weili qu_sure2013 poster

1
Results Table 2. Summary of gene5c crosses So far, twenty crosses among various alleles of candidate Arabidopsis SWI/SNF genes were completed. Three double homozygous lines were obtained. There was no obvious phenotype observed from double homozygotes of taf14a x snf2a. However, there were unexpected phenotypes observed in both taf14a x snf5 and snf2e1 x snf5 F 2 plants where the phenotypes of both double homozygotes were not stronger than those of double heterozygotes or any other genotypic combinaEons. It is possible that these alleles are inducing inheritable epigeneEc alteraEons in F 1 double heterozygotes. These alteraEons may then lead to unexpected phenotypic segregaEons in F 2 populaEon that do not correlate with genotypes. Functional Analysis of Chromatin Remodeling Enzymes in the Model Plant Arabidopsis thaliana Weili Qu 1 , Paja Sijacic 2 and Roger B. Deal 2 1 Emory College of Arts and Sciences, Emory University, Atlanta, GA 2 Department of Biology, Emory University, Atlanta, GA Abstract ATPdependent chroma5n remodeling complexes (CRC) can alter the structure of nucleosomes to allow access of condensed genomic DNA and regulate gene expression in eukaryoEc cells 1 . CRCs play an essenEal role during the development of mulEcellular organisms, which involves cell proliferaEon and differenEaEon. This requires precise control of transcripEon throughout the genome 2 . Since core subunits of these complexes are each encoded by small gene families, a given remodeler can have mulEple funcEonally disEnct isoforms in specific cell types 1 . SWI/SNF and SWR1 are mulEfuncEonal CRCs and are involved in key developmental pathways in animals 1 . LiOle is known about the organizaEon and funcEon of putaEve plant SWI/SNF and SWR1 complexes although conserved SWI/SNF and SWR1 subunit homologues have been idenEfied 3 . In addiEon, it has been hypothesized that plants possess a large number of SWI/SNFlike isoforms given that the majority of the putaEve subunits are encoded by much larger and more diverse gene families than those of animals 2 . Nuclear Ac5n Related Proteins (ARPs) exist exclusively in CRCs 3 . ARP6 and ARP7 are core subunits of SWR1 and SWI/SNF complexes, respecEvely, and are conserved in all eukaryotes. In Arabidopsis, ARP6containing protein complexes funcEon as SWR1, while ARP7containing protein complexes are likely to funcEon as CRCs and potenEally homologous to yeast SWI/SNF 3 . Background Figure 1. Phenotypic analysis of snf5 x snf2e1 F 2 plants There were unexpected phenotypes observed in snf2e1 x snf5 F 2 plants, where the phenotype of double homozygotes was not stronger than those of double heterozygotes or any other genotypic combinaEon. For instance, plants #2 and #5 are phenotypically different although they have the same genotype; plant #5, which is snf5 heterozygous and WT for snf2e1, has stronger phenotype than plant #4, a snf5 homozygous and WT for snf2e1. Double heterozygous Heterozygous for snf5, WT for snf2e1 Homozygous for snf5, WT for snf2e1 Heterozygous for snf5, WT for snf2e1 12.78 7.18 11.45 7.19 0 2 4 6 8 10 12 14 16 WT arp61 not transformed gARP6FLAG in arp61 arp61 transformed number of leaves at flowering Figure 3. Screening for Arp6 rescued plants Plant #7 is a putaEve rescued plant, for it did not flower at the 6leaf stage. Out of 1300 transformed plants, 45 restored WT flowering Eme and were considered rescued plants. “rescued” plant “nonrescued” plant Figure 4. Protein Blot Analysis of Arp6 rescued plants Plants 1 to 7 express FLAGtagged ARP6 fusion protein, as indicated by the larger size of ARP6 protein bands compared to WT. Conclusion and future direc5ons The unexpected phenotypes of snf5 x snf2e1 and snf5 x taf14a F 2 plants might be caused by epigeneEc interacEons among these alleles. AddiEonal geneEc interacEons among candidate genes of putaEve SWI/SNF complex will be analyzed. Arp6FLAG transgene rescued arp61 plants and fusion protein was successfully detected on protein blot. Arp4 and Arp7 rescued plants will be generated. ImmunoprecipitaEon of tagged ARP4, ARP6, and ARP7containing protein complexes will be opEmized, and the composiEon of ARPcontaining protein complexes will be determined by MS/MS. Figure 2. Flowering 5me analysis of Arp6 transgenic plants arp61 mutants have early flowering phenotype compared to WT (67 roseOe leaves for arp61 versus 1214 roseOe leaves for WT at the Eme of flowering). Plants were considered rescued if flowering Eme was similar to WT, as determined by the average number of roseOe leaves at the Eme of flowering. 1 2 3 4 5 6 7 8 WT arp61 46 kDa— WB: mAbARP6 The composi5on of SWI/SNF complex Yeast SWI/SNF complex AcEn related protein 7 DNA binding domain Table 1. Puta5ve SWI/SNF homologues in Arabidopsis Nucleosome, the repeaEng unit of eukaryoEc chromosome ATPdependent chromaEn remodeling complex DNA binding protein Gene that needs to be transcribed hOp://www.ncbi.nlm.nih.gov/pmc/arEcles/PMC2924208/ hOp://www.nature.com/nature/journal/v463/n7280/full/nature08911.html Acknowledgement : This material is based upon work supported by the Howard Hughes Medical InsEtute Science EducaEon Program award #52006923 to Emory University. Any opinions, findings, and conclusions or recommendaEons expressed in this material are those of the author(s) and do not necessarily reflect the views of the Howard Hughes Medical InsEtute or Emory University. A special thanks to the Deal Lab group for mentorship and research experEse. References : 1. Hargreaves, Diana C., and Gerald R. Crabtree. "ATPdependent ChromaEn Remodeling: GeneEcs, Genomics and Mechanisms." Cell Research 21.3 (2011): 396420. 2. Ho, Lena, and Gerald R. Crabtree. "ChromaEn Remodeling during Development." Nature463.7280 (2010): 47484. 3. Meagher, R. B. "Nuclear AcEnRelated Proteins as EpigeneEc Regulators of Development." Plant Physiology 139.4 (2005): 1576585. Yeast SWI/SNF genes Arabidopsis homologues Methods Single homozygous TDNA seeds of candidate gene A Single homozygous X F 1 Double heterozygous plant Selfcross F 2 Double homozygous plant PCR genotyping Single homozygous TDNA seeds of candidate gene B PCR genotyping Outcross Examine and compare phenotypes, take pictures PCR genotyping Gel electrophoresis DNA amplificaEon Gene5c approach Specific aim: to generate double homozygous lines and idenEfy geneEc interacEons among candidate genes of putaEve SWI/SNF complex. Candidate genes were selected from a list of putaEve SWI/SNF homologs (Table 1.). TDNA mutant lines for candidate genes were obtained from Arabidopsis Biological Resource Center (ABRC). Double heterozygotes were generated by outcrossing single homozygous lines, and double homozygotes were generated by selfcrossing heterozygotes. Genotypes were confirmed by PCR. Phenotypes of double homozygotes were observed and compared with those of single homozygotes and WT to idenEfy geneEc interacEons among candidate genes. Random TDNA inserEons disrupt gene funcEon Biochemical approach Specific aim: to immunoprecipitate (IP) ARPcontaining putaEve plant complexes, and determine the composiEon of IPed protein complexes by mass spectrometry (MS/MS). Agrobacteria are used to introduce transgenes into mutant plants, and rescued lines will be obtained through plate/phenotypic selecEon and PCR genotyping. The expression of tagged ARPs in rescued plants will be confirmed by western blolng. ARPcontaining protein complexes will be purified from leaves by immunoprecipitaEon and their composiEon will be determined by MS/MS analysis. Transgene Fluorescent tag gARP4 FLAG Introduced into arp4 Ri gARP6 FLAG Introduced into arp61/arp61 gARP7 GFP Introduced into arp71/ + collect seeds collect seeds BASTA/anEbioEc selecEon on Petri dish PCR genotyping grow Rescued plants ARPcontaining CRC Tag AnEbody against Tag MS ImmunoprecipitaEon Bead AnEbody binds to protein, Nonbinding proteins are removed by washing Elute complex from beads SDSPAGE of eluted proteins Cut bands from SDSPAGE gel, in gel digesEon with trypsin then add idenEfy proteins by mass spectrometry (MS/MS) hOp://www.proteome.org.au/NewsleOer2012/ProteinProteininteracEonsusingMassSpectrometry/default.aspx hOp://www.intechopen.com/books/transgenicplantsadvancesandlimitaEons/transgenicplantsasgenediscoverytools hOp://www2.warwick.ac.uk/alumni/services/epormolios/hrrgak/project_overview/tdna_screening_approach/ Single homozygous In eukaryoEc cells epigeneEc pathways regulate the first step in gene expression— transcripEon, in which a parEcular segment of DNA is copied into RNA. ATPdependent chromaEn remodeling complexes (CRCs) can alter the structure of nucleosome, the fundamental repeaEng unit of eukaryoEc chromaEn, and thus regulate gene expression. A class of ATPdependent chromaEn remodeling complex called SWI/SNF plays an essenEal role in various developmental processes. Although well studied in fungi and animals, liOle is known about the funcEon and composiEon of SWI/SNFlike complexes in plants. This project aims to use the model plant Arabidopsis thaliana to study the funcEon and composiEon of plant SWI/SNF and SWI/SNFrelated (SWR1) complexes using geneEc and biochemical approaches. Plants with mutant alleles for putaEve SWI/ SNF subunits were crossed and phenotypes were examined to idenEfy geneEc interacEons among those alleles. In addiEon, biochemical techniques to purify and idenEfy subunits of SWI/SNF and SWR1 complexes are being established. This work will allow an understanding of the diversity and funcEon of SWI/SNFlike complexes in plant development.

Upload: weili-george-qu

Post on 14-Jan-2017

117 views

Category:

Documents


0 download

TRANSCRIPT

Results

Table  2.  Summary  of  gene5c  crosses      So  far,  twenty  crosses  among  various  alleles  of  candidate  Arabidopsis  SWI/SNF  genes  were  completed.  Three  double  homozygous  lines  were  obtained.  There  was  no  obvious  phenotype  observed  from  double  homozygotes  of  taf14a  x  snf2a.  However,  there  were  unexpected  phenotypes  observed  in  both  taf14a  x  snf5  and  snf2e-­‐1  x  snf5  F2  plants  where  the  phenotypes  of  both  double  homozygotes  were  not  stronger  than  those  of  double  heterozygotes  or  any  other  genotypic  combinaEons.  It  is  possible  that  these  alleles  are  inducing  inheritable  epigeneEc  alteraEons  in  F1  double  heterozygotes.  These  alteraEons  may  then  lead  to  unexpected  phenotypic  segregaEons  in  F2  populaEon  that  do  not  correlate  with  genotypes.  

Functional Analysis of Chromatin Remodeling Enzymes in the Model Plant Arabidopsis thaliana

Weili Qu1, Paja Sijacic2 and Roger B. Deal2 1Emory College of Arts and Sciences, Emory University, Atlanta, GA 2Department of Biology, Emory University, Atlanta, GA

Abstract  

                         �  ATP-­‐dependent  chroma5n  remodeling  complexes  (CRC)  can  alter  the  structure  of  

nucleosomes  to  allow  access  of  condensed  genomic  DNA  and  regulate  gene  expression  in  eukaryoEc  cells1.  CRCs  play  an  essenEal  role  during  the  development  of  mulEcellular  organisms,  which  involves  cell  proliferaEon  and  differenEaEon.  This  requires  precise  control  of  transcripEon  throughout  the  genome2.  Since  core  subunits  of  these  complexes  are  each  encoded  by  small  gene  families,  a  given  remodeler  can  have  mulEple  funcEonally  disEnct  isoforms  in  specific  cell  types1.  

 �  SWI/SNF  and  SWR1  are  mulEfuncEonal  CRCs  and  are  involved  in  key  developmental  

pathways  in  animals1.  LiOle  is  known  about  the  organizaEon  and  funcEon  of  putaEve  plant  SWI/SNF  and  SWR1  complexes  although  conserved  SWI/SNF  and  SWR1  subunit  homologues  have  been  idenEfied3.  In  addiEon,  it  has  been  hypothesized  that  plants  possess  a  large  number  of  SWI/SNF-­‐like  isoforms  given  that  the  majority  of  the  putaEve  subunits  are  encoded  by  much  larger  and  more  diverse  gene  families  than  those  of  animals2.  

 �  Nuclear  Ac5n  Related  Proteins  (ARPs)  exist  exclusively  in  CRCs3.  ARP6  and  ARP7  are  core  

subunits  of  SWR1  and  SWI/SNF  complexes,  respecEvely,  and  are  conserved  in  all  eukaryotes.    In  Arabidopsis,  ARP6-­‐containing  protein  complexes  funcEon  as  SWR1,  while  ARP7-­‐containing  protein  complexes  are  likely  to  funcEon  as  CRCs  and  potenEally  homologous  to  yeast  SWI/SNF3.  

Background

Figure  1.  Phenotypic  analysis  of  snf5  x  snf2e-­‐1  F2    plants      There  were  unexpected  phenotypes  observed  in  snf2e-­‐1  x  snf5  F2  plants,  where  the  phenotype  of  double  homozygotes  was  not  stronger  than  those  of  double  heterozygotes  or  any  other  genotypic  combinaEon.  For  instance,  plants  #2  and  #5  are  phenotypically  different  although  they  have  the  same  genotype;  plant  #5,  which  is  snf5  heterozygous  and  WT  for  snf2e-­‐1,    has  stronger  phenotype  than  plant  #4,  a  snf5  homozygous  and  WT  for  snf2e-­‐1.

Double  heterozygous

Heterozygous  for  snf5,  WT  for  snf2e-­‐1  

Homozygous  for  snf5,  WT  for  snf2e-­‐1

Heterozygous  for  snf5,  WT  for  snf2e-­‐1

12.78  

7.18  

11.45  

7.19  

0  

2  

4  

6  

8  

10  

12  

14  

16  

WT   arp6-­‐1  not  transformed  

gARP6-­‐FLAG  in  arp6-­‐1  

arp6-­‐1  transformed  

numbe

r  of  leaves  a

t  flow

ering

Figure  3.  Screening  for  Arp6  rescued  plants      Plant  #7  is  a  putaEve  rescued  plant,  for  it  did  not  flower  at  the  6-­‐leaf  stage.  Out  of  1300  transformed  plants,  45  restored  WT  flowering  Eme  and  were  considered  rescued  plants.  

“rescued”  plant “non-­‐rescued”  plant

Figure  4.  Protein  Blot  Analysis  of  Arp6  rescued  plants      Plants  1  to  7  express  FLAG-­‐tagged  ARP6  fusion  protein,  as  indicated  by  the  larger  size  of  ARP6  protein  bands  compared  to  WT.

Conclusion  and  future  direc5ons

�  The  unexpected  phenotypes  of  snf5  x  snf2e-­‐1  and  snf5  x  taf14a  F2  plants  might  be  caused  by  epigeneEc  interacEons  among  these  alleles.  AddiEonal  geneEc  interacEons  among  candidate  genes  of  putaEve  SWI/SNF  complex  will  be  analyzed.  

�  Arp6-­‐FLAG  transgene  rescued  arp6-­‐1  plants  and  fusion  protein  was  successfully  detected  on  protein  blot.  Arp4  and  Arp7  rescued  plants  will  be  generated.  ImmunoprecipitaEon  of  tagged  ARP4-­‐,  ARP6-­‐,  and  ARP7-­‐containing  protein  complexes  will  be  opEmized,  and  the  composiEon  of  ARP-­‐containing  protein  complexes  will  be  determined  by  MS/MS.

Figure  2.  Flowering  5me  analysis  of  Arp6  transgenic  plants  arp6-­‐1  mutants  have  early  flowering  phenotype  compared  to  WT  (6-­‐7  roseOe  leaves  for  arp6-­‐1  versus  12-­‐14  roseOe  leaves  for  WT  at  the  Eme  of  flowering).  Plants  were  considered  rescued  if  flowering  Eme  was  similar  to  WT,  as  determined  by  the  average  number  of  roseOe  leaves  at  the  Eme  of  flowering.  

 1            2              3              4          5            6              7                8            WT    arp6-­‐1          

46  kDa—  

WB:  mAbARP6

The  composi5on  of  SWI/SNF  complex

Yeast  SWI/SNF  complex

AcEn  related  protein  7  

DNA  binding  domain  

Table  1.  Puta5ve  SWI/SNF  homologues  in  Arabidopsis

Nucleosome,  the  repeaEng  unit  of  eukaryoEc  chromosome

ATP-­‐dependent  chromaEn  remodeling  complex  

DNA  binding  protein

Gene  that  needs  to  be  transcribed

hOp://www.ncbi.nlm.nih.gov/pmc/arEcles/PMC2924208/

hOp://www.nature.com/nature/journal/v463/n7280/full/nature08911.html

Acknowledgement:  This  material  is  based  upon  work  supported  by  the  Howard  Hughes  Medical  InsEtute  Science  EducaEon  Program  award  #52006923  to  Emory  University.  Any  opinions,  findings,  and  conclusions  or  recommendaEons  expressed  in  this  material  are  those  of  the  author(s)  and  do  not  necessarily  reflect  the  views  of  the  Howard  Hughes  Medical  InsEtute  or  Emory  University.  A  special  thanks  to  the  Deal  Lab  group  for  mentorship  and  research  experEse.  

References:  1.  Hargreaves,  Diana  C.,  and  Gerald  R.  Crabtree.  "ATP-­‐dependent  ChromaEn  Remodeling:  GeneEcs,  Genomics  and  Mechanisms."  Cell  Research  21.3  (2011):  396-­‐420.  2.  Ho,  Lena,  and  Gerald  R.  Crabtree.  "ChromaEn  Remodeling  during  Development."  Nature463.7280  (2010):  474-­‐84.  3.  Meagher,  R.  B.  "Nuclear  AcEn-­‐Related  Proteins  as  EpigeneEc  Regulators  of  Development."  Plant  Physiology  139.4  (2005):  1576-­‐585.  

Yeast  SWI/SNF  genes Arabidopsis  homologues

Methods

Single  homozygous  T-­‐DNA  seeds  of  candidate  gene  A Single  homozygous

X

F1  Double  heterozygous  plant

Self-­‐cross

F2  Double  homozygous  plant

PCR  genotyping

Single  homozygous  T-­‐DNA  seeds  of  candidate  gene  B

PCR  genotyping

Out-­‐cross Examine  and  compare  phenotypes,  take  pictures  

PCR  genotyping

Gel  electrophoresis  

DNA  amplificaEon

Gene5c  approach

Specific  aim:  to  generate  double  homozygous  lines  and  idenEfy  geneEc  interacEons  among  candidate  genes  of  putaEve  SWI/SNF  complex.    �  Candidate  genes  were  selected  from  a  list  of  putaEve  SWI/SNF  homologs  (Table  1.).  �  T-­‐DNA  mutant  lines  for  candidate  genes  were  obtained  from  Arabidopsis  Biological  

Resource  Center  (ABRC).  �  Double  heterozygotes  were  generated  by  out-­‐crossing  single  homozygous  lines,  and  

double  homozygotes  were  generated  by  self-­‐crossing  heterozygotes.  Genotypes  were  confirmed  by  PCR.  

�  Phenotypes  of  double  homozygotes  were  observed  and  compared  with  those  of  single  homozygotes  and  WT  to  idenEfy  geneEc  interacEons  among  candidate  genes.  

Random  T-­‐DNA  inserEons  disrupt  gene  funcEon  

Biochemical  approach

Specific  aim:  to  immunoprecipitate  (IP)  ARP-­‐containing  putaEve  plant  complexes,  and  determine  the  composiEon  of  IP-­‐ed  protein  complexes  by  mass  spectrometry  (MS/MS).    �  Agrobacteria  are  used  to  introduce  transgenes  into  mutant  plants,  and  rescued  lines  

will  be  obtained  through  plate/phenotypic  selecEon  and  PCR  genotyping.  �  The  expression  of  tagged  ARPs  in  rescued  plants  will  be  confirmed  by  western  blolng.  �  ARP-­‐containing  protein  complexes  will  be  purified  from  leaves  by  immunoprecipitaEon  

and  their  composiEon  will  be  determined  by  MS/MS  analysis.  

Transgene Fluorescent  tag

gARP4 FLAG Introduced  into  

arp4  Ri  

gARP6 FLAG Introduced  into  

arp6-­‐1/arp6-­‐1    

gARP7 GFP Introduced  into  

arp7-­‐1/  +    

collect seeds

collect seeds

BASTA/anEbioEc selecEon  on  Petri  dish

PCR  genotyping

grow

Rescued  plants

ARP-­‐containing  CRC Tag

AnEbody  against  Tag  

MS Immu

noprecipita

Eon  

Bead

AnEbody  binds  to  protein,  Non-­‐binding  proteins  are    removed  by  washing

Elute  complex  from  beads

SDS-­‐PAGE  of  eluted  proteins Cut  bands  from  SDS-­‐PAGE  gel,  in  gel  

digesEon  with  trypsin  then  add  idenEfy  proteins  by  mass  spectrometry  (MS/MS)

hOp://www.proteome.org.au/NewsleOer-­‐2012/Protein-­‐Protein-­‐interacEons-­‐using-­‐Mass-­‐Spectrometry/default.aspx

hOp://www.intechopen.com/books/transgenic-­‐plants-­‐advances-­‐and-­‐limitaEons/transgenic-­‐plants-­‐as-­‐gene-­‐discovery-­‐tools

hOp://www2.warwick.ac.uk/alumni/services/epormolios/hrrgak/project_overview/t-­‐dna_screening_approach/

Single  homozygous

In  eukaryoEc  cells  epigeneEc  pathways  regulate  the  first  step  in  gene  expression—      transcripEon,  in  which  a  parEcular  segment  of  DNA  is  copied  into  RNA.  ATP-­‐dependent    chromaEn  remodeling  complexes  (CRCs)  can  alter  the  structure  of  nucleosome,  the    fundamental  repeaEng  unit  of  eukaryoEc  chromaEn,  and  thus  regulate  gene  expression.  A  class  of  ATP-­‐dependent  chromaEn  remodeling  complex  called  SWI/SNF  plays  an  essenEal  role  in  various  developmental  processes.  Although  well  studied  in  fungi  and  animals,  liOle  is  known  about  the  funcEon  and  composiEon  of  SWI/SNF-­‐like  complexes  in  plants.  This  project  aims  to  use  the  model  plant  Arabidopsis  thaliana  to  study  the  funcEon  and  composiEon  of  plant  SWI/SNF  and  SWI/SNF-­‐related  (SWR1)  complexes  using  geneEc  and  biochemical  approaches.  Plants  with  mutant  alleles  for  putaEve  SWI/SNF  subunits  were  crossed  and  phenotypes  were  examined  to  idenEfy  geneEc  interacEons  among  those  alleles.  In  addiEon,  biochemical  techniques  to  purify  and  idenEfy  subunits  of  SWI/SNF  and  SWR1  complexes  are  being  established.  This  work  will  allow  an  understanding  of  the  diversity  and  funcEon  of  SWI/SNF-­‐like  complexes  in  plant  development.