welcome to the course in heat transfer (mmv031) – l1 · amount of lectures decreased). ......

57
Welcome to the course in Heat Transfer (MMV031) – L1 Martin Andersson & Zan Wu

Upload: dangduong

Post on 29-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • Welcome to the course in Heat Transfer (MMV031) L1Martin Andersson & Zan Wu

  • Agenda

    Organisation

    Introduction to Heat Transfer

    Heat Exchangers (Ex 108)

  • Course improvement compared to last years

    2017: Amount of exercises increased (and consequently the

    amount of lectures decreased). Reduced the amount of the theoretical questions Also hints are provided for a fraction of the theoretical

    questions. Amount of home assignments decreased (instead we

    focus more on a proper methodology 2016: The lectures and tutorial sessions are integrated,

    mainly because it is hard for most students to focus on theory (lectures) for 90 minutes.

  • Contents of the course

    Heat Conduction Convection Thermal Radiation Condensation Evaporation, Boiling Heat Exchangers

  • Organisation

    Lectures with tutorials Guest lectures Exercises

    Mandatory home assignments

    Exam (mandatory)

  • Organisation

    Examiner: Associate Professor Martin Andersson

    Teachers: Martin Andersson and Zan Wu (offices at 5thfloor M-building)

    Course administrator: Jenny Oldbring (office at 5th floor M-building)

  • Organisation

    Course literature: Introduction to Heat Transfer, SundnB., WIT Press

    Examination: 14th March, 8-13 (MA 8) Exam is 50 p + 5 p if all home assignments are delivered in

    time

    Max 40 % theoretical part + Min 60 % problem solving part

    Grade 3 requires 22 p (min 5p on theoretical part)

    Grade 4 requires 33 p (min 5p on theoretical part)

    Grade 5 requires 44 p (min 5p on theoretical part)

  • Guest lectures and Study Visit

    Guest lecture(s): SWEP Ericsson

  • Introduction

    Heat is energy passing a system boundary due to a temperature difference

    Heat is a form of energy in transition.

    Heat conduction Heat convection (natural (no pump, fan etc) or forced) Thermal radiation

  • Introduction

  • Introduction

  • Heat conduction

    T1 T2

    T1 > T2

    q

    Thickness b

    q = (T1-T2)/b

  • Heat conduction

  • Solids

    Carbon Steel = 15- 50 W/mK

    Polymers, = 0.1-0.5 W/mK

    Liquids

    Water = 0.6 W/mK

    Oil = 0.15 W/mK

    Gases

    Air = 0.025 W/mK

    H2 (hydrogen) = 0.2 W/mK

    Thermal conductivity (examples)

  • Convection

    q = (TS-T) = h(TS-T)

    Tsq

    U T Ts > T

  • How to determine or h

    Depends on: Flow velociy Fluid (gas or liquid) Geometry sometimes on temperature Forced convection, Natural convection, Mixed convection

    Nu = L/f = function (Re=UL/, Pr=cp/f , geometry) or Nu = L/f = function (Gr=gL3/2, Pr=cp/f , geometry) or Nu = L/f = function (Re, Gr, Pr, geometry)

  • Thermal Radiation

    Qnet = A1F12eff (T14-T24)

    q1

    q2 T2

    T1

  • Introduction to heat exchangers (ch 15)

  • What is a Heat Exchanger?

    A heat exchanger is a device that is used to transfer thermal energy (enthalpy) between two or more fluids, between a solid surface and a fluid,

    or between solid particulates and a fluid,

    at different temperatures

    and in thermal contact.

  • Classification of heat exchangers

  • Transfer process Number of fluids Degree of surface contact Design features Flow arrangements Heat transfer mechanisms

    Classification of heat exchangers

  • Fig. 1 Heat transfer surface area density spectrum ofexchanger surfaces ( Shah, 1981).

  • Fig. 2 Fluidized-bed heat exchanger.

  • Fig. 3 (a) Shell-and- tube exchanger with one shell passand one tube pass;

    (b) shell-and- tube exchanger with one shell pass and two tube passes.

  • Fig. 4 Standard shell types and front- andrear-end head types (From TEMA, 1999).

  • Fig. 5 Gasketed plate-and-frame heat exchanger.

  • Fig. 6 Plates showing gaskets around the ports (Shah and Focke, 1988).

  • Fig. 7 Section of a welded plate heat exchanger.

  • Fig. 9 Spiral plate heat exchanger with both fluids in spiral counter flow.

  • Fig. 10 (a) Lamella heat exchanger;(b) cross section of a lamella heat exchanger,(c) lamellas

  • Fig. 11 Printed-circuit cross flow exchanger

  • Fig. 12 Corrugated fin geometries for plate-fin heat exchangers:(a) plain triangular fin; (b) plain rectangular fin; (c) wavy fin; (d) offset strip fin; (e) multilouver fin; (f) perforated fin.

  • Fig. 13 (a) Individually finned tubes;(b) flat (continuous) fins on an array of tubes.

  • Fig. 14 Individually fin tubes.

  • Fig. 15 Heat wheel or a rotary regenerator madefrom a polyester film.

  • Classification according to transfer process

    Indirect contact type Direct contact type

    Direct transfer Storage Fluidized bed Immiscible fluids

    Gas-liquid Liquid-vapour

    Single-phase Multiphase

  • Classification according to number of fluids

    Two-fluid Three-fluid N-fluid (N > 3)

    Classification according to surface compactness

    Gas-to-liquid Liquid-to-liquid and phase-change

    Compact 700 m2/m3

    Non-compact < 700 m2/m3

    Compact 400 m2/m3

    Non-compact < 400 m2/m3

  • Classification according to design or type

    Tubular Plate-type Extended surface Regenerative

    PHE Spiral Plate coil Printed circuit

    Gasketed Welded Brazed

    Double-pipe Shell-and-tube Spiral tube Pipe coils

    Cross-flow to tubes

    Parallel flowto tubes

    Plate-fin Tube-fin

    Ordinary Separatingwall

    Heat-pipewall

    Rotary Fixed-matrix Rotatinghoods

  • Classification according to flow arrangements

    Single-pass Multipass

    Counter flow Parallel flow Cross flow Split flow Divided flow

    Extended surface

    Cross-Counter flow

    Cross-parallel flow

    Compound flow

    Shell-and-tube Plate

    Parallel counter flowm-shell passesn-tube passes

    split-flow Divided-flow

    Fluid 1 m passesFluid 2 n passes

  • Classification according to heat transfer mechanisms

    Single-phase convection on both sides

    Single-phase convection on one side, Two-phase convection on other side

    Two-phase convection on both sides

    Combined convection and radiative heat transfer

  • Classification according to process function

    Condensers Liquid-to-vaporphase-changeexchangers

    Heaters Coolers Chillers

  • Convective heat transfer

    vgg

    Fluid1

    Fluid2

  • Overall heat transfer coefficient

    mm1 t

    TRtUAQ ==

  • Expression for overall thermal resistance

    ooFvlw

    w

    iiFii

    1111

    oAAA

    bAA

    TR

    +

    +

    +

    +

    =

  • Values of the heat transfer coefficient W/m2K

    Air atmospheric pressure 5-75 Air pressurized 100 - 400 Water, liquid 500-20 000 Organic liquids 50 000 Boiling 2 500 -100 000 Condensation 3 000-100 000

  • Correlations for the heat transfer coefficient

    Nu = hL/k = function (flow velocity, physical properties, geometry) = function (Re, Pr, geometry)

  • General research needs

    How to achieve more compact heat exchangers

    High thermal efficiency

    Balance between enhanced heat transfer and accompanied pressure drop

    Material issues especially for high temperature applications

    Manufacturing methodology

    Fouling

    Non-steady operation

  • Fouling factors - Frsmutsningsfaktorer

    Tabell 15-I. FrsmutsningsfaktorerStrmmande medium F/1 [m

    2K/W]

    Destillerat vatten4101

    Sjvatten ( K 325T ) 4102 Matarvatten till ngpannor 4102 Brnsleolja 4109 Industriluft 4105.3

    Tabell 15-I. Frsmutsningsfaktorer

    Strmmande medium

    F

    /

    1

    a

    [m2K/W]

    Destillerat vatten

    4

    10

    1

    -

    Sjvatten (

    K

    325

    pT/p

    )/p

    pdiv class="embedded" id="_1043681052"/

    p4/p

    p10/p

    p1/p

    p-/p

    p/p

    /p

    pSjvatten (div class="embedded" id="_1043681078"/

    pK/p

    p /p

    p325/p

    p>

    T

    )

    4

    10

    2

    -

    Matarvatten till ngpannor

    4

    10

    2

    -

    Brnsleolja

    4

    10

    9

    -

    Industriluft

    4

    10

    5

    .

    3

    -

    _1043681078.unknown

    _1043681172.unknown

    _1103026485.unknown

    _1043681155.unknown

    _1043681165.unknown

    _1043681099.unknown

    _1043681028.unknown

    _1043681052.unknown

    _1043680987.unknown

  • Counter current heat exchanger

    t

    A

    dth

    dtcdA

    t

    th,in

    tc,ut

    th,ut

    tc,in

    tb

    ta

    )(utin hhh ttCQ =

    )( inut ccc ttCQ =

    ch ttt = ch)( dtdttd =

    hph )( cmC = , cpc )( cmC =

    h

    p

    h

    )

    (

    c

    m

    C

    &

    =

    ,

    c

    p

    c

    )

    (

    c

    m

    C

    &

    =

    _1043690316.unknown

    _1103026743.unknown

  • Counter current Hex

    =

    hc

    11)(CC

    Qdtd

    =

    hc

    11)(CC

    tdAUtd

    =

    hc

    11)(CC

    dAUttd

    ccphhp )()( dtcmdtcmtdAUQd ===

    -

    =

    D

    h

    c

    1

    1

    )

    (

    C

    C

    Q

    d

    t

    d

    &

    -

    D

    =

    D

    h

    c

    1

    1

    )

    (

    C

    C

    t

    dA

    U

    t

    d

    -

    =

    D

    D

    h

    c

    1

    1

    )

    (

    C

    C

    dA

    U

    t

    t

    d

    _1132136708.unknown

    _1132136721.unknown

    _1103026816.unknown

  • Counter current Hex

    -

    =

    D

    D

    D

    D

    A

    C

    C

    dA

    U

    t

    t

    d

    0

    h

    c

    t

    t

    1

    1

    )

    (

    b

    a

    -

    =

    D

    D

    h

    c

    a

    b

    1

    1

    ln

    C

    C

    UA

    t

    t

    -

    -

    -

    D

    =

    D

    D

    Q

    t

    t

    Q

    t

    t

    t

    Q

    t

    t

    &

    &

    &

    )

    (

    )

    (

    ln

    ut

    in

    in

    ut

    h

    h

    c

    c

    m

    a

    b

    a

    b

    a

    b

    m

    ln

    t

    t

    t

    t

    LMTD

    t

    D

    D

    D

    -

    D

    =

    =

    D

    _1132136752.unknown

    _1132136781.unknown

    _1103026867.unknown

    _1103026870.unknown

    _1103026864.unknown

  • Expression for overall thermal resistance

  • Parallel flow Hex,Co-Current Hex

    )(

    )(ln

    )()(

    utut

    inin

    ututinin

    ch

    ch

    chchm

    tt

    tttttt

    t

    =

    a

    b

    abm

    lntt

    ttt

    =

    t

    A

    dth

    dtcdA

    t

    th,in

    tc,in

    th,ut

    tc,ut

    tbta

  • Arbitrary Hex

    LMTDFUAQ =

    F korrektionsfaktor som beror av tv parametrar P och R;

    F correction factor depending on two parameters P and R

    inin

    inut

    ch

    cc

    tt

    ttP

    =

    hp

    cp

    )(

    )(

    cm

    cmR

    =

    R kan ocks skrivas; R can also be written

    inut

    utin

    cc

    hh

    tt

    ttR

    =

    F korrektionsfaktor som beror av tv parametrar P och R;

    F correction factor depending on two parameters P and R

    in

    in

    in

    ut

    c

    h

    c

    c

    t

    t

    t

    t

    P

    -

    -

    =

    h

    p

    c

    p

    )

    (

    )

    (

    c

    m

    c

    m

    R

    &

    &

    =

    R kan ocks skrivas; R can also be written

    in

    ut

    ut

    in

    c

    c

    h

    h

    t

    t

    t

    t

    R

    -

    -

    =

    _1103027076.unknown

    _1103027083.unknown

    _1103027103.unknown

    _1103027060.unknown

  • F vs P och/and R; Shell-and-tube heat exchanger; one shell pass, two tube passes

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.5

    0.6

    0.7

    0.8

    0.9

    1.0

    P

    Kor

    rekt

    ions

    fakt

    or, F

    R =

    6.0

    4.0

    3.0

    2.0 1.5

    1.0

    0.8

    0.6

    0.4

    0.2

    0.1

    tc,in

    tc,ut

    th,ut

    th,in

    inin

    inut

    ch

    cc

    tt

    ttP

    =

    inut

    utin

    cc

    hh

    tt

    ttR

    =

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    P

    Korrektionsfaktor, F

    R = 6.0

    4.0

    3.0

    2.0

    1.5

    1.0

    0.8

    0.6

    0.4

    0.2

    0.1

    t

    c,in

    t

    c,ut

    t

    h,ut

    t

    h,in

    in

    in

    in

    ut

    c

    h

    c

    c

    t

    t

    t

    t

    P

    -

    -

    =

    in

    ut

    ut

    in

    c

    c

    h

    h

    t

    t

    t

    t

    R

    -

    -

    =

    _1103027310.unknown

    _1103027365.unknown

    _1103027383.unknown

    _1075193104.unknown

    Welcome to the course in Heat Transfer (MMV031) L1Agenda Course improvement compared to last yearsContents of the courseOrganisation Organisation Organisation Guest lectures and Study VisitIntroductionIntroductionSlide Number 11Heat conductionHeat conductionSlide Number 14ConvectionHow to determine or hThermal RadiationSlide Number 18Slide Number 19Introduction to heat exchangers (ch 15)What is a Heat Exchanger?Classification of heat exchangersSlide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Convective heat transferOverall heat transfer coefficientExpression for overall thermal resistance Values of the heat transfer coefficient W/m2KCorrelations for the heat transfer coefficientGeneral research needsFouling factors - FrsmutsningsfaktorerCounter current heat exchangerCounter current HexCounter current HexExpression for overall thermal resistance Parallel flow Hex,Co-Current HexArbitrary HexF vs P och/and R; Shell-and-tube heat exchanger; one shell pass, two tube passes