waste heat recovery in internal combustion engines/whr... · kth royal institute of technology...

14
KTH ROYAL INSTITUTE OF TECHNOLOGY WASTE HEAT RECOVERY IN INTERNAL COMBUSTION ENGINES Sandhya Thantla Supervisors: Prof. Anders C Erlandsson, Dr. Jens Fridh 07.09.2017, CCGEx – Research Day CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

Upload: others

Post on 25-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • KTH ROYAL INSTITUTE OF TECHNOLOGY

    WASTE HEAT RECOVERY IN INTERNAL COMBUSTION ENGINES Sandhya Thantla Supervisors: Prof. Anders C Erlandsson, Dr. Jens Fridh 07.09.2017, CCGEx – Research Day

    CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • CONTENTS

    • Project goal

    • The Rankine cycle system

    • Engine’s energy distribution & thermodynamic data

    • Preliminary RC operating conditions

    • Sensitivity analysis/Parameteric effects on the Power output

    • Conclusion

    2 CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • PROJECT GOAL

    Design and develop a Rankine cycle (RC) system to recover unused potential heat from the Automotive ICEs with the most suitable expansion Machines

    FOCUS o Heavy duty diesel engine o Medium and low temperature heat sources o Expansion machines – modeling, design & development o System integration TODAY’S PRESENTATION Sensitivity of the Power output towards some thermodynamic parameters

    3 CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • THE RANKINE CYCLE (RC) SYSTEM

    EVAPORATOR

    CONDENSER

    EXPANDER

    PUMP

    4

    1 2

    3

    Power output

    Source: http://www.learnthermo.com

    4 CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • ENGINE’S ENERGY DISTRIBUTION

    5

    Brake power: 44%

    1100 rpm, Full load

    Fuel energy: 100%

    Exhaust energy: 40%

    Coolant loss: 12%

    Friction & other losses: 1,42%

    In-cylinder loss: 15%

    Scania DL6 EU5 12,7l Heavy duty diesel engine

    CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    (Picture for representation only) Source: Microsoft Powerpoint

    http://www.ccgex.kth.se/

  • Heat Source

    Speed Load Avg. T_in

    Avg. T_out

    Del_T Avg. mass flow rate

    Avg. Pressure

    Cp,avg Available heat

    RPM % C C C g/s bar kJ/kg.K kW

    Exhaust 1100 35 330,53 30 301 144 1,02 1,091 47,21

    EGR 1100 35 343 102 341 45 1,58 1,102 11,95

    CAC 1100 35 76 25,57 50,42 139 1,57 1,007 7

    THERMODYNAMIC PROPERTIES OF HEAT SOURCES

    6 CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • PRELIMINARY RC OPERATING CONDITONS (EXHAUST)

    7

    1-2 Expansion 2-3 Condensation 3- 4 Pumping 4-5 Preheating 5-1 Vaporisation

    219.2 C

    111.4 C

    0,0 1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

    50

    100

    150

    200

    250

    300

    350

    s [kJ/kg-K]

    T [°

    C]

    425 kPa

    150 kPa

    Water

    1

    23

    4

    5

    Power output = 2.5 kW Amb. Temp. = 30 C

    CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • PRELIMINARY RC OPERATING CONDITONS (EXHAUST)

    8

    PARAMETER UNIT VALUE

    Q_absorbed kW 46,18

    Pressure ratio 2.8

    Expander isentropic & mech. efficiency 0,8 (assumed)

    Pump isentropic efficiency 0,8 (assumed)

    Mass flow rate_ of_working fluid g/s 18,99 (actual)

    Expander inlet volume flow rate m3/h 35,85

    Specific volume at turbine inlet m3/kg 0,52

    Expansion ratio 2,2

    Thermal efficiency of the cycle % 5,39

    CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • PRELIMINARY SENSITIVITY ANALYSIS @ FIXED AVAILABLE HEAT (WATER)

    Mass flow rate

    (CONSTANT)

    Pressure ratio (PR)

    Reduction in PR

    Enthalpy drop

    Reduction in enthalpy

    drop

    Thermal efficiency

    Power output

    g/s % kJ/kg % % kW 19,5 4,94 329,34 8,13 4 19,5 4.38 11,34 300,35 8,80 7,5 3,75 19,5 4,05 7,53 281,35 14,57 7,08 3,5 19,5 3,7 8,64 260,49 20,91 6,6 3,25 19,5 3,11 15,95 220,96 32,91 5,69 2,75 19,5 2,86 8,04 202,77 38,43 5,26 2,5 19,5 2,47 13,64 170,99 48,08 4,49 2 19,5 2,12 14,17 139,83 57,54 3,71 1,75 19,5 1,92 9,43 120,23 63,49 3,22 1,5 19,5 1,58 17,71 81,9 75,13 2,22 1

    9 CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • PRELIMINARY SENSITIVITY ANALYSIS

    @ FIXED AVAILABLE HEAT (WATER)

    Mass flow rate m_wf

    Reduction in m_wf

    Pressure ratio (PR)

    (CONSTANT)

    Enthalpy drop

    (CONSTANT)

    Thermal efficiency

    (CONSTANT)

    Heat absorbed,

    Q_in

    Reduction in Q_in

    Power output

    g/s % kJ/kg % kW % kW

    19 4,94 329,34 8,13 49,1 4

    17,8 6,32 4,94 329,34 8,13 46 11,03 3,75

    16,6 6,74 4,94 329,34 8,13 42,9 17,02 3,5

    15,25 8,13 4,94 329,34 8,13 36,8 28,82 3,25

    13 14,75 4,94 329,34 8,13 33,6 35,01 2,75

    12 7,69 4,94 329,34 8,13 31 40,04 2,5

    10 16,67 4,94 329,34 8,13 25,9 49,90 2

    8,3 17 4,94 329,34 8,13 21,5 58,41 1,75

    7,15 13,86 4,94 329,34 8,13 18,5 64,22 1,5

    4,85 32,17 4,94 329,34 8,13 12,5 75,82 1

    10 CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • 11

    0,00

    5,00

    10,00

    15,00

    20,00

    25,00

    30,00

    35,00

    % o

    f red

    uctio

    n

    Reduction in Power output (kW)

    PARAMETRIC EFFECTS ON THE POWER OUTPUT

    reduction in pressure ratio

    reduction in mass flow rate

    4 kW to 2.5 kW 2.5 kW to 1 kW

    CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • PARAMETER EFFECTS – SUMMARY

    Work outputs higher than 2 & 2,5 kW Mass flow rate & Enthalpy drop dominate (resp.) Lower work outputs Pressure ratio dominates High mass flow rate Higher heat input More heat recovery At constant pressure ratio, High mass flow rate higher heat input higher work output same efficiency

    12 CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • CONCLUSION

    13

    o Parametric/Sensitivity analysis may help in the choice of expanders

    o Drawbacks to be addressed in the sensitivity analysis e.g. pinch-point

    o Detailed analysis of the parametric effects on ’Expansion’ required

    o Comparison of performance of other fluids with water

    CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

    http://www.ccgex.kth.se/

  • ”Charging for the future”

    CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se CCGEX AT THE ROYAL INSTITUTE OF TECHNOLOGY (KTH) • WWW.CCGEX.KTH.SE 14

    http://www.ccgex.kth.se/

    WASTE HEAT RECOVERY IN INTERNAL COMBUSTION ENGINESCONTENTSPROJECT GOALTHE RANKINE CYCLE (RC) SYSTEM ENGINE’S ENERGY DISTRIBUTIONSlide Number 6PRELIMINARY RC OPERATING CONDITONS (EXHAUST)PRELIMINARY RC OPERATING CONDITONS (EXHAUST)PRELIMINARY SENSITIVITY ANALYSIS �@ FIXED AVAILABLE HEAT (WATER)PRELIMINARY SENSITIVITY ANALYSIS �@ FIXED AVAILABLE HEAT (WATER)Slide Number 11PARAMETER EFFECTS – SUMMARY CONCLUSIONSlide Number 14