vswr and s parameter

Upload: jaime-jarrin

Post on 06-Jan-2016

168 views

Category:

Documents


2 download

DESCRIPTION

This describes the methods of using a vector analyzer and antennas, also defines the formulas to calcule the S parameters.

TRANSCRIPT

  • Network Analyzer Basicsy

    1

  • What types of devices are tested?What types of devices are tested?H

    i

    g

    h

    DuplexersDiplexersFiltersCouplers

    RFICsMMICsT/R modulesTransceiversCouplers

    BridgesSplitters, dividersCombiners

    Transceivers

    ReceiversTuners

    IsolatorsCirculatorsAttenuators

    Converters

    VCAs

    gration

    Antennas

    Switches

    AdaptersOpens, shorts, loadsDelay linesCables

    Amplifiers

    VCOsVTFs

    Integ SwitchesMultiplexers

    MixersSamplers

    CablesTransmission linesWaveguideResonators

    VTFsOscillatorsModulatorsVCAtten's

    o

    w

    Multipliers

    Diodes

    DielectricsR, L, C's Transistors

    2Device type ActivePassive

    L

    o

  • E l Wh M t h i I t tExample Where Match is Important

    KPWR

    FM 97

    KPWR

    FM 97 RR

    Wire and bad antenna (poor match at 97 MHz) results in

    Proper transmission line and antenna results in 1500 W radiated power -

    150 W radiated power signal is received about three times further!

    3Good match between antenna and RF amplifier is extremely important to radio stations to get maximum radiated power

  • Th N d f B th M it d d PhThe Need for Both Magnitude and Phase

    Complete characterization of 1. SS 11

    21

    22

    S

    4. Time Domain Characterization

    linear networksS

    S

    S 11 22

    12

    Complex impedance needed to d i t hi i it

    Mag2.design matching circuits

    Time

    Vector Accuracy Enhancement

    E

    5.High Frequency Transistor Model

    Error

    MeasuredCollectorBase

    4Complex values needed for device modeling

    3. ActualEmitter

  • Hi h F D i Ch t i tiHigh-Frequency Device CharacterizationLightwave Analogy

    Incident dReflected

    TransmittedReflected

    5

  • Smith Chart Review90o+jX

    Polar plane

    .4.6

    .8

    1.0

    0 +R

    Polar plane

    0o180o+-

    .20 R

    -90 o

    -jXRectilinear impedance plane 90p p

    Constant X

    Smith Chart maps rectilinear impedanceZ = ZoL

    = 0 Constant R

    Z ( )Z 0 ( h t)p p

    plane onto polar planeZ = L

    = 0 O1(open)

    LZ = 0

    = 180 O1

    (short)

    6

    Smith Chart

  • Power TransferRS

    RLFor complex impedances, maximum power

    )

    transfer occurs when ZL = ZS* (conjugate match)

    0,81

    1,2

    o

    r

    m

    a

    l

    i

    z

    e

    d

    )

    Zs = R + jX

    0,20,40,6

    d

    P

    o

    w

    e

    r

    (

    n

    00,

    0 1 2 3 4 5 6 7 8 9 10

    L

    o

    a

    d

    RL / RS ZL = Zs* = R - jX

    7

    Maximum power is transferred when RL = RS

  • Transmission Line Review

    Low frequencies Iow eque c es Wavelength >> wire length Current (I) travels down wires easily for efficient power transmission

    I

    y p Voltage and current not dependent on position

    Hi h f iHigh frequencies Wavelength or

  • T i i Li T i t d ith ZTransmission Line Terminated with Zo

    Zs = ZoZo = characteristic impedance of transmission line

    Zo

    VincVrefl = 0! (all the incident power is absorbed in the load)

    9

    For reflection, a transmission line terminated in Zo behaves like an infinitely long transmission line

  • T i i Li T i t d ith Sh t OTransmission Line Terminated with Short, Open

    Zs = Zo

    VVinc

    Vrefl In phase (0 ) for openOut of phase (180 ) for shortoo

    10

    For reflection, a transmission line terminated in a short or open reflects all power back to source

  • T i i Li T i d i h 25 Transmission Line Terminated with 25

    Zs = Zo

    ZL = 25

    VVinc

    Vrefl

    11Standing wave pattern does not go to zero as with short or open

  • Hi h F D i Ch t i tiHigh-Frequency Device Characterization

    IncidentTransmitted

    Reflected

    TransmittedR B

    TRANSMISSIONREFLECTIONA

    TransmittedIncident

    ReflectedIncident

    AR=

    BR=c de t

    Group

    Incident

    Return

    R

    Gain / Loss

    S-ParametersS21 S12

    Delay

    Transmission

    Insertion Phase

    SWR

    S-ParametersS11,S22 Reflection

    Impedance, Admittance

    ReturnLoss

    12

    S21,S12 TransmissionCoefficient

    Coefficient R+jX, G+jB

  • Reflection ParametersZL ZOReflection Vreflected = L OZL + OZ

    ReflectionCoefficient =

    reflected

    Vincident=

    = Return loss = -20 log(),Voltage Standing Wave Ratio

    EVSWR = Emax

    E=

    1 + EmaxEmin 1 +

    No reflection Full reflection

    Emin 1 - No reflection

    (ZL = Zo)

    Full reflection(ZL = open, short)

    dBRL

    0 10 dB

    13

    RLVSWR1

  • Transmission ParametersVV VTransmittedVIncident

    DUT

    VTransmittedTransmission Coefficient = = VTransmittedVIncident

    =

    Insertion Loss (dB) = 20 LogV Trans

    = 20 log Insertion Loss (dB) = - 20 Log V Inc

    = - 20 log

    Gain (dB) = 20 LogV Trans

    = 20 log 14

    Gain (dB) 20 Log V Inc

    20 log

  • L F N t k Ch t i tiLow-Frequency Network Characterization

    H-parameters Y-parameters Z-parametersH parametersV1 = h11I1 + h12V2V2 = h21I1 + h22V2

    Y parametersI1 = y11V1 + y12V2I2 = y21V1 + y22V2

    Z parametersV1 = z11I1 + z12I2V2 = z21I1 + z22I2V2 = h21I1 + h22V2 I2 = y21V1 + y22V2 V2 = z21I1 + z22I2

    h11 = V1I1 ( i h t i it)I1 V2=0h12 = V1

    (requires short circuit)

    V2 I1=0 (requires open circuit)

    15

    All of these parameters require measuring voltage and current (as a function of frequency)

  • Limitations of H Y Z ParametersLimitations of H, Y, Z Parameters(Why use S-parameters?)( y p )

    H,Y, Z parametersd l l d d h h Hard to measure total voltage and current at device ports at high

    frequenciesA ti d i ill t lf d t t ith h t / Active devices may oscillate or self-destruct with shorts / opens

    S-parameters Relate to familiar measurements(gain loss reflection coefficient ) Relate to familiar measurements(gain, loss, reflection coefficient ...) Relatively easy to measure Can cascade S-parameters of multiple

    Incident TransmittedS21a1 b2Ca cascade S pa a ete s o u t p edevices to predict system performance Analytically convenient

    S11Reflected S22

    Reflectedb1

    b2

    a 2

    DUTPort 1 Port 2y y

    CAD programsFlow-graph analysis

    Transmitted Incidentb1 a 2

    S12b1 = S11 a1 +S12 a2b S S

    16

    Can compute H, Y,or Z parametersfrom S-parameters if desired

    b2 = S21 a1 + S22 a2

  • ScatteringParametersScatteringParameters

    Athighfrequencies,Z,Y,h &ABCDparametersaredifficult(ifnotimpossible)tomeasure.

    o V andI arenotuniquelydefinedo Evenifdefined,V andI areextremelydifficult

    to measure (particularly I)tomeasure(particularlyI).o Requiredopenandshortcircuitconditionsare

    oftendifficulttoachieve.

    Scattering(S)parametersareoftenthebestrepresentationformultiportnetworksathighfrequency.

    17

  • ScatteringParameters(cont.)ScatteringParameters(cont.)Sparametersaredefinedassumingtransmissionlinesareconnectedtoeachport.g p

    1 21a 2a

    1 2

    z z

    1

    1b 2b01 1,Z 02 2,Z

    O h t i i li

    1z 2zLocalcoordinates

    Oneachtransmissionline:

    0 0i i i iz zi i i i i i iiV zV z V e V e V z

    0 0

    i i i ii

    ii

    i

    V z V zI z

    Z Z

    1, 2i

    0 0i i

    0i i i i ia z V z Z Incoming wave function18

    0i i i i ib z V z Z Outgoing wave function

  • ForaOneForaOnePortNetworkPortNetwork

    011 0 ZV L

    01

    01

    1

    1

    00L

    ZZ

    VV

    1a1b

    01Z

    1 0b 1l 1 0a

    1 1

    11 1

    0 0

    0Lb a

    S a

    Foraoneportnetwork,S11 isdefinedtobethesame as

    11S 11 1 0S a sameasL.

    0i i i i ia z V z Z Incoming wave function 0i i i i ib z V z Z Outgoing wave function

    19

  • ForaTwoForaTwoPortNetworkPortNetwork

    a1 21

    a

    1b 2b2a

    01 1,Z 02 2,Z

    1z 2z

    Scattering 1 11 1 12 20 0 0b S a S a Scatteringmatrix 2 21 1 22 20 0 0b S a S a

    1 11 12 1

    000

    0b S S a

    b S ab S S 2 21 22 2 00b S S a

    20

  • ScatteringParametersScatteringParameters

    1 11 1 12 20 0 0b S a S a 2 21 1 22 20 0 0b S a S a

    Outputismatched inputreflectioncoef.

    11100

    bS

    a

    Inputis

    pw/outputmatched

    t i i f

    21 0

    1

    0

    0

    aa

    bS

    matched reversetransmissioncoef.

    w/inputmatched

    1

    122 0

    0

    0

    a

    Sa

    b

    forwardtransmissioncoef.w/outputmatched

    2

    221

    1 0

    00

    a

    bS

    a Outputis

    matched

    outputreflectioncoef.w/inputmatched

    222 2 000

    a

    bS

    a Inputismatched / p

    12 0a

    21

  • ScatteringParameters(cont.)ScatteringParameters(cont.)Whyarethewavefunctions(a andb)definedastheyare?

    1 21a

    b b2a

    01 1,Z 02 2,Z

    1z 2z1b 2b

    *2

    01 10 Re 0 0 ii i iV

    P V I

    (assuminglosslesslines) 0

    0 Re 0 02 2i i i i

    P V IZ ( g )

    Note: 00 0i i ia V Z 210 0

    2i iP a

    22

  • ScatteringParameters(cont.)ScatteringParameters(cont.)

    Similarly,

    2

    0

    201 002

    12

    ii i

    i

    VP b

    Z

    0i

    Also,

    0 i ili i il

    V l V e 0 i ili i iV l eV

    2 2 21 1 02 2

    i ili i i i iP l a l a e

    2 2 21 12

    02

    i ili i i i il bP l b e

    23

  • Measuring S-ParametersgIncident TransmittedS 21a 1

    b 2

    S 11Reflected

    b

    a 1Z 0

    Loada 0

    DUTForward

    S Reflected b1

    b 1 a2 = 0

    S 11 = ReflectedIncident

    = 1a 1 a2 = 0

    S Transmittedb

    2

    S 22 = ReflectedIncident

    =b2a 2 a1 = 0

    S 21 =Incident

    = 2a 1 a2 = 0 S 12 =Transmitted

    Incident=

    b1

    a 2 a1 = 0

    S 22b2a1 = 0

    DUTZ 0 R

    IncidentTransmitted S 12

    22Reflected

    a2

    DUTZ 0Load

    Reverse

    24

    1IncidentTransmitted S 12

    b

  • SSParameterMeasurementsParameterMeasurements

    Sparameters are typically measured, at microwave frequencies,S parametersaretypicallymeasured,atmicrowavefrequencies,withanetworkanalyzer(NA).

    Theseinstrumentshavefoundwide,almostuniversal,applicationsincethemidtolate1970s.

    Vectornetworkanalyzer:MagnitudesandphasesoftheSparametersaremeasured.

    Scalarnetworkanalyzer:OnlythemagnitudesoftheSparametersismeasured.

    25

  • VectorNetworkAnalyzer(VNA)VectorNetworkAnalyzer(VNA)

    aPort1 1a

    1b

    DUT

    1b

    HewlettPackard8510 2bDUT

    2a

    26

  • Network Analysis of VNA MeasurementNetwork Analysis of VNA MeasurementNetworkAnalysisofVNAMeasurementNetworkAnalysisofVNAMeasurement

    1a 1b 2a 2b

    27

  • SSParameterMeasurementsParameterMeasurements

    Port 1 Port 21ma 2

    ma

    2mb1mb

    Meas. plane 1 Meas. plane 2Ref. plane Ref. plane

    Errorboxescontaineffectsof test cables connectors couplersoftestcables,connectors,couplers,

    28

  • SSParameterMeasurements(cont.)ParameterMeasurements(cont.)

    21AS 12BS1 21S 1 1

    1ma 21

    11AS

    22AS 22

    BS

    12

    11BS

    1

    11S

    21

    22S

    1 12mb

    12AS 21

    BS1 12S 11mb 2

    ma

    21 12 21 12A A B BS S S S

    Assume error boxes are reciprocaland

    " " .A BS S andWe need to calibrate to find

    A BS S S dIf are known we can extract from measurements A BS S S andIf are known we can extract from measurements.This is called deembedding Thisiscalled deembedding.

    29

  • CalibrationCalibrationShort,open,matchcalibrationprocedure

    1ma

    121S

    S

    1

    Connect SC OC Z0

    1mb

    11S

    22S Connect

    -1 +10

    0

    h t t h

    ,A B Calibrationloads112S1 short open match

    2S

    2111 11

    222

    1SCm

    SS S

    S

    3( , , )m m mS S S

    measurements :21 12

    11L

    inS SS 221

    11 11221OC

    mS

    S SS

    11 11 11

    ( , , )

    3SC OC match

    S S S unknowns for each port :

    11221

    inLS

    11 11matchmS S 11 21 22, ,S S S

    30

  • Generalized Network Analyzer Block Diagram

    Incident Transmitted

    DUT

    SOURCE Reflected

    SIGNAL

    REFLECTED(A)

    TRANSMITTED(B)

    INCIDENT (R)

    SEPARATION

    RECEIVER / DETECTOR

    (A) (B)(R)

    RECEIVER / DETECTOR

    31PROCESSOR / DISPLAY

  • Traditional Scalar Analyzer

    Traditional scalar system consists of processor/display and source

    Example: HP 8757D requires external detectors, couplers, bridges, splittersrequires external detectors, couplers, bridges, splitters good for low-cost microwave scalar applications

    RF R A BRF R A B

    Detector

    B id

    Detector

    Detector

    32

    DUT

    BridgeTermination

    Reflection TransmissionDUT

  • M d S l A lModern Scalar AnalyzerE thi f t i i d fl ti t iEverything necessary for transmission and reflection measurements isinternal!

    One-port (reflection) and response (transmission) calibrations

    Narrowband and broadband detectorsLarge display

    33Synthesized source Transmission/reflection test set

  • Spectrum Analyzer / Tracking Generator

    RF in

    IFIFLO

    DUT

    8563A SPECTRUM ANALYZER 9 kHz - 26.5 GHz

    TG out

    Spectrum analyzer

    DUT

    Tracking generatorf = IF

    DUT

    Key differences from network analyzer: one channel -- no ratioed or phase measurements one channel no ratioed or phase measurements More expensive than scalar NA Only error correction available is normalization

    34

    Poorer accuracy Small incremental cost if SA is already needed

  • Modern Vector AnalyzerFeatures:Synthesizer

    15 MHz to 60 MHzintegrated sourcesampler-based front endtuned receiverMUX

    996 kHz

    tuned receivermagnitude and phasevector-error correction

    A S4 kHz

    TestSet

    RF

    300 kHz

    Reference

    detector

    T/R or S-parameter test setsB S 4 kHz

    4 kHz

    to3 GHz

    Phase R S

    4 kHzLock

    ADC CPU DisplayDUT

    ADC CPU Display

    Digital Control

    N t d l l lik HP 8711/13C l k j t lik t l

    Source ReceiverTestSet

    35

    Note: modern scalar analyzers like HP 8711/13C look just like vector analyzers, but they don't display phase

  • T/R Versus S-Parameter Test SetsTransmission/Reflection Test Set S-Parameter Test Set

    Source Source

    Transfer switch

    B

    R

    A B

    R

    ABA BA

    Port 1 Port 2

    DUTFwd

    Port 1 Port 2

    DUTFwd Rev

    RF always comes out port 1 port 2 is always receiver

    RF comes out port 1 or port 2 forward and reverse measurements

    36

    port 2 is always receiver response, one-port cal available

    forward and reverse measurements two-port calibration possible

  • Processor / Display

    Incident Transmitted

    HACTIVE CHANNEL

    RESPONSE

    ENTRY

    NETWORK ANALYZER50 MHz-20GHz

    SIGNAL

    SOURCE

    Incident

    Reflected

    Transmitted

    DUT

    STIMULUS INSTRUMENT STATE R CHANNEL

    R LT S

    HP-IB STATUS

    RECEIVER / DETECTOR

    REFLECTED(A)

    TRANSMITTED(B)

    INCIDENT (R)

    SIGNALSEPARATION

    PORT 2PORT 1

    PROCESSOR / DISPLAY

    markers limit lines pass/fail indicators linear/log formats

    37

    grid/polar/Smith charts

  • M t E M d liMeasurement Error ModelingSystematic errors

    due to imperfections in the analyzer and test setup are assumed to be time invariant (predictable) can be characterized (during calibration process) and mathematicallycan be characterized (during calibration process) and mathematically

    removed during measurementsRandom errors

    vary with time in random fashion (unpredictable) cannot be removed by calibration main contributors:main contributors:

    instrument noise (source phase noise, IF noise floor, etc.) SYSTEMATIC

    Errors:

    switch repeatabilityconnector repeatability

    Drift errors

    Unknown Device

    Measured Data RANDOM

    DRIFTDrift errors are due to instrument or test-system performancechanging after a calibration has been done

    DRIFT

    38

    are primarily caused by temperature variation can be removed by further calibration(s)

  • S t ti M t ESystematic Measurement Errors

    A BCrosstalkR CrosstalkDirectivity

    DUT

    Source LoadFrequency response

    reflection tracking (A/R)Mismatch Mismatch transmission tracking (B/R)

    39

    Six forward and six reverse error terms yields 12 error terms for two-port devices

  • Types of Error CorrectionTwo main types of error correction:

    response (normalization)p ( )simple to performonly corrects for tracking errorsy gstores reference trace in memory,then does data divided by memory thruy y

    vectorrequires more standardsqrequires an analyzer that can measure phaseaccounts for all major sources of systematic erroraccounts for all major sources of systematic error

    SHORT

    S11AOPEN

    LOAD

    thru

    40

    S11MLOAD

  • Wh t i V t E C ti ?What is Vector-Error Correction? Process of characterizing systematic error terms

    measure known standardsremove effects from subsequent measurementsremove effects from subsequent measurements.

    1-port calibration (reflection measurements)only 3 systematic error terms measureddirectivity, source match, and reflection tracking

    Full 2-port calibration( fl d )(reflection and transmission measurements)

    12 systematic error terms measuredusually requires 12 measurements on four known standards (SOLT)usua y equ es easu e e ts o ou ow sta da ds (SO )

    Some standards can be measured multiple times(e.g., THRU is usually measured four times) Standards defined in cal kit definition file

    network analyzer contains standard cal kit definitionsCAL KIT DEFINITION MUST MATCH ACTUAL CAL KIT USED!

    41

  • Reflection: One-Port ModelIdeal

    If you know the systematic error terms, you can solvefor the actual S-parameter

    S S

    RF infor the actual S parameter Assumes good termination at port two if testing two-port devices If port 2 is connected to the network analyzer and DUT reverse

    S11M S11A isolation is low (e.g., filter passband):assumption of good termination is not valid

    Error Adapter

    two-port error correction yields better results

    ED = DirectivityERT = Reflection tracking

    1RF in

    o dap e

    ERT Reflection trackingES = Source Match

    S11M = MeasuredS11M S11AESED

    S11M = MeasuredS11A = ActualERT

    42S11M = ED + ERT S11A

    1 - ES S11A

    To solve for S11A, we have 3 equations and 3 unknowns

  • B f d Aft O P t C lib tiBefore and After One-Port Calibration

    0

    Data BeforeE C ti

    02.0

    Error Correction20

    B

    ) 1 1

    40

    L

    o

    s

    s

    (

    d

    B

    W

    R

    1.1

    R

    e

    t

    u

    r

    n

    L

    V

    S

    W

    1.01

    Data AfterError Correction

    60

    R

    1.001

    436000 12000

  • Adapter Considerationsdesired signal

    reflection from adapter

    = total

    adapter DUT+

    Coupler directivity = 40 dB

    leakage signal

    TerminationAdapter DUT

    Coupler directivity 40 dBDUT has SMA (f) connectors

    Worst-case Ad ti f APC 7 t SMA ( )

    APC-7 calibration done here

    System Directivity

    APC 7 to SMA (m)

    Adapting from APC-7 to SMA (m)

    28 dB APC-7 to SMA (m)SWR:1.06

    17 dB APC-7 to N (f) + N (m) to SMA (m)SWR:1.05 SWR:1.25

    4414 dBAPC-7 to N (m) + N (f) to SMA (f) + SMA (m) to (m)

    SWR:1.05 SWR:1.25 SWR:1.15

  • T P t E C tiTwo-Port Error CorrectionPort 1 Port 2E

    S21ES

    ETTa1

    A

    X

    b2 Forward modelS11

    S12

    S22ES

    ED

    ER

    T

    EL

    1

    b1A

    A

    Aa2

    T= Directivity= Source Match= Reflection Tracking

    = Load Match= Transmission Tracking= Isolation

    ESED

    ERT

    ETT

    EL

    EX

    A

    Notice that each actual S-parameter is a

    T

    Notice that each actual S-parameter is a function of all four measured S-parameters

    Analyzer must make forward and reverse sweep to update any one S-parameter

    Luckily, you don't need to know these equations to use network analyzers!!!

    45

    equations to use network analyzers!!!

  • Crosstalk (Isolation)

    Crosstalk definition: signal leakage between portsg g pCan be a problem with:

    High-isolation devices (e.g., switch in open position)DUT

    High-dynamic range devices (some filter stopbands)Isolation calibration

    Adds noise to error model (measuring noise floor of system)Only perform if really needed (use averaging)

    if t lk i i d d t f DUT t h t t i tiif crosstalk is independent of DUT match, use two terminationsif dependent on DUT match, use DUT with termination on output

    Isolation cal when crosstalk is dependent on match of DUT

    46

    DUT LOADDUTLOAD

  • Errors and Calibration Standards

    UNCORRECTED RESPONSE 1-PORT FULL 2-PORT

    SHORT SHORT SHORT

    DUT OPEN OPEN OPENthru

    ConvenientGenerally not accurateNo errors removed

    DUT

    LOAD LOAD LOAD

    No errors removedEasy to performUse when highestaccuracy is not required

    For reflection measurementsN d d f h h

    DUT

    DUT

    thru

    accuracy is not requiredRemoves frequencyresponse error

    Need good termination for high accuracy with two-port devicesRemoves these errors:

    Di ti it

    Highest accuracyRemoves these errors:

    DUT

    DirectivitySource matchReflection tracking

    DirectivitySource, load matchReflection trackingOther errors:

    47

    Transmission trackingCrosstalk

    Random (Noise, Repeatability)Drift

  • C lib ti SCalibration Summary

    S-parameter(two-port)

    T/R(one-port)

    Reflection Test Set (cal type)SHORT

    Reflection trackingDirectivity

    (two port)(one port)

    OPEN

    DirectivitySource matchL d t h

    LOAD

    S parameterT/R

    Load match

    T i iTest Set (cal type)

    T i i T ki

    S-parameter(two-port)

    T/R(response, isolation)

    Transmissionerror can be corrected

    Transmission TrackingCrosstalkS t h *( )

    error cannot be corrected* HP 8711C enhanced response cal can correct for source

    48

    Source matchLoad match

    ( )match during transmission measurements