waters innovation seminar · 1 waters innovation seminar mars 2013 ©2009 waters corporation |...

29
1 Waters Innovation Waters Innovation Seminar Mars 2013 Mars 2013 ©2009 Waters Corporation | COMPANY CONFIDENTIAL ©2011 Waters Corporation Agenda 09:00-10:00 LC/MS product update 10:00-10:30 Coffee 10:30-11:30 Lab Efficiency 11:30-12:30 Lunch ©2011 Waters Corporation 2

Upload: others

Post on 12-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

1

Waters Innovation Waters Innovation Seminar

Mars 2013Mars 2013

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

Agenda

09:00-10:00

— LC/MS product update

10:00-10:30

— Coffee

10:30-11:30

— Lab Efficiency

11:30-12:30

— Lunch

©2011 Waters Corporation 2

2

Eftermiddag

12:30-13:20

— Maximize your LC productivity with 2.5µm particles

13:20 Coffee

14:00

— UNIFI – The software that will change the industry standard

14:30-15:30

— Acquity UPC2

15:30-17:00

Aft W k

©2011 Waters Corporation 3

— After Work

Waters LC & MS FamilyWaters LC & MS Family

Per Per RagnebornRagneborn

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

3

ACQUITY UPLCACQUITY UPLC

©2011 Waters Corporation 5

Introducing ACQUITY UPLC I-Class:Waters fifth UPLC-version

©2011 Waters Corporation 6

4

Why I-Class?

Complex separation challenges require LC systems that are designed to maximize the benefits of sub 2µm particle columns.

Has minimized dispersion to enhance MS and UV performance

Lowest carryover complementing MS sensitivity and extending MS linear dynamic range

©2011 Waters Corporation 7

g y g

The system’s low dispersion and faster cycle-time allows complex separations to be accelerated without compromising chromatographic fidelity

Lower Dispersion I-Class vs Competitor

Competitive UHPLC System: 21μl extra column band spread

72.00

90.00

Average Peak Capacity at 5σ : 42

0.104

0.130

Average Peak Capacity at 5σ: 70

AU

0.00

18.00

36.00

54.00

Minutes0.07 0.14 0.21 0.28 0.35 0.42

Average Peak Capacity at 5σ : 42

©2011 Waters Corporation 8

AU

0.000

0.026

0.052

0.078

Minutes0.00 0.07 0.14 0.21 0.28 0.35 0.42

ACQUITY UPLC I-Class: 5μl extra column band spread

5

AU

0.002

mAU

2.00

ACQUITY UPLC I-Class System Vendor B UHPLC System

Improved Dispersion

0.000

Minutes0.00 2.00 4.00 6.00 8.00

0.00

Minutes0.00 2.00 4.00 6.00 8.00

©2011 Waters Corporation 9

Minutes0.40 0.50 0.60 0.70 0.80

Minutes0.40 0.50 0.60 0.70 0.80

Resolution and sensitivity is improved

Waters Xevo MS FamilyWaters Xevo MS Family

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

6

Xevo TQD

The Xevo TQ Family The Xevo TQ Family ––Built on the Same FoundationsBuilt on the Same Foundations

SQ Detector 2

Xevo TQ-S

Xevo TQ MS

©2011 Waters Corporation 11

Frost and Sullivan Product Quality

Leadership Award 2011IBO Best new

product, ASMS 2008

Xevo G2Xevo G2--S (Q) TofS (Q) TofTime Of Flight MSTime Of Flight MS

©2011 Waters Corporation 12

XevoXevo G2G2--S S QTofQTofXevoXevo G2G2--S S TofTof

7

Common Xevo features !

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

Enhancing Usability

ZsprayTM

— Robust performance in the face of complex biological samples

— Zspray, a proven geometry (many years experience & 1000’s in use daily).

Designed to be compatible with all your HPLC and UPLC needs

Innovative, Ergonomic

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

, gEngineering— Performance, usability &

serviceability — Tool free maintenance— Novel tool free source exchange— Integrated gases— Plug and play probes

8

Optimizing Gas Flow Dynamics

Shape of chamber— Smooth, curved surface

— Reduces turbulence

E ll t b t bilit — Excellent beam stability

Size of chamber— Efficient desolvation

— Excellent linear response

Temperature of chamber— Thermally regulated

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

Tangential exhaust— Gas flows modeled to efficiently

remove non-ionized materials from source chamber

What is IntelliStart?

Continuous background system monitoring Integrated fluidics system for

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

Automated tools to enable quick system start-up

Automated LC/MS system performance checking

g ysample and calibrant delivery

Updated electronics to enable diagnostic functionality

9

System Ready to Use

IntelliStart

In- built Fluidics

No extra syringe required

Automated delivery

©2011 Waters Corporation 17

Automated delivery of reference solutions

Automated flow switching

Calibration

Mass calibration

— IntelliStart automatically warns the user when the calibration needs checking

— Calibrant automatically infused from the integrated fluidics system

©2011 Waters Corporation 18

— Automated MS calibration, routinely checked for validity

10

Calibration Check

©2011 Waters Corporation 19

LCMS System Check

Automated system performance checking

— Automatically creates a sample batch with multiple injections of a well characterised analyte

— Automatically checks

o Retention Time

o Peak Area

o Peak Width

o Signal / Noise

©2011 Waters Corporation 20

o Peak Area

o Peak Height

— Automatically generates a printed report and saves results to the console log

o Signal / Noise

o Exact Mass

11

LC/MS Check Report

©2011 Waters Corporation 21

System Monitoring

Continuously monitors selected instrument and system parametersinstrument and system parameters

— Operate Status

— Gases

— Voltages

— Temperatures

V

— Valid tune

— Valid calibration

— Service date reached

— Fuses

I t l k

©2011 Waters Corporation 22

— Vacuum

— Communications

Where appropriate, checks are configurable

— e.g. set your own time limit for calibration and tune validity

— Interlocks

— Disk space

12

SQD 2

©2011 Waters Corporation 23

SQD 2 PerformanceSQD 2 Performance

3000 m/z Acquisition Range

15,000 amu/sec scanning

3ms inter-scan delay

©2011 Waters Corporation 24

20ms pos/neg switching

13

©2011 Waters Corporation 25

XevoXevo®® TQD TQD

Xevo TQDKey Features

Tandem quadrupole mass spectrometer

Small footprint :< 350 mm wide— < 350 mm wide

— Same size (width) as the SQD 2

Z-Spray ion sources— Highly robust, change modes in minutes

— ESI and ESCi are standard

— IonSabre II APCI, APPI, ASAP, APGC options

— Integrated fluidics

— Tool free routine maintenance

©2011 Waters Corporation 26

Tool free routine maintenance

2 to 2000 Da mass range

• T-Wave collision cell for Hi-Speed UPLC-MS/MS

Scan rate up to 10,000 Da per second

Polarity switching in 20 ms

3ms Dwell time

14

TT--Wave collision cellWave collision cellEnsures UPLC compatibilityEnsures UPLC compatibility

Travelling Wave Ion Transport The effect of MRM acquisition rate on signal intensity

166 data points per second

©2011 Waters Corporation 27

Know More About Your SamplesKnow More About Your SamplesRADAR and PICSRADAR and PICS

RADAR - Unique simultaneous acquisition of MRM and full scan dataacquisition of MRM and full scan data

See what you cannot see in MRM alone

Method Assess risk Is the sample

©2011 Waters Corporation 28

development of matrix effects

pbackground changing?

15

Matrix Profile

Simultaneous targeted quantification Simultaneous targeted quantification & full scan monitoring& full scan monitoring

%

100

m/z100 200 300 400 500 600 700 800 900 1000

%

0

100253.3

123.0

293.3

397.3441.4

619.6485.5

329.3

214.1415.3

363.4

%

100

m/z100 200 300 400 500 600 700 800 900 1000

%

0

100253.3

123.0

293.3

397.3441.4

619.6485.5

329.3

214.1415.3

363.4

0 20 0 40 0 60 0 80 1 00 1 20 1 40 1 60 1 80 2 00 2 20 2 40

%

9

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

%

2

0 20 0 40 0 60 0 80 1 00 1 20 1 40 1 60 1 80 2 00 2 20 2 40

%

9

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

%

2

Matrix ProfileMS full scan negative ESI

Matrix Profile MS full scan positive ESI Plasma matrix

Spectral information

Qual

itat

ive

e

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

m/z100 200 300 400 500 600 700 800 900 1000

0

100.1149.3 279.3

251.1

546.4468.6

600.7

m/z100 200 300 400 500 600 700 800 900 1000

0

100.1149.3 279.3

251.1

546.4468.6

600.7

Time0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

%

0

100

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

Time0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

%

0

100

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

Targeted compoundMRM positive ESI

Fluticasonein plasma

Quan

tita

tive

PIC SCAN:

Information rich dataInformation rich dataPrecursor Ion Confirmation ScanPrecursor Ion Confirmation Scan

MRMAcquisition

MRM data is used as a specific trigger for the acquisition of a product ion spectrum.

©2011 Waters Corporation 30

PIC Scan Acquisition

16

Xevo TQ SXevo TQ-S

Imagine sensitivity Previously Beyond Your Reach...

©2011 Waters Corporation 31

Class leading UPLC MS/MS performanceClass leading UPLC MS/MS performance

Xevo TQXevo TQ-S

Larger sampling orifice

©2011 Waters Corporation 32

17

Class leading UPLC MS/MS performanceClass leading UPLC MS/MS performance

Off-Axis design

Narrow Ion TunnelConjoined to

Wide Ion Tunnel

©2011 Waters Corporation 33

Maximising signal

Minimising noise

Enhanced sensitivity

Class leading UPLC MS/MS performanceClass leading UPLC MS/MS performance

Reserpine (50fg) Reserpine (50fg) UPLC/MRM, ESI +UPLC/MRM, ESI +

%%

Enhanced sensitivity with StepWaveTM ion optics

>25X increase in peak area>5X increase in signal:noise

ion a

bundan

ce

©2011 Waters Corporation 34

Time1.80 1.90 2.00 2.10 2.20 2.30

0 Time1.80 1.90 2.00 2.10 2.20 2.30

0

Time1.80 1.90 2.00 2.10 2.20 2.30

%

1

Without StepWaveTM

ion optics

Rel

ativ

e

18

100100

Class leading UPLC MS/MS performanceClass leading UPLC MS/MS performance

Prostaglandin (Plasma)Prostaglandin (Plasma)UPLC/MRM, ESI UPLC/MRM, ESI --

%%

Enhanced sensitivity with StepWaveTM ion optics

30X increase in peak area30X increase in signal:noise

ion a

bundan

ce

©2011 Waters Corporation 35

Time0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

0 Time0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

0

Time0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

%

0

Without StepWaveTM

ion opticsRel

ativ

e i

Class leading UPLC MS/MS performanceClass leading UPLC MS/MS performance

UPLC/MRM of Verapamil(solvent standard) using a properly

conditioned ACQUITY 100100

220 Z t l *

Stepping up to the challengeStepping up to the challenge

1000.83

1000.83

100100

Q

2fg

%

0.83

%

0.83

0.1fg

220 Zeptomoles* on column

6 replicates

RSD<20%

©2011 Waters Corporation 36

Time0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

%

0 Time0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

%

0

Time0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

%

0 Time0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

%

0

Time0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0 Time0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0

Solvent

Blank

* 10-21 moles

19

Class leading UPLC MS/MS performanceClass leading UPLC MS/MS performance

Fenuron ESI+ 30 7

Relative Peak Area

Relative S:N

Compound NameIonisation

Mode

Fenuron ESI+ 30 7

Relative Peak Area

Relative S:N

Compound NameIonisation

Mode

Comparing Xevo TQ-S With Xevo TQ

Back to back comparisons made for a number of different UPLC/MRM assays

Fenuron ESI+ 30 7Metamitron ESI+ 32 15Acephate ESI+ 27 7Chlortoluron ESI+ 27 8Aldicarb ESI+ 27 6Demeton S Methyl ESI+ 26 9Phoxim ESI+ 64 19Kresoxim Methyl ESI+ 64 4Azinphos Methyl ESI+ 42 6Azoxystrobin ESI+ 45 4Dimethoate ESI+ 23 10Acetamiprid ESI+ 30 28Fluticasone ESI+ 30 3F t l ESI+ 39 4

Fenuron ESI+ 30 7Metamitron ESI+ 32 15Acephate ESI+ 27 7Chlortoluron ESI+ 27 8Aldicarb ESI+ 27 6Demeton S Methyl ESI+ 26 9Phoxim ESI+ 64 19Kresoxim Methyl ESI+ 64 4Azinphos Methyl ESI+ 42 6Azoxystrobin ESI+ 45 4Dimethoate ESI+ 23 10Acetamiprid ESI+ 30 28Fluticasone ESI+ 30 3F t l ESI+ 39 4

©2011 Waters Corporation 37

assays Formoterol ESI+ 39 4Nefadazone ESI+ 28 3Desmopressin ESI+ 129 25Salmeterol ESI+ 41 8Alprazolam ESI+ 21 13Reserpine ESI+ 25 5Ibuprofen ESI- 13 16Prostaglandin E2 ESI- 30 37

Mean Difference 38 11

Formoterol ESI+ 39 4Nefadazone ESI+ 28 3Desmopressin ESI+ 129 25Salmeterol ESI+ 41 8Alprazolam ESI+ 21 13Reserpine ESI+ 25 5Ibuprofen ESI- 13 16Prostaglandin E2 ESI- 30 37

Mean Difference 38 11

Assay RobustnessClass leading UPLC MS/MS performanceClass leading UPLC MS/MS performance

Compound name: OH ProgCorrelation coefficient: r = 0.999149, r̂ 2 = 0.998298Calibration curve: 3386.22 * x + 23.6767Response type: External Std, AreaCurve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: OH ProgCorrelation coefficient: r = 0.999149, r̂ 2 = 0.998298Calibration curve: 3386.22 * x + 23.6767Response type: External Std, AreaCurve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Verapamil, 10pg/µL spiked into supernatant from 2:1 ACN:Plasma protein

precipitation.

1000 on column injections

RSD of peak areas < 5%

APCI+, Hydroxprogesterone

Triplicate injections of Standards

50fg to 5 000pg on column

Linearity of Response

©2011 Waters Corporation 38

Conc0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Res

pons

e

0

500000

1000000

1500000

2000000

2500000

3000000

Conc0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Res

pons

e

0

500000

1000000

1500000

2000000

2500000

3000000RSD of peak areas < 5% 50fg to 5,000pg on column

5 orders of magnitude

Correlation coefficient>0.995

Deviation<15%

20

Xe oXe o G2G2 S S TofTofXevoXevo G2G2--S S TofTof&&

XX G2G2 S S Qt fQt f

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

XevoXevo G2G2--S S QtofQtof

Introducing Xevo G2-S QTof

©2011 Waters Corporation 40

21

ric

Fie

ld

StepWave Ion OpticsE

lect

r

Diffuse Ion

Cloud

Maximising signal

©2011 Waters Corporation 41

Maximising robustness

Xevo G2Xevo G2--S S QTofQTofSensitivity Sensitivity EnhancementsEnhancements

G2G2

G2-S

7x area counts10x signal intensity

17x S/N (RMS)

©2011 Waters Corporation 42

5 ng/mL Propranolol in Plasma with Ballistic

Gradient

22

QuanTofQuanTof Technology, for Exact Mass Technology, for Exact Mass Quantitative PerformanceQuantitative Performance

Compound name: AlprazolamCorrelation coefficient: r = 0.999587, r^2 = 0.999174Calibration curve: 1.18828 * x + -0.0262545Response type: Internal Std ( Ref 1 ), Area * ( IS Conc. / IS Area )Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

onse

300

400

500

600

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

Alprazolam spiked into plasma: Calibration curve showing 4 orders of linear dynamic range for quantitative studies.

Standard concentrations are between 0.05 and 500 ng/mL

ng/mL0 50 100 150 200 250 300 350 400 450 500

Res

p

0

100

200

300

InIn--Spectrum Dynamic Range (ESI)Spectrum Dynamic Range (ESI)

Results and Discussion

Introduce the analytical problem i.e. detection, quantification,

identification and characterization of small molecule form

1.5 ppm<0.1ppm

2 53 E6complex rat bile sample.

Run through the importance of high resolution and wide spectral

dynamic range for the analysis of complex mixtures

Introduce the importance of mass measurement accuracy and

stability.

Introduce the need for comprehensive MS/MS - MSE

OO

O

ON

N

Verapamil

O

O N

NNN

Caffeine

2.53 E6

>104

©2011 Waters Corporation 44

1.70 E2

23

MSMSE E

Comprehensive

—Exact mass precursor & product ions

Data-independent – NOT Data dependent like DDA

—No selection of precursors

©2011 Waters Corporation 45

Fast

—UPLC compatible

All of the data, all of the time

QTofQTof MSMSEE mode acquisitionmode acquisition

©2011 Waters Corporation 46

24

Resolution— 32.500 FWHM

No compromises !No compromises !

Mass accuracy— Better than 1 ppm RMS both in MS and MS/MS

— No sacrificing in sensitivity

32.500 FWHM— Full resolution maintained without loosing dynamic

range, mass accuracy or sensitivity

In spectrum dynamic range

©2009 Waters Corporation | COMPANY CONFIDENTIAL©2011 Waters Corporation

p y g— 5 orders of magnitude

— Without sacrificing resolution

Scan rates— 30 scans/sec

— No differences between MS or MS/MS

The next step in the evolution of

©2011 Waters Corporation 48

pthe SYNAPT G2 family

25

SYNAPT G2-S…transforming your capacity for discovery, understanding and success

©2011 Waters Corporation 49

Integration of Integration of StepwaveStepwave

©2011 Waters Corporation 50

26

Identification …limits of detection

SYNAPT G2-S vs SYNAPT G2

SYNAPT G2-S

©2011 Waters Corporation 51

SYNAPT G2

Quantification…LOQ, linearity and reproducibility

©2011 Waters Corporation 52

MS Mode s/n 1pg on column

On column LOQ (fg)

SYNAPT G2-S Resolution MSE >600 25 fg

SYNAPT G2 Resolution MSE >100 250 fg

27

Increasing information content (HDMSIncreasing information content (HDMSEE))……High Definition UPLC/MSHigh Definition UPLC/MSEE analysisanalysis

m/z m/z

Q1 RF only

©2011 Waters Corporation 53

Drift time

Precursor ions separated by IMS

m/z

Precursor ionsDrift time

/

Precursor and products share same drift time

Separation of isomers at same retention time and exact mass.

* *

164.55Å 174.1Å

©2011 Waters Corporation 54

HDMS data shows two isomers present at R.T

3.25 mins

28

UPLC/HDMSE

©2011 Waters Corporation 55

Ion mobility

Universal Source platform

Compatibility across the boardCompatibility across the board

ESIAPCIESCi™

APPIAPCI

APGC TRIZAIC UPLC®

nanoFlow™ESI

ASAP

©2011 Waters Corporation 56

Also compatible with 3rd party source designs:

Phytronix LDTD IonSense DART Prosolia DESI Advion NanoMate

29

©2011 Waters Corporation 57