water availability stefan kaden & michael kaltofen wasy gmbh, institute for water resources...

44
Water availability Stefan Kaden & Michael Kaltofen WASY GmbH, Institute for Water Resources Planning and Systems Research, Berlin, Germany GLOWA-Elbe GLOWA Status conference 19 May 2005 Cologne Water resources management and water availability in the Elbe river basin under conditions of global change WBalMo Elbe

Upload: neal-barrett

Post on 22-Dec-2015

224 views

Category:

Documents


0 download

TRANSCRIPT

Water availability

Stefan Kaden & Michael KaltofenWASY GmbH, Institute for Water Resources Planning and Systems Research, Berlin, Germany

GLOWA-ElbeGLOWA Status conference 19 May 2005 Cologne

Water resources management and water availability in the Elbe river basin under conditions of

global change W

Bal

Mo

Elb

e

Water availability

te

Project I: Integration und -coordination Integrative Methodological Approach GLOWA-Elbe (IMA)

Regional actors, decision bodies

Frame of Development Project II: Regionalisation of Global Change

Glo

ba

lC

ha

ng

eM

ana

gem

ent

lev

el

Project V: Cross conflict field scenario analysis

Management-options

Impact-analysis

Evaluation

Project IV:

Surface Water Quality

Nutrient entry

Cost-efficiency analysis

Eco-hydrological Indicators

Socio-economic Indicators

Project III:

Surface Water Availability

Run off regulation

Multi-criteria analysis

Eco-hydrological Indicators

Socio-economic Indicators

Pro

ject adviso

ry bo

ard

Development of wateravailability under conditionsof global change (climate andsocio-economics)?

Management strategies / policy options to solve arising problems of water availability?Socio-economic and ecological consequences of those strategies?

Water availability

Contents

1.Goals and basic methodologies

2.Main working steps

3.Conclusions

Water availability

ConstraintsObjectives

• Satisfaction of water demand (municipalities, agriculture, industry, navigation, etc.)• Minimum discharge• Flood protection

• Water quality and ecological objectives ….

• Water resources (availability and usability)• Capacity of reservoirs• Hydro-morphology of rivers• Capacities of water transfers

• State of aquatic ecology ……

Goals & basic methodologies

FuturePast

Water yield

Water use

Uncertain and stochastic changing water yield

Uncertain water demand

Water management

Water availability

ConstraintsObjectives

• Satisfaction of water demand (municipalities, agriculture, industry, navigation, etc.)• Minimum discharge• Flood protection

• Water quality and ecological objectives ….

• Water resources (availability and usability)• Capacity of reservoirs• Hydro-morphology of rivers• Capacities of water transfers

• State of aquatic ecology ……

Goals & basic methodologies

Interest groups Decision makers /Institutions

Stakeholder

Managementalternatives

• Reservoirs, • Ranking of water supply• ....Stochastic long-term simulation of

water management in river basins

Water management

Multi-criteria, stochastic, uncertain, multiple decision maker

Water availability

Stochastic Simulation of Meteorological and Hydrological Processes

Simulation P, PET

DeterministicP-Q-Model

Q(t)

Stochasticgenerated

climate series

Goals & basic methodologies

Water availability

Precipitation

Runoff STG 1

2003 bis 2007, R1

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41 51 mon

Precipitation [mm/mon]

2003 bis 2007, R2

0

2

4

6

8

10

12

14

1 11 21 31 41 51 mon

runoff [m³/s]

Goals & basic methodologies

Water availability

Stochastic Simulation of Meteorological and Hydrological Processes

Simulation P, PET

DeterministicP-Q-Model

Q(t)

Stochasticgenerated

climate series

Balancing of water yield and water demand withinsocio-economic context

Deterministic Simulation of Water Use

Management Rules, Ranking Rules

Goals & basic methodologies

Water availability Goals & basic methodologies

WBalMo

Water availability

simulation software WBalMo®

Stochastic Simulation of Meteorological and Hydrological Processes

Simulation P, PET

DeterministicP-Q-Model

Q(t)

Stochasticgenerated

climate series

e.g. certainty of water supply

or minimum flow

Balancing of water yield and water demand withinsocio-economic context

Deterministic Simulation of Water Use

Management Rules, Ranking Rules

Recording and Statistical Analysis of Systems States (Events)

Goals & basic methodologies

Water availability

Probability of satisfaction of demand (stream flow/ filling duration/ water deficit ...) at a defined indicator level

example: Indicator: Berlin-inflow (Große Tränke/Spree: demand 8 m3/s)

2003-20075-year-period

80

85

90

95

100

prob

abili

ty [

%]

values calculated for each m onthScenario X

1 2 3 4 5 6 7 8 9 10 11 12month

values show n for low -flow month J ULYScenario X

but

Goals & basic methodologies

Water availability

Indicator: Berlin-inflow (Große Tränke/Spree: minimum flow 8 m3/s)

0

1

2

3

4

5

6

7

8

9

stre

am flo

w [

m3/s

]

03-07 08-12 13-17 18-22 23-27 28-32 33-37 38-42 43-47 48-525-year-periods

long-term low-flow conditions/ JulyReference

B2-BasisB2-Filling

Reservoir system Lohsa II/ BärwaldeDams Bautzen/ Quitzdorf

Reservoir lake "Cottbuser See"

Barrage Spremberg

Goals & basic methodologies

Water availability

Socioeconomicdevelopment

Climate change

WBalMoBalancing water demand

and water resources

Water demand

Water resources

IMA andWater availability

Goals & basic methodologies

Wat

er m

anag

emen

t, ec

olog

ical

, soc

ioec

onom

ic

Water availability

GLOWA I WBalMo model development and application for Spree river basin (about 10.000 km2)

GLOWA II WBalMo model development and application for Elbe river basin (about 150.000 km2)

Goals & basic methodologies

WBalMo Spree:Standard planning toolof water authorities in the basin

GRMSTEU:Control model for daily management

Water availability Goals & basic methodologies

Methodological problems

Dimension of problem: more than 5000 users, 500 sub-areas, 50 years, 100 realizations

Combination of existing and new models

Scale:Length of Elbe river about 1000 km

Concept of “active modules”

Balancing considering travel time

Parallelization of modeling

Water availability

Czech RepublicMuldeSaale

Spree-Havel

Elbe River

(Spreewald)

Goals & basic methodologies

Water availability

Modular structure of the WBalMo model - „active modules“ -

Water demand x

Reservoir release

Goals & basic methodologies

Water availability

Water demand x

Module y

?

Goals & basic methodologies

Water availability

Water demand x

Active module y

Bidirectional interface

Server module

Goals & basic methodologies

Water availability

Contents

1.Goals and basic methodologies

2.Main working steps

3.Conclusions

Water availability

Berounka

Havel

Bode

Weiße Elster

Lower Elbe

Saale

SpreeSchw. Elster

Main Elbe

MuldeUpper and

Middle Labe

Lower Vltava

Ohře and Lower Labe

Upper Vltava

Main working steps

1 Structuring of the WBalMo system for the river basin

Water availability

Rau

sche

n-

fluß

17

16

Kl. B.

ELBE

Ver

ein.

Mul

de

Ver

ein.

Mul

de

Flöha

Gim

mli

tz

Gr.

Mit

t-

wei

da

Pöh

lwas

ser

Pöh

lbac

h

Zw

önit

z

Würschnitz

Lungwitz- bach

Bob

ritz

sch

Lossa Leine

Lober

Sch

war

ze

Poc

kau

12

14

13

16

15

17 18

19

20

11

10 9

Nat

zsch

ung

8

7 6

5 4

3

2

1

Gr.

Pyr

a

Thümmlitz-bach

Rauschen-bach

Fla

jsk

Saiden-bach

Zw. Mulde

Gr.

Boc

kau

Seh

ma

Sch

ade-

ba

ch

15

8 2

7

3 6

4

13

11

10

9

12

14

1

Zw. Mulde

Frbg. Mulde

Frb

g. M

ulde

Che

mni

tz

Flö

ha

Zsc

hopa

u

Sch

war

zwas

ser

Gr.

Str

iegi

s

Zsc

hopa

u

Wil

zsch

Pre

ßnit

z

5

Speicher/ Talsperren: 1 TS Muldenberg 2 TS Carlsfeld 3 TS Eibenstock 4 TS Sosa 5 TS Cranzahl 6 u.n. Prisecnice 7 u.n. Flaje 8 TS Rauschenbach 9 TS Saidenbach 10 TS Neunzehnhain II 11 TS Kriebstein 12 TS Lichtenberg 13 TS Kössern 14 SB Schadebach 15 Muldestausee 16 Großhartmannsdorfer

Teich 17 TS Stollberg

Schema WBalMo-Mulde Pegel:

1 Sachsengrund/ Große Pyra 2 Aue 1/ Schwarzwasser 3 Zwickau-Pöblitz/ Zw. Mulde 4 Wechselburg/ Zw. Mulde 5 Göritzhain/ Chemnitz 6 Annaberg/ Sehma 7 Streckewalde/ Preßnitz 8 Hopfgarten/ Zschopau 9 Rothenthal/ Natzschung 10 Rauschenbach 2/ Rauschenfluß 11 Pockau 1/ Flöha 12 Zöblitz/ Schwarze Pockau 13 Borstendorf/ Flöha 14 Lichtenwalde/ Zschopau 15 Berthelsdorf/ Frbg. Mulde 16 Nossen 1/ Frbg. Mulde 17 Niederstriegis 1/ Striegis 18 Erlln/ Frbg. Mulde 19 Golzern/ Verein. Mulde 20 Bad Düben/ Verein. Mulde

Großer Goitsche See

Seelhausener See

See Golpa Nord

Werbeliner See

Gröberner See

Talsperre Eibenstock

údolni nádrz Prísecnice

Bergwitzsee

Schladitzer See

Talsperre Kriebstein

Talsperre Saidenbach

Kiesgrube Eilenburg

Industrieabsetzanlage Helmsdorf

Talsperre Carlsfeld

Talsperre Sosa

Stausee Glauchau

Langer Rodaer See

Speicherbecken Schadebach

Talsperre Kössern

Neuhauser See

Wörlitzer See

Muldestausee

Talsperre Muldenberg

Talsperre Neunzehnhain II

Talsperre Cranzahl

Talsperre Lichtenberg

Talsperre Rauschen-bach

údolni nádrz Fláje

Pump-speicherwerk Markersbach

10 0 10 Kilometers

Staedte MuldeElbeSeen MuldeFluesse Mulde2 Active modules

Main working steps

Mulde

Water availability

Basic data

Legal water supply permits / Water requirement as specified by water resources management planning

Losses / releases of wetland areas

• selection of relevant areas (larger 1000 ha)

• digital elevation model

• soils and land use

Main working steps

Water availability

Basic data

Legal water supply permits / Water requirement as specified by water resources management planning

Losses/releases of wetland areas

Other types of losses / demands:

Water transfers, evaporation from large water surfaces, areas of groundwater draw-down, minimum environmental flow, seepage, flow rate to sustain water quality, flow rate to support users

Main working steps

Water availability

Basic data

Legal water supply permits / Water requirement as specified by water resources management planning

Other types of losses/demands:

Water transfers, evaporation from large standing waters, areas of groundwater draw-down, minimum environmental flow, seepage, flow rate to sustain water quality, flow rate to support users

Reservoirs, dams, managed lakes / remaining pits from lignite mining

• maximum capacity

• monthly size of active storage capacity

• monthly division of storage capacity with respective beneficiaries (users)

• ranking order for water supply

• monthly storage capacity for replenishment, ranking order for replenishment

• specifications regarding combined reservoir operation

Losses/releases of wetland areas

Main working steps

Water availability

3 Specific modules

Main working steps

Socioeconomic evaluation functions

Consideration of water quality aspects in water allocation

Consideration of wetlands

Water availability

Selected wetlands in the Elbe lowland for integrationIn WBalMo

Main working steps

Water availability

Modell WBalMo Spreewald I Modell WBalMo Spreewald II

Example: WBalMo Spreewald

Main working steps

Generalization

Water availability

4 Implementation and testing the overall model

Main working steps

5 Conflict analysis, development and analysis of management alternatives

Water availability main working steps

water resources water use

water availability

Considerations of socio-economic development and climate change

Implementation of the long term water management model according to status quo

water management

Bo

tto

m u

p

actors

Water availability main working steps

water resources water use

water availability

Implementation of the long term water management model according to different frameworks of development

water management

Scenario of socio-economic development and climate changeScenario of socio-economic development and climate changeScenario of socio-economic development

and climate change

To

p d

ow

n

scientists

Water availability

water managementwater management

water availabilitywater availability

main working steps

water resources water use

water availability

Developing water management strategies

water management

Scenario of socio-economic development and climate changeScenario of socio-economic development and climate changeScenario of socio-economic development

and climate change

Water availability

Basic data

Legal water supply permits / Water requirement as specified by water resources management planning

Other types of losses/demands:

Water transfers, evaporation from large standing waters, areas of groundwater draw-down, minimum environmental flow, seepage, flow rate to sustain water quality, flow rate to support users

Reservoirs, dams, managed lakes

Losses/releases of wetland areas

main working steps

Water availability

Basic data

Legal water supply permits / Water requirement as specified by water resources management planning

Other types of losses/demands:

Water transfers, evaporation from large standing waters, areas of groundwater draw-down, minimum environmental flow, seepage, flow rate to sustain water quality, flow rate to support users

Reservoirs, dams, managed lakes

Losses/releases of wetland areas

Scenario of socio-economic development

main working steps

Water availability

water uses

Legal water supply permits / Water requirement as specified by water resources management planning

Other types of losses/demands:

Water transfers, evaporation from large standing waters, areas of groundwater draw-down, minimum environmental flow, seepage, flow rate to sustain water quality, flow rate to support users

Reservoirs, dams, managed lakes

Losses/releases of wetland areas

Scenario of socio-economic development

water resources

Hydrological structure of Elbe river basin

Scenario of climate change

main working steps

Modeled with SWIM (Sub-project II)

Water availability

6 Evaluation of management alternatives, multicriteria analysis

Main working steps

see Presentation Project V

Water availability

Contents

1.Goals and basic methodologies

2.Main working steps

3.Conclusions

Water availability Conclusions

Project III – essential component of GLOWA IIProject I: Integration und -coordination Integrative Methodological Approach GLOWA-Elbe (IMA)

Regional actors, decision bodies

Frame of Development Project II: Regionalisation of Global Change

Glo

ba

lC

ha

ng

eM

ana

gem

ent

lev

el

Project V: Cross conflict field scenario analysis

Management-options

Impact-analysis

Evaluation

Project IV:

Surface Water Quality

Nutrient entry

Cost-efficiency analysis

Eco-hydrological Indicators

Socio-economic Indicators

Project III:

Surface Water Availability

Run off regulation

Multi-criteria analysis

Eco-hydrological Indicators

Socio-economic Indicators

Pro

ject adviso

ry bo

ard

Water quantity(availability)Requirements

of water quality

Requirementsof flood mangagement

Water availability

• Stochastic long-term water management modeling (WBalMo) is the adequate basis to analyze the impact of global change on water availability and for the development of sustainable management strategies.

• The model structure enables the inclusion of socioeconomic evaluation ( Project V!).

• The modular concept guaranties high acceptance by water authorities (important for cooperation in model development).

• Methods and tools developed are helpful for implementing the EU Water Framework Directive.

Water availability

Contributors:

WASY Institute for Water Resources Planning and Systems Research Ltd.

Brandenburg University of Technology Cottbus

Leibniz-Centre for Agricultural Landscape and

Land Use Research Federal Institut of Hydrology

Partners for socio-economic evaluation:

UFZ Environmental Reserch Centre

Technical University Berlin

WB

alM

o E

lbe

Water availability

WWW.GLOWA-Elbe.de

Thank You

For Your Attention!

Water availability

Laufzeit 1Gleichzeitigkeit aller Prozesse

t0 t0t0

Exemplarisch durchflußaufhöhende Prozesse

Effekte treten sofort und vollständig bis zum Wirkungsknoten des nächsten Prozesses auf

In allen Profilen gilt dieselbe Zeit

Water availability

Laufzeit 2Laufzeitproblem im Bilanzmodell

t0 t0t0

dt2 > 0 dt1 > 0

? ?

In allen Profilen gilt dieselbe Zeit

Fließzeit Das Ergebnis der historischen Prozesse ist unbekannt

Water availability

Laufzeit 3Lösung des Laufzeitproblems

t2=f(dt1+dt2) t0t1=f(dt1)

dt2’ = 0 dt1’ = 0

Berücksichtigung der historischen Prozesse zu den Zeitpunkten t2, t1, …

Transformationen der Fließzeiten

Effekte treten (im Modell) sofort und vollständig bis zum Wirkungsknoten des nächsten Prozesses auf