water on tio2

46
Mechanism and activity of water oxidation on TiO 2 -based materials Jia Chen, Jun Hee Lee, Ye Fei Li, AS Department of Chemistry, Princeton University

Upload: others

Post on 18-Dec-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: water on TiO2

Mechanism and activity of water oxidation on TiO2-based

materials

Jia Chen, Jun Hee Lee, Ye Fei Li, AS Department of Chemistry, Princeton University

Page 2: water on TiO2

Scheme for Photoelectrochemical Water Splitting

TiO2 abundant and very stable

Page 3: water on TiO2

OER Overpotential on Transition-Metal-Doped TiO2 Nanowires

Bin Liu; Hao Ming Chen; Chong Liu; Sean C. Andrews; Chris Hahn; Peidong Yang; J. Am. Chem. Soc. 2013, 135, 9995-9998.

Thermodynamic redox potential for water oxidation at pH = 13.6

Page 4: water on TiO2

Outline

• TiO2 is widely used b/c cheap and very stable; yet not very efficient

• TiO2 modifications ⇒ TiO2/Ferroelectric Heterostructures

• Try to understand detailed kinetics first!

4

Page 5: water on TiO2

Oxygen Evolution Reaction – (a)

*H2O + h+ → *OH + H+(aq)

*OH + h+ → *O + H+(aq) H2O(l) + *O + h+ → *OOH + H+(aq)

*OOH + h+ → O2(g) + H+(aq)

5

2 H2O (l) + 4×1.23 eV ↔ O2(g) + 4H+ + 4 e−

4 PCET steps

Page 6: water on TiO2

Oxygen Evolution Reaction – (b)

Practical scheme used in periodic calculations

Compute ΔG1- ΔG4 SHE: H+ + e−↔ ½ H2 at U=0 & pH =0

*H2O → *OH + H+ + e−

*OH → *O + H+ + e− H2O(l) + *O → *OOH + H+ + e−

*OOH → O2(g) + H+ + e−

Page 7: water on TiO2

Y.-F. Li, Z.-P Liu, W. Gao and L. Liu, J. AM. CHEM. SOC., 132, 13008.

Energetics pathway of the OER on anatase (101) Rate determining step

Page 8: water on TiO2

First proton coupled electron transfer of water oxidation at the interface of water

with photoexcited TiO2 anatase (101)

8

Page 9: water on TiO2

TiO2 anatase surface

minority (001)

O2c Ti5c

majority (101)

Lazzeri et al., Phys Rev B, 2001

Page 10: water on TiO2

Rate determining step: first proton release

*H2O + h+ *HO• + H+(aq)

What about kinetics?

General interest

Specific issues

Page 11: water on TiO2

R. Nakamura and Y. Nakato, J. AM. CHEM. SOC, 126, 1290.

P. Salvador, J. Elec. Chem. Soc., 128, 1895.

Influence of pH for OER on TiO2

OER is faster at high pH

Page 12: water on TiO2

*H2O + h+ *HO• + H+(aq)

∆G/e (pH) = ∆Go/e – 0.059eV pH

EO2/H2O = EoO2/H2O – 0.059eV pH

Theoretical analysis of energetics predicts the onset overpotential to be independent of pH η(pH)=∆G(pH)/e – EO2/H2O = ∆Go/e – Eo

O2/H2O =constant

Overpotential’s dependence on pH

Page 13: water on TiO2

Rate determining step: first proton release

*H2O + h+ *HO• + H+(aq)

How to deal with the kinetics?

Difficulties:

(i) Localized hole

(ii) Solvation effect

(iii) Reaction coordinate for proton

coupled electron transfer

Page 14: water on TiO2

Watanabe & Hayashi, J. Lumin. (2005)

Luminescence band from self trapped (triplet ) excitons in anatase TiO2

Experimental evidence of self-trapped excitons/ holes in TiO2

Self-trapped polarons well described by hybrid functionals*

* C. Di Valentin, AS, JPC Lett. 2, 2223 (2011)

Page 15: water on TiO2
Page 16: water on TiO2

Order-N PBE0 hybrid functional based on Maximally

Localized Wannier Functions implemented in Car-Parrinello

Molecular Dynamics in Quantum-Espresso.

Xifan Wu, Annabella Selloni, and Roberto Car, Physical Review B 79, 085102

Page 17: water on TiO2

Rate determining step: first proton release

*H2O + h+ *HO• + H+(aq)

How to deal with kinetics?

Difficulties:

(i) Localized hole

(ii) Solvation effect

(iii) Reaction coordination for proton

coupled electron transfer

Page 18: water on TiO2

System size: 24 TiO2 units +48 H2O

Solvation effect

(i) 10ps CPMD, 330K, PBE;

(ii) Select three snapshots; (iii)

Add a hole then relax with

PBE0.

Page 19: water on TiO2

Water-hole state Surface-hole state

Spin density plot

Relaxed system

Page 20: water on TiO2

Rate determining step: first proton release

*H2O + h+ *HO• + H+(aq)

How to deal with the kinetics?

Difficulties:

(i) Localized hole

(ii) Solvation effect

(iii) Reaction coordinate for proton

coupled electron transfer

Page 21: water on TiO2

Reaction Coordinate for Proton Coupled Electron Transfer

Oa H

Ob

Difference between the distances of the proton to two water oxygens ∆d = d(Oa-H)-d(Ob-H)

Page 22: water on TiO2

Reaction Coordinate (∆d)

Water-hole state

Surface-hole state

PT

PT

∆d ~ -0.5 ∆d ~ +0.5

Page 23: water on TiO2

λ=0 ET

∆d (A)

λ

Proton transfer

∆E

Potential Energy Surfaces

Page 24: water on TiO2

PCET likely sequential: *H2O *OH- + H+(aq)

*OH- + h+ *OH•

Additional snapshots

Page 25: water on TiO2

Why PT first?

OH radical OH− & surface hole

Top views

OH− accepts H-bond donates H-bond

Page 26: water on TiO2

Kinetics of *OH- + h+ *OH•

Surface hole

Shared hole

Hydroxyl radical

Ow-Osurf distance is used as reaction coordinate

Page 27: water on TiO2

Additional snapshots

ET barrier ~ 0.1 eV or less, and << PT barrier

Page 28: water on TiO2

Partial summary

pH < pzc PT occurs first: *H2O *OH- + H+ (aq)

ET is next: *OH- + h+ *OH• PT barrier in the range 0.2- 0.5 eV

pH > pzc *OH- + h+ *OH•

ET barrier ~ 0.1 eV ⇒ OER faster at high pH

Polaronic effects essential to make transfer possible

Page 29: water on TiO2

TiO2 modification via

nano-structuring TiO2/SrTiO3 heterostructures for

water oxidation Jun Hee Lee & AS

Page 30: water on TiO2

Anatase TiO2(001) can be grown epitaxially on LAO and STO

HRTEM image of TiO2/LAO interfacial region taken in the [010] zone axis of the film.

~40 nm

Page 31: water on TiO2

semiconductor/ferroelectric

heterostructures

31

Interface dipole can shift electron band energy positions & affect the surface chemistry (see e.g. work by Rohrer & co.)

FE

+

+

+

+P

FE

-

-

-

-P

Ec

Ev

TiO2

QUALITATIVELY

Page 32: water on TiO2

32

More relevant for chemistry applications: Core-shell particles

Page 33: water on TiO2

Computational model: AnataseTiO2(001)/STO

-Pz (dn) = -0.8 C/m2 (negative)

Pt SrTiO3 (3.5u)

TiO2 (1u4L)

Dipole correction

+Pz (up) = +0.8 C/m2 (Positive) Fixed to strained bulk

SrTiO3

H2O (0.5ML)

2a

a = 3.786 Å (lattice const of TiO2, 3% compressive for

SrTiO3)

Page 34: water on TiO2

+Pz (up)

W(up)

-Pz (dn)

W(dn) W(Pt)

Pt SrTiO3 TiO2

εF

Hartree potential shift

Substrate polarization shifts the work-function

Page 35: water on TiO2
Page 36: water on TiO2

Layer-resolved

DOS – Structure 1

Page 37: water on TiO2

Oxygen Evolution Reaction – (b) Practical scheme used in periodic calculations

Compute ΔG1- ΔG4 SHE: H+ + e−↔ ½ H2 at U=0 & pH =0

*H2O → *OH + H+ + e−

*OH → *O + H+ + e− H2O(l) + *O → *OOH + H+ + e−

*OOH → O2(g) + H+ + e−

Page 38: water on TiO2

38

Layer-resolved

DOS – Structure 1’

Page 39: water on TiO2

1’’ 2

-H -O2

TiO2

-H

1’

2’

2’’

0

+H2O

1

-H

-H

Rate-limiting

OER on TiO2

+H2O

1

1

1’

1’’

2

2’

2’’

0

Page 40: water on TiO2

-H -O2

TiO2

Down -H

+H2O

-H

-H

rate-limiting

No effect from

negative dipole !

+H2Oa

1’’ 2

1’

2’

2’’

0

1

1

1

1’

1’’

2

2’

2’’

0

Page 41: water on TiO2

-H(*) -O2

TiO2

Down

Up -H

+H2O

-H

-H

Up

no barrier

small barrier

+H2O

1’’ 2

1’

2’

2’’

0

1

1

1

1’

1’’

2

2’

2’’

0

Page 42: water on TiO2

Pure

Down

Up

+H2O

-O2 +H2O +H2O

Bare surface

Dynamically Induced polarization of TiO2 layers

P of bottom layer of SrTiO3

No dipole

Local dipole

No dipole -H

-H

-H

-H

Page 43: water on TiO2

-1.0%

0%

+2.4%

+3.8% (STO lattice)

TiO2 Strain effect with positive dipole

+H2O

-H

-H

-H

-H

Page 44: water on TiO2

L=2.5

L=4.5

L=3.5

L

Catalysts on high-K Overcome the rate-limiting step

even without built-in P.

1’’

2

2’

1

2’’

0 1 1

1’

1’’

1’

Page 45: water on TiO2

Li et al., J. Am. Ceram. Soc. (2012)

Recent experimental work

Page 46: water on TiO2

Summary & Conclusions

Many open questions!

• more realistic models: larger surface area,

water environment, defects(?)

• beyond GGA

• Add real holes/electrons

• …

• Expts: Single crystal monodomain

47