wg fem10207 amsterdam_v12

Upload: alfonxxl

Post on 08-Jan-2016

6 views

Category:

Documents


0 download

DESCRIPTION

fem

TRANSCRIPT

  • WG FEM 10.2.07

    1

    FEM 10.2.07Comparison of methods of global analysis

    Option 2 and Option 6

    Working group FEM 10.2.072nd Meeting in Amsterdam, 02/2009

    D. mdek, K. Tilburgs

    WG FEM 10.2.07

    2

    Contents

    1. Geometry

    2. Loading

    3. Results

    4. Conclusions

  • WG FEM 10.2.07

    3

    1. Geometry

    Main dimensions

    - net channel width 1 340 mm- no. of lanes 20 lanes- frame height 11 350 mm- no. of levels 4 levels- spacing of levels 2 250 mm- frame depth 1 300 mm- spacing between frames 1 250 mm- channel depth 9 000 mm

    WG FEM 10.2.07

    4

    4 examples of bracing configuration

    Example B- min. bracing acc. to Option 6 (numbers, shape ratios)- profiles designed for sway imperfection 1/100

    Example B2- min. bracing acc. to Option 6 (numbers, shape ratios)- profiles designed for sway imperfection 1/100- without full-length plan bracing

  • WG FEM 10.2.07

    5

    4 examples of bracing configuration (pg. 2)

    Example B3- min. bracing acc. to Option 6 (numbers, shape ratios)- profiles designed for sway imperfection 1/50

    Example A- bracing configuration corresponding to daily practise

    WG FEM 10.2.07

    6

    Derivation of geometry of individual examples

    See following pages.

  • WG FEM 10.2.07

    7

    Example B - Global view

    WG FEM 10.2.07

    8

    Example B - Down-lane direction

  • WG FEM 10.2.07

    9

    Example B - Down-lane direction

    FEM 10.2.07 - Option 6 - requires

    - max. 1 mono post

    Here in Example B- 1 mono post

    WG FEM 10.2.07

    10

    Example B - Cross-lane direction

  • WG FEM 10.2.07

    11

    Example B - Spine bracing

    FEM 10.2.07 - Option 6 - requires- min. 1 lane in 5 braced- max. Height / Width = 4 : 1- minimum profiles

    Here in Example B- 1 lane in 5 braced- Height / Width = 3.83 : 1- minimum profiles

    WG FEM 10.2.07

    12

    Example B - Top view

  • WG FEM 10.2.07

    13

    Example B - Top view

    WG FEM 10.2.07

    14

    Example B2 - Top view

  • WG FEM 10.2.07

    15

    Example B - Plan bracing

    FEM 10.2.07 - Option 6 - requires- min. 1 lane in 5 braced- max. Depth / Width = 3 : 1- minimum profiles

    Here in Example B- 1 lane in 3.33 braced- Depth / Width = 2.03 : 1- minimum profiles

    WG FEM 10.2.07

    16

    Example A - Global view

  • WG FEM 10.2.07

    17

    Example A - Down-lane direction

    WG FEM 10.2.07

    18

    Example A - Cross-lane direction

  • WG FEM 10.2.07

    19

    Example A - Spine bracing

    FEM 10.2.07 - Option 6 - requires- min. 1 lane in 5 braced- max. Height / Width = 4 : 1- minimum profiles

    Here in Example A- 1 lane in 1.67 braced- Height / Width = 1.92 : 1- larger profiles

    WG FEM 10.2.07

    20

    Example A - Top view

  • WG FEM 10.2.07

    21

    Example A - Top view

    WG FEM 10.2.07

    22

    Example A - Plan bracing

    FEM 10.2.07 - Option 6 - requires- min. 1 lane in 5 braced- max. Depth / Width = 3 : 1- minimum profiles

    Here in Example A- 1 lane in 1 braced- Depth / Width = 0.87 : 1- larger profiles

  • WG FEM 10.2.07

    23

    Structural model remarks

    - modeling for geometric linear vs. non-linear analysis

    - non-uniform upright loads (multi-span factor, kms):

    Upright kms

    1 1.02 - 1.052 0.98 - 0.993 1.004 1.005 1.006 1.007 0.95 - 0.988 0.91 - 1.06

    WG FEM 10.2.07

    24

    Structural model remarks (pg. 2)

    - torsional stiffness of uprights was for test purposes reduced 10x, 100x, 1000x in order to prove, that behaviour and stability of the model is not favourably influenced by upright torsional rigidity or by applied torsional restraints.

  • WG FEM 10.2.07

    25

    2. Loading

    1. Selfweight

    2. Product load

    - mpal = 1 000 kg- pallet depth 800 + 2*50 mm, 10 pcs in channel depth

    3. Imperfection in cross-lane direction

    - installation imperfection 1/350- design imperfection (20 lanes) 1/236

    WG FEM 10.2.07

    26

    Combinations

    Geom. non-linear analysis (2nd order)

    1.3 * G + 1.4 * Q (incl. Imperfections in c.-l. dir.)

    Geom. linear analysis (1st order)

    1.3 * G + 1.4 * Q (incl. Imperfections in c.-l. dir.)

    Stability (Eulerian load)

    1.3 * G + 1.4 * Q

  • WG FEM 10.2.07

    27

    3. Results

    Reminder - Studied issues

    1. Comparison of results according to Option 2 and 6

    2. Requirements for bracing systems acc. to Option 6

    WG FEM 10.2.07

    28

    3.1 Side sway

    Option 2

    - at 2nd line of uprights- ULS combination

  • WG FEM 10.2.07

    29

    3.1 Side sway

    Example Option Side sway k2nd Side swaymm %

    B Option 2 - 2nd order 80.8 3.44 308Option 2 - 1st order 23.5Option 6 ---

    B3 Option 2 - 2nd order 51.3 2.93 196Option 2 - 1st order 17.5Option 6 ---

    A Option 2 - 2nd order 26.2 2.36 100Option 2 - 1st order 11.1Option 6 ---

    Example B2 was not stable.

    WG FEM 10.2.07

    30

    Example B

  • WG FEM 10.2.07

    31

    Example B2

    NOT STABLE !!!

    WG FEM 10.2.07

    32

    Example A

  • WG FEM 10.2.07

    33

    Example B

    WG FEM 10.2.07

    34

    Example A

  • WG FEM 10.2.07

    35

    Example B

    WG FEM 10.2.07

    36

    Example A

  • WG FEM 10.2.07

    37

    3.2 Normal force in standard upright

    Standard upright- upright is part of plan bracing (effect of glob. tors. considered)- not part of vertical bracing; not mono post

    Option 2- usually 3rd to 4th line of uprights (high NSd, My.Sd)

    Option 6- hand calculated- including multi-span factor (1.143)- calculation method of global torsion effect is conservative- including 2nd order in frame direction (App. G4; prEN 15512)

    WG FEM 10.2.07

    38

    3.2 Normal force in standard upright

    Example Option NSd k2nd NSdkN %

    B Option 2 - 2nd order 90.867 1.06 69Option 2 - 1st order 85.655Option 6 131.083 100

    B3 Option 2 - 2nd order 89.288 1.04 68Option 2 - 1st order 85.602Option 6 131.083 100

    A Option 2 - 2nd order 82.799 1.01 82Option 2 - 1st order 82.005Option 6 100.929 100

  • WG FEM 10.2.07

    39

    3.3 Bending moment at base of standard upright

    Option 2- the same upright as upright with maximum normal force

    Option 6- higher cbase due to higher normal force

    WG FEM 10.2.07

    40

    3.3 Bending moment at base of standard upright

    Example Option MSd k2nd MSdkNm %

    B Option 2 - 2nd order 1.957 3.16 392Option 2 - 1st order 0.620Option 6 0.499 100

    B3 Option 2 - 2nd order 1.470 2.65 295Option 2 - 1st order 0.555Option 6 0.499 100

    A Option 2 - 2nd order 1.165 2.24 247Option 2 - 1st order 0.520Option 6 0.471 100

  • WG FEM 10.2.07

    41

    Example B

    WG FEM 10.2.07

    42

    Example A

  • WG FEM 10.2.07

    43

    3.4 Buckling length in cross-lane direction

    Option 2- 3D model with restricted sway of top plane- anti-symmetric modes only

    Option 6- single upright with restricted sway at the top- anti-symmetric modes only

    WG FEM 10.2.07

    44

    3.4 Buckling length in cross-lane direction

    Example Option Lcr.y Lcr.yBeta*Lsys %

    B Option 2 0.445 101Option 6 0.441 100

    B3 Option 2 0.445 101Option 6 0.441 100

    A Option 2 0.442 98Option 6 0.449 100

  • WG FEM 10.2.07

    45

    Example B

    WG FEM 10.2.07

    46

    Example B

  • WG FEM 10.2.07

    47

    Example A

    WG FEM 10.2.07

    48

    Example A

  • WG FEM 10.2.07

    49

    3.5 Unity check of standard upright

    General

    - including flexural-torsional buckling- one Lcr.y, My.Sd, bMy (i.e. ky)- checked at least on two levels (variable Lcr.z and NSd)

    Note

    - My.Sd also for Option 6 calculated using design imperfection (1/236)

    WG FEM 10.2.07

    50

    3.5 Unity check of standard upright

    Example Option Check Check%

    B Option 2 - 2nd order 1.03 87Option 6 1.18 100

    B3 Option 2 - 2nd order 0.95 81Option 6 1.18 100

    A Option 2 - 2nd order 0.85 90Option 6 0.94 100

    Option 6 is conservative with regard to unity check of upright.

  • WG FEM 10.2.07

    51

    3.6 Axial force in spine bracing

    Option 2- 2nd (and 1st) order

    Option 6- calculated by hand, 1st order- mass of total block considered- share to top calculated using model with upright

    restricted at the top against translation

    WG FEM 10.2.07

    52

    3.6 Axial force in spine bracing

    Example Option NSd k2nd NSdkN %

    B Option 2 - 2nd order 41.48 2.74 218Option 2 - 1st order 15.147Option 6 19.051 100

    B3 Option 2 - 2nd order 35.793 2.17 188Option 2 - 1st order 16.479Option 6 19.051 100

    A Option 2 - 2nd order 30.822 1.78 177Option 2 - 1st order 17.347Option 6 17.435 100

    Opt. 6 is very unconservative with regard to bracing sys. stiffness.

  • WG FEM 10.2.07

    53

    4. Conclusions

    a. Structures designed acc. to Option 6 are excessively flexible (high influence of 2nd order).

    b. Upright design to Option 6 is conservative (assuming the use of multi-span factor and the effect of GT).

    c. Spine bracing design to Option 6 is not conservative.

    WG FEM 10.2.07

    54

    Further remarks

    d. The specification of min. ammount of bracing systems in Option 6 should be rephrased to avoid confusion.

    e. Additional requirements (use of multi-span factor, effects of global torsion, 2nd order in frame dir.) must be added.

    f. Requirement for design of min. bracing should be applicable for gross cross-sections only.

    g. Upright check procedure might be further discussed (concerns all analysis options).