weiren yu 1,2 , xuemin lin 1 , wenjie zhang 1 1 university of new south wales

25
1 Weiren Yu 1,2 , Xuemin Lin 1 , Wenjie Zhang 1 1 University of New South Wales 2 NICTA, Australia Towards Efficient SimRank Computation over Large Networks

Upload: oki

Post on 24-Feb-2016

55 views

Category:

Documents


0 download

DESCRIPTION

Towards Efficient SimRank Computation over Large Networks. Weiren Yu 1,2 , Xuemin Lin 1 , Wenjie Zhang 1 1 University of New South Wales 2 NICTA, Australia. Outline. SimRank overview Existing computing method Our approaches Partial Sums Sharing Exponential SimRank - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

1

Weiren Yu1,2, Xuemin Lin1, Wenjie Zhang1

1 University of New South Wales2 NICTA, Australia

Towards Efficient SimRank Computation over Large Networks

Page 2: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

2

• SimRank overview• Existing computing method• Our approaches

• Partial Sums Sharing• Exponential SimRank

• Empirical evaluations• Conclusions

Outline

Page 3: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

3SimRank Overview• Similarity Computation plays a vital role in our lives.

Citation Graph Collaboration Network

Recommender System

Page 4: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

4SimRank Overview• SimRank

• An appealing link-based similarity measure (KDD ’02)• Basic philosophy

Two vertices are similar if they are referenced by similar vertices.

• Two Forms• Original form (KDD ’02)

• Matrix form (EDBT ’10)

damping factor

in-neighbor set of node b

similarity btw. nodes a and b

Page 5: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

5

• State-of-the-art Method (VLDB J. ’10)• Partial Sum Memoization

• Two Limitations• High computation time: O(Kdn2) • Low convergence rate:

Existing Computing Methods

1( , ) ( , ) kks a b s a b C

memoize

reuse

Page 6: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

6Naïve vs. VLDB J.’10• Example: Compute s(a,b), s(a,d)

b g

g

e

f

iNaïve

DuplicateComputations

1( ) ( )

( , ) ( , )( ) ( )k k

j b i a

Cs a b s i ja b

I II I

1( ) ( )

( , ) ( , )( ) ( )k k

j d i a

Cs a d s i ja d

I II I

b g

e

f

i

a

( )dI

1( , )ks a b

( )aI

( )bI

1( , )ks a d

( )aI

Page 7: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

7Naïve vs. VLDB J.’10• Example: Compute s(a,b), s(a,d)

( )aI

( )bI

b g

g

e

f

i

( )dI

Partial Sums Memoization (VLDB J.’10)Partial Sum

Memoization

1 ( )( )

( , ) ( )( ) ( )

ksk a

j b

Cs a b Partial ja b

III I

1 ( )( )

( , ) ( )( ) ( )

ksk a

j d

Cs a d Partial ja d

III I

( )( )

, ( ) ( , )ksa k

i a

j Partial j s i j

II

a

1( , )ks a b

1( , )ks a d

reuse

Page 8: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

8VLDB J.’10 Limitations• Example: Compute s(a,b), s(a,d), s(c,b), s(c,d)

Partial SumsDuplicate

Redundancy

1 ( )( )

( , ) ( )( ) ( )

ksk a

j b

Cs a b Partial ja b

III I

( )( )

, ( ) ( , )ksa k

i a

j Partial j s i j

II

b g

g

e

f

i( )dI

a

( ) ( )ksaPartial gI

( )bI

b g

g

e

f

i

a

d( ) ( )kscPartial gI

1 ( )( )

( , ) ( )( ) ( )

ksk c

j b

Cs c b Partial jc b

III I

( )( )

, ( ) ( , )ksc k

i c

j Partial j s i j

II

( )dI

1( , )ks a b1( , )ks a d

( )aI

( )bI

1( , )ks c b1( , )ks c d

( )cI

Page 9: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

9

• Prior Work (VLDB J. ’10)• High time complexity: O(Kdn2)

• Duplicate computation among partial sums memoization

• Slow (geometric) convergence rate• Require K = log⌈ Cϵ⌉ iterations to guarantee accuracy ϵ

• Our Contributions• Propose an adaptive clustering strategy

to reduce the time from O(Kdn2) to O(Kd’n2), where d’≤ d.

• Introduce a new notion of SimRank to accelerate convergence from geometric to exponential rate.

Motivation

Page 10: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

10

• Main idea• share common sub-summations among partial sums

• Example

Eliminating Partial Sums Redundancy

NP-hard to find “best” partition for ( )aI

fine-grained partial sums

Duplicate Computation

!!

(3 additions)Existing Approach

( )

( )

( ) ( , ) ( , )

( ) ( , ) ( , ) ( , )

kk k

kk k k

sa

sc

Partial g s b g s g g

Partial g s b g s g g s d g

I

I ( )

( ) ( )

( ) ( , ) ( , )

( ) ( ) ( , )

kk k

k kk

sa

s sc a

Partial g s b g s g g

Partial g Partial g s d g

I

I I

(only 2 additions)Our Approach

Partition ( ) ( ) { }c a dI I

Page 11: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

11

• Find: partitions for each in-neighbor setMinimize: the total cost of all partial sums

• Main Idea• Calculate transition cost btw. in-neighbor sets

• Construct a weighted digraph s.t.

• Find a MST of to minimize the total transition cost

Heuristic for Finding Partitions

Page 12: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

12Example

(1)

(2)

(3)

(4)

Page 13: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

13Example

(1)

d

b

g

f

i

e

a

++

+

++

++

-(2)

Page 14: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

14

• (Inner) partial sums sharing

• Outer partial sums sharing

Outer Partial Sums Sharing

Page 15: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

15

• Existing Approach (VLDB J. ’10)

For , to guarantee the accuracy , there are

• Our Approach

For , , we need only 7 iterations.

Exponential SimRank

1max

kk C S S Geometric Rate

Exponential Rate1

maxˆ ˆ

( 1)!

k

kCk

S S

Page 16: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

16

• Key Observation

The effect of Ci is to reduce the contribution of long paths relative to short ones

• Main Idea• Accelerate convergence by replacing the geometric sum of SimRank

with the exponential sum.

Exponential SimRank

.

Normalized Factor

Exponential Sum

Geometric Sum

Differential Equation

Initial Condition

Page 17: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

17

• Recursive form for Differential SimRank

• Conventional computing method • Euler iteration: Set ,

• Disadvantage: Hard to determine the value of h.• Our approach

SimRank Differential Equation

Page 18: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

18

• Accuracy Guarantee

• #-Iterations• Use Lambert W function

• Use Log function (for )

• Example ( , )

SimRank Differential Equation

Page 19: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

19

• Geometric vs. Exponential SimRank

Comparison

Closed form

Seriesform

Iterative form

Accuracy

(Geometric) SimRank Exponential SimRank

Page 20: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

20

• Datasets• Real graph: BERKSTAN, PATENT, DBLP (D02, D05, D08, D11)• Synthetic data: SYN100K (via GTGraph generator)

• Compared Algorithms• OIP-DSR: Differential SimRank + Partial Sums Sharing• OIP-SR: Conventional SimRank + Partial Sums Sharing• psum-SR [VLDB J. ’10]: Without Partial Sums Sharing• mtx-SR [EDBT ’10]: Matrix-based SimRank via SVD

• Evaluations• Efficiency: CPU time, memory space, convergence rate• Effectiveness: relative order preservation of OIP-DSR

Experimental Settings

Page 21: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

21Time Efficiency

Page 22: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

22Space & Convergence Rate

Page 23: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

23Relative Order Preservation

Page 24: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

24

• Two efficient methods are proposed to speed up the computation of SimRank on large graphs.• A novel clustering approach to eliminate duplicate

computations among the partial summations.

• A differential SimRank model for achieving an exponential convergence rate.

• Empirical evaluations to show the superiority of our methods by one order of magnitude.

Conclusions

Page 25: Weiren  Yu 1,2 ,  Xuemin  Lin 1 ,  Wenjie  Zhang 1 1  University of New South Wales

25

Thank you!

Q/A