warm nuclei - tumelements of nuclear physics • shell model (m.goeppertmayer, j.h.d. jensen, 1949)...

50
 WARM NUCLEI Helmut Hofmann Physik Department TUM Colloquium  given at the University of Graz, Austria, 28.03.06

Upload: others

Post on 26-Mar-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

WARM NUCLEI

Helmut HofmannPhysik Department

TUM

Colloquium  given at the University of Graz, Austria, 28.03.06

Page 2: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Table of contents• Elements of nuclear physics

– shell model vs compound nucleus

• Concept of nuclear temperature: false or true?– consequences of thermal isolation

• Transport theory – application in fission and heavy ion collisions– origin of irreversibility, nature of dissipation– fluctuating forces

• Summary, open problems

Page 3: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Elements of nuclear physics• shell model (M.Goeppert­Mayer, J.H.D. Jensen, 1949)

     independent particle model: nucleons move in mean field, s.p. states group in shells, largely determined by appropriate spin­orbit coupling 

        ground state                1particle ­ 1hole                2p­2h   

Fermi energy:                                      radius

Page 4: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

   

• deformed shell model (A. Bohr und B. Mottelson, 1952) 

    nuclei are deformed:      rotational modes                           vibrational modes 

described by introducing shape variables Q(t)

as collective degrees of freedom

needed: appropriate equations of motion 

treat motion of nucleons in time­dependent, deformed mean field

assumption: nucleonic motion mast faster than collective

allows for easy generalization to motion of large scale like fission

Page 5: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

   

deformed mean fields  (parameterized by shape variables Q(t))

    

Woods­Saxonpotential

Cassini ovaloidsV. Paskevich

given density distribution folded with Yukawa interactionbecause of short range: 

Berkeley­ Los Alamos group

potential deformation 

follows that of densityself­consistency condition

Page 6: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

• compound nucleus (Niels Bohr, 1936)

basic assumption of shell model: mean free path much larger than nuclear dimension

cannot explain sharp resonancesfor slow neutrons

for motion across potential well widths of resonances would be of order MEV

Niels Bohr: all nucleons react with each other strongly

Page 7: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

• compound nucleus (Niels Bohr, 1936)

assume: mean free path much smaller than nuclear dimension

additional nucleon stays inside nucleus for long time                                small ... narrow width

relaxation evaporation

hypothesis: final state independent of initial channel: intermediate state: micro­canonical equilibrium

these features can be proven rigorously in nuclear reaction theory with only a few assumptions

V.Weisskopf,  H. Feshbach

Page 8: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

• liquid drop modelN. Bohr and F. Kalckar 1937: 

semi­clasical version of compound model:nucleus behaves like a liquid drop

(mean free path smaller than nuclear dimension)studied modes of a vibrating liquid drop

in accord with Bethe­Weizsäcker formula for static energy:volume term + surface term + curvature term + Coulomb 

term 

expansion in terms of   1/R or A^(­1/3) macroscopic limit: no shell effects

commonly referred to as liquid drop energy

Page 9: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

• shell correction for static energy: V.M. Strutinsky (1967)

                            = liquid drop energy+ shell correction 

shell correction determined by contributions from first shell below and above Fermi energy

shells exist also for deformed shapes

shell correction determines ground state deformation and nuclear masses (with precision  better than 0.5 per mille)

isomeric states at larger Q verified experimentally

principle points of view seen in various kinds of theoretical approaches (Hartree­Fock,periodic orbit theory)

Page 10: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

shell correction method for static energy... combines two controversial approaches:

liquid drop model (picture of compound nucleus)and shell model (independent particles)possible justification: finite widths of quasi­particles away from Fermi energy

comparision of measured and theoretical values for finite nuclei

theoretical calculations for nuclear matter at T=0 and finite temperaturesC. Mahaux and R. Sartor

expect:consequences for shell effects

Page 11: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

• temperature dependence of shell effects

disappear above T = 1.5 .. 2 MeV   ...   macroscopic limit is reached  e.g.: Periodic Orbit Theory (POT) 

example: free energy

left: numerical evaluation with realistic mean field (WS)right: simple formula

similar calculations for internal energy, entropy....

theoretically proven  by various methods and authors, without considering finite widths of s.p. energies

Page 12: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

definition of „warm“

•  T  <  3 ­ 5 MeV  <<  38 MeV  (Fermi energy)• concept of mean field applicable• shell effects important• and hence, quantum effects for nucleonic motion• expect quantum effects for collective motion • intriguing problem of quantum transport

– isolated, small and selfbound system– interplay between collective and nucleonic d.o.f.– role of residual interactions 

• discarded in HF, density functionals etc.

Page 13: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Table of contents

• Elements of nuclear physics– shell model vs compound nucleus

• Concept of nuclear temperature: false or true?– consequences of thermal isolation

• Transport theory – application in fission and heavy ion collisions– origin of irreversibility, nature of dissipation

• Summary, open problems

Page 14: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

concept of temperature – applicable or not?

• introduced by H.A. Bethe in 1937 ..... (V.Weisskopf)

• used by H.A. Kramers in his theory of fission (1940)• later disliked and distrusted

– in studies of  nuclear structure (shell model)– reaction theories

• presently in wide use, for different reasons– treated as mere, formal „parameter“ for 

• level densities • studies of shell effects and their disappearance

– indispensable for applications of functional integrals

• in application of transport theories temperature has to have a real physical meaning (used since the 70‘ties)

Page 15: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

possible definition of temperature

recall treatment of neutron induced reaction in statistical model:

relaxation evaporation

microcanonical equilibriumdetermined by 

level densities         entropiesin intermediate step:

Page 16: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

possible definition of temperature

recall treatment of neutron induced reaction in statistical model:

relaxation evaporation

microcanonical equilibriumdetermined by 

level densities         entropiesin intermediate step:

try common definition of temperature ....canonical distribution

Page 17: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

possible definition of temperature

microcanonical equilibrium evaporation

       C                          B  +  b

  

study decay

Page 18: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

possible definition of temperature

microcanonical equilibrium

decay rate 

evaporation

       C                          B  +  b

  

study decay

probability that subsystem b has energyin microcanonical ensemble

probability in canonical ensemble

(L. Szilard 1925)

Page 19: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

concept of temperature – really applicable ???

PROBLEM: nucleus is not only  thermally isolated 

 but  also small

with specific heat C 

temperature has inherent fluctuations

Physics Today:    

H. Feshbach [(1987) 9]  C. Kittel [(1988) 93]   B.B. Mandelbrot [(1989) 71 ]                                                                                            

J. Lindhard, Niels Bohr Centennial (1986)   

in 60‘ties: fundamental work by B.B. Mandelbrot  (and later by L. Tisza) 

Page 20: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

estimate by Fermi gas model (macrosocopic limit)

entropy as function of excitation energy level density parameter 

Page 21: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

estimate by Fermi gas model (macrosocopic limit)

entropy as function of excitation energy level density parameter 

order of magnitudes:

within this margin temperature concept justified

Page 22: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

„measured“ specific heats

K. Kaneko and  M. HasegawaPhys. Rev. C 72, 024307 (2005) 

obtain level density vs energy from empirical information:

•                      counting (v. Egidy et al)•  transfer reactions•                          neutron resonances• not possible for larger E (resonances overlap!!!) 

Oslo group (E. Melby et al. PRL 83 (1999) 3150):

try to deduce specific heat as function of Tstructure seen in region wherepairing  disappears (phase transition)

example: Tungsten isotopes

use

same order as width !!

Page 23: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

negative specific heats (?)

at larger thermal excitations there might be a liquid gas phase transitionabove the „flash point“  free energy has no minimum anymoremuch before that heated nucleus expands, below a certain limit of density(about 1/3 to 1/6 of central density of stable nuclei) an assemblence of droplets is more stable than one big nucleus(„nuclear fog“, multi­fragmentation: nucleus splits into small fragments)similarity to galaxy formation (W. Thirring, H. Narnhofer ... Vienna)

specific heat may become negative (D. Groß (Berlin), P. Chomaz (Caen)...Coulomb force (long range) important (like in stars)similar effect seen in metal clusters (W. Thirring et al. PRL 91 (2003) 130601

Page 24: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

microscopic theories for nuclear thermostatics

• Periodic orbit theory:  (independent Fermions in box)

 s.p. level density                  smooth part can be treated by Sommerfeld expansion

fluctuating part                                                           Fourier series Bohr­Mottelson Vol.II (n=1)

Gutzwiller trace formula:    classical action for orbits

calculation of all thermostatic quantities by cute expansion:P. Leboeuf et al. PRL 47 (2005) 102502

Page 25: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

microscopic theories with residual interactions

• Shell Model Monte Carlo       S.E. Koonin, D.J. Dean and K. Langanke, Physics Reports 278 (1997) 1       Y. Alhassid , G.F. Bertsch and L. Fang, PRC 68 (2003) 044322

• with functional integrals( Y. Alhassid, G. Bertsch,  P.F. Bortignon, R. Broglia, P. Ring, R. Rossignoli)– residual interaction: series of separable forces– Hubbard Stratonovich to introduce mean field– „static path“: common free energy in mean field approximation– „perturbed static path“: fluctuations around it (local RPA)– in barrier regions: possible only above minimal temperature

(same problem as in „dissipative tunneling“)– partly overcome in thesis by C. Rummel (TUM 2004)

• expansion to fourth order• generalization of Feynman­Kleinert variational procedure• later: decay rate for meta­stable systems with dissipation     

Page 26: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Table of contents• Elements of nuclear physics

– shell model vs compound nucleus

• Concept of nuclear temperature: false or true?– consequences of thermal isolation

• Transport theory – application in fission and heavy ion collisions– origin of irreversibility, nature of dissipation– fluctuating forces

• Summary, open problems

Page 27: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

(for BW:microcanonicalequilibrium evtlreduced to canonical)

Page 28: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

diffusion coefficient in Einstein relation

temperature appears explicitely as aphysically real quantity

Page 29: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

heavy ion reaction of fusion­fission 

approach phase:nuclei in ground state

overlap after contact: shape changesnucleons get heated 

formation of compound nucleus:heated to maximal T

cooling by evaporationof neutrons emission of gamma's

fission

Page 30: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

heavy ion reaction of fusion­fission 

approach phase:nuclei in ground state

overlap after contact: shape changesnucleons get heated 

formation of compound nucleus:heated to maximal T

cooling by evaporationof neutrons emission of gamma's

fission

•non­linear motion  in shapes and T•T varies in time • treat in parallel:

• d(Q,P,t)• T=T(t)• Evaporation

• for d(Q,P,t) :•Fokker­Planck•Langevin

• Quasi­static picture

Page 31: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Discovery of Elements 118 and 116..... scientists from the Berkeley Lab and Oregon State University report the observation of superheavy elements in the reaction 86Kr + 208Pb performed at LBNL's 88­Inch Cyclotron....                                                                      http://user88.lbl.gov/element118.html

Theoretical calculation of binding energies P. Möller, J.R. Nix and A. Sierk, Los Alamos Nat. Lab.

Page 32: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Discovery of Elements 118 and 116..... scientists from the Berkeley Lab and Oregon State University report the observation of superheavy elements in the reaction 86Kr + 208Pb performed at LBNL's 88­Inch Cyclotron....                                                                      http://user88.lbl.gov/element118.html

Theoretical calculation of binding energies P. Möller, J.R. Nix and A. Sierk, Los Alamos Nat. Lab.

art of the game:

• choose right   projectile­target combination  to reach „island of stability“• initial energy:

•big enough to overcome  fusion barrier•small enough to keep excitation of fused system  small

one is happy if s.h. lives for msec Berkeley, GSI, Dubna

Page 33: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Table of contents• Elements of nuclear physics

– shell model vs compound nucleus

• Concept of nuclear temperature: false or true?– consequences of thermal isolation

• Transport theory – application in fission and heavy ion collisions– origin of irreversibility, nature of dissipation– fluctuating forces

• Summary, open problems

Page 34: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Page 35: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

linearize mean field locally i.e. H(x,p;Q(t)) in Q­Q_0treat coupling within linear response theory

assume:nucleonic d.o.f. to be close to thermal equilibrium(quasi­static picture)

transport coefficients determined by local response function

H.H. , P. Siemens, A.S. Jensen (`74­84)H.H. and many others afterwards

Page 36: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Page 37: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

   

deformed mean fields  (parameterized by shape variables Q(t))

    

Woods­Saxonpotential

Cassini ovaloidsV. Paskevich

given density distribution folded with Yukawa interactionbecause of short range: 

Berkeley­ Los Alamos group

potential deformation 

follows that of densityself­consistency condition

Page 38: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

microscopic origin of dissipation

dissipation for Q­mode if and only if coupling induces 

real transitions betweeen states of nucleonic motion

slow motion                    transitions of small energy 

Page 39: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

microscopic origin of dissipation

dissipation for Q­mode if and only if coupling induces 

real transitions betweeen states of nucleonic motion

slow motion                    transitions of small energy

<< level spacing: NO dissipation  

depends on size of system:  i.p.m.: dissipation can exist only in macroscopic limit

„philosophy“ of  wall formula (Swiatecki et al.)nucleonic motion treated in (semi­)classical or macroscopic limit

same problem as for Ohmic resistance for DC in metal clusters (A. Kawabata and R. Kubo (1966), D.M. Wood and N.W. Ashcroft (1982) ....)

Page 40: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

microscopic origin of dissipation

at finite T nucleonic states have finite width:

dashed curve: i.p.m 

true relaxation onlywith finite s.p. widths(fully drawn lines)

nucleonic relaxation time about 0.5 to 0.2 h/MeV << collective by factor 5

time­dependent response functions

Page 41: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

T­dependence of nuclear transport

schematic behavior: details depend on parameters for widths etc 

mind: transport properties (for average motion)

involve friction, inertia and local stiffnes 

Page 42: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

T­dependence of nuclear transport

schematic behavior: details depend on parameters for widths etc 

experimental evidence:                                                               damping increases strongly with T 

(P.Paul, M. Thoennessen ..)

in agreement (solely) 

with our theoretical model         

(different to wall­ or two body friction) 

mind: transport properties (for average motion)

involve friction, inertia and local stiffnes 

Page 43: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

M. Thoennessen and G.F. Bertsch PRL 26 (1993) 4303I. Diószegi et al. PRC 61 (2000) 024613

H. H., F.A. Ivanyuk, C. Rummel and S.Yamaji, PRC 64 (2001) 054316

Page 44: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Page 45: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

quantum transport

• Caldeira­Leggett model studied with functional integrals            schematic potential, constant inertia            bilinear in nuclear and collective d.o.f.            oscillator bath with constant shapes            self­consistency requires:many beautiful results by many groups (H. Grabert, P. Hänggi, U. Weiss...)

not applicable in nuclear physics 

• Quantum optics: transport equations (for real time propagation) of Fokker­Planck type with quantal diffusion coefficients

• in early 80‘ties: similar type of equation derived by us for nuclear case within LHA: problem: restricted to weak damping 

    not really applicable in nuclear physics

Page 46: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

quantum transport

• transport equation (for real time propagation) of Fokker­Planck type with quantal diffusion coefficients (for arbitrary damping)– developed for LHA in late 80‘ties early 90‘ties– and applied to obtain quantum corrections to Kramers‘ rate    (H. H., G.­L. Ingold and M. Thoma, PLB 317 (1993) 489)

   requires analytic continuation of   quantal fluctuation dissipation theorem    to unstable modes (in barrier region )   breaks down below critical temperature T_0    same feature in Caldeira­Leggett model for real time propagation

Page 47: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

quantum transport

• Doctoral thesis C. Rummel (TUM ´04)    employ theoretical means developed for Caldeira­Leggett model

     except starting point to account for self­consistency– residual interaction of separable nature– introduce collective coordinate and effective action     by Hubbard Stratonovich trick – evaluate imaginary part of partition function (instability)     to get decay rate– generalize harmonic approximation 

• expansion to fourth order• modification of Feynman­Kleinert varitional procedure     

• problem: requires constant temperature  

Page 48: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Table of contents• Elements of nuclear physics

– shell model vs compound nucleus

• Concept of nuclear temperature: false or true?– consequences of thermal isolation

• Transport theory – application in fission and heavy ion collisions– origin of irreversibility, nature of dissipation– fluctuating forces

• Summary, open problems

Page 49: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Summary• at finite T nuclear collective motion: a problem of transport theory   unique features: nuclei  are small, thermally isolated and self­

bound• temperature varies in time because of: 

– transfer of energy from collective motion to „heat bath“– evaporation of light particles and photons

• for average motion: – pairing implies weak damping or no damping at all– with increasing T damping increases and may become very strong– as (eventually ?)  seen in experiments (analyzes require reconsideration)– transport properties involve effects from inertia and thermostatic energies– related  to self­consistency problem – it is vital to treat nucleonic motion qunatum mechanically ­­­ and    not in macroscopic limit

Page 50: WARM NUCLEI - TUMElements of nuclear physics • shell model (M.GoeppertMayer, J.H.D. Jensen, 1949) independent particle model: nucleons move in mean field, s.p. states group in shells,

   

Summary• dynamics of fluctuations on classical level

– structure of equation like known from Kramers– input determined by transport coefficients of average motion

• extension to quantum physics within LHA– allows for treating varying temperature– modified diffusion coefficients– possible above T_0 >0 of order of less than 0.5 MeV

• beyond LHA with functional integrals – requires constant T – problems with decent introduction of inertia