week 7 - course project draft - gagandeep bedi

25
Running head: THE IMPACT OF MEMS TECHNOLOGY TODAY T HE I MPACT OF MEMS T ECHNOLOGY ODAY By: Gagandeep Bedi DSI number: D40205815 Taught by Professor Baker DeVry University LAS 432 Course

Upload: gsb100

Post on 11-Jan-2017

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Week 7 - Course Project Draft - Gagandeep Bedi

Running head: THE IMPACT OF MEMS TECHNOLOGY TODAY

THE IMPACT OF MEMS TECHNOLOGY ODAY

By: Gagandeep Bedi

DSI number: D40205815

Taught by Professor Baker DeVry UniversityLAS 432 Course

Page 2: Week 7 - Course Project Draft - Gagandeep Bedi

1

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Abstract

We are thankful for Micro-Electro-Mechanical Systems which has dramatically

lessened the cost and strengthened the ability of electronics. This industry has a lot of

potential to prosper in the area of micromechanics and the Micro-Electro-Mechanical

Systems promises to transform approximately every product in the industry and increases

the reliability of the system. MEMS is a process technology which employs integrated

devices or systems that blend mechanical and electrical mechanisms together. The

MEMS technology has been categorized as one of the most favorable technologies of the

21st century. This technology has great potential to revolutionize both industrial and

consumer products by combining silicon-based microelectronics with micromachining

technology together. These devices have the potential to affect all of our lives and the

way we live today.

Page 3: Week 7 - Course Project Draft - Gagandeep Bedi

2

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

ABSTRACT 1

A BRIEF HISTORY OF THE MEMS TECHNOLOGY 3Table 1: Chronological History of MEMS Technology 4Table 2:MEMS applications 4

DESCRIPTION OF MICRO-ELECTRO-MECHANICAL TECHNOLOGY 5

EXPLANATION OF THE ASSOCIATED SCIENCE 5

THE MANUFACTURE OF MEMS OF PROCESS 6

Wet Etching 8Step 1: Wet Etch 8Step 2: Rinse 8Step 3: Drying 8

Dry Etching 9

ANALYSIS OF THE TECHNOLOGY 10Social impact of MEMS Technology today 10Cultural impact of MEMS Technology today 11Political impact of MEMS Technology today 11Economic impact of MEMS Technology today 12Environmental impact of MEMS Technology today 13

ETHICAL CONSIDERATIONS ASSOCIATED WITH THE MEMS TECHNOLOGY 14

The Present MEMS Technology 14The Risks of MEMS Technology 16People and MEMS Technology 17We ought to be worried about our children 18Who is to blame 19On The Bright Side 20

CONCLUSION 20

REFERENCES 22

Page 4: Week 7 - Course Project Draft - Gagandeep Bedi

3

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Introduction

The first commercial usages of the Micro-Electro-Mechanical Systems (MEMS)

Technology were in the automobile, and medical industries. MEMS industry has

blossomed into a wide variety of applications, which has spread throughout numerous

market sectors such as the following biomedicine, pharmaceutical, health,

telecommunication, energy, Information Technology (IT), and security. MEMS

Technology is one of the most promising technologies for the 21st Century, and it has a

possibility to transform both industrial, and consumer products by intermixing silicon-

based microelectronics with micromachining technology. Currently, MEMS Technology

can be found in the many of our consumer electronics such as smart phones, tablets,

video game systems, and other “wearable electronics for the health and fitness”

(AVEM.org, 2016). Mechanical engineers design and build machines and devices that

enable humans to live, and work in space, in the air, on the ground, and underwater

(Department Chair's Message, 2016). These machines can prolong our physical abilities,

improve both our well-being and our standard of living, and it has affected the natural

environment in which we live.

A Brief History of the MEMS Technology

In the 1958, Silicon strain gauges were created by Edward E. Simmons and

Arthur C. Ruge to measure strain on an object. The most common type of Silicon strain

gauges is comprised of an insulating flexible backing which supports a metallic foil

pattern. They were glued to the object by a suitable adhesive as the object is deformed,

the foil is deformed and causing its electrical resistance which is known as the gauge

factor.

Page 5: Week 7 - Course Project Draft - Gagandeep Bedi

4

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Table 1: Chronological History of MEMS Technology1958 Silicon strain gauges become commercially available.1961 First silicon pressure sensor demonstrated.1970 First silicon accelerometer demonstrated. 1979 First micro machined inkjet nozzle. Early 1980s First experiments in surface micro machined silicon. 1988 First MEMS conference. 1990s Novel methods of micromachining developed with an aim of improving

sensors. 1993 First surface micro machined accelerometer sold (Analog Devices,

ADXL50). 2000s Massive industrialization and commercialization. 2005 Analog Devices shipped its two hundred millionth MEMS-based inertial

sensors. This table presents the Chronological History of MEMS Technology from 1958 to 2005.

(Heena, Katyal, Chaturvedi, 2014)

The first silicon pressure sensor was demonstrated in 1961 and the First silicon

accelerometer demonstrated in 1970 and this technology has led to our modern day

Micro-Electro-Mechanical Systems to become smaller, faster, more energy-efficient and

less expensive. As the technology keeps evolving there are many applications for the

MEMS technology which will open it up to unrelated fields such as biology and

microelectronics and may expanded beyond the currently identified or known markets.

Table 2: MEMS applications Technology/ Sensors Aerospace, Defense and Automotive Applications Inertial sensors Missile guidance, navigation, laser range finder, Airbags, vehicle

dynamic control, navigation systems, active suspension, roll detection.

RF MEMS Switches and tunable capacitors for radar and communicationsPressure sensors Flight control systems, cabin pressure, hydraulic systems

Manifold Air Pressure, Tire Pressure Management Systems Flow sensors Air intake of engine, air quality in cabinIR sensors Fingerprint sensors for authentication, Security monitoring Shows where the MEMS applications are used (Heena, Katyal, Chaturvedi, 2014)

Page 6: Week 7 - Course Project Draft - Gagandeep Bedi

5

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Description of Micro-electro-mechanical Technology

The Micro-electro-mechanical Technology was created in a research laboratory in

the 1950’s, but there was no interest in the technology until the1980s. It took

approximately two decades to start the design and manufacturing infrastructure in the

United States. In the United States, it is known as silicon micromachining, which evolved

into Micro-electro-mechanical Technology in the mid-1990s. MEMS Technology began

to appear in many “commercial products and applications including accelerometers used

to control airbag deployment in vehicles, pressure sensors for medical applications, and

inkjet printer heads” (Academia.edu). The Nintendo Wii controller and robotic flying

drones are great examples of the use MEMS Technology, because they allow these

devices to know where they are located in space.

Explanation of the Associated Science

The Micro-electro-mechanical Technology are tiny mechanisms that “typically ranges

from 20 micrometers to a millimeter” (EE Times, 2016). However, some of the MEMS

sub-components can range from 1 to 100 micrometers. The MEMS are a combined of

both electrical and mechanical functions into tiny mechanisms and they are typically

assembled upon a silicon substrate. The Micro-electro-mechanical Technology are

frequently used in actuators and as sensors. They can be called transducers. These

devices convert a mechanical physical property into an electrical one, and vice-versa. In

many cases, transducers have the capability to interchange between physical and

electrical properties, the MEMS can be designed to exclusively do one function or the

other.

Page 7: Week 7 - Course Project Draft - Gagandeep Bedi

6

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

The Manufacture of MEMS of process

Fabrication of the Micro-electro-mechanical mechanisms uses the same

technology for creating standard silicon-based circuits and microprocessors. The silicon

has to be refined to a purity of 99.9999999%, since it is needed to grow solid large single

crystals in a high temperature furnace. A seed crystal of pure silicon is dunked into a

revolving crucible of liquefied pure silicon. As the seed crystal is extracted from the

rotating crucible of molten pure silicon, the liquid crystal cools around the large ingot.

This has the same crystal structure at an increased diameter. The ingot is carefully

checked to make sure that there are no flaws in the crystalline structure that would

prevent future growth and sized features. The silicon wafers are cut from a boule, and

then polished to one or two atoms evenness. Sometimes extra doping steps are taken to

make them more conductive in preparation for becoming semiconductors. Micro-electro-

mechanical mechanisms are manufactured in small batches where numerous silicon

wafers can be progressed at the same time. Depending on the chip size Micro-electro-

mechanical mechanisms can be made in a single batch.

There are many manufacturing techniques that can be used in creating Micro-

electro-mechanical mechanisms, such as developing new semiconductors. At different

times of the manufacturing process, material needs to be selectively removed from

within, and around what had previously been laid down. This process can be done by

applying a masking layer to protect the existing circuits. The pattern of the desired

features can be burned into this masking layer by exposing it to UV light, an electron

beam, or X-Ray radiation. This locally modifies the masking layer so that the desired

pattern is revealed. The masking layer provides an etching mask which allows different

techniques to be used to expose the newly formed areas. The electrochemical etching is

Page 8: Week 7 - Course Project Draft - Gagandeep Bedi

7

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

vital in microsystems production because it, “is the basis of the bulk micromachining

process. Bulk micromachining etches away relatively large portions of the silicon

substrate leaving behind the desired structures” (SCME 2008). Micromachining has

continued to be very dominant in the creation of micromechanical mechanisms such as

“micro-fluidic channels, nozzles, diaphragms, suspension beams, and other moving or

structural elements” (SCME 2008). In the production of Micro-electro-mechanical

mechanisms, there are two methods that are currently being used in the etching of a

silicon wafer.

The first one is to submerge the silicon wafer into a liquid bath of a chemical etchant

agent. This is known as wet etching, and the chemical etchant agent eat away substrate

material. “The most common form of isotropic silicon etch is HNA, which comprises a

mixture of hydrofluoric acid (HF), nitric acid (HNO3) and acetic acid (CH3COOH).

Isotropic etchants are limited by the geometry of the structure to be etched. Anisotropic

etchants etch faster in a preferred direction. Potassium hydroxide (KOH) is the most

common anisotropic etchant as it is relatively safe to use. Structures formed in the

substrate are dependent on the crystal orientation of the substrate or wafer”

(Academia.edu, 2002).

Page 9: Week 7 - Course Project Draft - Gagandeep Bedi

8

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Wet Etching Step 1: Wet Etch

Wafers to be etched are placed in a wafer carrier, also known as a "boat”. The carrier is lowered into the tank containing the heated etchant solution. The wafers are left in the solution for a calculated amount of time.

Etch -The carrier with wafers is lowered into a tank of liquid etchant [Photo courtesy of Bob Willis] From (SCME), 2008

Step 2: Rinse

Once the etch time expires, the wafer carrier is lifted out of the tank and transferred to another tank where it is rinsed with ultra - clean deionized water. The graphic shows a quick – dump - rinse (QDR) in the "rinse" cycle.

From (SCME), 2008

Page 10: Week 7 - Course Project Draft - Gagandeep Bedi

9

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Step 3: Drying

Typically, the wafers are placed in a Spin Rinse Dryer (SRD) (see photo) where they are rinsed and dried. The SRD's operation is similar to a centrifuge. The wafer carrier is placed in the machine and rotated while being rinsed with deionized water. After the rinse, the water is turned off. The carrier continues to spin but at a higher rotational speed. Heated nitrogen is introduced, removing any remaining water on the wafer. Loading cassette into Spin - Rinse - Dryer (SRD)

[Photo courtesy of Bob Willis]From (SCME), 2008

The second method is to use vapor phase or plasma at high temperatures. This

method is known as Dry etching. Reactive and deep ion etching are a “process in which

radio frequency is applied to the plasma in order to achieve a higher aspect ratio”

(Academia.edu, 2002). This technique is most often used for special applications,

because it is appropriate for high volume production.

Dry Etching

Physical etch is very similar to the sputtering deposition process. It may be referred to as "ion beam etching", "sputtering" or "ion milling". Ions bombard the surface of the wafer, causing molecules to sputter off the surface. It is entirely a physical process, with no chemical reaction occurring (see graphic).

Physical Etch -Ion Bombardment

Page 11: Week 7 - Course Project Draft - Gagandeep Bedi

10

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

causing molecules to sputter off the exposed surface.

(Academia.edu, 2002).

Wafers are placed on a negatively grounded holder in a vacuum chamber. A gas is introduced into the RF - powered chamber under low pressure (e.g., <50 mTorr). A

plasma is struck (ignited). In the chamber, the gas molecules pass through the plasma and collide with high energy

electrons. The energy is transferred from the electrons to the gas etchant molecules. These collisions result in high - energy state ions. These gas ions have a positive charge and are attracted to the negatively - grounded holder. The ions accelerate as they move toward the wafer holder. When the ions hit the wafer, surface layer molecules are removed. This process continues until the pattern is etched through the surface layer, exposing the

underlying layer.

From (SCME), 2008

These methods are very similar to how a complementary metal oxide

semiconductor (CMOS) is created, because of their similarity in design signal

conditioning. Logic level circuitry can be added to the same piece of silicon substrate

while the MEMS structures are made. This reduces the cost of having additional circuits

added to the finished device.

Page 12: Week 7 - Course Project Draft - Gagandeep Bedi

11

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Analysis of the technology

Social impact of MEMS Technology today

The Micro-electro-mechanical technology (MEMS) is a misunderstood

technology that does not have a universal definition or understanding by the lay man,

however there are many products and services that use Micro-electro-mechanical

technology today.

This technology is still emerging and is not widely accepted it is human nature to

take a carefully attitude to the new or unknown. MEMS are miniature in size, which

instantaneously causes paranoia that weighs greatly on our understanding and acceptance

to potential products that are used this technology by the general public. For example, the

first Micro-electro-mechanical accelerometer was demonstrated in 1979 at Stanford

University. The Micro-electro-mechanical accelerometer was not used for nearly fifteen

years until automotive industry began to use Micro-electro-mechanical accelerometer in

automotive air bag safety systems. At the time of the demonstration Micro-electro-

mechanical accelerometer was still it early stages but the automotive industry quickly

recognized its potential. The confidence was gradually gained through many rounds of

testing and redesigning which helped in development of the current Micro-electro-

mechanical technology used today.

Bosch is a good example of a company who dominates the automotive sensor

market and in 2005 they launched a subsidiary company called Bosch Sensortec which is

leveraging automotive leadership capabilities to consumer space travel industry. Bosch

MEMS technology can be found crash sensing technology for air bag control, “vehicle

dynamic control systems help the driver regain control of the automobile when it starts to

skid” (Sensorsmag.com, 2016) Rollover Detection, Antitheft Systems, Electronic Parking

Page 13: Week 7 - Course Project Draft - Gagandeep Bedi

12

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Brake Systems, and Vehicle Navigation Systems. The only thing holding the MEMS

technology back is the proprietary information and developments which are extremely

protected by the powerful corporations as well as the government due to the amount

funding needed to advance a technology.

Cultural impact of MEMS Technology today

Technology is in our daily lives and we frequently use some form of technology

when we get up in the morning and turn on the radio or television to listen to the weather

report or the news, when we brew a cup of coffee are we using technology to do so.

Nearly everyone today has a smart phone or tablet which we use for work or personal.

Uses of these devices range from entertainment, shopping, researching products, to using

them to communicate with our friend and family. As technology continues to advance it

makes it possible to do the thing that we thought were impossible many years ago and

that we only dreamed of. In the old days of satellite phones were bricks with the current

MEMS technology these phones have become smaller, thinner, faster, and has reduced

weight of the current cell phone so much so that these phones now can fit into any

pocket. Now cell phones help us do our daily tasks more quickly. In society everything

we see and do is affected by MEMS technology from medical industry to the media.

Political impact of MEMS Technology today

The MEMS technology can be found throughout the world in many different

industries today and this technology has sparked interest with the United States and

Overseas governments who are trying to take advantage of this technology. The United

States and Overseas governments are looking at ways to deploy this technology for their

advantage. It has been found that there are many different military applications for them,

such as chemical attack warning sensor, friend or foe identification, and distributed

Page 14: Week 7 - Course Project Draft - Gagandeep Bedi

13

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

battlefield sensor net.

Figure 1: It depicts the technology that have been created by using the MEMS technology

(SEMI.ORG, 2016).

Economic impact of MEMS Technology today

Over the last several years the manufacturing of the MEMS technology has been

getting smaller and this technology is transforming every products and industry. The

MEMS technology is a combination of micromachining technology and silicon-based

microelectronics and they are being used to lower the cost of production. There is wide

variety of uses for the MEMS technology such as industrial application,

telecommunication, medical, automotive and space industry and in consumer electronics

which has led the MEMS sector to “nearly $12 billion in business in 2013, with more

than 10 percent growth from 2012, according to a study by Yole Development. In the

Page 15: Week 7 - Course Project Draft - Gagandeep Bedi

14

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

years ahead, Yole estimates that the MEMS market will nearly double and reach $22.5

billion by 2018” (AVEM.org, 2016).

Figure 2: Shows how the MEMS technology is helping reduce our power consumption

(SEMI.org, 2016).

MEMS technology has developed a lot over the last several years and some of

these technology trends are worth investigating and offer many opportunities for the

MEMS field to flourish even further and it is worth considering especially in

nanotechnology.

Environmental impact of MEMS Technology today

The MEMS technology is used in many devices from smartphones, tablets, the

largest wind turbines, to the vacuum industry. These technologies have made many

positive impact on the environment which has reduce the manufacturing waste, reduces

energy consumption, lower materials costs, help in monitoring efforts and has opened the

door for nanotechnology to be created.

Page 16: Week 7 - Course Project Draft - Gagandeep Bedi

15

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

The downside to the production is MEMS technology is the waste they

produced at every stage of production. MEMS demand materials such as silicon and

many types metals for their fabrication, which can be harming if not managed properly in

the production process and when these devices become obsolete they become part of the

waste.

Ethical considerations associated with the MEMS technology

In the past several decades’ technology has basically altered the way live: from

the way we work, to the way we communicate with each other, and how we fight wars.

The MEMS technology has given birth to Nanotechnology which is still a developing

engineering discipline. There many fears and risks associated with this technology today,

there are many arguments for and against this technology.

The Present MEMS Technology

The MEMS technology began to appear in the Biomedical industry in the 1980s

and this technology has led to many disposable and reusable blood pressure sensors to

monitor intraocular pressure, intracranial pressure, intrauterine pressure, and angioplasty.

The effects of these gadgets inside the human body is still unknown but this technology

has unlocked unprecedented possibilities in the medical industry by helping create

polymer membranes that “could be used in devices like diagnostic tests and smart

prosthetics. There are already bionic limbs that can respond to stimuli from an amputee's

nervous system and the external environment, and prosthetic bladders that regulate

urination for people paralyzed below the waist” (Science Daily, 2016). This type of

technology does not affect with the human body, but there are many moral and ethical

questions that come into play when they are combined into larger gadgets:

Page 17: Week 7 - Course Project Draft - Gagandeep Bedi

16

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Inertial Sensors for defibrillators and pacemakers which is used determine if the

person has a chaotic heart beat

Hearing-Aid Transducer “is an electroacoustic device used to receive, amplify

and radiate sound into the ear” (Solid State Technology, 2014).

Microfluidics for diagnostics involve movement, mixing and control of small

volumes … of fluids. A typical microfluidic system is comprised of needles,

channels, valves, pumps, mixers, filters, sensors, reservoirs, and dispensers.

Microfluidics enable … point-of-care … medical diagnosis (Solid State

Technology, 2014).

There are many moral dilemma concerning the modern MEMS technology and

nanotechnology that is being placed the human body today, many visionaries expect a

utopian outlook to appear in the near future. Many of the utopians argue that this

technology could be employed to create a cheap high-quality product this means

technology could be used to construct food rather than cultivate it. The medical industry

is hopeful that nanotechnology can be programmed travel through a person’s blood

stream to fight against unwanted viruses, fatty deposits and to lessen the chance of a

cardio-vascular disease. Humanity is continuously looking for ways improve themselves

but where do we draw the line in the sand because the gap keeps getting wider. A good

example of this is the divide between the rich and the poor. The rich keep getting richer

and the poor continue to get poorer and poorer. Some people see the new technology as

placing society on an even playing field, but history of technology itself has shown it

tends to draw out the haves and the have-nots with-in societies around the globe.

Page 18: Week 7 - Course Project Draft - Gagandeep Bedi

17

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

The Risks of MEMS Technology

Humans have flourished on new technology for their pleasure and to say they

have the newest gadget on the market this technology has caused a moral and ethical

issues over time. “Technology undermines human freedom … insofar as it reduces any

human being to a machine and nothing more?” (Lawler, 2014). Everybody believes that

we are a free will being that is influenced by on technology to run our daily lives. What if

the machines we use today turned tables on us by controlling what we are able to do in

our daily lives? Who would have thought that the MEMS technology could be combined

into bigger mechanisms and be compatible with the human body? The MEMS technology

has led to a perfect and potential “use in medical devices like bionic limbs and other

artificial body parts.” (Johnson, 2012). This technology has played a vital part in laying

the groundwork for creating bio-circuitry which is a combination of real tissue and

electronic control thus allowing the human body to be governed by a microchip which

makes the delivery drug much faster.

Figure 5: The Jewel PUMP uses MEMS technology to deliver the precise amount of a drug to the

blood-steam (Solid State Technology. 2014).

The biggest question that arise out of this technology is “Are we playing God?”

There many people who say this technology has gone too far and we need take step back.

Page 19: Week 7 - Course Project Draft - Gagandeep Bedi

18

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

We need look at ourselves to see kind of humanity we want Humanity with technology or

a Humanity with technology.

People and MEMS Technology

In today society MEMS technology is everywhere from medical and personal

devices that we use every day and it is altering the way we are raising our children. Over

the last several decades’ technology has changed from a computer room to hand tool the

we use daily. Today our children use some sort of technology before they one such as

game consoles, MP3 players, and laptops.

Figure 6: Resource: “Digital is Just a Small Part of the Media Mix for Today's Children” (Ward,

2010)

According to a survey done by Fly Research show us how many children aged 5-16 are

using technology such as computers, gaming consoles, smartphone to play playing games,

chatting with their friends and family, and watch online videos.” 21% of kids appear to be hooked

by social networking, spending six hours or more on sites such as Bebo, Facebook or Myspace”

(Ward, 2010).

Page 20: Week 7 - Course Project Draft - Gagandeep Bedi

19

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

We ought to be worried about our children

Our children are becoming very familiar with the different types of media

platforms that containing the MEMS Technology that are in today society this mean that

our children are losing their imaginative and physical play and weakening their social

skills, empathy for others which is important for the child’s growth.

Many of our teenagers today are having trouble connecting and identifying

emotions in their peers due to their lack of ability to feel sympathy for others who are in

mourning, who might be in pain, or who might be upset, and this is causing a huge

concern “that excessive viewing of real or contrived violence online and/or playing video

games that are violent or contain other age-inappropriate content could be numbing the

sensitivities of young people, immunizing them from experiencing compassion and

caring for others” (Sara, 2013). All of these devices use some form of the MEMS

Technology today.

Who is to blame

In today’s society parents and adults are strongly encouraged to monitor their

children’s media content since they spend lot time texting and posting pictures to

Facebook, Myspace another social media. Parents need to create a balance between

technology and help their children build moral fiber as they are grow up. In today’s

culture parents often put their kids in front of some sort of wireless device to keep them

out of their hair while they cleaning, cooking, and more. This trend has been going on for

a long time and this has become a critical issue in schools these days because many of

our children are struggling with grammar punctuation and spelling due to the MEMS

technology which offers the user choice words when they misspell it or spell it

Page 21: Week 7 - Course Project Draft - Gagandeep Bedi

20

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

phonetically. Most often the blame falls on the educators when the blame should belong

on parents.

This technology poses another big problem for parents these days which is cyber-

bullying since everyone now carries a smartphone or tablet they can post any kind of

rude, hurtful comments about the person height, weight, looks, etc.… before the MEMS

technology, cyber-bullying was non-existent but recently cyber-bullying attacks are

continuing to go up and these attack are due to everyone having a smartphone or tablet

which has led to some of the teenager killing themselves.

On The Bright Side

There is a lot of concern when it comes to letting our children use this technology

because they losing their social skills due fact they are spending time behind the MEMS

technology. The only way to comfort this is to stimulate this age group with mental

games, social problems, and physical active for their well-being. Parents should enroll

their kids in after school sports, create a family active like biking or play exercising

programs on their gaming consoles and some adults are this way too.

In this time of advancing technology, the parents have forgotten many of the

lesson that we learned growing up and all of our choices consequences. Many authorities

agree that we as parents have to make our responsibility for safeguarding our children has

technology containing MEMS technology continues to be produced. It is our

responsibility to teach our children right from wrong and this is only way maintain

healthy content.

Page 22: Week 7 - Course Project Draft - Gagandeep Bedi

21

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Conclusion

The MEMS technology is incorporated in many of the products that we use today.

This technology allows the device to control and sense the environment. This technology

will continue evolve over time as the technology get more advanced the current industry

needs federal oversite, federal funding and a standard way to produce large qualities of

MEMS which benefits the consumer markets, the medical and space industry or the

automotive industry.

The MEMS technology is being used in the many industries to create devices that

save many people’s lives and to fulfill real business and consumer needs. However,

consumers need to constantly be aware of the effects of this technology on their

environment. The only road block that the MEMS technology faces today is that it lacks

of public trust but some people do trust this technology and have accepted it into their

lives. The MEMS technology has given an amputee his or her life back by allow doctors

to create prosthetic limbs so they could walk, run and jump and in the medical industry

the MEMS technology has also saved countless lives by the development of the

pacemaker which helps shock the heart back into rhythm.

Page 23: Week 7 - Course Project Draft - Gagandeep Bedi

22

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

References

Academia.edu (2016). An Introduction to MEMS (Micro-electromechanical Systems.

(2002). P RIME Fa raday P a r tne r sh i p . Retrieved from

http://www.academia.edu/5077471/Prime_Faraday_Technology_Watch_ISBN_1-

84402- 020-_An_Introduction_to_MEMS_An_Introduction_to_MEMS_Micro-

electromechanical_Systems_PRIME_Faraday_Partnership_PRIME_Faraday_Part

nership

AVEM.org (2016). The Growth of MEMS Technology and the Benefits to the Vacuum

Industry. Retrieved from

http://www.avem.org/press-releases/featured-articles/item/76-the-growth-of-

mems-technology-and-the-benefits-to-the-vacuum-industry

Department Chair's Message. (2016). Yale School of Engineering & Applied Science.

Retrieved 2 September 2016, from http://seas.yale.edu/departments/mechanical-

engineering-and-materials-science/undergraduate-study/department-chairs-messa

EE Times. (2016). MEMS Technology and Manufacturing on the Microscale, EETimes.

Retrieved 2 September 2016, from http://www.eetimes.com/author.asp?

doc_id=1327742

Heena, S. R. M., Katyal, A., Chaturvedi, S.K. (2014) Application for MEMS in Space.

International Review of Applied Engineering Research. Retrieved, from

http://www.ripublication.com/iraer-spl/iraerv4n4spl_03.pdf

Johnson, R. C. (2015, January 11). MEMS Market to Top $22 billion by 2018 | EE

Times. Retrieved from http://www.eetimes.com/document.asp?doc_id=1320035

Page 24: Week 7 - Course Project Draft - Gagandeep Bedi

23

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Lawler, P. (2014). Technology and Mechanization Today. Society, 51(6), 595.

doi:10.1007/s12115-014-9831-9

Sara, f. I. (2013, September 8). Children and Technology – Should you be Concerned.

Retrieved from Care2: http://www.care2.com/greenliving/children-and-

technology-should-you-be-concerned.html

Science Daily (2016). Micro-machines for the human body: Researchers adapt

microscopic technology for bionic body parts and other medical devices. Retrieved 29

September 2016, from

https://www.sciencedaily.com/releases/2013/08/130807134237.htm

SEMI.ORG. (2016). MEMS Market Can Expect Steady Growth, Structural Change.

Retrieved 21 September 2016, from http://www.semi.org/en/mems-market-can-

expect-steady-growth-structural-change-1

Sensorsmag.com (2016). MEMS Sensors Are Driving the Automotive Industry.

Retrieved 21 September 2016, from

http://www.sensorsmag.com/automotive/mems-sensors-are-driving-automotive-

industry-1088

Solid State Technology. (2014). MEMS devices for biomedical applications.

Electroiq.com. Retrieved 29 September 2016, from

http://electroiq.com/blog/2013/10/mems-devices-for-biomedical-applications/

Southwest Center for Microsystems Education (SCME), 2008 - 2010. Retrieved, from

http://web.eng.fiu.edu/npala/EEE4996/Read_assgn_10_Etch_Overview_LM_PG.

pdf

Page 25: Week 7 - Course Project Draft - Gagandeep Bedi

24

October 16, 2016

THE IMPACT OF MEMS TECHNOLOGY TODAY

Ward, G. (2010). Digital is just a small part of the media mix for today's children. New

Media Age, 9