to call but is often equal to and can even exceed that of traditional calls.

Remaining problems for VoIP include emergency telephone number dialling and reliability. Currently, a few VoIP providers provide an emergency service, but it is not universally available. Traditional phones are line-powered and operate during a power failure; VoIP does not do so without a backup power source for the phone equipment and the Internet access devices.

VoIP has also become increasingly popular for gaming applications, as a form of communication between players. Popular VoIP clients for gaming include Ventrilo and Teamspeak, and others. PlayStation 3 and Xbox 360 also offer VoIP chat features.

Internet access

Common methods of home access include dial-up, landline broadband (over coaxial cable, fiber optic or copper wires), Wi-Fi, satellite and 3G technology cell phones.

Page 29: What is computer networking

Public places to use the Internet include libraries and Internet cafes, where computers with Internet connections are available. There are also Internet access points in many public places such as airport halls and coffee shops, in some cases just for brief use while standing. Various terms are used, such as "public Internet kiosk", "public access terminal", and "Web payphone". Many hotels now also have public terminals, though these are usually fee-based. These terminals are widely accessed for various usage like ticket booking, bank deposit, online payment etc. Wi-Fi provides wireless access to computer networks, and therefore can do so to the Internet itself. Hotspots providing such access include Wi-Fi cafes, where would-be users need to bring their own wireless-enabled devices such as a laptop or PDA. These services may be free to all, free to customers only, or fee-based. A hotspot need not be limited to a confined location. A whole campus or park, or even an entire city can be enabled. Grassroots efforts have led to wireless community networks. Commercial Wi-Fi services covering large city areas are in place in London, Vienna, Toronto, San Francisco, Philadelphia, Chicago and Pittsburgh. The Internet can then be accessed from such places as a park bench.[14]

Apart from Wi-Fi, there have been experiments with proprietary mobile wireless networks like Ricochet, various high-speed data services over cellular phone networks, and fixed wireless services.

High-end mobile phones such as smartphones generally come with Internet access through the phone network. Web browsers such as Opera are available on these advanced handsets, which can also run a wide variety of other Internet software. More mobile phones have Internet access than PCs, though this is not as widely used. An

Page 30: What is computer networking

Market

The Internet has also become a large market for companies; some of the biggest companies today have grown by taking advantage of the efficient nature of low-cost advertising and commerce through the Internet, also known as e-commerce. It is the fastest way to spread information to a vast number of people simultaneously. The Internet has also subsequently revolutionized shopping—for example; a person can order a CD online and receive it in the mail within a couple of days, or download it directly in some cases. The Internet has also greatly facilitated personalized marketing which allows a company to market a product to a specific person or a specific group of people more so than any other advertising medium.

Examples of personalized marketing include online communities such as MySpace, Friendster, Orkut, Facebook and others which thousands of Internet users join to advertise themselves and make friends online. Many of these users are young teens and adolescents ranging from 13 to 25 years old. In turn, when they advertise themselves they advertise interests and hobbies, which online marketing companies can use as information as to what those users will purchase online, and advertise their own companies' products to those users.

Q.4. Explain in brief “Transmission Media”.

ANS: - Transmission media comprises; different types of cables and wireless techniques that are used to connect network devices in a Local Area Network (LAN), Wireless Local Area Network (WLAN) or Wide Area Network (WAN). Choice of correct type of transmission media is very important for the implementation of any network. It can make

Page 31: What is computer networking

a major impact on the performance, speed, cost and reliability of the network.

Copper Wires

Conventional computer networks use copper wire because it is inexpensive, easy to install, and has low resistance to electrical current. Unfortunately, copper wire is prone to interference in the form electromagnetic energy emitted by neighbouring wires, especially those running in parallel.

To minimise interference, twisted pair wiring, as used in telephone systems, can be used as illustrated in Figure 1.

Figure 1: Twisted pair wiring

A plastic coating on each wire prevents the copper in one wire from touching the copper in another. The twist helps reduce interference by preventing electrical signals on the wire radiating energy (causing interference) and by preventing signals on other wires interfering with the pair.

A second type of copper wire is coaxial cable, similar to that used for TV aerials. The coaxial cable provides better protection from interference by providing a metal shield as illustrated in Figure 2.

Figure 2: Cross-section of a coaxial cable

Page 32: What is computer networking

The metal shield forms a flexible cylinder around the inner wire providing a barrier to electromagnetic radiation, both incoming and outgoing. The cable can run parallel to other cables and can be bent round corners.

Optical Fibres

Optical fibres use light to transmit data. A thin glass fibre is encased in a plastic jacket which allows the fibre to bend without breaking. A transmitter at one end uses a light emitting diode (LED) or laser to send pulses of light down the fibre which are detected at the other end by a light sensitive transistor.

Figure 3 illustrates a single fibre (a) and a sheath of three fibres (b). Other configurations are possible.

Figure 3: Single fibre and a sheath of three fibres

Optical fibres have four main advantages over copper wires.

They use light which neither causes electrical interference nor are they susceptible to electrical inteference

They are manufactured to reflect the light inwards, so a fibre can carry a pulse of light further than a copper wire can carry a signal

Page 33: What is computer networking

Light can encode more information that electrical signals, so they carry more information than a wire

Light can carry a signal over a single fibre, unlike electricity which requires a pair of wires

Figure 4 illustrates the hybrid nature of neighbourhood wiring. Optical fibres carry cable TV to each street with the houses fed by coaxial cable (a). Optical fibres also carry the Plain Old Telephone Service (POTS) to the nearest exchange, with the local loop to the house consisting of twisted pairs (b).

Figure 4: Cable television and POTS

Radio

Page 34: What is computer networking

A network that uses electromagnetic radio waves operates at radio frequency and its transmissions are called RF transmissions. Each host on the network attaches to an antenna, which can both send and receive RF.

Satellites

Radio transmissions do not bend round the surface of the earth, but RF technology combined with satellites can provide long-distance connections. Figure 5 illustrates a satellite link across an ocean.

Figure 5: Satellite and ground stations

The satellite contains a transponder consisting of a radio receiver and transmitter. A ground station on one side of the ocean sends a signal to the satellite, which amplifies it and transmits the amplified signal at a different angle than it arrived at to another ground station on the other side of the ocean.

A single satellite contains multiple transponders (usually six to twelve) each using a different radio frequency, making it possible for multiple communications to proceed simultaneously. These satellites are often geostationary, i.e.

Page 35: What is computer networking

they appear stationary in the sky. To achieve this, their orbit must be 22,236 miles (35,785 kilometres) high.

Microwave

Electromagnetic radiation beyond the frequency range of radio and television can be used to transport information. Microwave transmission is usually point-to-point using directional antennae with a clear path between transmitter and receiver.

Infrared

Infrared transmission is usually limited to a small area, e.g. one room, with the transmitter pointed towards the receiver. The hardware is inexpensive and does not require an antennal.

Q.5. What is functionality of modem? Describe in detail.

ANS:- Modem (from modulator-demodulator) is a device that modulates an analog carrier signal to encode digital information, and also demodulates such a carrier signal to decode the transmitted information. The goal is to produce a signal that can be transmitted easily and decoded to reproduce the original digital data. Modems can be used over any means of transmitting analog signals, from driven diodes to radio.

The most familiar example is a voiceband modem that turns the digital 1s and 0s of a personal computer into sounds that can be transmitted over the telephone lines of Plain Old Telephone Systems (POTS), and once received on the other

Page 36: What is computer networking

side, converts those 1s and 0s back into a form used by a USB, Ethernet, serial, or network connection. Modems are generally classified by the amount of data they can send in a given time, normally measured in bits per second, or "bps". They can also be classified by Baud, the number of times the modem changes its signal state per second.

Baud is not the modem's speed in bit/s, but in symbols/s. The baud rate varies, depending on the modulation technique used. Original Bell 103 modems used a modulation technique that saw a change in state 300 times per second. They transmitted 1 bit for every baud, and so a 300 bit/s modem was also a 300-baud modem. However, casual computerists confused the two. A 300 bit/s modem is the only modem whose bit rate matches the baud rate. A 2400 bit/s modem changes state 600 times per second, but due to the fact that it transmits 4 bits for each baud, 2400 bits are transmitted by 600 baud, or changes in states.

Faster modems are used by Internet users every day, notably cable modems and ADSL modems. In telecommunications, "wide band radio modems" transmit repeating frames of data at very high data rates over microwave radio links. Narrow band radio modem is used for low data rate up to 19.2k mainly for private radio networks. Some microwave modems transmit more than a hundred million bits per second. Optical modems transmit data over optical fibers. Most intercontinental data links now use optical modems transmitting over undersea optical fibers. Optical modems routinely have data rates in excess of a billion (1x109) bits per second. One kilobit per second (kbit/s or kb/s or kbps) as used in this article means 1000 bits per second and not 1024 bits per second. For example, a 56k modem can transfer data at up to 56,000 bits (7kB) per second over the phone line.

Page 37: What is computer networking

Narrowband/phone-line dialup modems

28.8 kbit/s serial port modem from Motorola

A standard modem of today contains two functional parts: an analog section for generating the signals and operating the phone, and a digital section for setup and control. This functionality is actually incorporated into a single chip, but the division remains in theory. In operation the modem can be in one of two "modes", data mode in which data is sent to and from the computer over the phone lines, and command mode in which the modem listens to the data from the computer for commands, and carries them out. A typical session consists of powering up the modem (often inside the computer itself) which automatically assumes command mode, then sending it the command for dialing a number. After the connection is established to the remote modem, the modem automatically goes into data mode, and the user can send and receive data. When the user is finished, the escape sequence, "+++" followed by a pause of about a second, is sent to the modem to return it to command mode, and the command ATH to hang up the phone is sent.

Page 38: What is computer networking

The commands themselves are typically from the Hayes command set, although that term is somewhat misleading. The original Hayes commands were useful for 300 bit/s operation only, and then extended for their 1200 bit/s modems. Faster speeds required new commands, leading to a proliferation of command sets in the early 1990s. Things became considerably more standardized in the second half of the 1990s, when most modems were built from one of a very small number of "chip sets". We call this the Hayes command set even today, although it has three or four times the numbers of commands as the actual standard.

Increasing speeds (V.21 V.22 V.22bis)

2400 bit/s modem for a laptop.

The 300 bit/s modems used frequency-shift keying to send data. In this system the stream of 1s and 0s in computer data is translated into sounds which can be easily sent on the phone lines. In the Bell 103 system the originating modem sends 0s by playing a 1070 Hz tone, and 1s at 1270 Hz, with the answering modem putting its 0s on 2025 Hz and 1s on 2225 Hz. These frequencies were chosen carefully, they are in the range that suffer minimum distortion on the phone system, and also are not harmonics of each other.

In the 1200 bit/s and faster systems, phase-shift keying was used. In this system the two tones for any one side of the connection are sent at the similar frequencies as in the 300 bit/s systems, but slightly out of phase. By comparing the phase of the two signals, 1s and 0s could be pulled back out, for instance if the signals were 90 degrees out of phase, this

Page 39: What is computer networking

represented two digits, "1,0", at 180 degrees it was "1,1". In this way each cycle of the signal represents two digits instead of one. 1200 bit/s modems were, in effect, 600 symbols per second modems (600 baud modems) with 2 bits per symbol.

Voiceband modems generally remained at 300 and 1200 bit/s (V.21 and V.22) into the mid 1980s. A V.22bis 2400-bit/s system similar in concept to the 1200-bit/s Bell 212 signalling was introduced in the U.S., and a slightly different one in Europe. By the late 1980s, most modems could support all of these standards and 2400-bit/s operation was becoming common.

For more information on baud rates versus bit rates, see the companion article List of device bandwidths.

Using digital lines and PCM (V.90/92)

In the late 1990s Rockwell and U.S. Robotics introduced new technology based upon the digital transmission used in modern telephony networks. The standard digital transmission in modern networks is 64 kbit/s but some networks use a part of the bandwidth for remote office signaling (eg to hang up the phone), limiting the effective rate to 56 kbit/s DS0. This new technology was adopted into ITU standards V.90 and is common in modern computers. The 56 kbit/s rate is only possible from the central office to the user site (downlink) and in the United States, government regulation limits the maximum power output to only 53.3 kbit/s. The uplink (from the user to the central office) still uses V.34 technology at 33.6k.

Later in V.92, the digital PCM technique was applied to increase the upload speed to a maximum of 48 kbit/s, but at the expense of download rates. For example a 48 kbit/s

Page 40: What is computer networking

upstream rate would reduce the downstream as low as 40 kbit/s, due to echo on the telephone line. To avoid this problem, V.92 modems offer the option to turn off the digital upstream and instead use a 33.6 kbit/s analog connection, in order to maintain a high digital downstream of 50 kbit/s or higher. (See November and October 2000 update at http://www.modemsite.com/56k/v92s.asp ) V.92 also adds two other features. The first is the ability for users who have call waiting to put their dial-up Internet connection on hold for extended periods of time while they answer a call. The second feature is the ability to "quick connect" to one's ISP. This is achieved by remembering the analog and digital characteristics of the telephone line, and using this saved information to reconnect at a fast pace.

List of dialup speeds

Note that the values given are maximum values, and actual values may be slower under certain conditions (for example, noisy phone lines) For a complete list see the companion article List of device bandwidths.

Connection Bitrate

Modem 110 baud 0.1 kbit/sModem 300 (300 baud) (Bell 103 or V.21)

0.3 kbit/s

Modem 1200 (600 baud) (Bell 212A or V.22)

1.2 kbit/s

Modem 2400 (600 baud) (V.22bis) 2.4 kbit/sModem 2400 (1200 baud) (V.26bis) 2.4 kbit/sModem 4800 (1600 baud) (V.27ter) 4.8 kbit/sModem 9600 (2400 baud) (V.32) 9.6 kbit/sModem 14.4 (2400 baud) (V.32bis) 14.4 kbit/s

Page 41: What is computer networking

Modem 28.8 (3200 baud) (V.34) 28.8 kbit/sModem 33.6 (3429 baud) (V.34) 33.6 kbit/sModem 56k (8000/3429 baud) (V.90) 56.0/33.6 kbit/sModem 56k (8000/8000 baud) (V.92) 56.0/48.0 kbit/sBonding Modem (two 56k modems)) (V.92)

112.0/96.0 kbit/s

[5]

Hardware compression (variable) (V.90/V.42bis)

56.0-220.0 kbit/s

Hardware compression (variable) (V.92/V.44)

56.0-320.0 kbit/s

Server-side web compression (variable) (Netscape ISP)

100.0-1000.0 kbit/s

Radio modems

Direct broadcast satellite, WiFi, and mobile phones all use modems to communicate, as do most other wireless services today. Modern telecommunications and data networks also make extensive use of radio modems where long distance data links are required. Such systems are an important part of the PSTN, and are also in common use for high-speed computer network links to outlying areas where fibre is not economical.

Even where a cable is installed, it is often possible to get better performance or make other parts of the system simpler by using radio frequencies and modulation techniques through a cable. Coaxial cable has a very large bandwidth, however signal attenuation becomes a major problem at high data rates if a digital signal is used. By using a modem, a much larger amount of digital data can be transmitted through a single piece of wire. Digital cable television and cable Internet services use radio frequency modems to provide the increasing bandwidth needs of modern households. Using a modem also allows for

Page 42: What is computer networking

frequency-division multiple access to be used, making full-duplex digital communication with many users possible using a single wire.

Wireless modems come in a variety of types, bandwidths, and speeds. Wireless modems are often referred to as transparent or smart. They transmit information that is modulated onto a carrier frequency to allow many simultaneous wireless communication links to work simultaneously on different frequencies.

Transparent modems operate in a manner similar to their phone line modem cousins. Typically, they were half duplex, meaning that they could not send and receive data at the same time. Typically transparent modems are polled in a round robin manner to collect small amounts of data from scattered locations that do not have easy access to wired infrastructure. Transparent modems are most commonly used by utility companies for data collection.

Smart modems come with a media access controller inside which prevents random data from colliding and resends data that is not correctly received. Smart modems typically require more bandwidth than transparent modems, and typically achieve higher data rates. The IEEE 802.11 standard defines a short range modulation scheme that is used on a large scale throughout the world.

WiFi and WiMax

Wireless data modems are used in the WiFi and WiMax standards, operating at microwave frequencies.

WiFi (Wireless Fidelity) is principally used in laptops for Internet connections (wireless access point) and wireless application protocol (WAP).

Page 43: What is computer networking

.

Broadband

DSL modem

ADSL modems, a more recent development, are not limited to the telephone's "voiceband" audio frequencies. Some ADSL modems use coded orthogonal frequency division modulation (DMT).

Cable modems use a range of frequencies originally intended to carry RF television channels. Multiple cable modems attached to a single cable can use the same frequency band, using a low-level media access protocol to allow them to work together within the same channel. Typically, 'up' and 'down' signals are kept separate using frequency division multiple access.

New types of broadband modems are beginning to appear, such as doubleway satellite and power line modems.

Broadband modems should still be classed as modems, since they use complex waveforms to carry digital data. They are more advanced devices than traditional dial-up

Page 44: What is computer networking

modems as they are capable of modulating/demodulating hundreds of channels simultaneously.

Many broadband modems include the functions of a router (with Ethernet and WiFi ports) and other features such as DHCP, NAT and firewall features.

When broadband technology was introduced, networking and routers were unfamiliar to consumers. However, many people knew what a modem was as most internet access was through dial-up. Due to this familiarity, companies started selling broadband modems using the familiar term "modem" rather than vaguer ones like "adapter" or "transceiver".

Many broadband modems must be configured in bridge mode before they can use a router.

Deep-space telecommunications

Many modern modems have their origin in deep space telecommunications systems of the 1960s.

Differences with deep space telecom modems vs landline modems

digital modulation formats that have high doppler immunity are typically used

waveform complexity tends to be low, typically binary phase shift keying

error correction varies mission to mission, but is typically much stronger than most landline modems

Voice modem

Voice modems are regular modems that are capable of recording or playing audio over the telephone line. They are

Page 45: What is computer networking

used for telephony applications. See Voice modem command set for more details on voice modems. This type of modem can be used as FXO card for Private branch exchange systems (compare V.92).

Popularity

A CEA study in 2006 found that dial-up Internet access is on a notable decline in the U.S. In 2000, dial-up Internet connections accounted for 74% of all U.S. residential Internet connections. The US demographic pattern for (dial-up modem users per capita) has been more or less mirrored in Canada and Australia for the past 20 years.

Dial-up modem use in the US had dropped to 60% by 2003, and in 2006 stood at 36%. Voiceband modems were once the most popular means of Internet access in the U.S., but with the advent of new ways of accessing the Internet, the traditional 56K modem is losing popularity.