wafer-scale contactor development and deployment

22
June 12 to 15, 2011 San Diego, CA WaferScale Contactor Development and Deployment Jim Brandes Contactor Products

Upload: dobao

Post on 06-Jan-2017

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wafer-Scale Contactor Development and Deployment

June 12 to 15, 2011San Diego, CA

Wafer‐Scale Contactor Development and Deployment

Jim BrandesContactor Products

Page 2: Wafer-Scale Contactor Development and Deployment

Outline• Probe DevelopmentE f W f L l T t• Emergence of Wafer‐Level Test

• Engagement to Develop WL Contactors• Field Deployment of WLCSP Contactors• Challenges and Setbacks• Separating Reality from Perception• Progress and Solutions• Lessons Learned and Path Forward• Summary

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 22

y

Page 3: Wafer-Scale Contactor Development and Deployment

Probe Development• Multitest and ECT have been making spring 

probes for over thirty yearsp y y– Probes have evolved over time to meet needs of final test

– High Electrical Performance, Long Life– Highest‐performance probes have always been reserved for test contactorsbeen reserved for test contactors

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 33

CSP Bantam Gemini

Page 4: Wafer-Scale Contactor Development and Deployment

Probe Development• 2009 Recession drove development 

of lower‐cost probep– Maintaining high performance a challenge

– Required development of new manufacturing technique

• Result: Mercury probe• Result: Mercury probe– Electrical performance nearly that of Bantam

Mercury 0 5Mercury 0.4

– Longer life than Bantam– Half the price of Bantam

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 44

Bantam 0.5Mercury 0.5

Page 5: Wafer-Scale Contactor Development and Deployment

Emergence of Wafer‐Level Test• Simultaneous emerging trend

– Wafer‐level devices are a small, but rapidly‐growing device segment

– Driven by the need for smaller devices for mobile applications– Final test at the wafer level is one appealing facet of WLCSP

50006000700080009000

010002000300040005000

2014

2010

Data courtesy

June 6 to 9, 2010June 6 to 9, 2010 IEEE SW Test WorkshopIEEE SW Test Workshop 55

New Venture Research Corporation

Page 6: Wafer-Scale Contactor Development and Deployment

Request from Fabless Manufacturer• Had purchased many contactors for singulated devices• Requested quote for large, multi‐site WLCSP contactor

Octal-Site Contactor for0 4 i h 182 b ll BGA

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 66

0.4 mm pitch, 182-ball BGA

Page 7: Wafer-Scale Contactor Development and Deployment

Manufacture / Initial Check‐Out• The design and fabrication presented no challenges

– Multitest experienced with wafer‐level contactorsDesigns are simple– Designs are simple

• Mercury 0.4 mm pitch probe chosen– Met the electrical requirements of the application– User had experience / comfort with Mercury technology– User had experience / comfort with Mercury technology

• User did initial check‐out in the United States– Initial check‐out using Singulated devices – hand test– Verified electrical performance of entire interface– Verified electrical performance of entire interface

Mercury

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 77

Page 8: Wafer-Scale Contactor Development and Deployment

Manufacture / Initial Check‐Out• Check‐out continued using a wafer prober

– There were some challenges with alignmentS i b ti iti t h ld ti htl• Spring probe tip positions are not held as tightly as traditional probes

• Wafer prober had difficulty finding probe tips– No issue with execution after alignmentNo issue with execution after alignment

• WL Targets (solder balls or bumps) are larger than die pads 

• There is a degree of self‐alignment between ld b ll d b tisolder ball and probe tip

• Initial test results were very good– First pass yield better than previous solution

Fi l i ld l i d– Final yield also improved

M P b Ti

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 88

Mercury Probe Tip

Page 9: Wafer-Scale Contactor Development and Deployment

Transition to Subcons• High‐Volume test occurring in Taiwan and Singapore• Alignment was initially an issue

– Required manual intervention on first wafer– Took more time than desirable– Design changes in contactor improved positional stability of probes– Improved algorithms were employed

• Improved yields of 2% – 6% seen immediately– Incentive to work through issuesg– Not all issues are real, some are perception

• Over fifty contactors running high‐volume production• > 96% First‐pass yield (average)• > 96% First‐pass yield (average)• > 98% Final yield (average)

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 99

Page 10: Wafer-Scale Contactor Development and Deployment

Separating Fact from Perception• Some issues at subcons are real problems

• Some perceived issues are due to the difference between 

traditional probe cards for die and spring‐pin contactors

– Planarity

– Probe X/Y positional accuracy

– Contactor body material (plastic) dimensional stability

– Probe life

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1010

Page 11: Wafer-Scale Contactor Development and Deployment

Separating Fact from PerceptionPerception: Spring Probe Contactors are not Planar Enough

• Die pads are extremely coplanar• Die pads are extremely coplanar– Traditional probe cards have very little compliance (overdrive)– Consequently probe cards are made with very consistent Z heights

• Solder balls on wafer‐level devices are less coplanar• Solder balls on wafer‐level devices are less coplanar– Spring probes have much more compliance– Consequently spring probes do not require as much Z consistency

• Probe preload causes deformation (sag) in center of array• Probe preload causes deformation (sag) in center of array– Array flattens out as wafer is engaged and preload is removed– Coplanarity deviation is disconcerting to user– Resolution: Multitest is working to reduce the deformation with new bodyResolution: Multitest is working to reduce the deformation with new body 

materialsReality: Planarity Adequate, but Improvements Being Made

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1111

Page 12: Wafer-Scale Contactor Development and Deployment

Separating Fact from PerceptionPerception: Probes’ X/ Y Positions are not Accurate Enough

• Die targets (metal pads) are very small• Die targets (metal pads) are very small• Die targets (metal pads) are arranged at tight pitches• Traditional probe technologies must have matching accuracy• Wafer‐Level device targets (solder balls) are relatively large by 

comparison• Spring probe tips are somewhat self‐aligning• Spring probe tips are somewhat self‐aligning

– Small amount of X/Y mobility– Crown tips cradle solder ball

Reality: Probe Tip Positions are Accurate Enough for WL Test

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1212

Page 13: Wafer-Scale Contactor Development and Deployment

Separating Fact from PerceptionPerception: Probes’ X/ Y Positions are not Accurate Enough

• Initial positional accuracy challenge was alignment• Initial positional accuracy challenge was alignment– Probers have a target window within which to look for probe tips– Window is scaled to the positional accuracy of traditional probe cards– Opening window to see spring probe tips is a concern to operators

• Designs have evolved to improve positional consistency• Multitest is working with the prober manufacturers and• Multitest is working with the prober manufacturers and 

subcontractors to develop improved alignment algorithmsReality: The Contacts Are Being Aligned y g g

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1313

Page 14: Wafer-Scale Contactor Development and Deployment

Separating Fact from PerceptionPerception: Contactor Dimensionally Unstable

• Contactor growth due to hygroscopy – a real issueAll plastics absorb moisture causing them to grow– All plastics absorb moisture, causing them to grow

– The standard plastic used in these contactors grows over time• Problem appears after several months

“Best fit” alignment algorithms initially work well– Best‐fit  alignment algorithms initially work well• Excellent probe marks over entire array

– Over time, the contactor grows• Excellent probe marks in middle of array ends moving away from centerExcellent probe marks in middle of array, ends moving away from center• Eventually can cause ball shear on solder balls farthest from center

Site 4 Site 7

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1414

Page 15: Wafer-Scale Contactor Development and Deployment

Separating Fact from PerceptionPerception: Contactor Dimensionally Unstable

• Contactor growth due to hygroscopy – a real issue (continued)Contactor growth due to hygroscopy  a real issue (continued)• Ironically, this plastic was chosen over the previous plastic used 

because it has about half the hygroscopic growthf– The 0.3% growth  has been very acceptable for singulated devices

– It is proving to be too much for large, multi‐site, fine‐pitch probe arrays• Plastic returns to original dimensions when moisture removed

Reality: Contactor is growing over timeResolution: For large arrays, Contactors are Designed using a 

L H M i lLower‐Hygroscopy Material– Multitest continues to investigate alternate materials

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1515

Page 16: Wafer-Scale Contactor Development and Deployment

Separating Fact from PerceptionPerception: Spring Probes are Short‐Lived

• Probes rated to have life of “More than 500 k insertions”Probes  rated to have life of  More than 500 k insertions– Specification based on customer feedback– Based on high‐volume use, testing singulated devices in handlers

• Probe life much greater when used for wafer level test• Probe life much greater when used for wafer‐level test• The probes  are achieving >1 M insertions in WL applications

FReD Characteristics 0K FReD Characteristics MER040 @ 1M CyclesFReD Plot of New Probes Same Probes after 1 M cycles

120

140

160

180

200

Ohm

s)

20

25

30

35

120

140

160

180

200

Ohm

s)

20

25

30

35

)

y

20

40

60

80

100

resi

stan

ce (m

O

5

10

15

20

Forc

e (g

)

20

40

60

80

100

resi

stan

ce (m

O

5

10

15

20

Forc

e (g

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1616

0

20

0.0000.0170.0430.0690.0950.1200.1460.1720.1980.2240.2490.2750.3010.3270.3530.3780.4040.4300.4040.3780.3530.3270.3010.2750.2490.2240.1980.1720.1460.1200.0950.0690.0430.017

Deflection (mm)

0 0

20

0.0000.0170.0430.0690.0950.1200.1460.1720.1980.2240.2490.2750.3010.3270.3530.3780.4040.4300.4040.3780.3530.3270.3010.2750.2490.2240.1980.1720.1460.1200.0950.0690.0430.017

Deflection (mm)

0

Page 17: Wafer-Scale Contactor Development and Deployment

Separating Fact from PerceptionPerception: Spring Probes are Short‐Lived

• Currently ranging from 1 5 M to > 4 M and still going!• Currently ranging from 1.5 M to > 4 M and still going!• Why does wafer‐level test allow longer life than package test?

– Ideal presentation– Ideal presentation• Planar• Controlled overdriveOptical alignment SEM Photo of probe • Optical alignment

– Clean environment– In‐Situ cleaning

S o o o p obetip after being plunged 10 k times in elastomeric cleaning media

• Keeps probes in top operating condition

fJune 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1717

Reality: Spring Probes Provide Excellent Operating Life

Page 18: Wafer-Scale Contactor Development and Deployment

Lessons Learned• Prober users speak a different language than handler users

– Probe card instead of contactor (or socket)( )– Overdrive instead of compliance– Dimensions in microns, rather than mm

Unheard of precision– Unheard‐of precision

• Users expect positional accuracies in the microns• Alignment algorithms are customized to each different g g

probe technology• New body materials, and perhaps machining techniques 

i dare required• 0.4 mm pitch is only the beginning  .  .  .

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1818

Page 19: Wafer-Scale Contactor Development and Deployment

Path ForwardNew Body Materials

P f id i• Performance considerations– Extreme rigidity to maintain flatness– Not too brittle– Low or no hygroscopy– Machinable

i l id i• Commercial considerations– Cost– Lead timeLead time

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 1919

Page 20: Wafer-Scale Contactor Development and Deployment

Path ForwardFiner‐Pitch Probes

0 3 K l i• 0.3 mm Kelvin• 0.3 mm non‐Kelvin• Considerations

– Electrical performance• High conductivityHigh conductivity• Low inductance• High bandwidth

M h i l P f– Mechanical Performance• High compliance• Long life

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 2020

Page 21: Wafer-Scale Contactor Development and Deployment

Summary• Wafer‐level test is an important, fast‐growing segment• Wafer‐level test requires higher electrical performance than 

f bwafer probe• Spring probes can provide the required performance• Flat‐technology spring probes are superiorgy p g p p

– Electrical performance– Cost of ownership

• Low initial priceHi h i ld• High yields

• Long life• Field‐servicable

– Proven track record in high‐volume production

• Some adaptation required for the WL environment– New materials, possibly machining techniques

N d fi it h i f d l h ll• Need finer pitches going forward – a real challenge

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 2121

Page 22: Wafer-Scale Contactor Development and Deployment

Thank You

Questions?

June 12 to 15, 2011June 12 to 15, 2011 IEEE SW Test WorkshopIEEE SW Test Workshop 2222